
Eytan Modiano
Slide 1

16.36: Communication Systems Engineering

Lecture 5: Source Coding

Eytan Modiano

Eytan Modiano
Slide 2

Source coding

• Source symbols
– Letters of alphabet, ASCII symbols, English dictionary, etc...
– Quantized voice

• Channel symbols
– In general can have an arbitrary number of channel symbols

 Typically {0,1} for a binary channel

• Objectives of source coding
– Unique decodability
– Compression

 Encode the alphabet using the smallest average number of channel
symbols

Source
Alphabet
{a1..aN}

Encode Channel
Alphabet
{c1..cN}

Eytan Modiano
Slide 3

Compression

• Lossless compression
– Enables error free decoding
– Unique decodability without ambiguity

• Lossy compression
– Code may not be uniquely decodable, but with very high probability

can be decoded correctly

Eytan Modiano
Slide 4

Prefix (free) codes

• A prefix code is a code in which no codeword is a prefix of any
other codeword

– Prefix codes are uniquely decodable
– Prefix codes are instantaneously decodable

• The following important inequality applies to prefix codes and in
general to all uniquely decodable codes

Kraft Inequality

Let n 1…nk be the lengths of codewords in a prefix (or any
Uniquely decodable) code. Then,

2 1
1

−

=
∑ ≤n

i

k
i

Eytan Modiano
Slide 5

Proof of Kraft Inequality

• Proof only for prefix codes
– Can be extended for all uniquely decodable codes

• Map codewords onto a binary tree
– Codewords must be leaves on the tree
– A codeword of length n i is a leaf at depth n i

• Let n k ≥≥≥≥ nk-1 … ≥≥≥≥ n1 => depth of tree = n k

– In a binary tree of depth n k, up to 2 nk leaves are possible (if all leaves
are at depth n k)

– Each leaf at depth n i < nk eliminates a fraction 1/2 ni
 of the leaves at

depth n k => eliminates 2 nk -ni of the leaves at depth n k

– Hence,

2 2 2 1
1 1

n n

i

k
n n

i

k
k i k i−

=

−

=
∑ ∑≤ ⇒ ≤

Eytan Modiano
Slide 6

Kraft Inequality - converse

• If a set of integers {n 1..nk} satisfies the Kraft inequality the a prefix
code can be found with codeword lengths {n 1..nk}

– Hence the Kraft inequality is a necessary and sufficient condition for the
existence of a uniquely decodable code

• Proof is by construction of a code
– Given {n 1..nk}, starting with n 1 assign node at level n i for codeword of

length n i. Kraft inequality guarantees that assignment can be made

Example: n = {2,2,2,3,3}, (verify that Kraft inequality holds!)

n1n2
n3

n4
n5

Eytan Modiano
Slide 7

Average codeword length

• Kraft inequality does not tell us anything about the average length
of a codeword. The following theorem gives a tight lower bound

Theorem: Given a source with alphabet {a 1..ak}, probabilities {p 1..pk},
and entropy H(X), the average length of a uniquely decodable
binary code satisfies:

 ≥≥≥≥ H(X)
Proof:

n

H X n p
p

p n p
p

inequality X X

H X n p
p

i
ii

i k

i i
i

i k

i

n

ii

i k

i

n

ii

i k
n

i

i k

i

i

i

() log log

log log()

()

− = − =

=> ≤ − =>

− ≤ −








 = − ≤

=

=

=

= −

=

=

−

=

=
−

=

=

∑ ∑ ∑

∑ ∑

1 2

1

2
1 2 1 0

1 1 1

1 1

Eytan Modiano
Slide 8

Average codeword length

• Can we construct codes that come close to H(X)?

Theorem: Given a source with alphabet {a 1..ak}, probabilities {p 1..pk},
and entropy H(X), it is possible to construct a prefix (hence
uniquely decodable) code of average length satisfying:

Proof (Shannon-fano codes):

n < H(X) + 1

Let
p p

p

p

p p

i i
i

i

k

i
i

k

i i

 n n

Kraftinequalitysatisfied!

Can find a prefix code with lengths,

n

i i
n

n

i

i

i

=








 ⇒ ≥ ⇒ ≤

⇒ ≤ ≤

⇒

⇒

=








 < +

−

−

= =
∑ ∑

log() log()

log() log()

1 1
2

2 1

1 1
1

1 1

ni =








 < +

= < +








 = +

≤ < +

= =
∑ ∑

log() log() ,

,

log() () .

,

() ()

1 1
1

1
1 1

1

1 1

p p

Now

n p n p
p

H X

Hence

H X n H X

i i

i i
i

k

i
ii

k

Eytan Modiano
Slide 9

Getting Closer to H(X)

• Consider blocks of N source letters
– There are K N possible N letter blocks (N-tuples)
– Let Y be the “new” source alphabet of N letter blocks
– If each of the letters is independently generated,

H(Y) = H(x1..xN) = N*H(X)

• Encode Y using the same procedure as before to obtain,

Where the last inequality is obtained because each letter of Y corresponds to
N letters of the original source

• We can now take the block length (N) to be arbitrarily large and
get arbitrarily close to H(X)

H Y n H Y
N H X n N H X
H X n H X N

y

y

() ()
* () * ()
() () /

≤ < +
⇒ ≤ < +
⇒ ≤ < +

1
1

1

Eytan Modiano
Slide 10

Huffman codes

• Huffman codes are special prefix codes that can be shown to be optimal
(minimize average codeword length)

Huffman Algorithm:

1) Arrange source letters in decreasing order of probability (p 1 ≥≥≥≥ p2 .. ≥≥≥≥ pk)

2) Assign ‘0’ to the last digit of X k and ‘1’ to the last digit of X k-1

3) Combine pk and pk-1 to form a new set of probabilities

{p1, p2 ,.., pk-2,(pk-1+ pk)}

4) If left with just one letter then done, otherwise go to step 1 and repeat

H(X) H(X)+1Shannon/
Fano codes

Huffman
codes

Eytan Modiano
Slide 11

Huffman code example

 A = {a 1,a2,a3, a4, a5} and p = {0.3, 0.25,0.25, 0.1, 0.1}

a1 0.3

a2 0.25
a3 0.25
a4 0.1
a5 0.1

0.3

0.25
0.25
0.2

0.3

0.25
0.45

+
+

+

0.55
0.45

+1.0
1

0

0

1

0

1

0

1

Letter Codeword
a1 11
a2 10
a3 01
a4 001
a5 000

n bits symbol

H X p
p

Shannon Fanocodes n
p

n n n n n

n bits symbol H X

i
i

i
i

= × + × =

= =

− ⇒ =










= = = = =

⇒ = < +

∑

2 0 8 3 0 2 2 2

1
2 1855

1

2 4

2 4 1

1 2 3 4 5

. . . /

() log() .

log()

,

. / ()

Eytan Modiano
Slide 12

Lempel-Ziv Source coding

• Source statistics are often not known

• Most sources are not independent
– Letters of alphabet are highly correlated

 E.g., E often follows I, H often follows G, etc.

• One can code “blocks” of letters, but that would require a very
large and complex code

• Lempel-Ziv Algorithm
– “Universal code” - works without knowledge of source statistics
– Parse input file into unique phrases
– Encode phrases using fixed length codewords

 Variable to fixed length encoding

Eytan Modiano
Slide 13

Lempel-Ziv Algorithm

• Parse input file into phrases that have not yet appeared
– Input phrases into a dictionary
– Number their location

• Notice that each new phrase must be an older phrase followed by
a ‘0’ or a ‘1’

– Can encode the new phrase using the dictionary location of the
previous phrase followed by the ‘0’ or ‘1’

Eytan Modiano
Slide 14

Lempel-Ziv Example

Input: 0010110111000101011110

Parsed phrases: 0, 01, 011, 0111, 00, 010, 1, 01111

Dictionary

Loc binary rep phrase Codeword comment
0 0000 null
1 0001 0 0000 0 loc-0 + ‘0’
2 0010 01 0001 1 loc-1 + ‘1’
3 0011 011 0010 1 loc-2 + ‘1’
4 0100 0111 0011 1 loc-3 + ‘1’
5 0101 00 0001 0 loc-1 +’0’
6 0110 010 0010 0 loc-2 + ‘0’
7 0111 1 0000 1 loc-0 + ‘1’
8 1000 01111 0100 1 loc-4 + ‘1’

Sent sequence: 00000 00011 00101 00111 00010 00100 00001 01001

Eytan Modiano
Slide 15

Notes about Lempel-Ziv

• Decoder can uniquely decode the sent sequence

• Algorithm clearly inefficient for short sequences (input data)

• Code rate approaches the source entropy for large sequences

• Dictionary size must be chosen in advance so that the length of
the codeword can be established

• Lempel-Ziv is widely used for encoding binary/text files
– Compress/uncompress under unix
– Similar compression software for PCs and MACs

