16.36: Communication Systems Engineering

Lecture 2: Entropy
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Information content of a random variable

* Random variable X
— Outcome of a random experiment

— Discrete R.V. takes on values from a finite set of possible outcomes
PMF: P(X =y) = P(Y)

* How much information is contained in the event X = y?

— Will the sun rise today?
Revealing the outcome of this experiment provides no information

—  Will the Celtics win the NBA championship?

Since this is unlikely, revealing yes provides more information than
revealing no

* Events that are less likely contain more information than likely
events
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Measure of Information

* I(X;) = Amount of information revealed by an outcome X = x;
* Desirable properties of I(X):

If P(x) =1 orP(x) =0, thenI(x) =0
If0O<P(x)<1,thenl(x)>0

If P(X) < P(y), then I(x) > I(y)

If x and y are independent events then I(x,y) = I(X)+I(y)

W

* Above is satisfied by: I(x) = Log,(1/P(x))

* Base of Log is not critical
— Base 2 => information measured in bits
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Entropy

* A measure of the information content of a random variable
o X O{Xy.... Xy}

* H(X) = E[I(X)] = IP(x) Log,(1/P(x))

e Example: Binary experiment

— X =X, with probability p
— X =X, with probability (1-p)

— H(X) = pLog,(1/p) + (1-p)Log,(1/(1-p)) = Hy(P)
— H(X) is maximized with p=1/2, H,(1/2) = 1

Not surprising that the result of a binary experiment can be conveyed using
one bit
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Simple bounds on entropy

* Theorem: Given a random variable with M possible values
— 0<=H(X) <= Log,(M)
A) H(X) =0 if and only if P(x;) = 1 for some i

B) H(X) = Log,(M) if and only if P(x;) = 1/M for all i

— Proof of A is obvious

— Proof of B requires
— the Log Inequality:

— if x>0 then In(x) <= x-1
— Equality if x=1
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Proof, continued

M
Consider the sum Z PiLog(i), by log inequality :
2, "%

< %P(i—l) = %(E—P) =0, equality when P -1
=1 | MPi =1 M | | M

Writing this in another way::

M 1 M 1. & 1 1
PLog(—) = P.Log(—) + P.Log(—) < 0O, equality when P = —
Zl i) Zl 95 Zl 9(-) < 0, equality =

M M
: 1
Thatis, ) PLog(—=)< ) PLog(M) = Log(M)
Z - P Zl |
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Joint Entropy

Joint entropy: H(X,Y) = Z p(X, y)log( )

p(x y)

Conditional entropy: H(X|Y)=uncertainty in X given Y

o _ 1
H(X|Y=y)= Z P(X| Y = Y)logls )

H(X|Y) =E[H(X]Y=y)]= ZP(YZY)H(XIYZY)

H(X]Y) = Z p(X, y)log( X IY y))

In General: Xg,...,X,, random variables

) 1
H(Xn | Xl’ n 1) Z p(Xl’ n) Iog( p(xn | X1, ...,Xn_]_)
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Rules for entropy

1. Chain rule:
HXy, -0 Xp) = HOXp) + HOX[Xq) + H(X5 X5, X)) + .o+ HOX X2 X )
2. H(X)Y) = H(X) + H(Y[X) = H(Y) + H(X]Y)
3. If X4, .., X,,are independent then:
H(Xq, .., X)) = H(X,) + H(X,) + ...+H(X,)

If they are also identically distributed (l.I.d) then:

H(Xy, .., X.) = nH(X,)
4. H(Xq, -, X)) <= H(X) + H(X,) + ...+ H(X,)) (with equality if independent)

Proof: use chain rule and notice that H(X|Y) < H(X)
entropy is not increased by additional information
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Mutual Information

* X, Y random variables

e Definition: I(X;Y) = H(Y) - H(Y|X)

e Notice that H(Y|X) = H(X,Y) - H(X) => I(X;Y) = H(X)+H(Y) - H(X,Y)
o I(X;Y) = I(Y;X) = H(X) - H(X]Y)

* Note: I(X,Y)>=0 (equality if independent)
— Because H(Y) >= H(Y|X)
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