Lectures 6&7 Modulation

Eytan Modiano

AA Dept.

Modulation

- Representing digital signals as analog waveforms
- Baseband signals
 - Signals whose frequency components are concentrated around zero
- Passband signals
 - Signals whose frequency components are centered at some frequency fc away from zero
- Baseband signals can be converted to passband signals through modulation
 - Multiplication by a sinusoid with frequency fc

Baseband signals

- The simplest signaling scheme is pulse amplitude modulation (PAM)
 - With binary PAM a pulse of amplitude A is used to represent a "1" and a pulse with amplitude -A to represent a "0"
- The simplest pulse is a rectangular pulse, but in practice other type of pulses are used
 - For our discussion we will generally assume a rectangular pulse
- If we let g(t) be the basic pulse shape, than with PAM we transmit g(t) to represent a "1" and -g(t) to represent a "0"

M-ary PAM

- Use M signal levels, A₁...A_M
 - Each level can be used to represent Log₂(M) bits
- E.g., M = 4 => A_1 = -3, A_2 = -1, A_3 = 1, A_4 = 3 - $S_i(t) = A_i g(t)$
- Mapping of bits to signals
 - Si b1b2
 - $egin{array}{ccc} {S_1} & 00 \ {S_2} & 01 \ {S_3} & 11 \ {S_4} & 10 \end{array}$

$$E_m = \int_0^T (S_m(t))^2 dt = (A_m)^2 \int_0^T (g_t)^2 dt = (A_m)^2 E_g$$

- The signal energy depends on the amplitude
- E_g is the energy of the signal pulse g(t)
- For rectangular pulse with energy E_q =>

$$E_g = \int_0^T A^2 dt = TA^2 \implies A = \sqrt{E_g/2}$$

Symmetric PAM

• Signal amplitudes are equally distant and symmetric about zero

A_m = (2m-1-M), m=1...M

$$E_{ave} = \frac{E_g}{M} \sum_{m=1}^{M} (2m - 1 - M)^2 = E_g (M^2 - 1) / 3$$

Gray Coding

- Mechanism for assigning bits to symbols so that the number of bit errors is minimized
 - Most likely symbol errors are between adjacent levels
 - Want to MAP bits to symbols so that the number of bits that differ between adjacent levels is mimimized
- Gray coding achieves 1 bit difference between adjacent levels
- Example M= 8 (can be generalized)

\mathbf{A}_{1}	000
$\overline{A_2}$	001
$\overline{A_3}$	011
A_4	010
A_5	110
A ₆	111
$\mathbf{A_7}$	101
\mathbf{A}_{8}	100

Bandpass signals

 To transmit a baseband signal S(t) through a bandpass channel at some center frequency f_c, we multiply S(t) by a sinusoid with that frequency

Passband signals, cont.

Recall: Multiplication in time = convolution in frequency

Energy content of modulated signals

$$E_m = \int_{-\infty}^{\infty} U_m^2(t) dt = \int_{-\infty}^{\infty} A_m^2 g^2(t) Cos^2 (2\pi f_c t) dt$$
$$Cos^2(\alpha) = \frac{1 + \cos(2\alpha)}{2}$$
$$E_m = \frac{A_m^2}{2} \int_{-\infty}^{\infty} g^2(t) + \frac{A_m^2}{2} \int_{-\infty}^{\infty} g^2(t) Cos^2 (4\pi f_c t) dt$$
$$E_m = \frac{A_m^2}{2} E_g + \approx 0$$

- The cosine part is fast varying and integrates to 0
- Modulated signal has 1/2 the energy as the baseband signal

Demodulation

• How do we recover the baseband signal?

 $U(t)2Cos(2\pi f_c t) = 2S(t)Cos^2(2\pi f_c t) = S(t) + S(t)Cos(4\pi f_c t)$

The high frequency component is rejected by the LPF and we are left with S(t).

Bandwidth occupancy

• First "null" bandwidth = 2(1/T) = 2/T

Bandwidth efficiency

- Rs = symbol rate = 1/T
 - $Log_2(M)$ bits per symbol => Rb = bit rate = $log_2(M)/T$ bits per second
- BW = 2/T = 2Rs
 - Bandwidth efficiency = $Rb/BW = \log_2(M)/T * (T/2) = \log_2(M)/2 BPS/Hz$
- Example:
 - M=2 => bandwidth efficiency = 1/2
 - M=4 => bandwidth efficiency = 1
 - M=8 => bandwidth efficiency = 3/2
- Increased BW efficiency with increasing M
- However, as M increase we are more prone to errors as symbols are closer together (for a given energy level)
 - Need to increase symbol energy level in order to overcome errors
 - Tradeoff between BW efficiency and energy efficiency

$$E_{ave} = \frac{E_g}{M} \sum_{m=1}^{M} (2m - 1 - M)^2 = E_g (M^2 - 1)/3, E_g = \text{basic pulse energy}$$

After modulation $E_u = \frac{E_s}{2} = E_g (M^2 - 1)/6$

Eytan Modiano Slide 14

$$E_b$$
 = average energy per bit = $\frac{(M^2 - 1)}{6Log_2(M)}E_g$

• Average energy per bit increases as M increases

Two-dimensional signals

- $S_i = (S_{i1}, S_{i2})$
- Set of signal points is called a constellation

- 2-D constellations are commonly used
- Large constellations can be used to transmit many bits per symbol
 - More bandwidth efficient
 - More error prone
- The "shape" of the constellation can be used to minimize error probability by keeping symbols as far apart as possible
- Common constellations
 - QAM: Quadrature Amplitude Modulation
 PAM in two dimensions
- PSK: Phase Shift Keying

Special constellation where all symbols have equal power

$$S_m = (A_m^x, A_m^y), \ A_m^x, A_m^y \in \left\{ + / -1, + / -3, \dots, + / -(\sqrt{M} - 1) \right\}$$

M is the total number of signal points (symbols)

 \sqrt{M} signal levels on each axis

Constellation is symmetric

 \Rightarrow M = K², for some K

Signal levels on each axis are

the same as for PAM

$$E.g., 4 - QAM \Rightarrow A_m^x, A_m^y \in \{+/-1\}$$
$$16 - QAM \Rightarrow A_m^x, A_m^y \in \{+/-1, +/-3\}$$

Eytan Modiano Slide 16

16-QAM

Bandwidth occupancy of QAM

• When using a rectangular pulse, the Fourier transform is a Sinc

- First null BW is still 2/T
 - $K = Log_2(M)$ bits per symbol
 - $Rb = Log_2(M)/T$
 - Bandwidth Efficiency = $Rb/BW = Log_2(M)/2$
 - => "Same as for PAM"

$$E_{sm} = [(A_m^x)^2 + (A_m^y)^2]E_g$$

$$E[(A_m^x)^2] = E[(A_m^y)^2] = \frac{K^2 - 1}{3} = \frac{M - 1}{3}, \quad K = \sqrt{M}$$

$$\overline{E}_s = \frac{2(M - 1)}{3}E_g$$

$$Transmitted \, energy = \frac{\overline{E}_s}{2} = \frac{(M - 1)}{3}E_g$$

$$E_b (QAM) = Energy / bit = \frac{(M - 1)}{3Log_2(M)}E_g$$

• Compare to PAM: Eb increases with M, but not nearly as fast as PAM

$$E_b(PAM) = \frac{(M^2 - 1)}{6Log_2(M)}E_g$$

Bandpass QAM

- Modulate the two dimensional signal by multiplication by orthogonal carriers (sinusoids): Sin & Cos
 - This is accomplished by multiplying the A^x component by Cos and the A^y component by sin
 - Typically, people do not refer to these components as x,y but rather A^c or A^s for cos and sin or sometimes as A^Q, and A^I for quadrature or in-phase components
- The transmitted signal, corresponding to the mth symbol is:

$$U_m(t) = A_m^x g(t) Cos(2\pi f_c t) + A_m^y g(t) Sin(2\pi f_c t), m = 1...M$$

Modulator

Demodulation: Recovering the baseband signals U(t)LPF $S_{r}^{x}(t)$ $2\cos(2\pi f_c t)$ U(t)LPF • $S_r^{y}(t)$ $2Sin(2\pi f_c t)$

- Over a symbol duration, $Sin(2\pi f_c t)$ and $Cos(2\pi f_c t)$ are orthogonal
 - As long as the symbol duration is an integer number of cycles of the carrier wave (fc = n/T) for some n

• When multiplied by a sin, the cos component of U(t) disappears and ^{Eytan Modia} Similarly the sin component disappears when multiplied by cos

Demodulation, cont.

$$U(t)2Cos(2\pi f_c t) = 2A^x g(t)Cos^2(2\pi f_c t) + 2A^y g(t)\cos(2\pi f_c t)\sin(2\pi f_c t)$$

$$Cos^2(\alpha) = \frac{1 + \cos(2\alpha)}{2}$$

$$=> U(t)2Cos(2\pi f_c t) = S^{x}(t) + S^{x}(t)\cos(4\pi f_c t) \approx S^{x}(t) = A^{x}g(t)$$

Similarly,

$$U(t)2Sin(2\pi f_c t) = 2A^x g(t)Cos(2\pi f_c t)Sin(2\pi f_c t) + 2A^y g(t)sin^2(2\pi f_c t)$$

$$Sin^2(\alpha) = \frac{1-\cos(2\alpha)}{2}$$

$$=> U(t)2Sin(2\pi f_c t) = S^y(t) - S^y(t)cos(4\pi f_c t) \approx S^y(t) = A^y g(t)$$

Phase Shift Keying (PSK)

• Two Dimensional signals where all symbols have equal energy levels

- Symbols can be equally spaced to minimize likelihood of errors
- E.g., Binary PSK

_

• 4-PSK (above) same as 4-QAM

$$A_{i}^{x} = Cos(2\pi i / M), A_{i}^{y} = Sin(2\pi i / M), m = 0, ..., M - 1$$
$$U_{m}(t) = g(t)A_{m}^{x}Cos(2\pi f_{c}t) - g(t)A_{m}^{y}Sin(2\pi f_{c}t)$$

Notice:
$$Cos(\alpha)Cos(\beta) = \frac{Cos(\alpha - \beta) + Cos(\alpha + \beta)}{2}$$

 $Sin(\alpha)Sin(\beta) = \frac{Cos(\alpha - \beta) - Cos(\alpha + \beta)}{2}$
Hence, $U_m(t) = g(t)Cos(2\pi f_c t + 2\pi m / M)$
 $\phi_m = 2\pi m / M = phases shift of m^{th} symbol$
 $U_m(t) = g(t)Cos(2\pi f_c t + \phi_m), m = 0...M - 1$

M-PSK Summary

- Constellation of M Phase shifted symbols
 - All have equal energy levels
 - $K = Log_2(M)$ bits per symbol

- Notice that for PSK we subtract the sin component from the cos component
 - For convenience of notation only. If we added, the phase shift would have been negative but the end result is the same
- Demodulation is the same as for QAM