Lecture 3. The Sampling Theorem
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Sampling

* Given a continuous time waveform, can we represent it using
discrete samples?

— How often should we sample?
— Can we reproduce the original waveform?

N\ /
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The Fourier Transform

* Frequency representation of signals

e Definition: X(f) =J’:ox(t)e‘12"“dt
xa):I?X(De”mdf

* Notation:

X(f) = F[x(0)]
X(t) = F-1 [X(f)]
X(t) < X(f)
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Unit impulse o(t)

5(t)= 0, [FA0
I_OcoS(t) -1

jﬁ(t)x(t) = x(0)

[t - Dxm=x()

FI] = [ e dt =" =1 o) FI5(0)]

l ) 1
5(t) = 1
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Rectangle pulse

1 |tl<1/2
N =2 |t=1/2
B) otherwise
co . 1/2 .
FUWH=IIN0€”mm:I/e”MHt
—00 -1/2

e ™ -e™ _ gn(rf)
—j2nf nf

= Sinc(f)

M)

1/2 1/2
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Properties of the Fourier transform

* Linearity
—  X1(t) <=> X1(f), x2(t) <=>X2(f) => ax1(t) + Px2(t) <=> axX1(f) + BX2(f)

®* Duality
—  X(f) <=> x(t) => x(f) <=> X(-t) and x(-f)<=> X(t)

* Time-shifting: x(t-1) <=> X(f)e’2n
e Scaling: F[(x(at)] = 1/|a|] X(f/a)

* Convolution: x(t) <=> X(f), y(t) <=> Y(f) then,
- FIx(®)*y(0)] = X({)Y()

— Convolution in time corresponds to multiplication in frequency and
visa versa

X(*y(0) = [X(t - DY)
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Fourier transform properties (Modulation)

x(t)e!?Mt o X(f - f,)

jX jX

+g!
Now, cos(X) = 5
j2nt,t ~j2ntt
X(t) cos(2r.t) = XWE * x()e

2

X(f = f5) + X(f + ;)

Hence, x(t) cos(2nrf,t) < >

e Example: x(t)= sinc(t), F[sinc(t)] = [1(f)

* Y(t) = sinc(t)cos(2mf_t) <=> (M(f-f,)+M(f+f,))/2

1/2
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More properties
e Power content of signal I°°| X(t) [2clt :J’°°| X(f) [Pdf

= [ XX (t- 1)t
* Autocorrelation R(T) J'_oox()x( )

R (1) = | X(f)[

* Sampling X(to) = x(t)o(t — t,)

X(t) Z 3(t - nt,) =sampled version of x(t)

n=-oo

FLY st-nl== Yy o(f -]

n=—oco 0 n=-w Y
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The Sampling Theorem

X( )

* Band-limited signal X(f) =0, forall f,| f =W
— Bandwidth <W

-W W
Sampling Theorem: If we sample the signal at intervals Ts where

Ts <=1/ 2W then signal can be completely reconstructed from its
samples using the formula

X(t) = i 2WT x(NT,)sin 2Wqt - nT,)]

Where, Wsw©si—w

S

WithT, = ﬁ > X(t) = i X(NT,)sin c[(Ti )]

nN=-—oo S

o]

=y x(%)sin [2W(t - %)]

n=-oo
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Proof

% () = x(1) § 8(t-nT)
X,(F)= X(1)*F[  8(t - niT)]

Fl ié(t—nTS)]:Ti S o -2

n=-oo S N=—o0

X(N==3 X(f-2)

* The Fourier transform of the sampled signal is a replication of the
Fourier transform of the original separated by 1/Ts intervals

i U I W2 W2

|
-1/Ts -W w 1/Ts 2/Ts
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Proof, continued

If 1/Ts > 2W then the replicas of X(f) will not overlap and can be
recovered

How can we reconstruct the original signal?
— Low pass filter the sampled signal

Ideal low pass filter is a rectangular pulse  H(f)= Tsl'l(ﬁ)

Now the recovered signal after low pass filtering
X(f) = X, (D T.(G)
0 S 2W
f
X(t) = FX, (F)T.M(=——
(1) = F D (HTAG )

X(t) = i X(NT.)S nc(Tl 1)
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Notes about Sampling Theorem

When sampling at rate 2W the reconstruction filter must be a
rectangular pulse

— Such a filter is not realizable

— For perfect reconstruction must look at samples in the infinite future
and past

In practice we can sample at a rate somewhat greater than 2W
which makes reconstruction filters that are easier to realize

Given any set of arbitrary sample points that are 1/2W apart, can
construct a continuous time signal band-limited to W



