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A. NEUTRALITY OF THE NEUTRON

An experiment has been undertaken to examine more closely the limit that may be

placed on a possible charge possessed by the free neutron. The implications associated

with such a charge are numerous. A neutron charge of approximately 2 X 1018 electron
1

charge (e) would explain the expanding universe on the basis of electrostatic repulsion.

A neutron charge of approximately 2. 5 X 10-19 e would explain the magnetic fields of

the earth and sun.2 Finally, the independence of three conservation laws - Conservation

of Baryons, Conservation of Leptons, and Conservation of Charge - is linked to the

strict neutrality of the neutron and the equality of the magnitude of the electron and pro-

ton charges.

The experimental technique employed here was to subject a beam of neutrons to a

strong, uniform, transverse electric field, E. If the neutrons are assumed to possess

a charge q, this would result .in an angular deflection of the beam

Eq L
0 = (1)

m 2v

for small 0. Here, m is the neutron mass, L is the length of the deflection region,

and v is the longitudinal beam velocity. Reversing the sense of E would give rise to a

deflection -0; that is, upon field reversal an angular charge of AO = 20 would be expected.

Thus the charge measurement reduces to the detection of small angular beam deflections.

Figure I-1 illustrates schematically the technique that was used. A beam of heavy-

water-moderated neutrons from the M. I. T. reactor, operating between power levels of

2 to 5 Mwatts during the experiment, impinge on a perfect Si crystal with a flux of

approximately 109 neutrons/second. This monochromating crystal Bragg reflects the

desired neutrons of wavelength X = 2. 40 A with a scattering angle of 45" onto the second

analyzer Si crystal. When the analyzer crystal is correctly adjusted, the neutrons are
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reflected into the conventional BF 3 detector and counting system. It should be noted that

another, "contamination" wavelength of X/3 = 0. 8 A is also reflected. Its effect was
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Fig. I-i. Schematic diagram of the neutron-neutrality experiment.

carefully measured and accounted for, and thus will not be mentioned in the sequel. Two

boron-enriched slits limit the beam width so as to avoid reflection of the neutrons from

the high-voltage electrodes. The absence of such reflections was carefully determined.

The counting rate is an extremely sensitive function of the angle of incidence of the beam

onto the analyzer. By providing a unique mounting for this crystal, and by carefully

maintaining the apparatus in a constant temperature environment, sufficient stability was

obtained to use the change in counting rate to detect a beam deflection when the trans-

verse electric field was applied. The field was provided by the parallel-plate electrode

structure shown in Fig. I-1. The construction and support were consistent with providing

negligible gradients to the beam and to maintaining constant field magnitude when the

electric field was reversed by means of the reversing switch. The entire electrode

assembly was contained in a vacuum system, the neutron beam entering and leaving

through thin aluminum windows.

Under the assumption that the neutrons did possess a charge of, say, +10- 17 e, the

angular deflection of the beam for this geometry would amount to ±2 msec of arc when an

electric field of ±200 volts/cm was provided. Hence, as the electric field was automa-

tically reversed at 5-min intervals, the angle of incidence of the beam onto the analyzer

crystal would vary by this amount around some zero-field value, o .

Figure I-2 shows a typical "rocking curve" of this double crystal arrangement; that

is, the effect of varying the angle of incidence of the neutron beam onto the analyzer
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crystal. This curve was actually obtained with the high-voltage electrode system in

position, but with E = 0, and by rotation of the analyzer. From the slope of the curve

in the region of O6, the sensitivity of

a __ the experimental arrangement can be

300 X2.40A assessed. For low power level oper-

Si (il) - 2-Mw REACTOR ation of the reactor, this was typically
C POWER LEVEL

200 .. 75 n/min-sec of arc, and for high power

E level it was 200 n/min-sec of arc. The
- "4.1 sec theoretical limit to the half-width of

C 100

S. the rocking curve can be shown from
z

0 .. diffraction theory to be
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Fig. 1-2. Typical rocking curve of the

double-crystal spectrometer. where M is the atomic density of the

crystal, b is the crystal structure fac-

tor, X is the neutron wavelength, and 0 is the Bragg angle. For the arrangement used

here a theoretical 6 of 3. 2 sec is predicted, whereas an excellent value of 4. 1 sec was

attained.

A verification of the equivalence of using this rocking curve for the basis of the sen-

sitivity to beam deflection was made. The beam was actually deflected by positioning

an aluminum prism in the beam in the region between the two crystals. If the prism

angle is a, the corresponding angular deviation of the beam can be shown to be

Mbk 2

= 2(l-n) tan a = 2 tan a, (3)

where n is the index of refraction, M the atomic density, and b the absolute scattering

amplitude of aluminum. It should be noted that such a deflection is fully equivalent to a

neutron charge deflection in its wavelength dependence, as can be seen from Eq. 1 when
h

the de Broglie relation v = h is used to eliminate the velocity. Figure I-3 shows the

agreement obtained between the change in angular deflection of the beam as the aluminum

prism was rotated 1800, as predicted by Eq. 3, and that computed from the measured

change in neutron count rate and the corresponding angular charge ascertained from the

rocking curve.

The experimental results are exhibited in Fig. 1-4. The ordinate axis is the angular

deflection, AI, to the field when on to the field turned off; that is, it is one half of the

angular deflection change under reversal of the sense of the electric field. The error

brackets are found to agree extremely well with those to be expected on the basis of -n-.

For obvious reasons, much more data were accumulated at the highest value of the
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Fig. I-3. Experimental verification of apparatus sensitivity
as determined from the rocking curve.

U~ - 17
+10 ELECTRON CHARGE

0 2-

0- 0
LEAST-SQUARES FIT

H n -20 q= (-2.0 +3.8) 10
E ELECTRON CHARGE

-j -3
U-

-4- -10

r" -5

_j -6
0 100 200 300

z DEFLECTING ELECTRIC FIELD (KILOVOLTS/cm)

Fig. 1-4. Experimental results.

electric field which could be attained. The dotted lines indicate what angular deflection

would have been measured if the neutron charge were as large as ±10 - 17 e. A least-

squares fit gives (-2. 0± 3. 8)1018 e; that is, if the neutron does possess a charge, we

have shown that, with a 68 per cent confidence level, it must lie somewhere within the

dotted band illustrated in Fig. 1-4.

K. W. Billman, C. G. Skull, F. A. Wedgwood.
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