Lecture 3: The Sampling Theorem

Eytan Modiano AA Dept.

Sampling

- Given a continuous time waveform, can we represent it using \bullet discrete samples?
	- How often should we sample? $\frac{1}{2}$
	- Can we reproduce the original waveform? $\,$

The Fourier Transform

- **Frequency representation of signals**
- **Definition:** $X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$

$$
x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df
$$

• **Notation:**

$$
X(f) = F[x(t)]
$$

\n
$$
X(t) = F-1 [X(f)]
$$

\n
$$
x(t) \leftrightarrow X(f)
$$

Unit impulse δ**(t)**

$$
\delta(t) = 0, \forall t \neq 0
$$

$$
\int_{-\infty}^{\infty} \delta(t) = 1
$$

$$
\int_{-\infty}^{\infty} \delta(t)x(t) = x(0)
$$

$$
\int_{-\infty}^{\infty} \delta(t - \tau)x(\tau) = x(t)
$$

$$
F[\delta(t)] = \int_{-\infty}^{\infty} \delta(t)e^{-j2\pi ft}dt = e^{0} = 1
$$
\n
$$
\delta(t)
$$
\n
$$
\delta(t) \Leftrightarrow 1
$$

Rectangle pulse

$$
\Pi(t) = \begin{cases}\n1 & \text{if } |t| < 1/2 \\
1/2 & \text{if } |t| = 1/2 \\
0 & \text{otherwise}\n\end{cases}
$$

$$
F[\Pi(t)] = \int_{-\infty}^{\infty} \Pi(t)e^{-j2\pi ft}dt = \int_{-1/2}^{1/2} e^{-j2\pi ft}dt
$$

$$
=\frac{e^{-j\pi t}-e^{j\pi f}}{-j2\pi f}=\frac{\sin(\pi f)}{\pi f}=\text{Sinc}(f)
$$

Properties of the Fourier transform

- **Linearity**
	- ^α β ^α β **x1(t) <=> X1(f), x2(t) <=>X2(f) => x1(t) +** β**x2(t) <=> X1(f) +** β**X2(f)**
- **Duality**
	- **X(f) <=> x(t) => x(f) <=> X(-t) and x(-f)<=> X(t)**
- Time-shifting: x(t-τ) <=> X(f)e^{-j2πfτ}
- **Scaling: F[(x(at)] = 1/|a| X(f/a)**
- **Convolution: x(t) <=> X(f), y(t) <=> Y(f) then,**
	- **F[x(t)*y(t)] = X(f)Y(f)**
	- – **Convolution in time corresponds to multiplication in frequency and visa versa**

$$
x(t)^* y(t) = \int_{-\infty}^{\infty} x(t - \tau) y(\tau) d\tau
$$

Fourier transform properties (Modulation)

$$
x(t)e^{j2\pi f_o t} \Leftrightarrow X(f - f_o)
$$

Slide 7

Now,
$$
\cos(x) = \frac{e^{jx} + e^{-jx}}{2}
$$

\n
$$
x(t)\cos(2\pi f_o t) = \frac{x(t)e^{j2\pi f_o t} + x(t)e^{-j2\pi f_o t}}{2}
$$

Hence,
$$
x(t)\cos(2\pi f_o t) \Leftrightarrow \frac{X(f - f_o) + X(f + f_o)}{2}
$$

- **•** Example: $x(t)$ = sinc(t), $F[sinc(t)] = \Pi(f)$
- Y(t) = sinc(t)cos(2πf_ot) <=> (Π(f-f_o)+Π(f+f_o))/2

More properties

● Power content of signal $\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df$

$$
\int_{-\infty}^{\infty} |x(t)| dt = \int_{-\infty}^{\infty} |x(t)| dt
$$

• **Autocorrelation**

$$
R_{x}(\tau) = \int_{-\infty}^{\infty} x(t) x^{*}(t-\tau) dt
$$

$$
R_{\mathfrak{X}}(\tau) \Longleftrightarrow |X(f)|^2
$$

• **Sampling**

$$
x(t_o) = x(t)\delta(t - t_o)
$$

$$
x(t) \sum_{n=-\infty}^{\infty} \delta(t - nt_o) = \text{sampled version of } x(t)
$$

$$
F[\sum_{n=-\infty}^{\infty} \delta(t - nt_o)] = \frac{1}{t_o} \sum_{n=-\infty}^{\infty} \delta(t - \frac{n}{t_o})
$$

The Sampling Theorem

Sampling Theorem: If we sample the signal at intervals Ts where

Ts <= 1/ 2W then signal can be completely reconstructed from its samples using the formula

$$
x(t) = \sum_{n=-\infty}^{\infty} 2W^{\mathcal{O}} T_s x(nT_s) \sin c[2W^{\mathcal{O}}(t - nT_s)]
$$

 $Where, \quad W \leq W^{\odot} \leq \frac{1}{\alpha} - W$ T_{s}

With
$$
T_s = \frac{1}{2W} \Rightarrow x(t) = \sum_{n=-\infty}^{\infty} x(nT_s) \sin c[(\frac{t}{T_s} - n)]
$$

$$
x(t) = \sum_{n = -\infty}^{\infty} x(\frac{n}{2W}) \sin c[2W(t - \frac{n}{2W})]
$$

Proof

$$
x_{\delta}(t) = x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_s)
$$

$$
X_{\delta}(f) = X(f) * F[\sum_{n=-\infty}^{\infty} \delta(t - nT_s)]
$$

$$
F[\sum_{n=-\infty}^{\infty} \delta(t - nT_s)] = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} \delta(f - \frac{n}{T_s})
$$

$$
X_{\delta}(f) = \frac{1}{Ts} \sum_{n=-\infty}^{\infty} X(f - \frac{n}{T_s})
$$

• **The Fourier transform of the sampled signal is a replication of the Fourier transform of the original separated by 1/Ts intervals**

Proof, continued

- If 1/Ts > 2W then the replicas of X(f) will not overlap and can be **recovered**
- **How can we reconstruct the original signal?**
	- **Low pass filter the sampled signal**
- \bullet **Ideal low pass filter is a rectangular pulse** *H*

$$
(f) = T_s \Pi(\frac{f}{2W})
$$

• **Now the recovered signal after low pass filtering**

$$
X(f) = X_{\delta}(f)T_{s}\Pi(\frac{f}{2W})
$$

$$
x(t) = F^{-1}[X_{\delta}(f)T_{s}\Pi(\frac{f}{2W})]
$$

$$
x(t) = \sum_{n=-\infty}^{\infty} x(nT_{s})Sinc(\frac{t}{T_{s}} - n)
$$

Notes about Sampling Theorem

- **When sampling at rate 2W the reconstruction filter must be a rectangular pulse**
	- **Such a filter is not realizable**
	- – **For perfect reconstruction must look at samples in the infinite future and past**
- In practice we can sample at a rate somewhat greater than 2W **which makes reconstruction filters that are easier to realize**
- • **Given any set of arbitrary sample points that are 1/2W apart, can construct a continuous time signal band-limited to W**