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16.36:  Communication Systems Engineering

Lectures 12/13:   Channel Capacity and Coding
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Channel Coding

• When transmitting over a noisy channel, some of the bits are
received with errors

Example : Binary Symmetric Channel (BSC)

• Q: How can these errors be removed?

• A: Coding: the addition of redundant bits that help us determine
what was sent with greater accuracy
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 Example (Repetition code)

Repeat each bit n times (n-odd)
Input Code
0 000……..0
1 11..……..1

Decoder:
• If received sequence contains n/2 or more 1’s decode as a 1

and 0 otherwise
– Max likelihood decoding

P ( error | 1 sent ) = P ( error | 0 sent )
  = P[ more than n / 2 bit errors occur ]
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 Repetition code, cont.

• For Pe < 1/2,  P(error) is decreasing in n
– ⇒⇒⇒⇒  for any εεεε, ∃∃∃∃  n large enough so that P (error) < εεεε

Code Rate : ratio of data bits to transmitted bits
– For the repetition code R = 1/n
– To send one data bit, must transmit n channel bits “bandwidth

expansion”

• In general, an (n,k) code uses n channel bits to transmit k data bits
– Code rate R = k / n

• Goal: for a desired error probability, εεεε,  find the highest rate code
that can achieve p(error) < εεεε
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 Channel Capacity

• The capacity of a discrete memoryless channel is given by,

–

Example : Binary Symmetric Channel (BSC)

I(X;Y) = H (Y) - H (Y|X) = H (X) - H (X|Y)
H (X|Y) = H (X|Y=0)*P(Y=0) + H (X|Y=1)*P(Y=1)
H (X|Y=0) = H (X|Y=1) = Pelog(1/P e) + (1-Pe)log(1/ 1-P e) = Hb(Pe)
H (X|Y) = Hb(Pe) => I(X;Y) = H(X) - Hb(Pe)
H (X) = P0 log (1/P 0) + (1-P0) log (1/ 1-P 0) = Hb(p0)

=> I (X;Y) = Hb (P0) - Hb(Pe)

C I X Yp x= max ( ; )( ) ChannelX Y
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Capacity of BSC

I (X;Y) = Hb (P0) - Hb(Pe)

• Hb(P) = P log(1/P) + (1-P) log(1/ 1-P)
– Hb(P) <= 1 with equality if P=1/2

C = max P0  {I (X;Y) = Hb (P0) - Hb(Pe)} = 1 - Hb(Pe)

C = 0  when P e = 1/2 and C = 1 when P e = 0 or Pe=1

10 1/2
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 Channel Coding Theorem (Claude Shannon)

Theorem:  For all R < C and εεεε > o; there exists a code of rate R whose
error probability < εεεε

– εεεε can be arbitrarily small

– Proof uses large block size n

 as n →→→→∞∞∞∞ capacity is achieved

• In practice codes that achieve capacity are difficult to find

– The goal is to find a code that comes as close as possible to

achieving capacity

• Converse of Coding Theorem:
– For all codes of rate R > C, ∃∃∃∃  εεεε0 > 0, such that the probability of error

is always greater than εεεε0

 For code rates greater than capacity, the probability of error is bounded

away from 0
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 Channel Coding

• Block diagram

Source Source
encoder

Channel
encoder Modulator

Channel

DemodChannel
decoder

Source 
decoderSink
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 Approaches to coding

• Block Codes
– Data is broken up into blocks of equal length
– Each block is “ mapped” onto a larger block

Example:  (6,3) code, n = 6, k = 3, R = 1/2

 000 →→→→ 000000  100 →→→→ 100101
 001 →→→→ 001011  101 →→→→ 101110
 010 →→→→ 010111  110 →→→→ 110010
 011 →→→→ 011100  111 →→→→ 111001

• An (n,k) binary block code is a collection of 2 k binary n-tuples (n>k)
– n = block length
– k = number of data bits
– n-k = number of checked bits
– R = k / n = code rate
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 Approaches to coding

•  Convolutional Codes
– The output is provided by looking at a sliding window of input

Delay Delay

+

+

+

Ci

Ci+1

UK

C(2K) = U(2K)     U(2K-2),   C(2K+1) = U(2K+1)     U(2K)     U(2K-1)+ + +

+ mod(2) addition (1+1=0)
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 Block Codes

•  A block code is systematic if every codeword can be broken into a
data part and a redundant part

– Previous (6,3) code was systematic

Definitions :

• Given X ∈∈∈∈  {0,1} n, the Hamming Weight  of X is the number of 1’s in X

• Given X, Y in {0,1} n , the Hamming Distance  between X & Y is the
number of places in which they differ,

• The minimum distance  of a code is the Hamming Distance between
the two closest codewords:

dmin  = min {d H (C1,C2)}
         C1,C2 ∈∈∈∈  C
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 Decoding

• r may not equal to u due to transmission errors
• Given r how do we know which codeword was sent?

Maximum likelihood Decoding :
Map the received n-tuple r into the codeword C that maximizes,

P { r | C was transmitted }

Minimum Distance Decoding  (nearest neighbor)
Map r to the codeword C such that the hamming distance between
r and C is minimized (I.e., min d H (r,C))

⇒⇒⇒⇒   For most channels Min Distance Decoding is the same as Max
likelihood decoding

Channelu r
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 Linear Block Codes

• A (n,k) linear block code (LBC) is defined by 2 k codewords of
length n 

C = { C1….Cm}

• A (n,k) LBC is a K-dimensional subspace of {0,1} n

– (0…0) is always a codeword
– If C1,C2 ∈∈∈∈  C, C1+C2 ∈∈∈∈  C

• Theorem:  For a LBC the minimum distance is equal to the min
weight (W min ) of the code

Wmin  = min (over all Ci)  Weight (C i)

Proof : Suppose d min  = dH (Ci,Cj), where C 1,C2 ∈∈∈∈  C

dH (Ci,Cj) = Weight (C i + Cj),
 but since C is a LBC then C i + Cj  is also a codeword
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 Systematic codes

Theorem:   Any (n,k) LBC can be represented in Systematic form
where:  data = x 1..xk,  codeword = x 1..xk ck+1..xn

– Hence we will restrict our discussion to systematic codes only

• The codewords corresponding to the information sequences:
e1 = (1,0,..0), e2=(0,1,0..0), ek = (0,0,..,1) for a basis for the code

– Clearly, they are linearly independent
– K linearly independent n-tuples completely define the K dimensional

subspace that forms the code

Information sequence Codeword
e1 = (1,0,..0) g1 =  (1,0,..,0, g(1,k+1) …g(1,n) )
e2=(0,1,0..0) g2 = (0,1,..,0, g(2,k+1) …g(2,n) )

ek = (0,0,..,1)  gk = (0,0,..,k, g (k,k+1) …g(k,n) )

•  g1, g2, …,gk form a basis for the code
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 The Generator Matrix

• For input sequence x = (x 1,…,xk):  Cx = xG

– Every codeword is a linear combination of the rows of G
– The codeword corresponding to every input sequence can be derived

from G
– Since any input can be represented as a linear combination of the

basis (e 1,e2,…, ek), every corresponding codeword can be
represented as a linear combination of the corresponding rows of G

• Note:  x 1        C1, x2        C2    =>  x1+x2         C1+C2
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Example

• Consider the (6,3) code from earlier:

100 →→→→ 100101; 010 →→→→ 010111; 001 →→→→ 001011

Codeword for (1,0,1) =  (1,0,1)G = (1,0,1,1,1,0)

G =
















1 0 0 1 0 1

0 1 0 1 1 1

0 0 1 0 1 1

G I PK Kx n K=
















=

−( )

I KxK identitymatrixK
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The parity check matrix

H P I

n

T
n K=

















= −

−( )

(I K)x(n - K) identitymatrix(n-K)

H =
















1 1 0 1 0 0

0 1 1 0 1 0

1 1 1 0 0 1

Example:

Now, if ci is a codework of C then, c Hi
T =

v
0

•  “C is in the null space of H”
•  Any codeword in C is orthogonal to the rows of H
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Decoding

• v = transmitted codeword = v 1 … vn

• r = received codeword = r 1 … rn

• e = error pattern = e 1… en

• r = v + e

• S = rHT = Syndrome of r
    = (v+e)HT = vHT + eHT  = eHT

• S is equal to ‘0’ if and only if e ∈∈∈∈  C
– I.e., error pattern is a codeword

• S ≠≠≠≠ 0 => error detected
• S = 0 => no errors detected (they may have occurred and not

detected)

• Suppose S ≠≠≠≠ 0, how can we know what was the actual transmitted
codeword?
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Syndrome decoding

• Many error patterns may have created the same syndrome
For error pattern e 0 => S0 = e0HT

Consider error pattern e 0 + ci (ci ∈∈∈∈  C)
S’0 = (e0 + ci))HT =e0 HT + ci HT = e0 HT = S0

• So, for a given error pattern, e 0, all other error patterns that can be
expressed as e 0 + ci for some c i ∈∈∈∈  C are also error patterns with
the same syndrome

• For a given syndrome, we can not tell which error pattern actually
occurred, but the most likely is the one with minimum weight

– Minimum distance decoding

• For a given syndrome, find the error pattern of minimum weight
(emin ) that gives this syndrome and decode:  r’ = r + e min
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Standard Array

• Row 1 consists of all M codewords
• Row 2 e 1 = min weight n-tuple not in the array

– I.e., the minimum weight error pattern

• Row i, e i = min weight n-tuple not in the array

• All elements of any row have the same syndrome
– Elements of a row are called “co-sets”

• The first element of each row is the minimum weight error pattern
with that syndrome

– Called “co-set leader”

 

C C C Syndrome

e e C e C S
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M
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Decoding algorithm

• Receive vector r

1) Find S = rH T = syndrome of r

2) Find the co-set leader e, corresponding to S

3) Decode:  C = r+e

• “Minimum distance decoding”
– Decode into the codeword that is closest to the received sequence
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Example (syndrome decoding)

• Simple (4,2) code

Data codeword
00     0000
01     0101
10     1010
11     1111

Standard array 0000 0101 1010 1111 Syndrome
1000 1101 0010 0111       10
0100 0001 1110 1011       01
1100 1001 0110 0011       11

Suppose 0111 is received, S = 10, co-set leader = 1000

Decode:   C = 0111 + 1000 = 1111

G
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1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

1 0

0 1

1 0

0 1
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Minimum distance decoding

• Minimum distance decoding maps a received sequence onto the nearest
codeword

• If an error pattern maps the sent codeword onto another valid codeword,
that error will be undetected (e.g., e3)

– Any error pattern that is equal to a codeword will result in undetected errors

• If an error pattern maps the sent sequence onto the sphere of another
codeword, it will be incorrectly decoded (e.g., e2)

c5

c1 c2 c3

c4
undetected
error

incorrect decoding

e1

e2

e3

correctly 
decoded
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Performance of Block Codes

• Error detection:  Compute syndrome, S ≠≠≠≠ 0 => error detected
– Request retransmission
– Used in packet networks

• A linear block code will detect all error patterns that are not
codewords

• Error correction:  Syndrome decoding

– All error patterns of weight < d min /2 will be correctly decoded

– This is why it is important to design codes with large minimum
distance (d min )

– The larger the minimum distance the smaller the probability of
incorrect decoding
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Hamming Codes

• Linear block code capable of correcting single errors
–  n = 2m - 1, k = 2m -1 -m

 (e.g., (3,1), (7,4), (15,11)…)

– R = 1 - m/(2m - 1) => very high rate
– dmin  = 3 => single error correction

• Construction of Hamming codes
– Parity check matrix (H) consists of all non-zero binary m-tuples

Example: (7,4) hamming code (m=3)

H G=
















=



















1 0 1 1 1 0 0

1 1 0 1 0 1 0

0 1 1 1 0 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 0 1

0 0 0 1 1 1 1

,


