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A. MULTIPLE FAULT DETECTION IN COMBINATIONAL LOGIC

NETWORKS

A Multiple Fault Test Set (MFTS) for a combinational logic network is a set V of

input vectors which detects all multiple stuck-at-0 (s-a-0) or s-a-1 faults; that is, for

any disjoint sets of leads L 0 and L1, there exists an input vector V E V such that, when

v is applied to the network, the output of the network, when all leads in L 0 are s-a-0

and leads in L 1 are s-a-1, is different from the output of the correctly operating net-

work. Minimum MFTS's can be found by using the usual fault table approach; however,

this is not feasible for even relatively small networks, since both dimensions of the

fault table grow exponentially (the number of multiple faults in an m-lead network is

3m-l). An alternative approach is to first find a test set that detects all single s-a-0,

s-a-i faults (an SFTS), and then add input vectors to it to form an MFTS. In this report

we shall summarize results that justify this approach by indicating that an SFTS usually

detects most multiple faults, and then discuss the progress that has been made toward

finding methods to determine those input vectors that must be added to an SFTS to form

an MFTS.

1. Primitive Faults

In order to reduce the number of multiple faults which must be considered, we define

a primitive multiple fault. A multiple fault is primitive if

1. No lead that is an input to an OR gate is s-a-l.

2. No lead that is an input to an AND gate is s-a-0.

3. No lead that is an input to an inverter is stuck.

4. For every stuck lead J, there is a path from f to a primary output containing

no stuck leads.

5. There are no gates with all inputs stuck.

*This work was supported principally by the National Aeronautics and Space
Administration (Grant NGL-22-009-013); and in part by the Joint Services Elec-
tronics Programs (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract
DA 28-043-AMC-02536(E).
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It can be shown that any test set that detects all primitive multiple faults is an MFTS,

since any multiple fault that is not primitive can be shown to be equivalent to some prim-

itive fault (that is, it causes the same terminal behavior for the network).

The number of primitive multiple faults in a fanout-free network can be shown to be

exactly 2
n , where n is the number of input leads to the network. This number is a lower

bound for networks with fanout. Some primitive multiple faults may also be equivalent;

however, it can be shown that a network has at least 2i nonequivalent multiple faults,

where i is the number of primary inputs.

2. Critical Faults

It can be shown that certain multiple faults are detected by any SFTS. A critical mul-

tiple fault is defined as a multiple fault that is not detected by at least one SFTS. Thus,

in extending an SFTS into an MFTS, one need only consider critical multiple faults. The

following multiple faults have been shown to be noncritical.

1. All multiple faults in a nonredundant one- or two-level network (a network is non-

redundant if all single faults in it can be detected), and all multiple faults in any one- or

two-level nonredundant, single-output, fanout-free portion of a larger network.

2. All multiple faults in a nonredundant cascade network, or in any nonredundant,

fanout-free cascade portion of a larger network.

3. Any fault in a fanout-free network consisting of fewer than 4 stuck leads.

3. Extending an SFTS to an MFTS

Poagel has described an algorithm for computing the set of critical faults for a net-

work; unfortunately, this is also too time-consuming to be practical for large networks.

A simpler problem is to find the multiple faults not detected by a specific SFTS. Also,

a specific SFTS will usually detect many critical multiple faults. In fact, for those

examples that have been tried, most SFTS's detect all multiple faults, and those that

do not detect all but one or two primitive multiple faults (these examples have been

fairly small, but even small networks have a large number of multiple faults).

Several algorithms have been investigated for finding the multiple faults not detected

by a given SFTS. A simple simulation approach has been programmed for research pur-

poses, and works well for small networks (10-15 leads). Certain simplifications are

taken advantage of for fanout-free networks, to permit analysis of somewhat larger net-

works of this type (10-15 input leads). The exponential growth of computing time with

the number of leads makes this impractical for larger networks, but the program has

proved useful for evaluating other methods.

Another method, which at one time appeared very promising, has been investigated

in detail. It works extremely well for some networks and test sets, but very badly for

others. "Passing" the analysis performed on a test set turns out to be a sufficient
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condition for the set to be an MFTS, but not a necessary condition. Test sets have been

found that do not "pass" the analysis, but can be shown by simulation to be MFTS's. The

method does give some insight into how to make an SFTS more likely to detect many

multiple faults, and has led to the proof of several results, including: A fanout-free net-

work with all inputs independent has at least one minimum SFTS which is also an MFTS.

Another approach that is being investigated is to eliminate as many multiple faults as

possible before using a simulation method. For example, the noncritical faults listed

above can be eliminated immediately. Also, it can be shown that any input vector in an

SFTS detects at least 2 m - 1 multiple faults (where m is the number of leads in the net-

work), and these can be determined relatively easily from a single simulation of the

network for this input vector. The problem is to find some way of doing this without

first constructing a table of all multiple faults and then "marking off" those known to

be detected, since storing just this table may be prohibitive.

After finding the multiple faults that are not detected by an SFTS, the input vectors

for detecting these multiple faults must be found. This is done most easily by using a

sensitized path algorithm such as described by Roth.2 A program for finding SFTS's

using this approach has been written, and the modifications for finding input vectors

that detect multiple faults are not difficult.

R. J. Diephuis
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B. OPTIMAL MEAN-SQUARE ESTIMATION IN Q-M CHANNELS

1. Introduction

This report is concerned with single-parameter minimum mean-square estimation

in channels that must be modeled in the framework of quantum mechanics. Previous

work in the area has been published by Helstroml and Liu,2 and are suggested as refer-

ences for situations in which the quantum aspects of a channel are important. We shall

derive the optimal mean-square estimator (which is assumed to be Hermitian) and the

associated minimum mean-square error. This will be followed by a derivation of the

quantum-mechanical equivalent of the Cram6r-Rao bound for the estimation of a ran-

dom variable.
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2. Optimal Hermitian Operator

Let A be a random variable with a priori probability distribution given by (u), that

is, Pr (us<a-<u+du) = (u) du.

Let H be the Hilbert space representing the state (quantum field) in the volume of

ordinary space in which the receiver may operate. Let pa be defined as the density

operator associated with H, given that "a" is the value of the unknown parameter A.

Conditioned on the true value of A, the expected value of the squared error asso-

ciated with any Hermitian estimator G is given by E(G -A) a = TR p (G-aI).

Thus the average squared error of the estimator G is

E(G-A) 2 = (a) TR (pa[G-aI]2) da = & 2 (G).

2 A 2
Let ~ (G) be the minimum of ?2(G) over all Hermitian operators G, that is,

02A') < 2 (G) for all G.

Let L = G + yA, where A is a Hermitian operator, and y is a real number.

Then e 2(L) > e2(G), that is,

1Ga) T (G-aI+y) ] da.a) TR[pa(G-a)2] da < 4 (a) TR G-a+A) da.

In other words

~(G) < 9(a) TR [pa{(G-aI)Z+() 2 +,y(G-aI)A+y](G-aI)} ] da.

Since the trace is a linear operation,

Saj A  A _2.

y (a) TR [pa{(G-aI)A+A(G-aI)}] da > -y2 (a) TR [pa 2] da

A
for all Hermitian operators A, which implies that the operator G must satisfy

A A
(a) TR pa[(G-al)A+A(G-al)]} da = 0, for all A.

a a A A

Let F = f 4(a) p da Tr = f a4(a) pa da. We have TR [FGA+FAG] = TR [2nA] for all
A A

Hermitian operators A. This equation is satisfied only if FG + G F = 2rj. If r is posi-

tive definite, then the solution to this equation exists and is unique. That the solution is

QPR No. 93 160



A . -Fa -Ia
G =2 e Tie da

A

can be checked by direct substitution and integration by parts. It is clear that G is
A

indeed the optimal operator. Note that G is Hermitian, as required.

3. Quantum Equivalent of the Cramdr-Rao Bound

Helstrom 3 has derived the quantum-mechanical equivalent of the Cramdr-Rao bound

for minimum-variance estimation of an unknown parameter. Following is the quan-

tum equivalent for the minimum mean-square error estimate of a random variable.

Let A be a random variable with distribution 4(a). Let pa be the density operator

for the receiver Hilbert space H. Let A be any Hermitian operator, and

a ^
B(a) = TR p (A-al).

We shall assume that B(a) 4(a) _-o or +oo = 0.

a (a) a , na a) (a)B(a) (a) = a [TR p(A-aI)] + (a) TR pa (A-a) - (a) TR (pa

Integrate the equation above over "a", and we obtain

-+too a4(a)
1- 0 (a) [TR {pa(-aI)}] + (a) TR (a (A - a l) da.

Let

8 a 1 aa
-aa b =- (Lpa +pL),

where L is the symmetrized logarithmic derivative

(8 In (a) (A-aI)II

1 =j (a) RL TR a + L) Pa(A-aI) da,

where RL stands for "real part of." But

JTRAB+ 2< TR (AA ) TR (BB )

and
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AB da A2 da B2 da 1/2

1= RL (a) TR aln(a) + L) pa(A-aI) da 2< ( a) n (a)+L)A-al) da 2

1 <jC (a) TR Ia n (a) + L) pa(A-aI) da 2

{TR [pa(A-aI)(A-aI) +]} /2 da

1~S (a) TR ( in (a) + L) ( n a (a) + L)pa da

- (a)[TR pa(A-aI)(A-aI) ] da

with equality if and only if

1. TR In a+ L) pa(A-al) is real and positive.

2. aa In 4(a) + L = k(a)(A-aI), k(a) a function of "a".

3. TR in ca+ L n (a) + PL) = B TR p (A-al)(A-al)+.

S. D. Personick
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C. BOUNDS AND APPROXIMATIONS FOR SOME INTEGRAL

EXPRESSIONS INVOLVING LOG-NORMAL STATISTICS

1. Introduction

During research on the use of the turbulent atmosphere as an optical communication

channel, several integral expressions, involving the log-normal probability density,

have been repeatedly encountered. 1-4 These expressions cannot be evaluated exactly

in closed form; however, some of them have been previously tabulated by using numer-

ical techniques.1' 2 In order to obtain additional insight, and analytically tractable

expressions, several bounds and approximations have been derived.

The expressions of interest are all averages of functions of the log-normal random

variable u, where the probability density of u is

p(u) = 1 exp - (ln u-m)2J. (1)

2 5 2

Occasionally, it is convenient to replace m by -2- , which is equivalent to setting u = 1.

This substitution can sometimes be justified physically by a conservation-of-energy

argument; it also is mathematically convenient, as it leads to a single-parameter

expression for p(u).

The expressions considered in this report are outlined as follows.

i. The moment-generating function of u,

su
M(s) = e , s < 0. (2)

ii. The probability density of a sample, ym, of the received field in the aperture

plane,

=y exp - ym 2] Fr , : m, a- (3)

where

u
2

Fr (a, P: m, a-) = I(2pu\ ) e . (4)

Here the sample is formed by crosscorrelation with the transmitted signal, where the

received field is the sum of the fading-signal field and white noise of spectral density

No/2. Also, the average received signal energy is E.

iii. The single transmission probability of error for an optimum incoherent
6

(unknown phase) receiver for binary orthogonal signals on a log-normal channel :
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2- Fr 2 , 0: m, (

u

P[E] =exp 2- oU -] e , (5)

where L is the corresponding error exponent.

iv. The binary error probability for an optimum coherent (known phase) receiver,
using orthogonal signals on a log-normal channel 7:

u

where Q(a) = Pr [xa>a], with x the normalized Gaussian random variable, N(O, 1).

2. Bounds Resulting from Modifications in the Domain of Integration

The log-normal random variable u may be conveniently expressed in terms of the

normalized Gaussian random variable x according to

ox+mu= e (7)

e= ( -e ),  if = -a- . (8)

Then using (8), we obtain

u
E I oo _ 2/2 0) 2 2

E - e crx
Ne e

which is simply the integral of the joint density of two independent, normalized,
Gaussian random variables, over the convex domain crosshatched in Fig. VIII-1.

Integrating the joint density above a tangent to f(x) yields an upper bound,
Q(d), for (9), where d is the perpendicular distance from the tangent line to

the origin. Obviously, the tightest such bound results from maximizing d; this

amounts to choosing the point of tangency on f(x) as the unique point (x , Yo )
closest to the origin:

E -2o- 2-xox =--e e
o Ne e

(10)
y = e 2 e-x

Yo - e e
0 1rN0
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Thus

u
E

0/

(11)

u( E of the form Q* is clearly obtained by
A lower bound to Q u of the form Q(clearly obtaned by

choosing a point (x ,y ) on f(x), and integrating over the domain {(x, y) x<x , y>y ).

Y2
f) e-a eax

No

(LOWER BOUND)

TANGENT TO f(x)
AT (x , Yo)

(UPPER BOUND)

(xo' YO)

0

Fig. VIII-1. Geometry of domains of integration for bounds on Q (u . )

Because of the exponential behavior of the Q-function, this bound is approximately
2+y 2

maximized by choosing (x ,y ) to minimize (x* +y* ). This requires x = xo, Y = Y
Therefore

Q u - Q(-xO) Q(y ). (12)

The lower bound in (12) is also a lower bound for (5), since Q(u /-) <

E 2 ] (u >: 08-

2 exp - 2 (u >, 0 always). In Fig. VIII-2 the upper bound in (11) is plotted against

E/No, for various values of T.

3. Bounds Resulting from Modifications of the Integrand

Upper and lower bounds will now be derived for the exponent L in (5). Using

(7) to convert from log-normal to normalized Gaussian statistics, we have

QPR No. 93
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Fig. VIII-2. Upper bound for Q u ( VN0 vs log10 (

y(x) = e
2 

e
2

ax
2No

Fig. VIII-3.
E Zm 2a-x

Bounds for y(x) = N e e
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L = in exp 2N u In re y)].

where

e e
2N

(13)

(14)

To obtain a lower bound on L, use the upper bound for y(x), denoted f(x; 1 ) in

Fig. VIII-3. Thus

L > max n e -f(x; p I
91

= max ln [Q(pl )]
P1

E
2N e

-2(pl c-m)
(15)

Differentiating the term in braces in (15) with respect to Pl, and setting the result to

zero, we find that the optimum pl denoted by Pl satisfies the relation

E -2p 0-m
e

2N
o

(16)

Therefore we can relate the lower bound L 1 and the energy-to-noise ratio E/2No in terms

of the parameter P1:

L = In Q(Pi-)] 1

and

E
2N o

2 (P:o m)
(18)

G-M (P *7)

where

M(P 1 ) 2- Q(p~) e (19)
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2
When m is replaced by -a- , (18) becomes

E
NT

2o- ( + )

o M 1l

The upper bound on L results from using the lower bound g(x; P2 ) for y(x):

g(x; P 2 ) = (-P 2 ) + Y(-P 2)(+ 2 )

2m -20P2
e e

E)
(1+2P2) - 2N

2m -2P 2
e e 2ax.

Therefore

L < min In
P2

E -2(p 2-m)e
2N

2 E -2(P 2c-m)]
+ 2P 20 - 2 2 iN e

0

Differentiating the term in braces in (22) with respect to P2, and setting the result to

zero, we find that the relation that must be satisfied by the optimum P2, denoted P2 'is

E
2N

-2 r(p -m) -

2a-
(23)

Thus, the upper bound, L 2, is

eter P2:

2 2u- 2

expressed as a function of E/2N in terms of the param-

(24)

and
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E 22 P 2( - m)
-2 e 2(25)

2N 2 o-

2
Again, if m = - 2, (25) becomes

E 2 2a (P 2 +a-)
2N- -- e (26)

L 1 , L 2 , and L are plotted against E/2No in
E

values of L vs 2 were computed numerically,
o 0 2

Now, with m = -- , let us consider the

For large pl and p 2 , we can compare the

Fig. VIII-4
9

asymptotic

for a- = 0. 2 and a- = 1. 0. The

behavior of the bounds.

upper and lower bounds. For P 1 > 3,

5 10 15

Fig. VIII-4. Error exponent L = In

E 2

exp E- u , and lower and upper
0 u 9

bounds L 1 and L 2 , for some values of a, when m = -u .
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Q(l ) -- 1 exp 2 -P
P1 \f-

P1 > 3 L
1 2a-

8
; then (17), (19), and (20) become

2 In (pN [- )
1

e

But, after comparing (29) with (26), it is clear that we can set P = = p in this

and express L 1, L 2 , and E/2No in terms of this common parameter

S>3

E
2N

o

S2cr(p+-)e 2
2o-

L
2 2c 2

range,

(30)

(31)

L L 1  L 2 - In (p ). 
(32)

Since E/2No in (30) is monotonically increasing in p, for a given a, the condition P > 3

is equivalent to

E - 3 2c(3+-r)
>2N e K3(), (33

2N 2 3

where K3(-) is plotted in Fig. VIII-5. Thus, when (33) is satisfied, L 1 and L 2 diverge

as In (p Nz) as E/2No increases; however, In (p ) is small relative to L 2 in this

range of E/2No'
From Fig. VIII-5, it is evident that for small a, the asymptotic results of (30)-(33)

do not apply over a large range of E/2N . Yet, from (13) and (14), L - -(Es/2No).

Therefore, consider the asymptotic behavior of L 1 and L 2 as u - o, for a

E/2N .

To show that L 1 - -(E /2N), let p =-

Then it can be readily verified, by using (17) and (

given

2 ln -), for some constant a

20), that

QPR No. 93
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Fig. VIII-5.

0

-2

-4

-6

-8

'2 a
-10

-12
0.001

0.1

3 2a(3+u) For
Plot of K 3 () -e . For 2

o

1.0

> K 3 (), L 1-L 2 = n (P \4W-).

S==0.7

2 = 1.4 1 1.0

2 1

1 
=

1.6

62 1

-* 0 B 2 = 0.2 20

0.01 0.1

Fig. VIII-6. Asymptotic behavior of L 1 and L 2 for E/2No = 10 as a - 0.
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1

o--o 2 -2-,a

E 1

2No --- o 2fa 1

Similarly, setting P2 = a 2 -, for some constant a 2 ,
and using (24) and (26), we obtain

"2
L -- 2

2 2
U-0i

E a2
2N 2

0 T--O
(35)

so that L 2 --- -(E/2No). These last results are illustrated in Fig. VIII-6, wherein
-- O

E/2No = 10, and L 1 and L 2  -10.
0r-O

4. Second-Degree Approximation of the Integrand Exponent (Halme)

A way to approximate the function Fr (a, P: m, a-) of (4) is to use
10, 11 2to saddle-point integration. Setting m = -o- , we write

a method similar

Fr [a,y: a]- Fr [a, y: m, a]

du exp[-h(u)]

00 du
2 = du Io(2uy F-) expIua( -u nu

2 4- 0-u

oo

S0 exp -ho -- 2

+ a-2) /2o- 2

(u-U )2

-h
0

2

(ln u +02)
h =u a + + n cru

o o 2 
20-

I 1 (2uo y r)
h'(u ) = -(2u

Io( 2uoY 'T)

In u

o 2 u- u 0
o
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h =2a+ 2 ( 1 1(u 4ya. (39)

h2a 2U2 U2 I 2 (2u y -a-) 2u yNa Io(2uoY a)

The idea is to solve (38) for uo, then compute ao and a2 from (37) and (39), and sub-

stitute the results in (36). For interesting special cases, the following approximate

results are true:

2
1. a >> 1, 2 , y > uo = y/-g, h2 = -2a, Fr (a, y: a) = e-YI. a>>, ,>

2. o2 << 1 u >u 1, ho In I (2y -) - a In -, h2  2(a-1) + 1/0 2

For large h 2 , Q(\h2 uo) << 1, and can be neglected.

The calculation of the moment-generating function (2) and binary error probability

1.0

* = 1.0

a = 0.5

M(s) 0.1

a = 0 - 0.01

10-2 I
0 1 2 3 4 5

-s

u

Fig. VIII-7. Plot of moment-generating function M(s) = esu against -s.
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0

0.5

-5

5 10 15 20 25

Fig. VIII-8. Plot of approximation
a for various values o

to ln [Fr (a, o: a)] = ln

Su1
2

e-au against

can be approached in a similar way after an appropriate change of variables.

M(s) takes the form

o dz
M(s) = dz

oN-00 ;

2
exp 2

zse -a2s e e .

Computing quantities similar to those of (37), (38), and (39), we obtain

exp - (l1+ -21

M(s) =
N +x

Then

where -s =
2

x e /e 2x e e / .

Similarly,
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Fr (a, o:a) , 4a (42)

2
where a = x e x e /4a 2 . The results of (41) and (42) are plotted in Figs. VIII-7 and

VIII-8, respectively. It turns out that the approximation is indeed surprisingly close.

Another interesting point is that the exponent in (42) is exactly one upper bound to

Fr (a, o:a) as computed in (24). This is seen by setting x = 2aP02'
S. J. Halme, B. K. Levitt, R. S. Orr
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