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Information content of a random variable


• Random variable X 
– Outcome of a random experiment 
–	 Discrete R.V. takes on values from a finite set of possible outcomes 

PMF: P(X = y) = Px(y) 

• How much information is contained in the event X = y? 

– Will the sun rise today? 

Revealing the outcome of this experiment provides no information 

– Will the Celtics win the NBA championship? 
Since this is unlikely, revealing yes provides more information than 
revealing no 

•	 Events that are less likely contain more information than likely 
events 
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Measure of Information


• I(xi) = Amount of information revealed by an outcome X = xi 

• Desirable properties of I(x): 

1. If P(x) = 1 or P(x) = 0, then I(x) = 0 
2. If 0 < P(x) < 1, then I(x) > 0 
3. If P(x) < P(y), then I(x) > I(y) 
4. If x and y are independent events then I(x,y) = I(x)+I(y) 

• Above is satisfied by: I(x) = Log2(1/P(x)) 

• Base of Log is not critical 
– Base 2 => information measured in bits 
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Entropy


• A measure of the information content of a random variable 

• X ∈  {x1,…,XM} 

• H(X) = E[I(X)] = ∑P(xi) Log2(1/P(xi)) 

• Example: Binary experiment 

– X = x1 with probability p 
– X = x2 with probability (1-p) 

– H(X) = pLog2(1/p) + (1-p)Log2(1/(1-p)) = Hb(p) 

– H(X) is maximized with p=1/2, Hb(1/2) = 1 

Not surprising that the result of a binary experiment can be conveyed using 
one bit 
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Simple bounds on entropy 

• Theorem: Given a random variable with M possible values 

– 0 <= H(X) <= Log2(M)


A) H(X) = 0 if and only if P(xi) = 1 for some i


B) H(X) = Log2(M) if and only if P(xi) = 1/M for all i


– Proof of A is obvious Y=x-1 
– Proof of B requires 
– the Log Inequality: 

– if x>0 then ln(x) <= x-1 
– Equality if x=1 Y= ln(x) 
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Proof, continued 

M 
1

Consider the sum ∑Pi Log( ), by log inequality : 
i=1 

MPi 

M M
1 1 1≤ ∑Pi ( − 1) = ∑ ( − Pi ) = 0, equality when Pi = 

i=1 
MPi i=1 

M M 

Writing this in another way: 

M M M
1 1 1∑Pi Log( ) = ∑Pi Log( ) +∑Pi Log( ) ≤ 0, equality when Pi = 

i=1 
MPi i=1 

Pi i=1 
M M 

M M
1

That is, ∑Pi Log( ) ≤ ∑Pi Log(M) = Log(M) 
i=1 

Pi i=1 
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Joint Entropy 

1
Joint entropy : ( ,  Y ) = ∑ p x y( , ) log( 

( ,  y)
) 

x y, 

Conditional entropy :  H(X | Y) = uncertainty in X given Y 

1
( |  Y = y) = ∑ p xH X  ( | Y = y) log(

( |  Y = y)
) 

p x
x 

( |  Y y)] = ∑p(Y = y)H(X | Y y)( |  Y ) = E[H X = = 
y 

1
( |  Y ) = ∑ p(x, y) log(

( |  Y = y)
) 

p x
x, y 

In General:  X1,...,Xn random variables 

1
H(Xn | X1,...,Xn-1) = ∑p(x1,...,xn ) log( 
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Rules for entropy 

1. 	Chain rule: 

H(X1, .., Xn) = H(X1) + H(X2|X1) + H(X3|X2,X1) + …+ H(Xn|Xn-1…X1) 

2. H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y) 

3. If X1, .., Xn are independent then: 

H(X1, .., Xn) = H(X1) + H(X2) + …+H(Xn) 

If they are also identically distributed (I.I.d) then: 

H(X1, .., Xn) = nH(X1) 

4. H(X1, .., Xn) <= H(X1) + H(X2) + …+ H(Xn) (with equality if independent) 

Proof: use chain rule and notice that H(X|Y) < H(X) 
entropy is not increased by additional information 
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Mutual Information


• X, Y random variables 

• Definition: I(X;Y) = H(Y) - H(Y|X) 

• Notice that H(Y|X) = H(X,Y) - H(X) => I(X;Y) = H(X)+H(Y) - H(X,Y) 

• I(X;Y) = I(Y;X) = H(X) - H(X|Y) 

• Note: I(X,Y) >= 0 (equality if independent) 
– Because H(Y) >= H(Y|X) 
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