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Noise in communication systems 

S(t) Channel 

r(t) = S(t) + n(t) 

r(t) 

n(t) 

•	 Noise is additional “unwanted” signal that interferes with the 
transmitted signal 

– Generated by electronic devices 

• The noise is a random process 
– Each “sample” of n(t) is a random variable 

•	 Typically, the noise process is modeled as “Additive White 
Gaussian Noise” (AWGN) 

– White: Flat frequency spectrum 
– Gaussian: noise distribution 
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Random Processes 

• The auto-correlation of a random process x(t) is defined as 
– Rxx(t1,t2) = E[x(t1)x(t2)] 

•	 A random process is Wide-sense-stationary (WSS) if its mean and 
auto-correlation are not a function of time. That is 

–  mx(t) = E[x(t)] = m 
– Rxx(t1,t2) = Rx(τ), where τ = t1-t2 

• If x(t) is WSS then: 
– Rx(τ) = Rx(-τ) 
– | Rx(τ)| <= |Rx(0)| (max is achieved at τ = 0) 

• The power content of a WSS process is: 

1 T / 2 1 T / 2 
Px = E[ lim 2 ( ) 

t →∞ T ∫−T / 2 
Rx (0)dt =Rx (0) 

t →∞ T ∫−T / 2 
x t dt = lim 
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Power Spectrum of a random process 

•	 If x(t) is WSS then the power spectral density function is given by: 

Sx(f) = F[Rx(τ)] 

• The total power in the process is also given by: 

∞ ∞  ∞  
Px = ∫ Sx ( )  t e− j ftdt

 
dff df = ∫  ∫ Rx ( ) 2π 

−∞ −∞−∞  

∞  ∞  
x ( )  2π= ∫  ∫ R t e− j ftdf 

 
dt 

−∞−∞  

∞  ∞  ∞ 

= ∫ R t  2π t t dt = Rx (0)x ( )
 ∫ e

− j ftdf 
 
dt = ∫ Rx ( )δ ( )  

−∞ −∞  −∞ 
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White noise


• The noise spectrum is flat over all relevant frequencies 
– White light contains all frequencies 

Sn(f) 

No/2 

• Notice that the total power over the entire frequency range is infinite 
–	 But in practice we only care about the noise content within the signal 

bandwidth, as the rest can be filtered out 

•	 After filtering the only remaining noise power is that contained within the
filter bandwidth (B) 
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f x  

( )  

AWGN 

• The effective noise content of bandpass noise is BNo 
–	 Experimental measurements show that the pdf of the noise samples can be 

modeled as zero mean gaussian random variable 

x ( )  = 
2πσ 
1 

e− x 2 / 2σ 2 

– AKA Normal r.v., N(0,σ2) 

– σ2 = Px = BNo 

• The CDF of a Gaussian R.V., 

α α 
Fx α = P[X ≤ α ] = ∫−∞ 

fx (x)dx = ∫−∞ πσ 2

1 
e− x 2 / 2σ 2 

dx 

• This integral requires numerical evaluation 
– Available in tables 
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AWGN, continued 

• X(t) ~ N(0,σ2) 

• X(t1), X(t2) are independent unless t1 = t2 

• 
E X t [ (t + τ )] [ ( )] τ ≠ 0

τ ( )] = Rx ( )  = E[ X(t + τ )X t  
 E X  2 (t)] τ = 0[ 

 0 τ ≠ 0 
=  

σ 2 τ = 0 

• Rx(0) = σ2 = Px = BNo 
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Detection of signals in AWGN


Observe: r(t) = S(t) + n(t), t ∈ [0,T] 

Decide which of S1, …, Sm was sent 

• Receiver filter 
– Designed to maximize signal-to-noise power ratio (SNR) 

h(t)
 y(t)

filter 
r(t) 

“sample at t=T” 

decide 

• Goal: find h(t) that maximized SNR 
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y T  

y T  T

Receiver filter 

t 

( )  = r t ( ) = ∫ r(τ )h(t − τ )dτ( ) * h t  
0 

T 

Sampling at t = T ⇒ ( )  = ∫ r(τ )h(T − τ )dτ 
0 

r( )  = s( )  + n( )  ⇒τ τ τ 
T T 

τ( )  = ∫ s(τ )h(T − τ )dτ + ∫ n( )h(T − τ )dτ = Ys (T ) + Yn (T ) 
0 0 

T  2 T  
 s( )h(T − τ )dτ 

 
∫ h( )s(T − τ )dτ 

∫ τ τ 
Y T

SNR = s 
2 ( )  =  0  =  0  

[ (T )] T TE Yn 
2 

N0 ∫ h T  − t)dt 
N0 ∫ h T  − t)dt2 ( 2 (

2 2 
0 0 
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Matched filter: maximizes SNR 

Caushy - Schwartz Inequality : 
2 ∞ ∞ ∞ 

g t g2 ( )   ∫−∞ 
1( ))2 (g2 (t))2 

∫−∞
1( )  t dt 

 ≤ (g t  ∫−∞ 

Above holds with equality iff : g t  t1( )  = cg2 ( )  for arbitrary constant c 

2T  T T 

 s( )h(T − τ )dτ 
 ∫ ( (τ ))2 dτ ∫ h T  − τ τ  

T∫ τ s 2 ( )d 

sSNR =  0 
T 

 ≤ 0 
T 

0 = 2 ∫ ( (τ ))2 dτ = 2Es 

N0 ∫ h T  − t)dt 
N0 ∫ h T  − t)dt 

N0 0 
N02 ( 2 (

2 2 
0 0 

Above maximum is obtained iff: h(T-τ) = cS(τ) 

=> h(t) = cS(T-t) = S(T-t) 

Eytan Modiano h(t) is said to be “matched” to the signal S(t)
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Example: PAM 

Sm (t) = Amg(t), t ∈ [0,T]


Am is a constant: Binary PAM Am ∈ {0,1} 


Matched filter is matched to g(t)


g(t) g(T-t) “matched filter” 

A A 

T T 
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Example, continued 

t 

Y ts ( )  = ∫ S(τ )h(t − τ )dτ , h(t©) = g(T − t©) ⇒ h(t − τ ) = g(T +τ − t) 
0 

t t 

s ( )  = ∫ g(τ )g(T + τ − t)dτ = ∫ g( )g(T − t + τ )dτY t  τ 
0 0 

T 

s ( )  = ∫ g2 ( )dY T  τ τ  
0 

A2T 

•	 Sample at t=T to obtain 
maximum value 

Ys(t) 

t 
T 
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Matched filter receiver


Sample at t=kT 

U(t) rx(t) g(T-t) rx(kT) 

2Cos(2πfct) 

Sample at t=kT 

U(t) ry(t) g(T-t) ry(kT) 

2Sin(2πfct) 
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Binary PAM example, continued


g(t) 
0 => S1 = g(t) 
1 => S2 = -g(t) A 

Eytan Modiano 

S(t) 

Y(t) 

T 

2T 3T 

“S1(t)” T 
“S2(t)” 

T 

T 

“Y1(t)” “Y2(t)” 

2T 

2T 
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Alternative implementation: correlator receiver 

r(t) = S(t) + n(t) 
Sample at t=kT 

r(t) () 
0 

T 

∫ Y(kT) 

S(t) 

T T T 
( )  = ∫0 

r t S t t ( )  ( )  =Ys (T ) + Yn (T )( ) ( )  =∫0 
S2 ( )  + ∫0 

n t S t 

Notice resemblance to matched filter 

Eytan Modiano 
Slide 15 



∈∈∈

Signal Detection


• After matched filtering we receive r = Sm + n 
– Sm ∈ {S1,..SM} 

• How do we determine from r which of the M possible symbols was sent? 
–	 Without the noise we would receive what sent, but the noise can transform one 

symbol into another 

Hypothesis testing 

• Objective: minimize the probability of a decision error 

• Decision rule: 
–  Choose Sm such that P(Sm sent | r received) is maximized 

• This is known as Maximum a posteriori probability (MAP) rule 

•	 MAP Rule: Maximize the conditional probability that Sm was sent given that r 
was received 
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MAP detector 

• Notes: 

(MAP detector : max P Sm | r) – MAP rule requires prior 
S1 ...SM 

probabilities 
– MAP minimizes the 

P Sm | r) =
( ,r) P r  P Sm ) probability of a decision

( 
P Sm ( |  Sm ) (= error

( )  P rP r  ( )  – ML rule assumes equally 
likely symbols 

P Sm | )  = 
fr s  ( |  Sm ) (

( r | r P Sm ) – With equally likely 

r ( )  symbols MAP and ML aref r  
M the same 

f rr ( ) = ∑ fr |s (r | Sm )P(Sm ) 
m=1 

1
When P(Sm ) = Map rule becomes: 

M 

(max f r  | Sm ) (AKA Maximum Likelihood (ML) decision rule )
S1 ...SM 
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Detection in AWGN

(Single dimensional constellations)


( |  Sm ) = 
N0 π
1 

e (r Sm )
2 / N0f r  − −  

−
f rln( ( | Sm )) = −  ln( N0 π ) − (r Sm )

2 

N0 

drS = (r − Sm )
2 

m 

Maximum Likelihood decoding amounts to minimizing drS = (r − Sm )
2 

m 

• Also known as minimum distance decoding 
– Similar expression for multidimensional constellations 
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Detection of binary PAM 

• S1(t) = g(t), S2(t) = -g(t) 
– S1 = - S2 => “antipodal” signaling 

• Antipodal signals with energy Eb can be represented geometrically as 

S2
 S1


− Eb Eb

• If S1 was sent then the received signal r = S1 + n 
• If S2 was sent then the received signal r = S2 + n 

f | r 
N0 π

− −  b E )2 / N0 
r s  ( |  s1) = 1 

e (r 

f | r 
N0 π

− +  b E )2 / N0 
r s  ( |  s2) = 1 

e (r 
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Detection of Binary PAM


S1S2 

− Eb 
0 Eb

• Decision rule: MLE => minimum distance decoding 
– => r > 0 decide S1 
– => r < 0 decide S2 

• Probability of error 
–	 When S2 was sent the probability of error is the probability that noise 

exceeds (Eb)1/2 similarly when S1 was sent the probability of error is the
probability that noise exceeds - (Eb)1/2 

– P(e|S1) = P(e|S2) = P[r<0|S1) 
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Q x  −

Probability of error for binary PAM 

0 
r 

0

N0 π
1 − −  b E )2 / N0 drPe = fr |s ( |  s1)dr = ∫−∞ 

e (r∫−∞ 

N0 π
1 − Eb 

e −r 2 / N0 dr= ∫−∞ 

2π 
1 − Eb / 2 0 N

e−r 2 / 2 dr= ∫−∞ 

2π 
1 

Eb 
∫ / 2 0 N

∞ 
e−r 2 / 2 dr= 

= Q( Nb 2 0 E / ) where, 

∞ 
( )  ∆ 

2π 
1 ∫x

e−r 2 / 2 dr 

• Q(x) = P(X>x) for X Gaussian with zero mean and σ2 = 1 
• Q(x) requires numerical evaluation and is tabulated in many math 

Eytan Modiano books (Table 4.1 of text)
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∞∞∞ ∞∞∞
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More on Q function 

• Notes on Q(x) 
– Q(0) = 1/2 
– Q(-x) = 1-Q(x) 
– Q(∞) = 0, Q(- ∞)=1 

– If X is N(m,σ2) Then P(X>x) = Q((x-m)/ σ) 

• Example: Pe = P[r<0|S1 was sent) 

f | ( |  s1) ~ N( Eb , N0 / 2) => m = Eb ,σ = r s  r N / 2 0 

− 
Pe = −  P[r > 0 | s1] = 1 − Q(

E

N
b 

/ 2 0 

) = −  Q(− 2Eb / N0 ) = Q( 2Eb / N0 )1 1 
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Error analysis continued 

•	 In general, the probability of error between two symbols separated 
by a distance d is given by: 

e ( )  = Q(
d

N

2 

0 2
) 

•	 For binary PAM d = 2 Eb Hence, 

Pe = Q(
E

N
b 2

0 

) 
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Orthogonal signals 

• Orthogonal signaling scheme (2 dimensional) 

Eb 

Eb 2Eb 

Pe = Q( 
d 

N

2 

0 2 
= Q E No/ b ( ) 
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Orthogonal vs. Antipodal signals 

•	 Notice from Q function that orthogonal signaling requires twice 
as much bit energy than antipodal for the same error rate 

–	 This is due to the distance between signal points 

10-1 

Pe 

10-5 

12 14 

antipodal 

orthogonal 

3dB 

Eb/N0  (dB) 
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  

Probability of error for M-PAM 

S1 S2 SM Si 

SM = AM Eg , AM = (2m − 1 − M) τi 

dij = 2 g E for | i − j |= 1 

Decision rule : Choose si such that d(r,si) is minimized 

P[error | si ] = P[decode si −1 | si ] + P[decode si +1 | si ] = 2P[decode si +1 | si ] 

 d

N
i i  +, 

2
1

2 

0 

  22

0 

E 

N
g  Pe

Pe = 2Q  = 2Q , Peb = 
    Log2 ( )M 

Notes: 
1)	 the probability of error for s1 and sM is lower because error only 

occur in one direction 
Eytan Modiano 
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  

  

Probability of error for M-PAM 

M 2 − 1 M 2 − 1
Eav = 

3 
Eg => Ebav = 

3Log2 ( )  
EgM 

E = 3Log2 ( )  
Ebav 

M 
g M 2 − 1 

 Log M

M 
Ebav− 

2 
2 

0 

6

1

( )  

( N)

 Pe
Pe = 2Q , Peb = 

  Log2 ( )M 

accounting for effect of S1 and SM we get : 

 M − 1  Log M 

M − 
2 

2 
( )  

( 11 0 )N
Ebav 

6  
Pe = 2 M  Q

 
, 
 
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Probability of error for PSK 

• Binary PSK is exactly the same as binary PAM 

• 4-PSK can be viewed as two sets of binary PAM signals 

•	 For large M (e.g., M>8) a good approximation assumes that errors 
occur between adjacent signal points 

Es 

θ 
θ = 2π/M 

π −dij = 2 Sins E ( ), | i j  | = 1
M 
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  

M
  

Error Probability for PSK 

P[error | si ] = P[decode si −1 | si ] + P[decode si +1 | si ] = 2P[decode si +1 | si ] 


, +d

N
i i  1 
2 

0 2 

  E 

N
s 2

0 



Pes = 2Q  = 2Q sin(π / M)


   
 

Eb = Es / Log2 (M) 

 ( )Log M E

N
b 2 

0 

2  P
Pes = 2Q sin(π / M) ,  Peb = es 

  Log2 ( )M

Eytan Modiano 
Slide 29 


