QD. SOLUTION BY QUADRATURE

When the solution of a differential equation is expressed by a formula involving one or more integrations, it is said that the equation is solvable by quadrature, and the formula is called a closed-form (or exact) solution. The term “quadrature” has its historical origin in the connection of integration with area; in plane geometry, the quadrature of the circle, is the problem of constructing a square and a circle of equal area.

Several methods of solution by quadrature were explained and illustrated in Chapter 1 of Birkhoff & Rota [1]. For example, the following theorem on the existence and the uniqueness of the first order-linear equation may be recognized as an application of the method by quadrature.

Theorem. If \(p(x) \) and \(r(x) \) are continuous on an open interval \(I \) containing the point \(x_0 \), then the initial value problem

\[
\begin{align*}
 y' + p(x)y &= r(x), \\
 y(x_0) &= y_0
\end{align*}
\]

has one and only one solution given by

\[
y(x) = e^{-P(x)}y_0 + e^{-P(x)} \int_{x_0}^{x} e^{P(t)} f(t) dt,
\]

where \(P(x) = \int_{x_0}^{x} p(t) dt \).

Other examples include homogeneous equations, exact differentials and solution by integrating factors [1].

Not all differential equations can be solved by quadrature. For example, the second-order equation

\[y'' + p(x)y' + q(x)y = r(x) \]

cannot be solved in general by quadrature. The Riccati equation

\[y' = A(x) + B(x)y + C(x)y^2 \]

also cannot be solved by quadrature except in special cases.

When we do have a closed-form solution, the problems of existence and uniqueness are greatly simplified. If the formula produces a solution, it provides an existence proof; and if every solution is given by the formula, it is unique.

A second-order equation of the form

(1) \(y'' = f(x, y') \)

is simplified by the substitution \(v = y' \) and becomes the first-order equation \(v' = f(x, v) \).

A second-order equation of form

(2) \(y'' = g(y, y') \)

can be simplified by the substitution \(v = y' \). By the chain rule,

\[y'' \frac{dv}{dx} = \frac{dv}{dy} \frac{dy}{dx} = \frac{dv}{dy}. \]

*Proposed by ancient geometers, it is the challenge to construct a square with the same area as a given circle by using only a finitely many steps with compass and straightedge. The task was proven to be impossible, as a consequence of the fact that \(\pi \) is transcendental.
Using this in (2) we obtain the first-order equation
\[\frac{dv}{v} = g(y, v). \]
Once \(v \) is known, \(y \) is solved by quadrature.

Example. When a second-order equation is reduced to an equation of the first order, a solution of the latter is often called a *first integral* of the original differential equation. Obtain a first integral for the equation
\[2y'' = 3y^2. \]
Setting \(v = y' \) and \(y'' = v dv/dy \) yields that
\[2v \frac{dv}{dy} = 3y^2, \]
which, by integration, yields that \(v^2 = y^3 + C \). Since \(v = dy/dx \), we have reduced the original second-order equation to a separable first-order equation
\[\left(\frac{dy}{dx} \right)^2 = y^3 + C. \]

REFERENCES

Problems.

1. (a) Show that \(Pdx + Qdy \) has an integrating factor \(r = x^a y^b \) if and only if
\[xy(P_y - Q_x) = ayQ - bxP. \]
(b) Show that \(r(x, y) = r(x) \) and \(r(x, y) = r(y) \) lead respectively to
\[\frac{r'}{r} = \frac{P_y - Q_x}{Q}, \quad \frac{r'}{r} = \frac{Q_x - P_y}{P}. \]
If the right side is a function of \(x \) alone in the first case, or of \(y \) alone in the second, integration gives \(\ln r \) and exponentiation yields \(y \).
(c) If the equation
\[\frac{P_y - Q_x}{Qy - Px} = h(xy) \]
holds then obtain \(r = e^{H(xy)} \), where \(H' = h \).
(d) The Bernoulli equation is
\[y' + f(x)y = g(x)y^n \]
with \(n \neq 1 \). Try \(r(x, y) = s(x)y^{-n} \) to obtain that
\[(y^{1-n}s)' = (1 - n)s g, \]
where \(F' = f \) and \(s = e^{(1-n)F(x)} \).
2. (Clairaut’s equation) Show that by the substitution $v = y'$, the DE
\[y = xy' + g(y') \]
reduces to \((dv/dx)(x + g'(v)) = 0\). Taking $v = c$ or $g'(v) = -x$ obtain

\[y = cx + g(c) \]

or the parametric solution
\[x = -g'(v), \quad y = g(v) - vg'(v). \]
The formula (3) represents a family of straight lines. Show that its envelope, if there is one, leads to the parametric solution with parameter c instead of v.

3. Let us consider a second-order differential operator $Ty = py'' + qy' + ry$, where p, q, r are continuous functions of x. The adjoint operator is defined as $T^*y = (py)' - (qy)' + ry$.

Show that if there is a nonvanishing solution of $T^*u = 0$ then $Tv = f$ can be solved by quadrature. Similarly, if there is a nonvanishing solution of $Tu = 0$ then $T^*v = f$ can be solved by quadrature. (Hint. Use the Lagrange identity
\[vTu - vT^*v = (uqv - upv' - up'v + u'pv'). \]