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A. STUDIES IN CONVOLUTIONAL CODING

1. Plotkin Bound for Convolutional Codes

Massey, in unpublished work, has obtained an upper bound on the minimum distance

of binary convolutional codes which is asymptotically the same as the Plotkin bound for

block codes. This work has now been extended1 to convolutional codes with symbols in

an arbitrary finite field, GF(q). Letting d(N, K, m) denote the greatest minimum distance

of convolutional codes with rate R = K/N and memory m subblocks, that is, the con-

straint length nA = (m+l)N digits 2 , one obtains the following theorem.

THEOREM: d(N, K, m) < (b-1)N+ qi+ 1 + m (q-l)i, where [x] denotes the least

integer equal to or greater than x, and

1. c. m. (N-K, q)

N-K

1. c. m. (N-K, q)

q

Convolutional codes may be considered as linear tree codes. It has also been shown 1

that the preceding theorem applies also to the class of nonlinear tree codes over GF(q),
1

with R = and N = qr + 1 for some integer r, and such that the N encoded digits on

each branch may be written

f(i i1  . .. . _) + Bi.,

where B is a constant N-tuple, ij is the information digit corresponding to the branch

*This work was supported principally by the National Aeronautics and Space Admin-
istration (Grant NsG-334).
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in question, and f is an N-tuple function of the preceding information digits.

Some cases have been found1 in which the bound of the preceding theorem is achieved

with equality. For q = 2 and K = 1, equality can be obtained for any odd N when m ' 3.

For N = 5 and N = 3, equality can be obtained for m < 4 and m < 6, respectively.

2. Semidefinite Decoding

A decoding procedure called semidefinite decoding has been suggested by the author

which allows the decoder to make some use of previous decoding decisions without the

danger of infinite error propagation which can arise when feedback decoding is employed.
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Fig. XI-1. Syndrome register for a feedback decoder.
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Fig. XI-2. Syndrome register for a (K=2)-stage semidefinite decoder.
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This type of decoding is conveniently described in terms of the syndrome register 3

employed in the decoder. Figure XI-1 shows the syndrome register portion of a feed-

back decoder for an R = systematic binary convolutional code. Su+m is the syndrome

digit at time u + m, and e is the decoding estimate of the error in the information

digit at time u. A definite decoder differs from that in Fig. XI- in that there is no

feedback from the decoding decision into the syndrome register. A K = 2 stage semi-

definite decoder is shown in Fig. XI-2. For such a decoder a definite decoding decision

is made on eu-K+l. This decision is then utilized in the circuit which estimates eu-K+2 .
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Fig. XI-3. Number of decoding errors, N (K), per 100,000 information

bits vs number of semidefinite decoding stages K, for R = 1/2.
Self-orthogonal code (nA=4 6 , J=6).
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In general, the decision on euK+j will make use of the decisions on eU-K+ 1 ..

euK+j- 1 for a K-stage semidefinite decoder. The case K = 1 coincides with definite

decoding and K = co coincides with feedback decoding.

The performance of semidefinite decoding has been analyzed by simulation4 of

decoders on the IBM 360/65 computer in the M. I. T. Computation Center. Figure XI-3

shows the result of semidefinite decoding employing a threshold decoding function f on

the nA = 36 self-orthogonal code for which 6 orthogonal parity checks can be formed.

For this case, the decoding error probability is (approximately) a monotonically

decreasing function of K which obtains its asymptotic or feedback-decoding value when

K is almost equal to RnA. This result is typical of those obtained by simulation of

semidefinite threshold decoders for the classes of self-orthogonal codes, uniform codes,

and Massey's trial-and-error codes.

3. Gilbert Bound on Definite Decoding Distance

The customary minimum distance measure employed with convolutional codes is

that appropriate for feedback decoding. For definite decoding, an alternative measure
1

is required. Consider an R = - binary systematic convolutional code in which io, il'

i 2 ... is the sequence of information digits and po' p 1 ' P 2 .... is the sequence of parity

digits. The definite decoding minimum distance, dDD, is defined to be the fewest num-

ber of positions in which there are disagreements in the vector

[io' ii... ' im' im+l .*. i 2m' Pm, P+ 1 ... ' P2m ]

for information sequences with different values of i . It is easily shown that d DDis

also the minimum Hamming weight of such a vector with i = 1.

It has been shown 5 that there exist convolutional codes such that

dDD
lim - > . 0262.mm - oo

This is the first asymptotic result on definite decoding of a fixed convolutional code.

The proof 5 of this result utilized a number of interesting new facts concerning the

structure of sequences produced by linear feedback shift registers and the properties

of parasymmetric matrices.

J. L. Massey
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