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A. STRONG TURBULENCE THEORY FOR A TRANSVERSE

ELECTROMAGNETIC WAVE - COMPARISON WITH THE

SINGLE-PARTICLE CALCULATION

In previous reports1, 2 we have discussed single charged-particle motion in a con-

stant pitch and constant amplitude magnetic perturbation with relation to "corkscrew"

injection and wave-particle interaction in magnetized plasma. We have worked out the

motion of untrapped 1 and trapped 2 particles.

Here we apply Dupree's strong turbulence theory 3 to wave-particle interaction in

a transverse electromagnetic wave propagating parallel to an external magnetic field.

By using a transformation of the velocity coordinate,4 which is essentially transforma-

tion to the wave frame used in studies of the single-particle motion,2 we reduce the

Vlasov equation to a one-dimensional diffusion-type equation. Then manipulation sim-

ilar to that of the longitudinal wave case by Dupree3 leads to nonlinear wave-particle

interaction including "trapped" particle effects.

We compare the results in the strong field limit, where the trapping effect is impor-

tant, with the results of the single-particle model. The results agree except for numer-

ical factors. The single-particle calculation gives a proof of the correctness of the

strong turbulence theory, which includes some crucial assumptions and provides some

clearer physical intuitions.

1. Strong Turbulence Theory

We start with the Vlasov equation:

8f 8 q 8
+ v -f +- (E+vX B) f = 0. (1)t r m av

We consider a transverse electromagnetic wave propagating parallel to an external
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magnetic field. And for simplicity, we consider a spatially homogeneous plasma in the

absence of zero-order electric field. We shall follow the discussion of Dupree's longi-

tudinal wave case.

To solve Eq. 1, we expand the field in Fourier series

E(r,t) = Ek (t ) eik r

k I

B(r, t) = B 0 z + (t) ei--r

k

Introducing (2) into Eq. 1, we obtain

1a a q _a q+v- +-vXB f+-- ar m- -o v m (E + v XB )  f = 0.

k

We divide the distribution function f into two parts:

f (r, v,t) = f(v, ,vi t) + k(vt)e , (4)

k

where (f(viI, v1 , t)) is the distribution function averaged over a time much longer than

a Larmor period so that it is independent of the gyration angle 0, which is shown in

Fig. XV-1 with the definitions of vll, v1 , Bo, and k. In the time averaging we assume

Z

90

11 Fig. XV-1. Velocity coordinate system.

that fluctuation phases are uncorrelated; then we can use ensemble averaging for
the correlation terms instead of time averaging. Thus
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+ +v - f (v',v, t) +- - (Ek+VXB = 0, (5)

k

q a
where the - vX B term drops out, because of the 0 independence of <f>.

m- -o 8v
The fluctuation distribution function fk is given correctly to first order in Bk (or Ek)

by [The proof is parallel to the electrostatic case by Dupree 3.]

fk(t) e- m = -- dr (Ek(T) +v(T) XBk(T)) U(t, T)

o

ik -r a /t ik(r
ke- vr - U(T, to) f(to) + (U(t, to) fk(t=O) e 'r  (6)

where the propagation operator U(t, t ) is the solution of

a q q
a+ v + -- vXB U + - +vXB) - 0 (7)

- _r m- -o 8v m k k - v
k

and the angular brackets indicate an ensemble average over wave phases.

Substituting Eq. 6 in Eq. 5, we obtain

2

(+t )( ( , VI, t) = q k - -k
k o

ik .r(t) ik.r(T) a
(E_ (T)+V(T) X B k) e r(t) <U(t, T) > e - av >,

(8)

where we have neglected the initial value term, since we are not interested in it.

The integrand of Eq. 8 is nonvanishing in only a small interval around t = T, and if

the time dependence of it is sufficiently slow during this time interval, then we can

replace <f(T) > with <f(t) >. Thus, (7) is reduced to a diffusion equation:

a v - D(v) - , t) = 0, (9)

where

2

D(v) - 2 d (k(t) (t) XBk(t)) (Ek -k(T))
m k o

ik - r(t) < (t, T) -ik. r(T) (10)Se - < U(t, 7)>e

QPR No. 90 147



(XV. INTERACTION OF LASER RADIATION WITH PLASMAS)

If the acceleration forces represent stationary time series, then the orbit does too;

that is, <U(t, T) > = <U(t-T) >, and therefore

2
q 2 -t

D(v) m 2 d (Ekt t XBk k(t-T) +V(t-T)XBk(tT))

Seik - r(t) < (T) > e-ik -r(t-T).Continu e- <U(T)> e observe that

Continuing to follow Dupree, we observe that

(11)

<U(T)> e- ik ' r(t- T ) (U(T) e-ik - r(t-T)= (e-ik r' c (-T)

where r (-T) is a trajectory at time -T with initial values r(t) and v(t).
large t - t o (compared with the nonlinear correlation time which will
Eq. 25), we can replace the upper limit of the integral in Eq. 11 by oo.

(12)

For sufficiently

be defined in

Then

D(Y) - 2 dT (_Ek(t) +v(t) X Bk(t)) (E_k (t-7) + v(t-T) XBk(t-T))

k

ik - r (t) e-ick ) (13)

The quantity (e-k" rc(-t))

the same equation as <f>,

is a function only of the orbit; therefore, it must satisfy

S- ar av av0 (14)

We must solve Eqs. 13 and 14 simultaneously. To facilitate this solution, we use

the following coordinate transform, 4

u = V L -2 k k dvl (15)

v = V1

This transform is a transform in which one of the coordinates is along the diffusion path

of the particles (see sec. 2). Ek and B k are related through the Maxwell equations. For

a transverse wave propagating parallel to the external magnetic field, the fluctuating

electric field is

0kEk - kXB
kk 2 -k (16)

Therefore, noting again that j ( v.) does not include a 0 component, we obtain
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(E +vXB (OB ) VIl _ (V1_k - -- k av (- B )  vi

( B ) a (17)

a- D (v) - m- " (Ek(t) +y(t) X Bk(t)) e i k z (t )  
c ( - T

k

e av

m k k
e ei(t( ) (-ikz (-- 8v

k ikz ( -t)D(v, u) 0. (208)where

D(v, u) 20 is very d (ficul(t) to so(t))lve. I(t-)f we ignoreBk(t-)) v dependence(t) of D, how(t-T)

ikz. eikz(t) ikzikvt . D(u)(19)

Therefore Eq. 13 is converted to the following one-dimensional equation

S8 Dvu) _. ) (e-ikz ( - t )

+ v D(v, = 0. (20)

In general, the diffusion coefficient is a function of v and u. If the dependence on v is

retained, Eq. 20 is very difficult to solve. If we ignore the v dependence of D, how-

ever, the solution is simple

-ikz e(-t) -ikz + ikvt - 1 k 2D(u)t 3

e =e3 (21)

We shall assume that this result is also approximately true for the diffusion coefficient

D(v, u). This is one of the crucial approximations in this theory. The agreement of

the results in this theory with those of the single-particle model (which will be described
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later) implies that the assumption does not hide any important gross features of the

theory.

To evaluate the diffusion coefficient, Eq. 19, we substitute the unperturbed orbit

for v 1 (t), namely

iW TA A C
v (t-T) 0(t-T) = v (t) 0(t) e (22)

(which will be correct to "first order"), where c is the cyclotron frequency including

the sign of the charge; that is,

S- -B .
c m 0o

Also, the complex conjugate of the magnetic field is

(23)

k = (t) k T

__-k(t-T) = __k (t) e
= Bk(t) e

Substituting these in Eq. 19, we obtain an integral equation for D(v, u),

2

D(v, u) -2 1
m

k

i(kv-w k+Wc )T-k T D(v, u)
dT e (25)2 2

k -L (v, u) S

q
Noticing that -m-BkL is an acceleration that produces the random process, we define

5nonlinear correlation time T
C,NL

TC, NL

123
2 i(kv-k+) T - k T D(v, u)

SiBk2 f0 dT e3
k

S 1k12
k

(26)

If we neglect the diffusion coefficient in the integrand, TC, NL
autocorrelation time TAC

TAC

reduces to the normal

20 i (kv-wk + c)T
E ok 0 d e
k

k

(27)

The autocorrelation time is approximately evaluated from the difference in phase veloc-

ity of the wave packet 01 k2

k1 k2 '
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01 2
7T k 1 (28)

AC o k1 k2

where k is the average wave number of the spectrum.
o 3

As shown by Dupree, the resonant function

123
o00 i(kv-wk+oc)T 3 k D(v, u)

R[kV-k c , D(v, u)] = Real dT e (29)

for a real frequency wk has a maximum at v = ( k-Wc)/k, at which R = (1/3)!

2 -1/3 ~ 2 1/3
(1/3k D) / 3 , and R goes to zero for Ikv- k+ l > (1/3k D) , and the area under R

is 7T. For simplicity, we replace this bell shape by a square shape with the same area

and approximately the same height and width. For the complex frequency, Wk + iYk'
the nonresonant interaction attributable to the small imaginary part, yk' is ineffective

for the resonant region, while it is only the remaining contribution in the nonresonant

region. Therefore R is approximated by the following function:

2kw I kv-w +Wc < kw2kw k
R[kv-wk+wc ,D(v, u)] (30)

k )2 Ikv-wkw c> kw
(k1-wk - c

where w = (D/3k)1 / 3 is k - 1 times the half-width of the resonance function R[kv- k +Wc

D(v, u)]. The resonance function for the average wave number ko is one important time

scale, the trapping time, TTR:

_ 1 _ (31)
/ 3

TTR 2 kw 2k2D (31)

Now we consider the two limiting cases.

1. TTR >> 
TAC This case corresponds to the case in which the spectrum of the

waves is so broad and/or the wave amplitude is so small that the trapping effect is not

important. Because of the resonance width w << k k , the resonant part of the reso-

nance function becomes delta function. Therefore, the diffusion coefficient in this is

given by

2 2
q 12 2 ^V, 2) q 2 'Yk

D(v, u) 12 1(v, u) 6(kv-wkwc)+ 2 Bk 1 (kv, ) c) 2 .

m k m k

(32)
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This is the diffusion coefficient predicted by the conventional quasi-linear theory. The

first term represents the resonant interaction of wave and particle, and the second rep-

resents the additional "long-range" term, which describes the nonresonant or adiabatic

interaction of wave and particle.

2. TTR << TAC. This case corresponds to the case in which the spectrum of the wave

is so sharp around the resonance condition and/or the wave amplitude is so large that

trapping phenomena are important. The nonlinear correlation time TC, NL is equal to

the trapping time TTR.
Using the simple resonance function with Eq. 25, we obtain an approximate diffusion

coefficient for a finite bandwidth of the spectrum 1 2 I:

2 /3

D(v, u) = 2  Bk 2 2(v, u) 3k

m (v, u) k

(33)

2
q 2 2 kD(v, u)= 2 jB1 k 2 v (v, u) 2 otherwise. (34)

m k (kvck+c)

Note the 3/2 power dependence of the resonant diffusion coefficient on the amplitude of

the wave, and also that the nonresonant diffusion coefficient has the same form as in the

TTR >> TAC case. We shall now compare these results with those of the single-particle

model.

2. Comparisons of the Strong Turbulence Theory with the

Single-Particle Model

We have already solved the problem of determining particle orbits in resonant and

nonresonant constant-pitch, constant-amplitude, magnetic perturbation., 2 Here we

compare the results of the single-particle model (SPM) with the strong turbulence the-

ory (STT) derived above. We shall show that the two solutions are identical within the

accuracy of the assumptions made in their derivations. Thus, in the future, we shall

be able to use the strong physical insight into the dynamics of the interaction gained in

the SPM to elucidate and justify results gained by use of the mathematically more power-

ful STT.

We first note some differences between them. In the STT, an infinitely large number
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of incoherent waves allows us to ensemble-average with respect to wave phases, while

in the SPM we discuss the particle motion in a single coherent wave. In the very last

stage of the SPM, however, we disregard the fine structure of the particle orbit to

obtain the diffusion coefficients. In effect, we study diffusion, resonant or nonresonant,

resulting from the sequential interaction of the particle with many uncorrelated waves.

Thus, in the SPM we perform a time average, and in the STT an ensemble aver-

age. As expected, the two models give the same results if the corresponding corre-

lation times are properly defined.

In the STT, we have used the transform, Eq. 15. Here we discuss the physical

meaning of this coordinate transform. For simplicity, we consider a case of single

wave w and k. Then, (15) can be reduced to

u = v + v - VI W= +v ). (35)

Since the diffusion equation (18) does not include derivatives with respect to u, particles

diffuse on the constant u-surface, as described above. We shall explain this fact on the

basis of energy and momentum conservation in the wave-particle system. If we denote

wave total energy (including wave electromagnetic energy and nonresonant particle kin-

etic energy) by I k , it can be shown 6 that the total wave momentum density is klk/w.

(Notice the analogy with quantum mechanics.) Therefore the conservations of the energy

density and momentum density parallel to the propagation (and B o ) in the wave-particle

system are

dn imv2+v + d Ik = 0 (36)

d (nmv) + d  Ik ) 0, (37)

where n is particle density. (In passing, the perpendicular momentum is automatically

conserved in Larmor motion.) These equations lead us to the following relationship:

(--) dvl + vLdv = 0 (38)

or

v - + v = constant. (39)

This shows that particles diffuse on a constant u-surface upon which the energy and

momentum densities of the wave-particle system are conserved.

Now we return to comparison of the results of both theories. Let us first consider
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the resonant interaction. In the STT, TTR < TAC, the diffusion of the particle broadens

the 6-function resonance interaction. The SPM shows more clearly what is going on

with each particle. In the electrostatic (longitudinal) wave O'Neil 7 shows that the linear

theory breaks down when the resonant particle becomes trapped inside the trough of the

wave electrostatic potential. A very similar situation occurs in the transverse-wave

case, namely, the particle becomes trapped inside the trough of some "pseudo

potential." Once the particle becomes trapped, the simple perturbation theory fails,

Also, since this situation is more complicated than the electrostatic case, the exact

orbit calculation,8 does not help in understanding the gross structure. Instead we intro-

duce a singular perturbation technique that treats the trapping phenomena (including
2reflection points) properly. The important consequences are the following: In the

expanded scale with a scaling factor 1/ J (p is the ratio of the wave magnetic field

amplitude to the external magnetic field amplitude), there exist two kinds of "pseudo

potentials," which are always symmetric with respect to (cwk-W c)/k (see Fig. XV-2).

I PSEUDO
POTENTIAL -- PSEUDO

POTENTIAL

V V

K - c  
K c

k k

INITIAL VALUE INITIAL VALUE

Fig. XV-2. Two kinds of "pseudo potential" inside which the particle is trapped.

The initial condition determines the detailed structures (forbidden region) of the particle

motion. But we need use only the gross features to compare with the STT which

assumes random wave phases. As shown in our last report, 2 the trapping time, which

is evaluated from the spatial oscillation period, is given by

m 1,
(TTR SPM = cl qk (40)

where c 1 is a numerical factor of the order of unity. In the STT, the nonlinear correla-

tion time TC, NL is evaluated as

CNL k? )-1/3 2IT m (41)TC, NL k q kvBk'
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therefore, this correlation time can be properly interpreted as the trapping time.

From the symmetrical point of the "pseudo potentials," we observe that the average

velocity of the trapped particle is (wk-W c)/k, which is the phase velocity seen by a

gyrating particle.

The diffusion coefficient is estimated by the width of the phase plane trajectories

and the trapping time in the SPM:

(B)3/2
(DTR SPM =2k mk , (42)

where c 2 is a numerical factor of the order of unity. In the STT, Eq. 33 shows

(D k /2(43)TR STT = kmk 3 (43)

which agrees with (42), except for a numerical factor.

In the STT, we define the resonance width w, which is the maximum difference

between particle velocity and wave-phase velocity for which a particle can still be dif-

fused by the wave and the value is

(w)STT /3 1/4 k /2 (44)

On the other hand, in the SPM, the resonance width is decided by the boundary between

trapping and nontrapping, which gives

B1/2

(w) k (45)SPM mk

Again both are in agreement.

A particle whose velocity is beyond the resonance width around (wk- wc)/k interacts

nonresonantly (or adiabatically) with the waves. It oscillates in the electromagnetic

field of the wave with an amplitude proportional to the field strength. The diffusion

coefficient of the untrapped particles is given both in the SPM and STT in the form

2
q 22 _ k

UTR STT UTR SPM=- B2 kV 2 (46)
m (kv-wk+wc)

We may conclude that the results of the strong turbulence theory agree with

those of the single-particle model. The strong turbulence theory includes some
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crucial assumptions, but the agreement implies that none of them hides physically
important gross features. Therefore they give a more rigid basis to the strong
turbulence theory. Furthermore, the single-particle model provides clearer insight
to what is going on physically.

M. Murakami, L. M. Lidsky
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