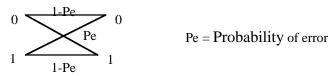
16.36: Communication Systems Engineering Lectures 12/13: Channel Capacity and Coding

Eytan Modiano

Channel Coding

• When transmitting over a noisy channel, some of the bits are received with errors

Example: Binary Symmetric Channel (BSC)



- Q: How can these errors be removed?
- A: Coding: the addition of redundant bits that help us determine what was sent with greater accuracy

Example (Repetition code)

Repeat each bit n times (n-odd)

Input	Code
0	0000
1	111

Decoder:

- If received sequence contains n/2 or more 1's decode as a 1 and 0 otherwise
 - Max likelihood decoding
- P (error | 1 sent) = P (error | 0 sent) = P[more than n / 2 bit errors occur]

$$= \sum_{i=\lceil n/2\rceil}^{n} \binom{n}{i} P_e^i (1-P_e)^{n-i}$$

Repetition code, cont.

- For P_e < 1/2, P(error) is decreasing in n
 - ⇒ for any ε, ∃ n large enough so that P (error) < ε

<u>Code Rate</u>: ratio of data bits to transmitted bits

- For the repetition code R = 1/n
- To send one data bit, must transmit n channel bits "bandwidth expansion"
- In general, an (n,k) code uses n channel bits to transmit k data bits
 - Code rate R = k / n
- Goal: for a desired error probability, ϵ , find the highest rate code that can achieve p(error) < ϵ

Channel Capacity

• The capacity of a discrete memoryless channel is given by,

$$C = \max_{p(x)} I(X;Y) \qquad X \qquad \text{Channel} \qquad Y$$

$$= \max_{p(x)} I(X;Y) \qquad X \qquad \text{Channel} \qquad Y$$

$$= \max_{p(x)} I(X;Y) = H(Y) - H(Y|X) = H(X) - H(X|Y)$$

$$= H(Y) - H(Y|X) = H(X) - H(X|Y)$$

$$= H(X|Y=0) + H(X|Y=0) + H(X|Y=1) + P(Y=1)$$

$$= H(X|Y=0) = H(X|Y=1) = P_e \log(1/P_e) + (1-P_e)\log(1/1-P_e) = H_b(P_e)$$

$$= H(X|Y) = H_b(P_e) => I(X;Y) = H(X) - H_b(P_e)$$

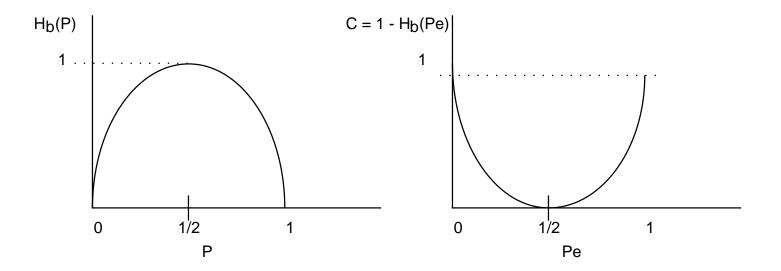
$$= H(X) = P_0 \log(1/P_0) + (1-P_0)\log(1/1-P_0) = H_b(P_0)$$

 $=> I(X;Y) = H_{b}(P_{0}) - H_{b}(P_{e})$

 $I(X;Y) = H_{b}(P_{0}) - H_{b}(P_{e})$

H_b(P) = P log(1/P) + (1-P) log(1/ 1-P)
 - H_b(P) <= 1 with equality if P=1/2

 $C = \max_{P0} \{I(X;Y) = H_b(P_0) - H_b(P_e)\} = 1 - H_b(P_e)$



C = 0 when $P_e = 1/2$ and C = 1 when $P_e = 0$ or $P_e = 1$

Channel Coding Theorem (Claude Shannon)

Theorem: For all R < C and ε > o; there exists a code of rate R whose error probability < ε

- ϵ can be arbitrarily small
- Proof uses large block size n

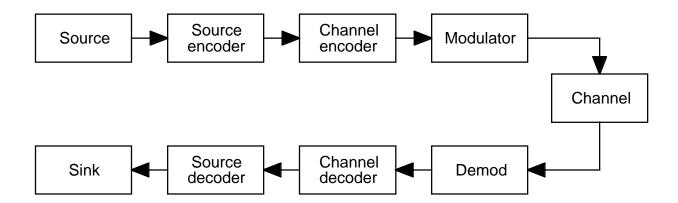
as $n \rightarrow \infty$ capacity is achieved

- In practice codes that achieve capacity are difficult to find
 - The goal is to find a code that comes as close as possible to achieving capacity
- Converse of Coding Theorem:
 - For all codes of rate R > C, $\exists \epsilon_0 > 0$, such that the probability of error is always greater than ϵ_0

For code rates greater than capacity, the probability of error is bounded away from 0

Channel Coding

• Block diagram



Approaches to coding

- Block Codes
 - Data is broken up into blocks of equal length
 - Each block is "mapped" onto a larger block

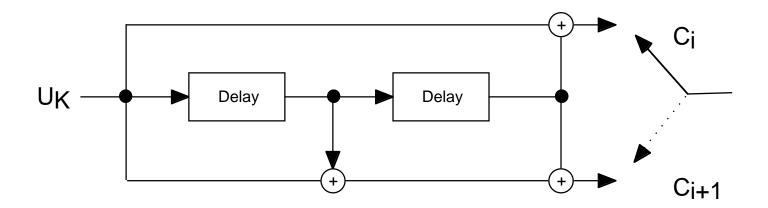
Example: (6,3) code, n = 6, k = 3, R = 1/2

000 ightarrow 000000	100 → 100101
$001 \rightarrow 001011$	$101 \rightarrow 101110$
010 ightarrow 010111	$110 \rightarrow 110010$
011 → 011100	111 → 111001

- An (n,k) binary block code is a collection of 2^k binary n-tuples (n>k)
 - n = block length
 - k = number of data bits
 - n-k = number of checked bits
 - R = k / n = code rate

Approaches to coding

- Convolutional Codes
 - The output is provided by looking at a sliding window of input



 $C_{(2K)} = U_{(2K)} \bigoplus U_{(2K-2)}, \quad C_{(2K+1)} = U_{(2K+1)} \bigoplus U_{(2K)} \bigoplus U_{(2K-1)}$

+ mod(2) addition (1+1=0)

Block Codes

- A block code is systematic if every codeword can be broken into a data part and a redundant part
 - **Previous (6,3) code was systematic**

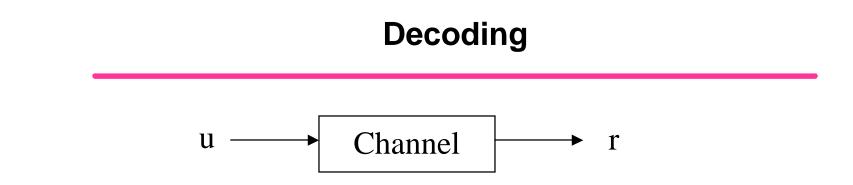
Definitions:

- Given $X \in \{0,1\}^n$, the <u>Hamming Weight</u> of X is the number of 1's in X
- Given X, Y in {0,1}ⁿ, the <u>Hamming Distance</u> between X & Y is the number of places in which they differ,

$$d_{H}(X,Y) = \sum_{i=1}^{n} X_{i} \oplus Y_{i} = Weight(X+Y)$$
$$X + Y = [x_{1} \oplus y_{1}, x_{2} \oplus y_{2}, \dots, x_{n} \oplus y_{n}]$$

• The <u>minimum distance</u> of a code is the Hamming Distance between the two closest codewords:

$$d_{\min} = \min \{ d_{H} (C_{1}, C_{2}) \}$$
$$C_{1}, C_{2} \in C$$



- r may not equal to u due to transmission errors
- Given r how do we know which codeword was sent?

```
Maximum likelihood Decoding:
```

Map the received n-tuple r into the codeword C that maximizes, P { r | C was transmitted }

<u>Minimum Distance Decoding</u> (nearest neighbor) Map r to the codeword C such that the hamming distance between r and C is minimized (I.e., min d_{H} (r,C))

⇒ For most channels Min Distance Decoding is the same as Max likelihood decoding

Linear Block Codes

 A (n,k) linear block code (LBC) is defined by 2^k codewords of length n

$$C = \{ C_1...,C_m \}$$

- A (n,k) LBC is a K-dimensional subspace of {0,1}ⁿ
 - (0...0) is always a codeword
 - $\quad \text{If } C_1, C_2 \in C, C_1 + C_2 \in C$
- Theorem: For a LBC the minimum distance is equal to the min weight (W_{min}) of the code

W_{min} = min_(over all Ci) Weight (C_i)

<u>Proof</u>: Suppose $d_{min} = d_H (C_i, C_j)$, where $C_1, C_2 \in C$

 $d_H (C_i, C_j) = Weight (C_i + C_j),$ but since C is a LBC then $C_i + C_i$ is also a codeword

Systematic codes

<u>Theorem:</u> Any (n,k) LBC can be represented in <u>Systematic form</u> where: data = $x_1..x_k$, codeword = $x_1..x_k c_{k+1}..x_n$

- Hence we will restrict our discussion to systematic codes only
- The codewords corresponding to the information sequences: $e_1 = (1,0,..0), e_2 = (0,1,0..0), e_k = (0,0,...,1)$ for a basis for the code
 - Clearly, they are linearly independent
 - K linearly independent n-tuples completely define the K dimensional subspace that forms the code

Information sequence	Codeword
e ₁ = (1,0,0)	$g_1 = (1,0,,0, g_{(1,k+1)}g_{(1,n)})$
e ₂ =(0,1,00)	$g_2 = (0, 1,, 0, g_{(2,k+1)} \dots g_{(2,n)})$

$$e_k = (0,0,...,k, g_{(k,k+1)}...g_{(k,n)})$$

 $g_1, g_2, ..., g_k$ form a basis for the code

The Generator Matrix

$$G = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_k \end{bmatrix} = \begin{bmatrix} g_{11} & g_{12} & \cdots & g_{1n} \\ g_{21} & & & g_{2n} \\ \vdots & & & & \\ g_{k1} & & & & g_{kn} \end{bmatrix}$$

- For input sequence $x = (x_1, ..., x_k)$: $C_x = xG$
 - Every codeword is a linear combination of the rows of G
 - The codeword corresponding to every input sequence can be derived from G
 - Since any input can be represented as a linear combination of the basis (e₁,e₂,..., e_k), every corresponding codeword can be represented as a linear combination of the corresponding rows of G
- Note: $x_1 \leftrightarrow C_1, x_2 \leftrightarrow C_2 \implies x_1 + x_2 \leftrightarrow C_1 + C_2$

Example

• Consider the (6,3) code from earlier:

 $100 \rightarrow 100101;$ $010 \rightarrow 010111;$ $001 \rightarrow 001011$

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Codeword for (1,0,1) = (1,0,1)G = (1,0,1,1,1,0)

$$G = \begin{bmatrix} I_K & P_{Kx(n-K)} \end{bmatrix}$$

:

 $I_{K} = KxK$ identity matrix

The parity check matrix

$$H = \left[\begin{array}{c} P^T \\ I_{(n-K)} \end{array} \right]$$

 $I_{(n-K)} = (n - K)x(n - K)$ identity matrix

Example:
$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Now, if c_i is a codework of C then, $c_i H^T = \vec{0}$

- "C is in the null space of H"
- Any codeword in C is orthogonal to the rows of H

Decoding

- $v = transmitted codeword = v_1 \dots v_n$
- $r = received codeword = r_1 \dots r_n$
- $e = error pattern = e_1 \dots e_n$
- r = v + e
- S = rH^T = Syndrome of r = (v+e)H^T = vH^T + eH^T = eH^T
- S is equal to '0' if and only if $e \in C$
 - I.e., error pattern is a codeword
- $S \neq 0 \Rightarrow$ error detected
- S = 0 => no errors detected (they may have occurred and not detected)
- Suppose S ≠ 0, how can we know what was the actual transmitted codeword?

Syndrome decoding

 Many error patterns may have created the same syndrome For error pattern e₀ => S₀ = e₀H^T

Consider error pattern $e_0 + c_i$ ($c_i \in C$)

 $S'_0 = (e_0 + c_i)H^T = e_0 H^T + c_i H^T = e_0 H^T = S_0$

- So, for a given error pattern, e₀, all other error patterns that can be expressed as e₀ + c_i for some c_i ∈ C are also error patterns with the same syndrome
- For a given syndrome, we can not tell which error pattern actually occurred, but the most likely is the one with minimum weight
 - Minimum distance decoding
- For a given syndrome, find the error pattern of minimum weight (e_{min}) that gives this syndrome and decode: r' = r + e_{min}

- Row 1 consists of all M codewords
- Row 2 e_1 = min weight n-tuple not in the array
 - I.e., the minimum weight error pattern
- Row i, e_i = min weight n-tuple not in the array
- All elements of any row have the same syndrome
 - Elements of a row are called "co-sets"
- The first element of each row is the minimum weight error pattern with that syndrome
 - Called "co-set leader"

Decoding algorithm

- Receive vector r
- 1) Find $S = rH^T = syndrome of r$
- 2) Find the co-set leader e, corresponding to S
- 3) Decode: C = r+e
- "Minimum distance decoding"
 - Decode into the codeword that is closest to the received sequence

Example (syndrome decoding)

•	Simple (4,2) code	$G = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
-		$\mathbf{O} = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$

<u>Data</u>	<u>codeword</u>	
00	0000	$\begin{bmatrix} 1 & 0 \end{bmatrix}$
01	0101	$H = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} H^{T} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
10	1010	$H = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} H^{T} = \begin{bmatrix} 1 & 0 \end{bmatrix}$
11	1111	0 1

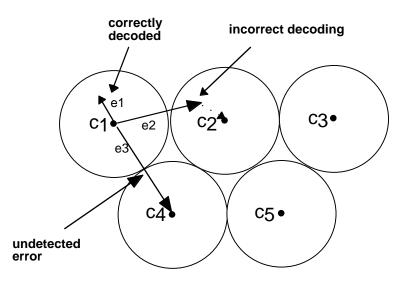
Standard array

d array	0000	0101	1010	1111	Syndrome
	1000	1101	0010	0111	10
	0100	0001	1110	1011	01
	1100	1001	0110	0011	11

Suppose 0111 is received, S = 10, co-set leader = 1000

Decode: C = 0111 + 1000 = 1111

Minimum distance decoding



- Minimum distance decoding maps a received sequence onto the nearest codeword
- If an error pattern maps the sent codeword onto another valid codeword, that error will be undetected (e.g., e3)
 - Any error pattern that is equal to a codeword will result in undetected errors
- If an error pattern maps the sent sequence onto the sphere of another codeword, it will be incorrectly decoded (e.g., e2)

Performance of Block Codes

- Error detection: Compute syndrome, $S \neq 0 \Rightarrow$ error detected
 - Request retransmission
 - Used in packet networks
- A linear block code will detect all error patterns that are not codewords
- Error correction: Syndrome decoding
 - All error patterns of weight $< d_{min}/2$ will be correctly decoded
 - This is why it is important to design codes with large minimum distance (d_{min})
 - The larger the minimum distance the smaller the probability of incorrect decoding

Hamming Codes

- Linear block code capable of correcting single errors
 - $n = 2^{m} 1, k = 2^{m} 1 m$
 - (e.g., (3,1), (7,4), (15,11)...)
 - R = 1 m/(2^m 1) => very high rate
 - d_{min} = 3 => single error correction

• Construction of Hamming codes

- Parity check matrix (H) consists of all non-zero binary m-tuples

Example: (7,4) hamming code (m=3)

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}, \qquad G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$