16.36: Communication Systems Engineering

Lecture 5: Source Coding

Eytan Modiano

Source coding

- Source symbols
 - Letters of alphabet, ASCII symbols, English dictionary, etc...
 - Quantized voice
- Channel symbols
 - In general can have an arbitrary number of channel symbols
 Typically {0,1} for a binary channel
- Objectives of source coding
 - Unique decodability
 - Compression

Encode the alphabet using the smallest average number of channel symbols

Compression

- Lossless compression
 - Enables error free decoding
 - Unique decodability without ambiguity
- Lossy compression
 - Code may not be uniquely decodable, but with very high probability can be decoded correctly

Prefix (free) codes

- A prefix code is a code in which no codeword is a prefix of any other codeword
 - Prefix codes are uniquely decodable
 - Prefix codes are instantaneously decodable
- The following important inequality applies to prefix codes and in general to all uniquely decodable codes

Kraft Inequality

Let $n_1...n_k$ be the lengths of codewords in a prefix (or any Uniquely decodable) code. Then,

$$\sum_{i=1}^k 2^{-n_i} \le 1$$

Proof of Kraft Inequality

- Proof only for prefix codes
 - Can be extended for all uniquely decodable codes
- Map codewords onto a binary tree
 - Codewords must be leaves on the tree
 - A codeword of length n_i is a leaf at depth n_i
- Let $n_k \ge n_{k-1} \dots \ge n_1 \Longrightarrow$ depth of tree = n_k
 - In a binary tree of depth n_k , up to 2^{nk} leaves are possible (if all leaves are at depth n_k)
 - Each leaf at depth $n_i < n_k$ eliminates a fraction 1/2ⁿⁱ of the leaves at depth $n_k =>$ eliminates 2^{nk-ni} of the leaves at depth n_k
 - Hence,

$$\sum_{i=1}^{k} 2^{n_k - n_i} \leq 2^{n_k} \Longrightarrow \sum_{i=1}^{k} 2^{-n_i} \leq 1$$

Kraft Inequality - converse

- If a set of integers {n₁...n_k} satisfies the Kraft inequality the a prefix code can be found with codeword lengths {n₁...n_k}
 - Hence the Kraft inequality is a necessary and sufficient condition for the existence of a uniquely decodable code
- Proof is by construction of a code
 - Given {n₁..n_k}, starting with n₁ assign node at level n_i for codeword of length n_i. Kraft inequality guarantees that assignment can be made

Example: n = {2,2,2,3,3}, (verify that Kraft inequality holds!)

- Kraft inequality does not tell us anything about the average length of a codeword. The following theorem gives a tight lower bound
- Theorem: Given a source with alphabet $\{a_1...a_k\}$, probabilities $\{p_1...p_k\}$, and entropy H(X), the average length of a uniquely decodable binary code satisfies:

$$\overline{n} \geq H(X)$$

Proof:

$$H(X) - \overline{n} = \sum_{i=1}^{i=k} p_i \log \frac{1}{p_i} - \sum_{i=1}^{i=k} p_i n_i = \sum_{i=1}^{i=k} p_i \log \frac{2^{-n_i}}{p_i}$$

 $\log inequality => \log(X) \le X - 1 =>$

$$H(X) - \overline{n} \le \sum_{i=1}^{i=k} p_i \left[\frac{2^{-n_i}}{p_i} - 1 \right] = \sum_{i=1}^{i=k} 2^{-n_i} - 1 \le 0$$

• Can we construct codes that come close to H(X)?

Theorem: Given a source with alphabet {a₁...a_k}, probabilities {p₁...p_k}, and entropy H(X), it is possible to construct a prefix (hence uniquely decodable) code of average length satisfying:

 \overline{n} < H(X) + 1

Proof (Shannon-fano codes):

Let
$$\mathbf{n}_{i} = \left\lceil \log(\frac{1}{p_{i}}) \right\rceil \Rightarrow \mathbf{n}_{i} \ge \log(\frac{1}{p_{i}}) \Rightarrow 2^{-\mathbf{n}_{i}} \le p_{i}$$

 $\Rightarrow \sum_{i=1}^{k} 2^{-\mathbf{n}_{i}} \le \sum_{i=1}^{k} p_{i} \le 1$

$$\mathbf{n}_{i} = \left\lceil \log(\frac{1}{p_{i}}) \right\rceil < \log(\frac{1}{p_{i}}) + 1,$$

Now,

$$\overline{n} = \sum_{i=1}^{k} p_i n_i < \sum_{i=1}^{k} p_i \left[\log(\frac{1}{p_i}) + 1 \right] = H(X) + 1.$$

Hence,

$$H(X) \le \overline{n} < H(X) + 1$$

 \Rightarrow Kraft inequality satisfied!

 \Rightarrow Can find a prefix code with lengths,

$$\mathbf{n}_{i} = \left\lceil \log(\frac{1}{p_{i}}) \right\rceil < \log(\frac{1}{p_{i}}) + 1$$

Getting Closer to H(X)

- Consider blocks of N source letters
 - There are K^N possible N letter blocks (N-tuples)
 - Let Y be the "new" source alphabet of N letter blocks
 - If each of the letters is independently generated,

 $H(Y) = H(x_1..x_N) = N^*H(X)$

• Encode Y using the same procedure as before to obtain,

$$\begin{split} H(Y) \leq &\overline{n}_{y} < H(Y) + 1 \\ \Rightarrow & N * H(X) \leq &\overline{n}_{y} < N * H(X) + 1 \\ \Rightarrow & H(X) \leq &\overline{n} < H(X) + 1/N \end{split}$$

Where the last inequality is obtained because each letter of Y corresponds to N letters of the original source

• We can now take the block length (N) to be arbitrarily large and get arbitrarily close to H(X)

Huffman codes

 Huffman codes are special prefix codes that can be shown to be optimal (minimize average codeword length)

Huffman Algorithm:

1) Arrange source letters in decreasing order of probability $(p_1 \ge p_2 ... \ge p_k)$

2) Assign '0' to the last digit of X_k and '1' to the last digit of X_{k-1}

3) Combine pk and pk-1 to form a new set of probabilities

4) If left with just one letter then done, otherwise go to step 1 and repeat

Huffman code example

A = { a_1, a_2, a_3, a_4, a_5 } and p = {0.3, 0.25, 0.25, 0.1, 0.1}

 $\overline{n} = 2 \times 0.8 + 3 \times 0.2 = 2.2 \, bits \, / \, symbol$

Letter	Codeword	$H(X) = \sum p_1 \log(\frac{1}{2}) = 2.1855$		
a ₁	11	p_i		
a ₂	10			
a ₃	01	Shannon – Fano codes \Rightarrow $n_i = \begin{bmatrix} \log(-) \\ p_i \end{bmatrix}$		
a_4	001	$n_1 = n_2 = n_1 = 2$ $n_2 = n_3 = 4$		
a ₅	000			
		$\Rightarrow \overline{n} = 2.4 bits / symbol < H(X) + 1$		

Lempel-Ziv Source coding

- Source statistics are often not known
- Most sources are not independent
 - Letters of alphabet are highly correlated
 - E.g., E often follows I, H often follows G, etc.
- One can code "blocks" of letters, but that would require a very large and complex code
- Lempel-Ziv Algorithm
 - "Universal code" works without knowledge of source statistics
 - Parse input file into unique phrases
 - Encode phrases using fixed length codewords
 Variable to fixed length encoding

Lempel-Ziv Algorithm

- Parse input file into phrases that have not yet appeared
 - Input phrases into a dictionary
 - Number their location
- Notice that each new phrase must be an older phrase followed by a '0' or a '1'
 - Can encode the new phrase using the dictionary location of the previous phrase followed by the '0' or '1'

Lempel-Ziv Example

Input: 0010110111000101011110

Parsed phrases: 0, 01, 011, 0111, 00, 010, 1, 01111

Dictionary

Loc	binary rep	phrase	Codeword	comment
0	0000	null		
1	0001	0	0000 0	loc-0 + '0'
2	0010	01	0001 1	loc-1 + '1'
3	0011	011	0010 1	loc-2 + '1'
4	0100	0111	0011 1	loc-3 + '1'
5	0101	00	0001 0	loc-1 +'0'
6	0110	010	0010 0	loc-2 + '0'
7	0111	1	0000 1	loc-0 + '1'
8	1000	01111	0100 1	loc-4 + '1'

Sent sequence: 00000 00011 00101 00111 00010 00100 00001 01001

Notes about Lempel-Ziv

- Decoder can uniquely decode the sent sequence
- Algorithm clearly inefficient for short sequences (input data)
- Code rate approaches the source entropy for large sequences
- Dictionary size must be chosen in advance so that the length of the codeword can be established
- Lempel-Ziv is widely used for encoding binary/text files
 - Compress/uncompress under unix
 - Similar compression software for PCs and MACs