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A. SPECIAL RELATIVITY AND ASYMMETRIC ENERGY MOMENTUM TENSORS

The principle of virtual work applied to systems with intrinsic angular momentum
leads to asymmetric stress tensors. In this report ways are shown for reconciling the
relativistic law of angular momentum conservation with the asymmetry of the stress

energy tensors.

1. Introduction

The stress tensor of a time dispersive polarizable or magnetizable medium obtained
from the principle of virtual work (or principle of virtual power) is nonsymmetric.l’ 2
This asymmetry is due in part to the terms p0_1\7I_H and/or ?ET, which are asymmetric,
if the polarization and magnetization do not align with the electric and magnetic field
intensities. From the nonrelativistic point of view, there are no difficulties with such
an asymmetry of the stress tensor. Indeed, in a time-dispersive medium there is an
intrinsic angular momentum associated with the rotation of the polarization or magneti-
zation vectors. Such an angular momentum requires torques if it is to be changed, and
these torques are provided by the antisymmetric part of the stress tensor. Certain dif-
ficulties do arise, however, in a relativistic formulation of such media if one tries to
write the law of conservation of angular momentum in the conventional four-notation. It

is customary to define a four-tensor of third rank describing the angular momentum

0 =x T ,-x,T , 1
apy ~ FaTvp T ¥ ve W
where Taﬁ is the stress energy tensor of the entire system satisfying the equation of
motion

8/8xaTaB = 0. (2)

The conservation of angular momentum is then written in the form

When (1) and (2) are introduced into (3), the result is
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T .-T, =0. (4)

Hence, if one insists on conservation of angular momentum, as well as the specific

expression (3), one must conclude that the system must possess a symmetric stress-

energy four-tensor. Taking as an example a time dispersive polarizable fluid and

constructing the stress energy tensor in the usual way, one arrives at an asymmetric
1,2

four-tensor for the system.

This report will show how it is possible to preserve a law of conservation of angular

momentum of the form (3) on the one hand, and the expression for the stress tensor as

obtained from the principle of virtual power, on the other hand. At the same time, we

shall construct a law of angular momentum conservation which approaches the proper

nonrelativistic limit.

2. Fundamental Postulates

We shall require that our theory satisfy the following postulates.

Postulate 1: The angular momentum tensor in four-notation is to be given by

- (s) _ (s)
eaﬁv = X‘ITYB XBTya (5)

and satisfies the conservation law

5x_ Papy = O (6)
Y
where szsfs) is a stress-energy four-tensor containing the mechanical translational
equations of motion in the form
9 (s) _
ox, Tap = O (7

A direct consequence of (6) and (7) is the symmetry of the stress energy tensor T‘(zs[’s).

Postulate 2: The equations of motion of the entire system are also expressible in

terms of the equation

9 pln) _
ax Taﬁ =0, (8)
a
where sznﬁ) is a nonsymmetric tensor whose three-space part is obtained from the prin-

ciple of virtual power.
The problem is thus the construction of a symmetric tensor ng from the non-

symmetric tensor obtained from the principle of virtual power in a way that both (7)

and (8) are satisfied and at the same time, the usual equation for the conservation of
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angular momentum is obeyed.
Postulate 3: The vector torque per unit volume, 7, constructed from the three-space

part of the energy-momentum tensor, according to

mm _FM0) = -
Tﬁa Ta[3 > T a,f=1,2,3 (9
gives the law of conservation of angular momentum v per particle in the rest frame:
0
- 0l d -
T=n ':d—t O':l , (10)

where the superscripts indicate evaluation in the rest frame.
Let us look briefly at the cause of the asymmetry of the three-space part of the
stress-energy tensor. Consider an isotropic time-dispersive polarizable medium. In

such a medium the only contribution to the asymmetric three-space part is the term

P E-.l’ 2 Suppose now that we construct the torque per unit volume from
(n) (n)
Tae = Tep (11)
and look at its one-two component. We obtain
(n) (n) _ p0r0  50,0_ =0, =0
T;Sa - Taﬁ s = PIEZ PzE1 = (P XE )3. (12)

Apparently, the one-two component of this tensor is the three-component of the vector
P X E in the rest frame. This is the torque acting on the dipoles of strength p and
number density n so that the dipole moment per unit volume results in P = np. This
torque, in turn, is equal to the time rate of change of the intrinsic angular momentum
of the dipoles. Let us denote the angular momentum per particle by . If the number

density in the rest frame is no, one must have

-0

PO x §°

=n 4 =

- no dt (0)0 (13)
This equation can be written in four-space notation, once we establish the correct trans-
formation laws for the vector 7. According to Landau and Lifshitz3 the angular momen-
tum of a body is expressible as the four-tensor of second rank (we interchanged indices

to conform to our definition of the force equation).
i
===\xT ~ -xT ds_. (14)
ap cgavﬁ plvd By
In the rest frame, defined as the frame with no net momentum or energy flow, dSY is
defined as having a time direction only.

If we apply this formula to a particle, we conclude that its angular momentum is

represented by the four-tensor with the components in the rest frame:
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0 0 B
0 3 -0, 0
0 0
. ) -0 0 oy 0 |
ap 0 0 |
gy -0, 0 0
0 0 0 0

We find a complete analogy between ¢ , and the tensor constructed from the magnetiza-

ap

tion four~-vector

1
ic eaﬁyéMyué (15)
which assumes the above form in the rest frame, with ., replaced by Ma. Hence the

four-vector angular momentum defined in the rest frame by

transforms like a magnetization density four-vector.

It is worth considering briefly the implications of this analogy. A magnetization den-
sity can be represented by a density of loops of circulating charge currents. The angular
momentum is the result of a circulating mass current. Charge-current densities, and
mass-current densities do not transform relativistically in the same way. The dif-
ference in the transformation laws is compensated for by the fact that M(Z contains, in
addition, a particle density, whereas °, does not contain such a density.

We note that the vector equation (13) is contained in the three-space part of the tensor

equation
(n) (n) _ 9
Tﬁa - Tal3 = nouY 8xy o op’ (17)
A problem arises with the four-components of (17). Take, for example, the four-

component in the rest frame of (17) for g =1,2,3. If one makes the identification (12)

and uses the transformation laws for Uaﬁ’ one finds in the rest frame (in which usually
T64 = T4B, B=1,2,3):
i|dv _0
O=—E[a-:|0x0' . (18)

This equation puts an inadmissible constraint upon the acceleration. Therefore, one can-
not take directly the nonsymmetric tensor as obtained from the principle of virtual power

with no modification and hope that it will lead to a consistent equation (17). Modifications
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are necessary. Here we point out one simple modification that does not produce any

additional changes in the principle of virtual power,

3. Modification of Stress-Energy Tensor

We assume that in the rest frame the space-time and time-space parts of the stress-
energy four-tensor are symmetric. This has been found true in all examples treated by
the authors. We postulate that the time-dispersive medium possesses an additional
momentum per unit volume

-0
-0 _ 1 [8 0.0
G=:§[é—‘ﬂ XT n . (19)

The principle of virtual power (of a closed system, with ¢O = 0),

00 T8 .19, 0, =0.5° (avy
[V-S7] +[é—tw} + W[V V] +—C2. 51)
=0, (o=10 =0 [8vY
- 730 wve -ad - (F), (20)

is not affected by such a term because the dot product of the acceleration with the
momentum (19) is zero. Therefore, no additional changes have to be made in any of the
expressions entering the principle of virtual power if the four-tensor is supplemented by
such a momentum density. The addition of the momentum density (19) leaves the stress
tensor, the power-flow density, and the energy density of the material system intact. It
should be pointed out, however, that the force density on the kinetic system is changed
by such a modification. Indeed, the time rate of change of the momentum density and
its convective flow have to be subtracted when the kinetic force density is obtained.
Hence, a relativistic correction to the force density results even in the rest frame.

We modify the nonsymmetric four-tensor Tap’ obtained from the principle of virtual
power (without consideration of intrinsic angular momentum) by the addition of such a

momentum density and define the four-tensor

(n) _ Ye%s 8 ( 0 )

Taﬁ = Taﬁ + 5 5x “épn uY (21)
c Y

in which we have included the momentum density (19) by the last term. In terms of the

modified nonsymmetric tensor, the conservation of angular momentum (17) is now valid

for all values of B or «a

T(n) - T(n) =n.u 9 (o _.). (22)
Y

Pa ap ~
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4. Symmetrization of the Stress-Energy Tensor

We shall now construct from the modified stress-energy tensor of (22) a symmetric

stress-energy tensor that obeys the same equation of motion (8). This is accomplished

by adding to Tg;%) the expression
d _1 9 0 0. _ 0
a_xY aBy 2 ox [Uaﬁn ujtog nugmo, uﬁ}, (23)

where LPQBY is antisymmetric in ya. Because of this antisymmetry, the symmetrized

(s) _ (n) , 8 . .
tensor T(43 = Ta[3 + axy Lpa[.’)y obeys the equation of motion
(s)
E)Ta[3
Frrai 0. (24)
a

Next we test that the law of conservation of angular momentum (22) is contained

in (6). One obtains
(s) _p(s) _ pin) _ mln) . 8 ( 0 ) -
Tﬁa - Taﬁ = Tﬁa - TaB + 8XY Uﬁan uY = 0. (25)

We see that the law of conservation of angular momentum is indeed contained in (6).

The present discussion has led to results different from those obtained by Meixner.4
Since the terms in our theory and in Meixner's theory are relativistic, experimental
verification of either theory seems out of the question and simplicity of the result is one

legitimate criterion to decide between the two.
P. Penfield, Jr., H. A. Haus
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