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16.36:  Communication Systems Engineering

Lecture 5:   Source Coding
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Source coding

• Source symbols
– Letters of alphabet, ASCII symbols, English dictionary, etc...
– Quantized voice

• Channel symbols
– In general can have an arbitrary number of channel symbols

 Typically {0,1} for a binary channel

• Objectives of source coding
– Unique decodability
– Compression

 Encode the alphabet using the smallest average number of channel
symbols

Source 
Alphabet
{a1..aN}

Encode Channel
Alphabet
{c1..cN}
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Compression

• Lossless compression
– Enables error free decoding
– Unique decodability without ambiguity

• Lossy compression
– Code may not be uniquely decodable, but with very high probability

can be decoded correctly
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Prefix (free) codes

• A prefix code is a code in which no codeword is a prefix of any
other codeword

– Prefix codes are uniquely decodable
– Prefix codes are instantaneously decodable

• The following important inequality applies to prefix codes and in
general to all uniquely decodable codes

Kraft Inequality

Let n 1…nk be the lengths of codewords in a prefix (or any
Uniquely decodable) code.  Then,
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Proof of Kraft Inequality

• Proof only for prefix codes
– Can be extended for all uniquely decodable codes

• Map codewords onto a binary tree
– Codewords must be leaves on the tree
– A codeword of length n i is a leaf at depth n i

• Let n k ≥≥≥≥ nk-1 … ≥≥≥≥ n1 => depth of tree = n k

– In a binary tree of depth n k, up to 2 nk leaves are possible (if all leaves
are at depth n k)

– Each leaf at depth n i < nk eliminates a fraction 1/2 ni
 of the leaves at

depth n k => eliminates 2 nk -ni of the leaves at depth n k

– Hence,
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Kraft Inequality - converse

• If a set of integers {n 1..nk} satisfies the Kraft inequality the a prefix
code can be found with codeword lengths {n 1..nk}

– Hence the Kraft inequality is a necessary and sufficient condition for the
existence of a uniquely decodable code

• Proof is by construction of a code
– Given {n 1..nk}, starting with n 1 assign node at level n i for codeword of

length n i.  Kraft inequality guarantees that assignment can be made

Example:   n = {2,2,2,3,3}, (verify that Kraft inequality holds!)

n1n2
n3

n4
n5
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Average codeword length

• Kraft inequality does not tell us anything about the average length
of a codeword.  The following theorem gives a tight lower bound

Theorem:  Given a source with alphabet {a 1..ak}, probabilities {p 1..pk},
and entropy H(X), the average length of a uniquely decodable
binary code satisfies:

 ≥≥≥≥ H(X)
Proof:
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Average codeword length

• Can we construct codes that come close to H(X)?

Theorem: Given a source with alphabet {a 1..ak}, probabilities {p 1..pk},
and entropy H(X), it is possible to construct a prefix (hence
uniquely decodable) code of average length satisfying:

Proof (Shannon-fano codes):
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Getting Closer to H(X)

• Consider blocks of N source letters
– There are K N  possible N letter blocks (N-tuples)
– Let Y be the “new” source alphabet of N letter blocks
– If each of the letters is independently generated,

H(Y) = H(x1..xN) = N*H(X)

• Encode Y using the same procedure as before to obtain,

Where the last inequality is obtained because each letter of Y corresponds to
N letters of the original source

• We can now take the block length (N) to be arbitrarily large and
get arbitrarily close to H(X)
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Huffman codes

• Huffman codes are special prefix codes that can be shown to be optimal
(minimize average codeword length)

Huffman Algorithm:

1) Arrange source letters in decreasing order of probability (p 1 ≥≥≥≥ p2 .. ≥≥≥≥ pk)

2) Assign ‘0’ to the last digit of X k and ‘1’ to the last digit of X k-1

3) Combine pk and pk-1 to form a new set of probabilities

{p1, p2 ,.., pk-2,(pk-1+ pk)}

4) If left with just one letter then done, otherwise go to step 1 and repeat

H(X) H(X)+1Shannon/
Fano codes

Huffman
codes
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Huffman code example

 A = {a 1,a2,a3, a4, a5} and p = {0.3, 0.25,0.25, 0.1, 0.1}

a1  0.3 

a2  0.25
a3  0.25
a4  0.1
a5  0.1

0.3 

0.25
0.25
0.2

0.3 

0.25
0.45

+
+

+

0.55
0.45

+1.0
1

0

0

1

0

1

0

1

Letter Codeword
a1  11
a2  10
a3  01
a4  001
a5  000

n bits symbol
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Lempel-Ziv Source coding

• Source statistics are often not known

• Most sources are not independent
– Letters of alphabet are highly correlated

 E.g., E often follows I, H often follows G, etc.

• One can code “blocks” of letters, but that would require a very
large and complex code

• Lempel-Ziv Algorithm
– “Universal code” - works without knowledge of source statistics
– Parse input file into unique phrases
– Encode phrases using fixed length codewords

 Variable to fixed length encoding
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Lempel-Ziv Algorithm

• Parse input file into phrases that have not yet appeared
– Input phrases into a dictionary
– Number their location

• Notice that each new phrase must be an older phrase followed by
a ‘0’ or a ‘1’

– Can encode the new phrase using the dictionary  location of the
previous phrase followed by the ‘0’ or ‘1’
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Lempel-Ziv Example

Input:  0010110111000101011110

Parsed phrases: 0, 01, 011, 0111, 00, 010, 1, 01111

Dictionary

Loc binary rep phrase Codeword comment
0 0000 null
1 0001 0 0000 0 loc-0 + ‘0’
2 0010 01 0001 1 loc-1 + ‘1’
3 0011 011 0010 1 loc-2 + ‘1’
4 0100 0111 0011 1 loc-3 + ‘1’
5 0101 00 0001 0 loc-1 +’0’
6 0110 010 0010 0 loc-2 + ‘0’
7 0111 1 0000 1 loc-0 + ‘1’
8 1000 01111 0100 1 loc-4 + ‘1’

Sent sequence: 00000 00011 00101 00111 00010 00100 00001 01001
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Notes about Lempel-Ziv

• Decoder can uniquely decode the sent sequence

• Algorithm clearly inefficient for short sequences (input data)

• Code rate approaches the source entropy for large sequences

• Dictionary size must be chosen in advance so that the length of
the codeword can be established

• Lempel-Ziv is widely used for encoding binary/text files
– Compress/uncompress under unix
– Similar compression software for PCs and MACs


