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Real-time Multi-UAV Task Assignment in Dynamic
and Uncertain Environments �

Luca F. Bertuccelli y, Han-Lim Choi z, Peter Cho x, and Jonathan P. How{

Massachusetts Institute of Technology

This paper analyzes task assignment for heterogeneous air vehicles using a guar-
anteed con
ict-free assignment algorithm, the Consensus Based Bundle Algorithm
(CBBA). We extend this recently proposed algorithm to handle two realistic multi-
UAV operational complications. Our �rst extension accounts for obstacle regions in
order to generate collision free paths for UAVs. Our second extension reduces task
planner sensitivity to sensor measurement noise, and thereby minimizes churning
behavior in 
ight paths. After integrating our enhanced CBBA module with a 3D
visualization and interaction software tool, we simulate multiple aircraft servicing
stationary and moving ground targets. Preliminary simulation results establish
that consistent, con
ict-free multi-UAV path assignments can be calculated on the
order of a few seconds. The enhanced CBBA consequently demonstrates signi�cant
potential for real-time performance in stressing environments.

I. Introduction

The military need for Unmanned Aerial Vehicles (UAVs) in theaters around the world has signif-
icantly grown over the past decade. The increasing demand has brought into focus several challenges
associated with multiple UAV operation. In particular, the military has identi�ed reducing UAV
dependence on limited numbers of expert human pilots as a pressing concern. Currently, UAVs
such as Predators require the full attention of two human operators. With this men-to-machine
ratio, there will simply not be enough trained pilots to 
y all the Predator missions expected in
the future. Moreover, each Predator team of men and machine acts independently at present. In
order to successfully carry out complex multi-platform missions, these teams will have to share
information and cooperate among each other to perform in an optimal manner. Finally, since the
battlespaces in which UAVs 
y are highly dynamic, unmanned aircraft will need to react quickly
to sudden changes in the environment, both on the ground and in the air.

All of these real-world challenges motivate serious investigation of automatic multi-UAV com-
mand and control1{4 . While autonomous vehicles are unlikely to ever exhibit the same degree of
judgment as expert pilots, they can help solve navigation and targeting problems which are too
complicated for humans to tackle in real time. Autonomous systems can also deal with uncertainty
about ground environments whose true states can only be indirectly inferred from noisy observa-
tions. In the presence of inevitable errors, a hierarchy of algorithms, ranging from low-level path
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Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed
by the United States Government.
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planning to high-level task allocation, will be needed to intelligently assign di�erent vehicles to
cover di�erent regions of battle environments.

The speed with which future autonomous systems will assist with live battle decision making
represents another critically important operational issue. Real-time task assignment algorithms
originally conceived in the Operations Research (OR) community are being extended for applica-
tions in the UAV community 5{7 . While problems involving small numbers of autonomous agents
can typically be solved su�ciently quickly for real-time implementation, the combinatorial com-
plexity of task assignment becomes evident as the numbers of agents grows. Recent developments in
task assignment6,8{13 have focused on reducing computation times for these challenging problems.

Multi-UAV command and control is further complicated by its inherently distributed nature
which strongly in
uences the choice of network architecture for decision making among aircraft.
Centralized architectures can resolve con
icting situational awareness data collected by indepen-
dent sensors at di�erent battlespace vantage points via a single fusion protocol; however, they are
often not operationally feasible due to signi�cant communication overheads and over-reliance on a
central decision-maker susceptible to failure. In contrast, decentralized decision-making architec-
tures typically o�er more robustness, but they are sensitive to information discrepancies across the
UAV team. Furthermore, information agreement techniques that rely on implicit coordination and
consensus14,15 can be limiting, for the time required to reach consensus may be signi�cant. The
world may evolve so rapidly that the agreement becomes obsolete6. De�ning a su�cient level of
consensus remains an open question, as slight di�erences in information can lead to inconsistent
and con
icting decisions.

Recently, the Consensus Based Bundle Algorithm (CBBA) has been proposed as a solution to
several of these problems8,9. It can account for inconsistent information among the distributed
agents, yet still output a con
ict-free assignment for all the agents in the team. CBBA utilizes a
market-based decision strategy for decentralized task selection, and it employs a consensus routine
based on local communication to resolve con
icts and achieve agreement on winning bid values.
While CBBA theoretically guarantees 50% of optimal performance, it has been empirically shown
to perform within 93% of the optimal solution 8,9.

Although CBBA ensures a con
ict-free solution even with di�ering situational awareness, its
original implementation su�ers from two limitations. Firstly, CBBA does not explicitly account
for obstacle avoidance. Secondly, CBBA assignments can be extremely sensitive to input noise and
produce churning behavior5,16. In this paper, we remedy these shortcomings. We �rst extend the
Consensus Based Bundle Algorithm to account for polygonal obstacles in the environment. As we
shall demonstrate, our modi�cation only slightly increases the computational burden compared to
the obstacle-free case. We also introduce a churning-mitigation formulation to reduce the algo-
rithm's sensitivity to sensing noise. We present results on the obstacle avoidance extension as well
as some preliminary work (to be augmented in our paper's �nal version) on 
ight path churning
mitigation.

Our paper is organized as follows. The Consensus Based Bundle Algorithm is �rst reviewed in
Section II. We then discuss our theoretical enhancements of CBAA in Sections III and IV which
handle obstacles and noise churning. In Section V, we integrate the improved algorithm with a
3D simulator and present preliminary results for multiple aircraft servicing stationary and mobile
targets in a Baghdad-like environment. Finally, we conclude in Section VI with some thoughts on
future work.
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II. Decentralized Task Assignment: Consensus-Based Bundle Algorithm

II.A. Problem de�nition

Given a list of N t tasks and Nu agents, the goal of the task assignment is to �nd a con
ict-free
matching of tasks to agents that maximizes some global reward. An assignment is said to be free of
con
icts if each task is assigned to no more than one agent. Each agent can be assigned a maximum
of L t tasks, and the assignment is said to be completed onceNmin , minf N t ; NuL t g tasks have
been assigned. The global objective function is assumed to be a sum of local reward values, while
each local reward is determined as a function of the tasks assigned to each agent.

The task assignment problem described above can be written as the following integer (possibly
nonlinear) program with binary decision variablesx ij that indicate whether or not task j is assigned
to agent i :

max
NuX

i =1

0

@
N tX

j =1

cij (x i ; p i )x ij

1

A

subject to:
N tX

j =1

x ij � L t ; 8i 2 I

NuX

i =1

x ij � 1; 8j 2 J (1)

NuX

i =1

N tX

j =1

x ij = Nmin , minf N t ; NuL t g

x ij 2 f 0; 1g; 8(i; j ) 2 I � J

wherex ij = 1 if agent i is assigned to taskj , and x i 2 f 0; 1gN t is a vector whosej -th element is x ij .
The index sets are de�ned asI , f 1; : : : ; Nug and J , f 1; : : : ; N t g. The vector p i 2 (J [ f;g )L t

represents an ordered sequence of tasks for agenti ; its k-th element is j 2 J if agent i conducts
j at the k-th point along the path, and becomes; (denoting an empty task), if agent i conducts
less thank tasks. The summation term inside the parenthesis represents the local reward for agent
i . The score function cij (x i ; p i ) can be any nonnegative function of either assignmentx i or path
p i (usually not a function of both). In the context of task allocation for autonomous vehicles with
mobility, the score function often represents a path-dependent reward such as path length, mission
completion time, or time-discounted value of target.

II.B. Algorithm

The scoring function in (1) can depend on the assignmentx i or the path p i for L t > 1. To address
this dependency, previous combinatorial auction methods10{13 treated each assignment combination
(bundle) as a single item for bidding which led to complicated winner selection methods. In this
section we review the Consensus Based Bundle Algorithm8,9. In CBBA, each agent has a list of
tasks potentially assigned to itself, but the auction process is done at the task level rather than
at the bundle level. CBBA consists of iterations between two phases: a bundle construction and
con
ict resolution.

II.B.1. Phase 1: Bundle Construction

The �rst phase of CBBA is bundle construction. In contrast to the bundle algorithms in 10{13

which enumerate all possible bundles for bidding, each CBBA agent creates just a single bundle

3 of 16

American Institute of Aeronautics and Astronautics



and updates it as the assignment process progresses. During phase 1 of the algorithm, each agent
continuously adds tasks to its bundle until it is incapable of adding any others.

Each agent carries four vectors: a winning bid listy i 2 RN t
+ , a winning agent list zi 2 I N t , a

bundle b i 2 (J [ f;g )L t , and the corresponding pathp i 2 (J [ f;g )L t . Tasks in the bundle are
ordered based on which ones were added �rst in time, while those in the path are ordered based
on their assignment location. Note that the cardinality of b i and p i cannot be greater than the
maximum assignment sizeL t . Let Sp i

i be de�ned as the total reward value for agenti performing
the tasks along the pathp i . In CBBA, if a task j is added to the bundleb i , it incurs the marginal
score improvement

cij [b i ] =

8
<

:
0; if j 2 b i

Sp i
i ; otherwise

(2)

where j � j denotes the cardinality of the list, and � n denotes the operation that inserts the second
list right after the n-th element of the �rst list. a In other words, the CBBA scoring scheme inserts
a new task to the location that incurs the largest score improvement, and this value becomes the
marginal score associated with this task given the current path. Thus, if the task is already included
in the path, it does not provide any additional improvement in score. Also, it is assumed that the
addition of any new task provides nontrivial reward; namely, cij [b i ] � 0 and the equality holds only
when j 2 b i .

The score function is initialized asSf;g
i = 0, while the path and bundle is recursively updated

as
b i = b i � end f J i g; p i = p i � n i;J i

f J i g (3)

with J i = arg max j (cij [b i ] � hij ), ni;J i = arg maxn Sp i � n f J i g
i , and hij = I(cij > y ij ) where I (�)

denotes the indicator function that equals unity if the argument is true and zero if it is false. The
recursion continues until either jb i j = L t or h i = 0. Notice that with (3), a path is uniquely de�ned
for a given bundle, while multiple bundles might result in the same path.

II.B.2. Phase 2: Con
ict resolution

CBBA agents add tasks to their bundle based on their currently assigned task set. Suppose that
an agent is outbid for a task and thus releases it. The marginal score values for the tasks added
to the bundle after this task are then no longer valid. The agent therefore also needs to release
all tasks added after the outbid task. Otherwise, the agent would make further decisions based on
wrong score values and thereby possibly degrade performance.

In the con
ict resolution phase, three vectors are communicated for consensus. Two were
described in the bundle construction phase: the winning bids listy i 2 RN t and the winning agent
list zi 2 I N t . The third vector si 2 RNu represents the time stamp of the last information update
from each of the other agents. Whenever a message is passed, the time vector is populated with

sik =

8
<

:
� r ; if gik = 1

maxm:gim =1 smk ; otherwise
(4)

where � r is the message reception time.
When agent i receives a message from agentk, zi and si are used to determine which agent's

information is the most up-to-date for each task. There are three possible actions agenti can take
on task j :

a In later parts of this paper, the notion of � end will also be used to denote the operation to add the second list at
the end of the �rst one.
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1. update: yij = ykj ; zij = zkj

2. reset: yij = 0 ; zij = ;

3. leave: yij = yij ; zij = zij .

Table 1 in8,9 outlines the decision rules. The �rst two columns of the table indicate the agent that
each of the senderk and receiver i believes to be the current winner for a given task; the third
column indicates the action the receiver should take, where the default action isleave.

If a bid is changed as an outcome of communication, each agent checks if any of the updated or
reset tasks were in their bundle. If so, those tasks, along with all others added to the bundle after
them, are released:

yi;b in = 0 ; zi;b in = ; ; 8n > �ni

bin = ; ; n � �ni
(5)

wherebin denotes then-th entry of bundle b i , and �ni = min f n : zi;b in 6= ig. It should be noted that
the wining bid and the winning agent for the tasks added afterbi; �n i are reset, because removal of
bin can change scores for all the ensuing tasks. From here, the algorithm returns to the �rst phase
and new tasks are added.

II.B.3. Time-discounted reward

It has previously been shown that if the scoring function satis�es a certain condition, called dimin-
ishing marginal gain (DMG), CBBA is guaranteed to create a con
ict-free assignment 8,9 . For a
DMG scoring function, the value of a task does not increase as other elements are added to the set
before it. In other words,

cij [b i ] � cij [b i � end b] (6)

for all b i ; b; j such that ((b i � end b) � end f j g) 2 (J [ f;g )L t where ; denotes an empty task. Since
the marginal score of taskj is de�ned as (2), the condition (6) can also be expressed in terms of
the total score as

max
n�j p i j

Sp i � n f j g
i � Sp i

i

� max
n�j p i j+1

max
m�j p i j

S(p i � m f kg)� n f j g
i � max

m�j p i j
Sp i � m f kg

i

(7)

for all p i ; j; k such that ((p i � m f kg) � f j g) 2 (J [ f;g )L t .
Note that many reward functions in search and exploration problems for autonomous agents

are DMG. Consider speci�cally the following time-discounted reward17{19 :

Sp i
i =

X
�

� j
i (p i )

j �cj : (8)

Here � j < 1 is the discounting factor for task j , � j
i (p i ) is the estimated time agent i will take to

arrive at task location j along the path p i , and �cj is the static score associated with performing
task j . The time-discounted reward can model search scenarios in which uncertainty growth with
time causes degradation of the expected reward for visiting a certain location. Eqn 8 also models
planning of service routes in which client satisfaction diminishes with time. Since the triangular
inequality holds for the actual distance between task locations,

� j
i (p i � n f kg) � � j

i (p i ); 8n; 8k: (9)

In other words, if an agent moves along a longer path, it arrives at each of the task locations at a
later time than if it moves along a shorter path, resulting in further discounted score value. So for
all nonnegative constants �cj 's, Sp i

i in (8) is DMG.
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III. Extensions to CBBA: Obstacle Avoidance

CBBA represents a promising approach to the task assignment problem for multiple hetero-
geneous vehicles. However, in its original formulation, CBBA did not handle obstacle avoidance.
Keep Out Zones arising from Surface-to-Air Missile sites or weather hazards represent real-world
complications which UAV systems will generally confront. Hence, collision avoidance constraints
are incorporated into CBBA in this section.

III.A. Collision avoidance

There are various approaches for incorporating obstacles into the CBBA. One intuitive strategy
accounts for obstacles at the bundle construction stage by calculating new target scores. This
modi�cation requires that the tasking algorithm �nd overall distances around obstacles. Rather
than using the minimum time (straight-line path) in the score calculation, the new score is instead
calculated using the nominal path p i perturbed by the distance � p required to 
y around the
obstacle for each vehicle. Hence the time-discounted scores becomes

S~p i
i =

X
�

� j
i (~p i )

j �cj (10)

where ~p i = p i + � p:
Unfortunately, this approach su�ers from the fact that as tasks are added, and more importantly

removed, during the con
ict resolution stage of CBBA (Phase II), the computation required to �nd
the collision-free path is e�ectively wasted, for that particular set of tasks is not added to the UAV's
list. Furthermore, embedding the collision avoidance at the bundle selection level can signi�cantly
increase the iteration time during the con
ict resolution stage, as the vehicles negotiate tasks among
themselves.

We pursue an alternative obstacle avoidance approach in this paper. We �rst check the �nal
CBBA assignments for collisions, then maneuver the vehicles around the obstacle regions, and
�nally apply corrections locally (in task list space) by inserting obstacle-free intermediate waypoints
after solving a small shortest path algorithm. This procedure is summarized in Algorithm 1. The
key di�erence with the preceding approach is employing a Dijkstra's algorithm solution for the
shortest path.

A tacit assumption made by this algorithm is that obstacle dimensions are small relative to
vehicle path lengths. This assumption holds for geographically dispersed waypoints, but we have
seen additional bene�t in this formulation for extremely dense environments as well.

III.B. Numerical results

We evaluated our obstacle avoidance CBBA modi�cation via simulations where UAV number,
target locations and obstacle �eld were all varied. The simulations were performed on a 150� 250
lattice with initial UAV positions perturbed by a zero-mean Gaussian distribution with a variance
of 50. We let our rectangular Keep Out Zones range in size from 10� 20 to 80 � 20.

Table 1 displays mean times for running 20 Monte Carlo simulations on a 1.2GHz machine with
1GB of RAM. Even for a scenario with 7 UAVs, 7 targets and 3 obstacles, the computation time
was still well under 1 second. The largest scenario tested at the time of this draft included 7 UAVs,
16 targets and 8 static obstacles. The mean run time for this case was found to be 2.37 seconds,
with a maximum time of 4.67 seconds, and a minimum time of 0.86 seconds.
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Algorithm 1 Obstacle avoidance in CBBA

Initialize target and UAV locations
Run CBBA algorithm for �nd optimal plan p i 8i = 1 ; : : : ; Nu

for all Vehicles i do
for all Tasks in bundle j do

Check for collision avoidance
if Path traverses obstaclesthen

Construct visibility graph G from current waypoint Wj to next waypoint Wj +1

Run Dijkstra's algorithm and �nd shortest path qi
j to next waypoint, qi

j = Dijkstra( G)
Augment agent path with new path segmentp i

1:j  p i
1:j � j qi

j
Continue to next task in bundle

end if
end for
Broadcast new path p i to each UAV

end for

Figure 1: 7 UAV task assignment for 16 targets and 8 obstacles solved in approximately 2 seconds

IV. Targeting with Sensing Noise

Realistic multi-UAV mission planning must generally take into account not only ground obsta-
cles but also situational awareness uncertainty7,20. Errors can arise from noisy sensors (such as
cameras detecting non-existent targets or positioning inaccuracies) and from adversarial strategies
designed to intentionally create ambiguity in the state of the world. If situational awareness errors
are su�ciently large, they can force UAV control systems to unnecessarily replan missions already
underway. Such replanning can result in vehicle 
ight path churning5,16 wherein UAV assignments
constantly 
ip and, in the extreme case, never converge. While churning problems can arise due to
sensing noise in the location, identity, and motion of a target, this section considers the problem
when sensing noise impacts the identity7,21 of the target, and therefore has a direct impact on the
target's score.
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Table 1: Mean task assignment computation timeT and standard deviation � T for Nu UAVs with
N t ground targets and 3 obstacles, on a 1.2GHz machine with 1GB of RAM

Nu N t T[seconds] � T [seconds]

3
3 0.82 0.11
5 0.74 0.11
7 0.78 0.10

5
3 0.79 0.10
5 0.75 0.08
7 0.84 0.08

7
3 0.80 0.10
5 0.75 0.11
7 0.86 0.08

IV.A. Churning

The most straightforward technique to handling changes in situational awareness is to immediately
react to new information by reassigning ground targets. In a deterministic sense, replanning proves
to be bene�cial since the parameters in the optimization are perfectly known. However in a stochas-
tic setting, replanning may not be bene�cial. For example, since the observations are corrupted
by sensor noise, the key issue is that replanningimmediately to this new information results in a
task assignment control process with short dwell times (analogous to having a high bandwidth con-
troller) that simply tracks the sensor noise. From the perspective of a human operator, continuous
reassignments of the vehicles in the 
eet may also prove to be undesirable (and lead to increased
human errors), especially if this e�ect is due primarily to sensing errors.

A simple example of churning is shown in Figure 2, where two vehicles are assigned to visit the
targets with the highest value. The target scores are each corrupted by additive Gaussian noise,
~c = ci + vi , where vi � N (0; R) is distributed according to a zero-mean Gaussian distribution with
known covarianceR. The original assignment of the vehicles (starting on the left) is to visit the
bottom right target. At the next time step, the assignment for the vehicle is switched to the top
right target due to simulated sensing noise. After the vehicles change direction towards that target,
the assignment switches once again. As the mission progresses, the vehicle repeatedly alternates
heading towards the two di�erent targets. It converges to a �xed assignment only near the end of
its mission.

Algorithm 2 Mitigating sensor noise in CBBA

Initialize target and UAV locations
Run CBBA algorithm for �nd optimal plan p i 8i = 1 ; : : : ; Nu

Obtain new (noisy) measurements on the targets score ~cij = cij + vij

Update target score values ~cij :=

(
~cij + � ij If the previous bundle contained target j for UAV i

~cij Else

Return to next assignment

IV.B. Churning mitigation

In previous work5,22 we had proposed a �lter-embedded approach (FETA) to ameliorate the churn-
ing phenomenon. The approach was to rewrite the optimization problem in Eq. 1 to incorporate
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Figure 2: Example of churning in a 2 UAV, 3 target scenario with additive sensor noise. In the
top plot (no churning mitigation), UAV 2 (red) continually switches between targets 1, 2, and 3
before �nally settling upon target 2. (The optimal solution was target 1). The bottom plot displays
results from Algorithm 3 which mitigates sensing noise. The UAV correctly settles upon target 1.

a penalty term for assignment changes into the objective function. While the original FETA for-
mulation proposed to penalize the changes in the assignment, this work proposes to add a bonus
term if the same task is assigned to the same agent:

max
NuX

i =1

0

@
N tX

j =1

(cij (x i ; p i ) + � ij xo
ij )x ij

1

A

subject to:
N tX

j =1

x ij � L t ; 8i 2 I

NuX

i =1

x ij � 1; 8j 2 J (11)

NuX

i =1

N tX

j =1

x ij = Nmin , minf N t ; NuL t g

x ij 2 f 0; 1g; 8(i; j ) 2 I � J

wherexo
ij is the incumbent solution. Namely, CBBA scoring is modi�ed so that if a UAV contains a

set of targets in its bundle, the UAV will increase the target scores by a modi�ed cost ~cij = cij +� ij .
If the UAV does not contain a target in its bundle, the target's score is una�ected. Although equiv-
alent to the original FETA formulation in a subtractive form, this additive formulation facilitates
incorporation of FETA concept into the CBBA framework. Note that the only needed change in
the algorithm is slight modi�cation of scoring schemes; this modi�cation has no e�ect on the DMG
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Figure 3: Visualization of assignment for the case of churning (top) and mitigated churning (bot-
tom). Filled circles (empty circles) indicate the assignment for UAV 1 (2, respectively). The
assignment switches frequently due to sensing noise (top plot), but settles down when churning is
mitigated (bottom plot).

property of the scoring schemes and therefore on the algorithm convergence.
While � ij can be interpreted as a tuning parameter introduced by the user, our current work

is using the changes in the plan (as was done in FETA5) to adaptively determine � ij .

IV.C. Numerical results

We simulated a 2 UAV, 3 target assignment scenario with sensing noise. This small example was
chosen yield clear and intuitive visualizations. The e�ect of adopting the modi�ed cost function can
be seen in revisiting the churning example of Figure 2 (bottom). The blue UAV's 
ight path churns
only slightly at the simulation's beginning. But both UAVs' plans quickly converge to churn-free
assignments.

Figure 3 illustrates another example of assignment change. The top plot displays the e�ect of
real-time replanning in the presence of noise; assignment oscillation is clearly visible. As the UAVs
start the mission, UAV 1 is initially assigned to visit all the targets, while at the second and third
time steps, it is assigned to visit only target 3. By time step 4, UAV 1 has been retasked to visit
targets 1 and 2. Toward the end of the mission, UAV 1 is tasked to visit target 2, while UAV 2 is
directed towards targets 1 and 3. The bottom plot in the �gure illustrates the impact of churning
mitigation. After a few initial transient switches, the assignment settles by time step 4 to UAV 1
visiting targets 2 and 3, and UAV 2 visiting target 1. This division of labor actually represents the
optimal solution.
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Figure 4: Twenty ground targets randomly chosen throughout a Baghdad-like environment colored
in yellow. The cyan polyline represents the 
ight path calculated by CBBA for the UAV starting
near the image's upper left corner.

V. Multi-UAV Command and Control Simulation

V.A. 3D visualization and interaction tool

In order to more rigorously test the e�cacy of the Consensus Based Bundle Algorithm, we have
integrated it into a prototype command and control environment which allows a human operator
to intuitively interact with multiple aircraft. Our simulator provides a 4D visualization of the
air and ground pictures. Its graphics front-end is based upon an open source, high performance
3D toolkit called OpenSceneGraphb. Our particular multi-UAV implementation has been adapted
from previous simulation projects which were developed to handle large volumes of laser radar,
video, and digital photo data sets23. Though our graphics tool does not enjoy the widespread
popularity of other 3D visualization environments such as Google Earthc, it can be customized for
rapid human interaction with multiple UAVs in ways that Google Earth cannot. So we have found
it useful for prototype development.

We choose to simulate one or more Predators 
ying over a Baghdad-like environment to model
UAV missions of current operational interest. We therefore import into our tool commercial satellite
imagery of Baghdad with 1 meter Ground Sampling Distance. Users can manipulate and view the
Baghdad-like imagery at di�erent levels of detail via mouse controls which intentionally mimic
those of Google Earth: the left button translates, the center button rotates and the right button
zooms.

Human operators can also interact with our simulator via specialized buttons designed specif-
ically for multi-UAV command and control. Other menu buttons allow for target waypoints and

b http://www.openscenegraph.org/projects/osg
chttp://earth.google.com/
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Figure 5: Closeup view of a UAV model with its observation frustum 
ying over a Baghdad-like
environment. The pink coloring of the ground target near the image's bottom left corner indicates
that it has been previously over
own.

Keep Out Zones to be manually entered.d Twenty such ground waypoints which were randomly
selected throughout the Baghdad map are colored yellow in Figure 4.

A human operator may choose to manually enter a 
ight path passing through the waypoints as
a polyline terminated via a mouse doubleclick. Or he may instead instruct the automated system
to compute a 
ight path using CBBA by clicking on a menu button. A string message containing
ground and air statevector information is then sent from the main C++ visualization program to
an independent set of MATLAB codes via an ActiveMQ message queuee. In just a few seconds,
the aircraft route is computed, returned and displayed as in Figure 4.

Our simulator comes with a clock whose time and state are listed in the viewport's upper left
corner. Once the clock is set in motion, UAVs 
y along their calculated paths at 36 meters/sec
which corresponds to a typical Predator loiter speed. We also �x the �rst aircraft model's altitude
at a constant value of 2.5 km, the second at 2.6 km, the third at 2.7 km, etc so that they never
crash in three dimensions. For reasonable numbers of UAVs over our Baghdad-like environment,
they all 
y well below the maximum Predator ceiling of 25,000 ft.

As can be seen in the closeup view of Figure 5, our UAV models are endowed with observa-
tion frusta which indicate instantaneous �elds-of-view for notional onboard video cameras. Frusta
orientations relative to their aircraft platforms are speci�ed by 3 angular degrees of freedom; cur-
rently, all cameras are restricted to nadir views. When a frustum intercepts a ground waypoint,
the target is regarded as having been serviced, and its color is changed from yellow to pink. In any
subsequent calls to the UAV path planner, previously serviced targets are ignored. Each ground
target is consequently visited only once by one airplane in our simulations.

d These ground objects can also be read in automatically from a database.
ehttp://activemq.apache.org/
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Once the simulator's clock has begun and a mission is underway, additional UAVs can be
introduced to emulate the entrance of new aircraft into the battlespace. The user may then request
that updated 
ight paths for all aircraft be replanned based upon the ground targets not yet
over
own. The user can also select one or more 
ight paths and mark them for deletion. This
removal capability models a shoot-down or malfunction of a UAV which is forced to withdraw. We
can similarly simulate the response of a UAV 
eet to ground targets that pop-up while a mission
is underway.

The time required for CBBA to calculate 
ight paths is a function of the number of aircraft
and ground targets. It of course also depends upon computer hardware. In Table 2, we list timing
results for 3 trial sets of one through eight UAVs randomly started around the Baghdad airspace.
The number of ground targets in each of these trials was �xed at 50. As the table results indicate,
our simulation system's timing depends only weakly upon UAV number. In all trials, it returned
results in less than 3 seconds. Our prototype's responsiveness is su�ciently fast to enable real-time
reaction in future multiple-UAV command and control systems.

V.B. Dynamic ground movers

In urban combat situations, the ground targets of greatest intelligence value are often mobile. Full
motion video monitoring of vehicle activity has become especially valuable for uncovering terrorist
networks hidden within complex cities. Consequently, Predators on patrol often need to follow
dynamic movers. In this subsection, we present preliminary simulation results of multiple UAVs
responding to continuous changes on the ground.

We start with GPS truth data collected during a Lincoln Laboratory �eld exercise in 2007 by
40 cars driving around the town of Lubbock, TX. The vehicles in this urban campaign performed
typical driving maneuvers such as turning at corners, stopping at intersections and parking outside
buildings. We translate and rescale the vehicle truth data so that they cover our Baghdad map
and yet still maintain an average speed of 35 mph. The modi�ed GPS tracks provide a challenging
and realistic set of ground movers for our enhanced aerial path planning algorithm to chase.

We next initialize one or more UAVs within the Baghdad airspace and set the simulator's clock
running. The main simulation program transmits state vectors for both the cars and aircraft to
the CBBA Matlab module every 10 seconds in simulation time. The Matlab code asynchronously
returns its path results su�ciently fast that the entire simulation runs smoothly in real time. Four
representative snapshots illustrating 3 UAVs following the ground movers are displayed in Figure 6.

As the simulation proceeds, it ignores any vehicles which depart the battle space as de�ned by
the purple grid in �gure 6. On the other hand, a new vehicle entering the grid is added to the target
list on the next 
ight path update request. As for our simpler static ground target simulations, a
moving vehicle is regarded as having been serviced once it is over
own by some UAV. The car is
then removed from the list of targets to be visited, and its color is changed from red to pink in the
output display.

In these preliminary simulation runs, we assigned equal priority to each ground mover. The
score function in Eq 8 consequently directs each airplane to pay more attention to nearby vehicles
and less attention to distant targets. The end portions of 
ight paths located far away in space and
time from a UAV's instantaneous position should therefore be regarded with less weight than the
parts of the paths closer to the aircraft. It is important to note that the immediate 
ight plans for
each of the UAVs pictured in Fig 6 do not signi�cantly churn as the simulation runs even though
the ground targets in their nearby vicinity constantly move in various directions.

Several more realistic re�nements remain to be added to our dynamic simulations such as
nonzero aircraft turning radii, ground target location uncertainty and communication dropouts.
Nevertheless, we believe these early results compellingly demonstrate the potential for automated
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(a) (b)

(c) (d)

Figure 6: 4 snapshots from a movie of 3 Predators chasing vehicles moving with average 35 mph
speeds. UAV 
ight paths are updated every 10 secs of simulation time. Time-decaying con�dence
in CBBA assignments for distant targets is heuristically indicated by 
ight path color fading. As
the simulation proceeds, cars over
own by some UAV change color from red to pink. The �rst
snapshot displays initial locations for cars and aircraft. The second, third and fourth snapshots
illustrate the dynamic ground and air pictures at � t = 100, 250 and 450 secs.

path planning tools to solve complex navigation and targeting problems in real time which are too
complicated for human operators. As the number of UAVs executing stressing missions grows in
the future, so will the need for such automated assistance.

VI. Conclusion and Ongoing Work

We have extended the Consensus Based Bundle Algorithm in two signi�cant ways. Firstly,
CBBA can now route UAVs safely past ground environment obstacles. Secondly, CBBA now mit-
igates churning of UAV 
ight paths induced by target situational awareness uncertainty. Obstacle
avoidance incurs only a modest computation time increase relative to obstacle-free path planning,
and it exhibits signi�cant potential for future real-time task assigning. Furthermore, our churn-
ing mitigation approach yields vehicle assignments with decreased sensitivity to system noise. We
have also integrated our enhanced algorithm into a simulation tool which permits intuitive human
interaction with multiple air vehicles and ground targets.
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Table 2: Simulation system time (in seconds) to plan and display 
ight paths for multiple UAVs
servicing 50 static ground targets. The simulation trials were run on a Dell tower with 3 GHz
Quadcore Xeon CPUs.

Number of UAVs Trial 1 Trial 2 Trial 3

1 0.92 0.67 0.89

2 1.49 1.58 1.61

3 1.46 1.97 1.71

4 1.79 2.14 2.15

5 2.17 2.28 2.05

6 2.70 2.14 2.36

7 2.89 2.73 2.49

8 2.76 2.77 2.89

The results which we have presented in this paper raise many interesting questions which warrant
future study. For example, we have assumed that at least approximate locations for all ground
targets are known at the start of all UAV missions. In real battle conditions, it is much more likely
that some targets will only be discovered once missions are underway. Other moving targets whose
locations may be known at one time might well be later lost as they intentionally execute evasive
maneuvers. Evolving ground target uncertainty over time via growing error ellipsoids represents
one possible approach to methodically handling these seach and discovery problems.

We also look forward to incorporating kinematic and dynamic constraints on both air and
ground movers into CBBA in the future. UAVs need to be penalized for attempting large heading
changes. And vehicles usually drive along well-de�ned road networks which strongly constrain their
likely future motions. We expect that extending the CBBA to incorporate these restrictions will
render this algorithm of signi�cant theoretical and tactical interest.
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