16.36: Communication Systems Engineering

Lecture 2: Entropy

Eytan Modiano

Information content of a random variable

- **Random variable X**
	- **Outcome of a random experiment**
	- – **Discrete R.V. takes on values from a finite set of possible outcomes PMF:** $P(X = y) = P_{x}(y)$
- **How much information is contained in the event X = y?**
	- **Will the sun rise today?**

Revealing the outcome of this experiment provides no information

- **Will the Celtics win the NBA championship? Since this is unlikely, revealing yes provides more information than revealing no**
- • **Events that are less likely contain more information than likely events**

Measure of Information

- $I(x_i)$ = Amount of information revealed by an outcome $X = x_i$
- **Desirable properties of I(x):**
	- **1.** If $P(x) = 1$ or $P(x) = 0$, then $I(x) = 0$
	- **2.** If $0 < P(x) < 1$, then $I(x) > 0$
	- **3. If P(x) < P(y), then I(x) > I(y)**
	- **4. If x and y are independent events then** $I(x,y) = I(x) + I(y)$
- Above is satisfied by: $I(x) = Log_2(1/P(x))$
- **Base of Log is not critical**
	- **Base 2 => information measured in bits**

Entropy

- **A measure of the information content of a random variable**
- $X \in \{x_1, ..., x_M\}$
- $H(X) = E[I(X)] = \sum P(x_i) Log_2(1/P(x_i))$
- **Example: Binary experiment**
	- $X = x_1$ with probability p
	- $X = x_2$ with probability (1-p)
	- $-$ **H(X)** = $pLog_2(1/p) + (1-p)Log_2(1/(1-p)) = H_b(p)$
	- **H(X) is maximized with p=1/2,** $H_b(1/2) = 1$

Not surprising that the result of a binary experiment can be conveyed using one bit

Simple bounds on entropy

- **Theorem: Given a random variable with M possible values**
	- 0 <= H(X) <= Log₂(M)

A) $H(X) = 0$ if and only if $P(x_i) = 1$ for some i

B) $H(X) = Log₂(M)$ if and only if $P(x_i) = 1/M$ for all i

Proof, continued

Consider the sum
$$
\sum_{i=1}^{M} P_i Log(\frac{1}{MP_i})
$$
, by log inequality:
 $\sum_{i=1}^{M} P_i = \sum_{i=1}^{M} (1 - P_i) = 0$ equality when $P_i = \sum_{i=1}^{M} P_i$

$$
\leq \sum_{i=1}^{M} P_i \left(\frac{1}{MP_i} - 1 \right) = \sum_{i=1}^{M} \left(\frac{1}{M} - P_i \right) = 0, \text{ equality when } P_i = \frac{1}{M}
$$

Writing this in another way:

$$
\sum_{i=1}^{M} P_{i} Log(\frac{1}{MP_{i}}) = \sum_{i=1}^{M} P_{i} Log(\frac{1}{P_{i}}) + \sum_{i=1}^{M} P_{i} Log(\frac{1}{M}) \le 0, \text{ equality when } P_{i} = \frac{1}{M}
$$

That is,
$$
\sum_{i=1}^{M} P_{i} Log(\frac{1}{P_{i}}) \le \sum_{i=1}^{M} P_{i} Log(M) = Log(M)
$$

Joint Entropy

Joint entropy:
$$
H(X,Y) = \sum_{x,y} p(x,y) \log(\frac{1}{p(x,y)})
$$

Conditional entropy: $H(X | Y)$ = uncertainty in X given Y

$$
H(X | Y = y) = \sum_{x} p(x | Y = y) \log(\frac{1}{p(x | Y = y)})
$$

$$
H(X | Y) = E[H(X | Y = y)] = \sum_{y} p(Y = y)H(X | Y = y)
$$

$$
H(X | Y) = \sum_{x,y} p(x,y) \log(\frac{1}{p(x | Y = y)})
$$

In General: X_1, \ldots, X_n random variables

$$
H(X_n | X_1, \ldots, X_{n-1}) = \sum_{\substack{x_1, \ldots, x_n \\ x_1, \ldots, x_n}} p(x_1, \ldots, x_n) \log(\frac{1}{p(x_n | x_1, \ldots, x_{n-1})})
$$

Rules for entropy

1. Chain rule:

$$
H(X_1, ..., X_n) = H(X_1) + H(X_2|X_1) + H(X_3|X_2, X_1) + ... + H(X_n|X_{n-1}...X_n)
$$

2. H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)

3. If X_1 **, ..,** X_n **are independent then:**

$$
H(X_1, ..., X_n) = H(X_1) + H(X_2) + ... + H(X_n)
$$

If they are also identically distributed (I.I.d) then:

 $H(X_1, ..., X_n) = nH(X_1)$

4. $H(X_1, ..., X_n) \leq H(X_1) + H(X_2) + ... + H(X_n)$ (with equality if independent)

Proof: use chain rule and notice that H(X|Y) < H(X) entropy is not increased by additional information

Mutual Information

- **X, Y random variables**
- **Definition: I(X;Y) = H(Y) H(Y|X)**
- **Notice that** $H(Y|X) = H(X,Y) H(X) = H(X,Y) = H(X)+H(Y) H(X,Y)$
- $I(X;Y) = I(Y;X) = H(X) H(X|Y)$
- **Note: I(X,Y) >= 0 (equality if independent)**
	- **Because H(Y) >= H(Y|X)**