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A. NEW METHODS FOR TESTING CAMERA LENSES (Part II)

In Quarterly Progress Report No. 73 (pages 209-216) we described a new method

for testing camera lenses and cameras. This method, which makes use of an especially

designed analyzer lens placed in front of the camera lens, together with a polar

coordinate test chart, permits simple diagnosis of the focal properties of the lens-

camera combination. In particular, our method was shown to be sensitive to range-

finder error, misalignment of lens-to-film plane, and to astigmatism and curvature of

field.

Further tests with this method have indicated the need for the improved construction

of the analyzer lens element which is reported here. Also, we evidently did not exhaust

the potentialities of the method for the diagnosis of lens aberrations, since, with slight

modification, our earlier work provides a sensitive test for spherical aberration and for

coma. An additional, somewhat similar, test is also given which permits the determina-

tion of lateral chromatic aberration. Using both of these methods, we can determine

five of the seven primary lens aberrations; the exceptions are distortion and axial chro-

matic aberration. Since these tests do not require the use of a precision optical bench,

they should be particularly useful for amateur and professional photographers.

1. Improved Construction of the Analyzer Lens

In Fig. XIX-1 we show the basic method of lens testing. The analyzer lens CC is a

crossed cylinder, i. e., a spherocylinder having equal positive and negative powers about

two orthogonal axes, Y and Z. A narrow horizontal slit S is oriented at 45 to the axes

of the crossed cylinder. For our previous tests we used ±1/8, 11/4, and ±1/2 diopter

ophthalmic cylinder lenses. Recent tests, however, indicate that the best available

quality of such lenses of powers ±1/8 diopter or smaller give uncertain results in

this application.

This work is supported in part by the Bell Telephone Laboratories, Inc.; The
Teagle Foundation, Inc.; the National Science Foundation (Grant GP-2495); the National
Institutes of Health (Grant MH-04737-04); the U. S. Air Force (Aeronautical Systems
Division) under Contract AF 33(615)-1747; and the National Aeronautics and Space
Administration (Grant NsG-496).
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Fig. XIX-1. Arrangement of optical elements for testing the lens objective.

Accordingly, we have devised an alternative method of fabricating weak ana-

lyzer lenses, which makes use of the fact that the small section of the crossed

cylinder that we actually use (that portion visible through the slit) can be approx-

imated by a surface of a narrow rectangular glass prism stressed in torsion.

A prism, 3 X 7 X ~100 mm is cut from the best quality of optical flat glass

and stressed in torsion. Flexible couplings are used to eliminate bending moments.

While the torsional stress is held constant, the prism is securely glued to a
thicker optically flat glass window with a clear, well-mixed, epoxy cement (see
Fig. XIX-2). The slit (parallel to the prism) is glued to the other side of this
window.

Satisfactory long-term bonding can only be achieved if the glass surfaces

are pretreated with a 2% solution of Union Carbide A-1100 Silane bonding agent

because the glue joint must withstand indefinitely the torsional prestressing of

the prism. Satisfactory bonds of 6-months endurance have been obtained by using

R-314 Epoxy bonding agent (Carl H. Biggs Company) and also Epon 825 cement

with a 20% Epon 2807 hardening agent. The maximum equivalent cylindrical power

of the lens that we have fabricated in this way is ±1/8 diopter. We have found

that analyzer lenses with 2-inch apertures and of successively halved powers of

±1/2, ±1/4, ±1/8, and ±1/16 diopters will suffice to test most camera lenses.

We recommend the use of ophthalmic cylindrical lenses at the two strongest

powers and the stressed-prism construction for the weaker powers.

We have examined the diffraction images of these new analyzer lenses when used

with our best 200-mm telephoto lenses. Our tests with a high-power microscope
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Fig. XIX-2. Epoxy gluing of flat glass disc to prism of optical glass deformed
by torsion. Flexible couplings minimize bending moments.

revealed some irregularities of performance which could be traced to the tele-

photo lenses, but no defects that could be attributed to the new construction of

the analyzer lens.

2. Tests for Spherical Aberration and Coma

We are concerned with a lens test in which the image of a point source is a line

segment. The angular orientation of this line-segment image is a sensitive function

of the focus of the lens. In testing for spherical aberration, we introduce a compli-

cation, in that the various zones of the lens may have different focal lengths. The

image of a point source in this instance will not be a line segment, but with simple

spherical aberration it will be a sigmoidal curve. In order to provide satisfactory

imaging of the polar-coordinate chart in this new situation, it is preferable that the

chart be ruled with white lines on a black background. With this modification, we

tested a lens known to have large spherical aberration; the results are shown in

Fig. XIX-3. (In Fig. XIX-4, we show a similar test with a well-corrected lens.) The

effect of the spherical aberration is evident both in the appearance of the radial

lines, and in the splitting of the images of the circles. The appearance and angular

extent of the split images of the circles provides an indication of the spherical

aberration of the lens (both in sign and magnitude); however, before precise meas-

urements are attempted by this means, it will be necessary to standardize the film

exposure and development conditions and to obtain correlation with other methods
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Fig. XIX-3. Lens with appreciable spherical aberration.
(Compare with Fig. XIX-4.)

Fig. XIX-4. Well-corrected lens.
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Fig. XIX-5. Array of point sources photographed
with lens system having coma.

Fig. XIX-6. Use of lens analyzer to test for coma.

QPR No. 77 387



Fig. XIX-7. Test for coma with polar chart.
(Compare with Fig. XIX-4).

Fig. XIX-8. Lateral chromatic aberration.I I / I i

Fig. XIX-8. Lateral chromatic aberration.
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of measurement of the aberration of the lens.

The use of this method to determine coma is similar. We have simulated this

aberration by the use of a TelXtender-type image amplifier, a Barlow-type negative

amplifying lens interposed between the telephoto lens and the film plane. Such a

combination has been found to generate almost pure coma, if the "TelXtender" is at

full aperture. This is perhaps evident from the image of an array of 15 dots shown

in Fig. XIX-5 (15 ball bearings illuminated with a single source). In Fig. XIX-6 we show

the corresponding images photographed with the analyzer lens in place. This method is

evidently a sensitive test for coma. In Fig. XIX-7 we show the appearance of the polar

chart when photographed with the same apparatus. It is evident that the angular extent

of the segments of the images of the circles becomes larger toward the edge of the field.

Measurements of this angular broadening should give the magnitude - but not the sign -

of the comnatic distortion.

In summary, we note that this test determines four lens aberrations and also checks

the focus and alignment of the camera. Critical focus is not necessary for this lens test

to be effective.

3. Test for Lateral Chromatic Aberration

The method described here can be varied to permit determination of lateral chro-

matic aberration. The polar chart (black lines on white background) is photographed

in white light with panchromatic high-contrast film through a weak dispersive analyzer

prism oriented to provide spectral dispersion along the vertical axis of the chart. The

exposure, development, and printing variables are so adjusted that only those line seg-

ments that point in the direction of the spectral dispersion will register on the prints.

The spectral blurring in the vertical direction, caused by the analyzer prism. acts in

combination with the radial spectral blurring of the image, which is the effect known as

lateral chromatic aberration. The resultant of these two factors is a blur that obscures

all but a selected set of the circumferential line segments. The figure formed by this

set of line segments indicates the extent of the lateral chromatic aberration by the sign

and magnitude of its curvature.

Since lateral chromatic aberration is not a common defect of modern lenses, we have

simulated it by means of a large, single-element field lens placed one meter in front of

our polar chart. This introduces a noticeable change in magnification with color, with-

out significant focal error. For our analyzer prism, we used an ophthalmic prism that

provides 10-cm deviation at one meter, and is made of glass with n = 1. 523 and v = 58.

In Fig. XIX-8 we show that the results of this test. The pattern has a similarity to our

earlier test in which horizontal lens misalignment was indicated. It is important to note

that in this test care must be taken with the focal adjustment.

B. Howland
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B. QUANTUM THEORY OF MEASUREMENT IN RELATION TO A GENERAL

THEORY OF OBSERVATION AND CONTROL

1. Problem Statement

The quantum theory of measurement, due in its formal aspects to Dirac and

von Neumann, is well known to have logical flaws, as well as to involve technical diffi-

culties. Both originate from the nonrelativistic theory of stationary states; for it is

immediately obvious that actual physical observables represent transitions between

states with finite lifetimes which therefore cannot be stationary.

Logically, this shows up in von Neumann' s account of measuremlent as the reduction

of the triadic relation observer-instrument-object to a dyadic relation instrument-object.

A standard example illustrating this point is the hydrogen atom; th e electron, as object,

is projected into a set of discrete states by the field of the proton as instrument. Nothing

could actually be observed, however, without the perturbing effect of the radiation field

(RF) which must be reckoned as the observer and form an integral part of the theory of

measurement. The present perturbation theoretic treatment fails to be satisfactory

because quantized fields such as RF cannot be defined unambiguously.

Apart from the theor of measurement, this last difficulty 1may be regarded as a

technical one. Existing theory leans neavily on the use of self-adjoint operators which,

with real eigenvalues, must represent stationary states. As a result, one practically

has to adopt not only microcausality

[6(x), (x') ]= 0 (x-x') < 0 (1)

but also equal time commutation relations

[(x), 'r(x') t=tl = 6(x-x') (2)

for field operators c(x) and their conjugates Tr(x). It is a well-known result 1 that there

are uncountably many inequivalent representations satisfying (1) and (2). There then

follows from the requirements of scattering theory the result known as Haag' s theorem,

namely the only unitarily equivalent representations are the free fields.

Our problem can now be stated as follows:

(A) Reformulate the theory of measurement in terms of triadic relations. In prac-

tice this means, find three term analogs of (1), (2).

(B) Show that (A) leads to a unique, or at least manageable equivalence classes of

representation.

This work was supported by the U. S. Air Force Cambridge Research Laboratories
under Contract AF19(628)-4147.
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There is a distinct advantage in looking at this problem in a wider context than the

physical, one can then ask what is unique about physics as a theory of observation; this

will be implicit in the sequel. Before stating the approach specifically, some requisite

background will be given.

2. Logic

There is a well-known isomorphism 2 between combinatory logic and computability,

considered in terms of Turing machines. There is also the further reduction now known

to exist (Arbib, Papert, unpublished lectures) to the theory of infinite, but finitely pre-

sented, semigroups. A basic building block of this theory is the Kleene three-term

predicate T(R, A, S) which states the existence of a logic (alternatively, a machine) with

rules of inference R, axiom A, derivations S (in the machine's case corresponding

indices, x, y, z, say). It is a well-known result that {x} = (x 3y T(x, x, y)) is a recur-

sively enumerable but nonrecursive set; that is, no finite amount of equipment will cer-

tainly decide whether x E {x}; nevertheless, {x} is finitely generated and therefore

has a well-defined structure. This is taken to indicate that in a theory of observation

we may reasonably speak of nonobservable entities having a structural significance.

The discussion above may be exemplified in the logic of quantum mechanics repre-

sented in the conventional way3 as the lattice of all closed subspaces of Hilbert space.

This is known to be a relatively orthocomplemented lattice which is not modular, 4 that

is, it has sublattices of the form shown in Fig. XIX-9.

a b

(aub) " c

b

a (b c)

b"c

Fig. XIX-9.

Here

(a , b)- ac * a , (b " c); (3)

however, the essential features of existing quantum mechanics depend only on modularity

(i. e., equality in (3)) without distributivity

a,(b I c) : (a,, b) r-(a, c) (4)
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b"

c¢b^b '

Fig. XIX-10.

as in Fig. XIX-10. It seems very likely then that the ambiguity of field theory arises

from insufficient restriction on the appearance of nonmodular sublattices, thereby indi-

cating ordered indiscernibles rather than equivalent indiscernibles (as in the modular

case, Fig. XIX-10), and this restriction represents some symmetry condition on the

predicate T(R, A, S).

3. Quantum Field Theory

The typical problem 5 of field theory is the solution of the nonlinear equation

( o +k2) = E 2 3 (5)

where -1 is an operator-valued function subject to conditions (1) and (2). The existing

approach is to treat the right-hand side as a perturbation and expand the integral form

of solution

S(x) = (x) + E 2 A (x-x') (x') dx', (6)

where , are solutions of the 'free' equation (E=0). To remove divergences from

the expansion, it is necessary to interpret it in terms of Feynman diagrams; while this

can be done consistently, it is ad hoc and leaves us with no theroy about what determines

the experimental values of (m, g). There are other equal methods such as the program

known as 'Reggeization' in scattering theory of removing ambiguities from field theory.

It seems that there are at least two other approaches that could lead to a deeper

theory. The first is to consider (5) as an equation in the non self-adjoint operators

A = (J±ik± E d#). (7)

To justify this one would have to show that the A's give a representation of a group that

expresses,in some basic way,a theory of measurement. This will be indicated in section 4.
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Alternatively, one can notice that if 4 is a c-number, (5) has a solution in terms of

elliptic functions with modulus T (period ratio) which determines (m(T), g(T)). The last

need not be constant off the light cone (or mass shell) and the modular transformation

group I gives a basis for introducing what is currently known as the renormalization
6

group. To go over to a g-number theory one can consider the Hilbert space of differ-

entials on a Riemann surface 7 and its various orthogonal decompositions. The impor-

tance of this approach is that it establishes a connection with the powerful methods of

algebraic field theory when K(T) is algebraic. In particular, we shall have in some limit

Ag v = (x-x') 2 ,  (8)

where v is a valuation that may not be Archimedean.8 This crucial point explains why

nonlocal field theories have failed up till now. A typical 9 form of it requires relations

of form

[P [P, ]] = k2;
(9)

[x'[x, LJ = L2

however, if X is chosen to be a self-adjoint (or even normal) operator (therefore diag-

onalizable, with eigenvalues x1 , say) we are back essentially to a localizable theory,

since there is no way of distinguishing the domains x x < X2 .

4. Non Self-Adjoint Operators and Group Representations

If A is not a normal operator (i. e., does not commute with its adjoint) then it cannot

be unitarily equivalent to a diagonal, but only a triangular form. The eigenfunctions are

not orthogonal and this has the apparently unpleasant consequence that probability is not

conserved, but there is no evidence that this should be so in every bounded domain.
10

Non self-adjoint operators have forced themselves on the attention of physicists, in

particular, in the theory of scattering by metastable systems. Here we should ask only

that the A's give a representation, necessarily nonunitary, of some group that is uniquely

associated with a theory of measurement. Mackey 1 1 has pointed out that the most

natural infinite representations of groups are not necessarily unitary and that nonunitary

representations can be induced for subgroups by unitary representations of larger ones.

Two questions now arise which can be seen as reformulations of (B) and (A), respectively.

(C) What is the source of nonunitary representations? The answer is in algebraic
12

groups, that is, groups whose field of definition is restricted to algebraic numbers.

This is discussed further in section 5.

(D) What group structure expresses the uniqueness of physical measurement? The
13answer here, which I have discussed in a preliminary fashion elsewhere, lies in a
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phenomemon occurring uniquely in the exceptional simple Lie groups which is known as

the 'Principle of Triality'.14,15

This principle can be formulated as a physical one by regarding it as a far-reaching

extension of the 'Dirac trick,' by which is meant the following - in the relativistic theory

of the electron, the angular momentum operators M (as generators of the Lorentz group

D 2 ) are extended to M' = (M+c), so that M' becomes a constant of the motion. In this

case M' acts on a direct product of two representations (Infinite and Spin) of the same

group D 2 . We have a degeneracy which would be lifted if the direct product representa-

tion were replaced by a single representation of a larger group; it seems that there is

a unique candidate for the latter, namely the exceptional Lie group F 4 . Operators of

this group can be put in the form A = (Z+-l 1+O 2), where the terms operate respectively

on a vector space V and two spin spaces S1, S 2 . There exists, then, as an automor-

phism of the group, a triality operator J such that V = JS1 S2. The existence of J

is due to the fact that V is an 8-dimensional vector space (relativistic phase space) that

can be coordinatized by the nonassociative division algebra Q 8 (z) of octonions which, in

addition to the involution Tz = z, has another S(z l z 2 ) = Z1 (z 2 ') because of the nonasso-

ciativity. Then J = ST.
16

Triality is the mathematical expression of what has been called 'the elementarity

of measurement,' since it says - no matter how V is distinguished, the information

obtained is the same. The group F 4 thus contains within it not only coordinate but gauge
17

transformations that at present are considered separately, for example, as the group

A 2 of strong interaction symmetries.

It follows from this that, unlike the Dirac case, the representations of Ul' 02 must

be infinite dimensional, at least if that of Z is. But, in any case, there are no finite

dimensional representations of Q 8 (z) on account of the nonassociativity. The nature of

these representations is at present a matter of speculation, but in view of what was said

in the previous section it seems likely that they may be totally discontinuous p-adic

representations. If this is the case, possible substitutes for (1) would be

[cl' 21] = Jv(z-z'), (10)

together with two further relations obtained by application of J, since this can be

assumed to act on the valuation of v(z).

5. Algebraic Field Theory

The key to representation theory is algebraic groups.20 There is a classical

approach to these through Abelian functions that represent an algebraic field on

a Riemann surface. A surface of genus g (i. e., g cuts) is completely character-

ized by (3g-3) moduli. The transformation group F on these moduli establishes a

correspondencel 9 between surfaces which, when the moduli are from an algebraic
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number field K(T), may be an automorphism (for elliptic functions this is known as

complex multiplication). To represent a Lie group G on the variables of these func-

tions one has to embed the Weyl group W(G) in iF. Elsewhere I have given some

conjectures about this for F 4 . An essential role here is played by the class field

theory of K(T), that is, the equivalence classes of ideals in K(T), hence the connec-

tion with p-adic valuations. Since F is an infinite group, it may contain finitely pre-

sented groups with an unsolvable word problem, hence a connection also with the

remarks on logic of section 2.

It seems quite essential to preserve the preferred role of time as implied by (2), and

therefore another condition imposed on K(T) will be that it causes just such a splitting

of the group structure.

6. Global Viewpoint

The group F 4 represents only half, which we may consider the local part, of the

picture. If we write the relativistic wave equation in the form

F (V + i 66) + i} = 0, (11)

where the covariant derivative

V = 8 + i<A > (12)

is determined by the expectation value <A > of the electromagnetic potential, then the

triality , V , K) is local in the sense that it describes events in the hypersurfaceSJ
determined, apart from <A >, by the element of support 1F1 considered as a constant.

If the last is no longer assumed, we have the point of view of general relativity and

all the arguments about triality now apply to F.
F 4 is not the largest group that acts on an octonion structure. This structure is E8

which acts on a tensor product of octonion algebras in the same way that D6 acts on the

Dirac algebra (of F's) as a tensor product of quaternions. It is evident that the splitting

relations here are important just as they are in the Dirac case, where

( & , K) = (Tl pi, 1, p3 ) (13)

(.,i' Pi, elements of complex quaternion algebras). In particular, it is clear, in view of

(12), that the 'trialities' will not be independent.

The relation between the groups is15
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m= 1 2 3 8

n = 1 B 1 A 2 C 3 F 4

2 A2' A 2 A5 E6

4 D6 E7

8 E 8

Here, (m, n) are the dimensions of the algebras; B l is the rotation group of real 3-space;

A 2 , A 5 (=SU(3), SU(6)) have been proposed as gauge groups for strong interactions. If A 5

turns out to be the correct identification, then we have the possibility of the approximate

splitting, E 8 ~ A 5 + B 3 , where B 3 is the smallest group admitting a nontrivial triality,

for which I have given an interpretation elsewhere in terms of a cosmological model. 2 2

M. C. Goodall

References

1. G. Barton, Advanced Field Theory (Interscience Publishers, Inc., New York,
1963).

2. M. Davis, Computability and Unsolvability (McGraw-Hill Book Company,
New York, 1958).

3. G. W. Mackey, Mathematical Foundation of Quantum Mechanics (W. A. Benjamin,
Inc., New York, 1963).

4. Garrett Birkhoff, Lattice Theory, Proc. Symp. Pure Math. 2, 156 (1961).

5. A. S. Wightman, Relativistic Quantum Field Theory, Proc. International Con-

gress on Mathematics, 1962.

6. N. N. Bogoliubov and D. V. Shirkov, Theory of Quantized Fields (Interscience
Publishers, Inc., New York, 1959).

7. L. Ahlfors and L. Sario, Riemann Surfaces (Princeton University Press,
Princeton, N.J., 1960).

8. G. Bachman, p-adic Numbers and Valuation Theory (Academic Press, New York,

1964).

9. H. Yukawa, Non-localisable field theory, Phys. Rev. 77, 219 (1950).

10. C. L. Dolph, Non-selfadjoint problems in mathematical physics, Bull. Am.
Math. Soc. 66, 1 (1960).

11. G. W. Mackey, Infinite dimensional group representations, Bull. Am. Math.
Soc. 69, 628 (1963).

12. I. Barsotti, Algebraic group varieties (Bull. Am. Math. Soc.)

13. M. C. Goodall, Foundations of relativistic quantum mechanics, Nature 195, 167

(1962).

14. C. Chevalley, Algebraic Theory of Spinors (Columbia University Press,

New York, 1954).

15. H. Freudenthal, Lie groups in the foundations of geometry, Adv. in Math. 1, 2

(1964).

QPR No. 77 396



(XIX. NEUROPHYSIOLOGY)

16. M. Sachs, Elementarity of Measurement in General Relativity, Boston Univer-
sity Colloquium paper, 1965.

17. S. L. Glashow and M. Gell-Mann, Gauge theories of vector particles, Ann.
Phys. 15, 437 (1961).

18. M. C. Goodall, Representation of a Group in Relativistic Quantum Mechanics,
Nature 197, 585 (1963).

19. F. Conforto, Abelsche Funktionen u. Algebraische Geometrie (Springer Verlag,
Berlin, 1956).

20. A. Weil, Adeles and Algebraic Groups (Lecture Notes, Institute for Advanced
Study, Princeton, N.J. (1961).

21. M. Jacob and G. Chew, Strong Interaction Physics (W. A. Benjamin, Inc.,
New York, 1964).

22. M. C. Goodall, Connexion between local and global physics, Nature 197, 994
(1963).

QPR No. 77 397




