
MIT Open Access Articles

Equivalence of Convex Problem Geometry and 
Computational Complexity in the Separation Oracle Model

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Freund, Robert M, and Jorge R Vera. “Equivalence of Convex Problem Geometry 
and Computational Complexity in the Separation Oracle Model.” Mathematics of Operations 
Research 34.4 (2009): 869-879. © 2009 Institute for Operations Research and the Management 
Sciences.

As Published: http://dx.doi.org/10.1287/moor.1090.0408

Publisher: Institute for Operations Research and the Management Sciences (INFORMS)

Persistent URL: http://hdl.handle.net/1721.1/55961

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Attribution-Noncommercial-Share Alike 3.0 Unported

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/55961
http://creativecommons.org/licenses/by-nc-sa/3.0/


Equivalence of Convex Problem Geometry and Computational
Complexity in the Separation Oracle Model

Robert M. Freund
MIT Sloan School of Management, 50 Memorial Drive, Cambridge, MA 02142, USA

email: rfreund@mit.edu

Jorge R. Vera
Dept. de Ingenieŕıa Industrial y de Sistemas, Facultad de Ingenieŕıa, Pontificia Universidad Católica de Chile,

Campus San Joaqúın, Vicuña Mackenna 4860 Santiago, CHILE

email: jvera@ing.puc.cl

Consider the following supposedly-simple problem:

compute x satisfying x ∈ S ,

where S is a convex set conveyed by a separation oracle, with no further information (e.g., no bounding ball
containing or intersecting S, etc.). Our interest in this problem stems from fundamental issues involving the
interplay of (i) the computational complexity of computing a point x ∈ S, (ii) the geometry of S, and (iii) the
stability or conditioning of S under perturbation. Under suitable definitions of these terms, we show herein that
problem instances with favorable geometry have favorable computational complexity, validating conventional
wisdom. We also show a converse of this implication, by showing that there exist problem instances in certain
families characterized by unfavorable geometry, that require more computational effort to solve. This in turn
leads, under certain assumptions, to a form of equivalence among computational complexity, the geometry of S,
and the conditioning of S. Our measures of the geometry of S, relative to a given (reference) point x̄, are the
aspect ratio A = R/r, as well as R and 1/r, where B(x̄, R)∩ S contains a ball of radius r. The aspect ratio arises
in the analyses of many algorithms for convex problems, and its importance in convex algorithm analysis has been
well-known for several decades. However, the terms R and 1/r in our complexity results are a bit counter-intuitive;
nevertheless, we show that the computational complexity must involve these terms in addition to the aspect ratio
even when the aspect ratio itself is small. This lower-bound complexity analysis relies on simple features of the
separation oracle model of conveying S; if we instead assume that S is conveyed by a self-concordant barrier
function, then it is an open challenge to prove such complexity lower-bound.

Key words: Convex Optimization ; Ellipsoid Algorithm ; Computational Complexity

MSC2000 Subject Classification: Primary: 90C25 , 90C60 ; Secondary: 52A41 , 52A40, 52A20

OR/MS subject classification: Primary: Programming: nonlinear, algorithms, theory ; Secondary: Mathematics:
convexity

1. Introduction, Motivation, and Discussion Consider the following supposedly-simple prob-
lem:

compute x satisfying x ∈ S , (1)

where S ⊂ X is a convex set (bounded or not, open or not) conveyed by a separation oracle with no
further information (e.g., no bounding ball containing or intersecting S, etc.), and X is a (finite) n-
dimensional vector space. Our interest in (1) stems from fundamental issues involving the interplay of
three notions: (i) the computational complexity of computing a point x ∈ S, (ii) the geometry of S,
and (iii) the stability or conditioning of S. In this paper we focus on the equivalence of computational
complexity and a suitable measure of the geometry of S, which leads under certain assumptions to an
equivalence of all three notions.

There are two standard information models for convex sets, the separation oracle model and the (self-
concordant) barrier model. A separation oracle for S, see [12], is a subroutine that, given a point x̂ as
input, returns the statement “x̂ ∈ S” if indeed this is the case, or if x̂ /∈ S, returns a hyperplane H
with the property that x̂ ∈ H− and S ⊂ H++. Here H ⊂ <n denotes a hyperplane, and H− and H+

(H−− and H++) denote the two closed (open) halfspaces of <n bounded by H. From a computational
viewpoint, the information about H+ is described by a nonzero vector h ∈ <n and scalar α for which
H+ = {x ∈ <n : hTx ≥ α}. For any separation oracle based algorithm, we define the number of iterations
of the algorithm to be the number of oracle calls, i.e., we use oracle calls and iterations interchangeably.

The separation oracle model applies readily to the case when S is the feasible region of a conic linear
system:

S := {x ∈ <n : b−Ax ∈ K} , (2)

1

mailto:rfreund@mit.edu
mailto:rfreund@mit.edu
mailto:jvera@ing.puc.cl
mailto:jvera@ing.puc.cl


2 Freund and Vera: Convex Problem Geometry and Computational Complexity
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

where A is a linear operator from X to a (finite) m-dimensional vector space Y , b ∈ Y , K ⊂ Y is a closed
convex cone, and d = (A, b) is the data for the system. In this case a separation oracle for the cone K
can be used to easily construct a separation oracle for S.

1.1 Discussion of Main Results A representative separation oracle algorithm for solving (1) is
the ellipsoid algorithm [12], see also [6]. The ellipsoid algorithm is easy to implement and has very good
theoretical complexity. We assume the reader is familiar with the concepts underlying this algorithm. In
consideration of this, suppose that we know a priori a vector x̄ and a positive scalar R with the property
that B(x̄, R)∩S has positive volume (where B(c, ρ) denotes the ball of radius ρ centered at c). This last
assumption can also be stated as saying that there exist values R and r > 0 for which it holds that:

B(x̄, R) ∩ S contains a ball of radius r . (3)

Then the ellipsoid algorithm for solving (1) can be initiated with the ball B(x̄, R), and the number of
oracle calls (equivalently, the number of iterations) of the algorithm required to solve problem (1) is
known (see [12]) to be at most ⌈

2n2 ln
(
R

r

)⌉
.

We will in general refer to a ratio of the form A := R/r where R, r satisfy (3) as an aspect ratio of S
relative to the reference point x̄. The aspect ratio arises in the analysis of many algorithms for convex
problems, and its importance in convex algorithm analysis dates back at least four decades, see e.g.,
Rosenblatt’s 1962 book [18].

The ellipsoid algorithm requires prior specification of x̄ and R to determine the starting ball (ellipsoid)
with which to start the method; the condition that (3) holds for some r > 0 is also needed in order
to guarantee convergence. However, at least in theory as well as in the case of typical instances of (1)
when S is in the conic format (2), a priori values of x̄ and R satisfying (3) are either not known or
involve excessively conservative (large) values of R >> 0 for special structure and data representation of
S. For example, suppose S = {x ∈ <n : Ax ≤ b} for known rational data d = (A, b) whose bit-encoding
is of length L. Then one can pre-determine values of x̄ := 0 (∈ <n), R := 2nL, and r := 2−nL for
which B(x̄, R) ∩ S contains a ball of radius r if and only if (1) has an interior solution. This observation
underlies Khachiyan’s proof that linear optimization is polynomial-time in the bit-model in [7] (see also
[2] and [6]); however in most instances there are significantly better values of R and r than those above.
As another example, suppose S = {x ∈ <n : Q1x1 + . . . + Qnxn � Q0} where Qi ∈ Sm are integral
symmetric matrices of order m, for i = 0, . . . , n. Porkolab and Khachiyan [9] show that if S is bounded

then S ⊂ B(0, R) for R = e(LmO(min{n,m2})), where L is the maximum bit-length of the coefficients of the
matrices Q0, . . . , Qn. While this bound on R is pre-determined, it is doubly exponential in at least one
of the dimensions of the problem. In Section 2 we present an extension of the ellipsoid algorithm that
eliminates the need for any a priori information about R and/or r, and we prove an upper bound on the
number of iterations required to solve (1) using this extension of the ellipsoid algorithm, given by:⌈

2(n+ 1)
(

1
2

ln(n) + 1.16 + n ln
(

1
r

+
R

r

)
+ ln(1 +R)

)⌉
,

where R, r are any existential values satisfying (3) but are not required to be known to run the algorithm
(see Theorem 2.2). Notice that this iteration bound involves not just the aspect ratio R/r but also
involves both 1/r and R itself. The complexity bound essentially states that sets S with favorable
geometry relative to x̄, in the sense that none of the quantities R/r, R, or 1/r are very large, will not
require too much computation to solve.

The presence of the aspect ratio term R/r in the above complexity bound is to be expected, especially
in light of its presence in the case when R is known and given to the algorithm a priori. This still begs
the question of whether the terms R and 1/r must be present or whether they can be removed from
the complexity upper bound using a different algorithm and/or a different analysis. Notice that even
if R/r is small, say at most an absolute constant, the values of R and/or 1/r might still be very large,
yielding perhaps an overly conservative iteration complexity upper bound, as shown in the following two
examples.

Example 1.1 Let n = 1, x̄ = 0, and S = [10−6, 3× 10−6]. Then r = 10−6, R = 3× 10−6 yields R/r = 3
but 1/r = 106.



Freund and Vera: Convex Problem Geometry and Computational Complexity
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 3

Example 1.2 Let n = 1, x̄ = 0, and S = [106, 3× 106]. Then r = 106, R = 3× 106 yields R/r = 3 but
R = 3× 106.

Queried a different way, are all three geometric measures R/r, R, and 1/r necessary components of the
computational complexity of solving (1)? We resolve this question in Section 3, where we show that the
dependence of the complexity bound on R and 1/r (as well as on R/r) cannot be removed. In Theorems
3.1, 3.2, and 3.3, we show under suitable assumptions for some specific families of problem instances, that
any separation oracle algorithm for solving (1) must, for some instance in the requisite family, require
at least blog2(R/r) − 1c, or blog2 log2(R + 1)c, or blog2 log2(1/4r)c iterations, respectively. While these
lower bounds are not of the same order as the upper bound presented above, they do involve the same
three geometric quantities R/r, R, and 1/r.

Taken together, these results demonstrate a certain equivalence between computational complexity
and problem instance geometry of S as measured by R/r, R, and 1/r. Indeed, while problems with
favorable geometry do not require too much computational effort to solve, there exist problem instances
in certain families with unfavorable geometry, that require more computational effort to solve. This
equivalence ties in nicely with results regarding the interplay of stability and conditioning, problem
geometry, and computational complexity for problems in conic format (2). Considering S defined by (2)
for data d = (A, b) and keeping the cone K fixed, we measure the condition number of (2) using the
“distance to infeasibility” which we now briefly review. Let L(X,Y ) denote the space of linear operators
from X to Y and let M ⊂ L(X,Y ) × Y denote those data pairs d = (A, b) for which S given by (2) is
nonempty. For d = (A, b) ∈M, let ρ(d) denote the “distance to infeasibility” for (2), namely:

ρ(d) := min
∆d=(∆A,∆b)

{‖∆d‖ : d+ ∆d /∈M} ,

under suitably defined norms on spaces and operators, see [14]. Then ρ(d) denotes the smallest perturba-
tion of our given data d which would render the resulting system in (2) infeasible. Next let C(d) denote
the condition measure of (2), namely C(d) = ‖d‖/ρ(d), which is a scale-invariant reciprocal of the distance
to infeasibility. There are strong connections between C(d) and bounds on the stability of S under data
perturbation, see Renegar [14]. It is shown in Renegar [15] and in [3] that problems with favorable con-
dition numbers C(d) do not require too much computational effort to solve using interior-point methods
and the ellipsoid method, respectively. Also, using x̄ = 0, it is shown in [4] that a favorable value of C(d)
implies favorable geometry of S, namely favorable values of R/r, R, and 1/r, and that a converse of this
statement holds under an assumption of “conic curvature” defined and shown in [1]. Taken together, these
cited results in combination with the results developed in this paper demonstrate an equivalence between
favorable geometry, favorable complexity, and favorable conditioning under suitable assumptions.

Last of all, we remark that we have only shown an equivalence between the geometry of S and
computational complexity in the separation oracle model, and not in the (self-concordant) barrier model.
It is shown in [5] that favorable geometry implies favorable computational complexity of an interior-point
method. However, it is an open challenge to prove an assertion that unfavorable geometry implies (say,
in the worst case) a large number of iterations of an interior-point method.

The rest of the paper is organized as follows. In Sections 2 and 3 we present our lower and upper
bounds on the complexity of solving (1), respectively. Section 4 discusses possible extensions and/or
strengthening of the complexity bounds.

Notation. We assume that X is equipped with an inner-product norm ‖v‖ :=
√
〈v, v〉. For convenience

we identify X with <n and the inner product 〈·, ·〉 with the standard scalar product 〈v, w〉 = vTw =∑n
j=1 vjwj . Let Sk, Sk

+, and Sk
++ denote the set of symmetric matrices, symmetric positive semidefinite

matrices, and symmetric positive definite matrices of order k, respectively. Let “�” denote the Löwner
partial ordering on symmetric matrices: A � B if and only if A − B is positive semidefinite. Let Qk

denote the k-dimensional second-order cone {x ∈ <k : ‖(x2, . . . , xk)‖2 ≤ x1} for k ≥ 2.

2. Upper Bounds on Complexity of (1) via an Extension of the Ellipsoid Algorithm We
first review some basic results about the ellipsoid algorithm, see Nemirovsky and Yudin [12], also Grötschel
et al. [6], and then present an extension of the ellipsoid algorithm that solves (1) in the absence of any
bounding information about S. The ellipsoid method applied to solve (1) for a given convex set S ⊂ <n

is completely specified by the separation oracle for S and the center x0 and shape matrix Q0 � 0 of the



4 Freund and Vera: Convex Problem Geometry and Computational Complexity
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

starting ellipsoid E0 := {x ∈ <n : (x − x0)TQ0(x − x0) ≤ 1}. By a simple change of variables, there is
no loss of generality in assuming that Q0 = (ρ0)−2I for some ρ0 > 0, whereby E0 = B(x0, ρ0) and the
information content of the starting ellipsoid is simply the center x0 and radius ρ0 of the starting ball.

Suppose that we know a priori a vector x̄ and a positive scalar R with the property that B(x̄, R) ∩ S
has positive volume. Then the ellipsoid algorithm for solving (1) can be initiated with the ball B(x̄, R).
The following is a generic result about the performance of the ellipsoid algorithm, where in the statement
of the theorem “vol(T )” denotes the volume of a set T :

Theorem 2.1 Ellipsoid Algorithm Theorem with known R, from [12], also [6]. Suppose that a
vector x̄ and a positive scalar R are known with the property that the set B(x̄, R)∩S has positive volume.
Then if the ellipsoid algorithm is initiated with the Euclidean ball B(x̄, R), the algorithm will compute a
solution of (1) in at most ⌈

2n ln
(

vol(B(x̄, R))
vol(B(x̄, R) ∩ S)

)⌉
iterations, where each iteration makes one call of the separation oracle for S.

It is often convenient to restate this result using radii of certain balls rather than volumes of certain
sets. The supposition of positive volume in this theorem is equivalent to the condition that there exist
values R and r > 0 that satisfy (3). Then one then obtains, for example:

Corollary 2.1 (see [12]) Suppose that S is given via a separation oracle, and that the ellipsoid algo-
rithm is applied to solve (1) starting with E0 := B(x̄, R) for some given x̄ and R. If S, R, and r satisfy
(3) for some r > 0, then the ellipsoid method will solve (1) in at most⌈

2n2 ln
(
R

r

)⌉
iterations, where each iteration makes one call of the separation oracle.

Proof. Let v(n) denote the volume of the n-dimensional unit ball, namely:

v(n) =
πn/2

Γ(n/2 + 1)
, (4)

see [6]. Letting B(y, r) denote the ball of radius r contained in B(x̄, R) ∩ S, we have

vol(B(x̄, R))
vol(B(x̄, R) ∩ S)

≤ vol(B(x̄, R))
vol(B(ȳ, r))

=
(
v(n)Rn

v(n)rn

)
= (R/r)n ,

and the result follows using Theorem 2.1. �

Note that the ellipsoid algorithm requires prior specification of x̄ and R just to implement the method;
the condition that (3) holds for some r > 0 is also needed in order to guarantee convergence. Of course,
a priori values of x̄ and R for which (3) is true (for some r > 0) are typically either not known or involve
excessively conservative (large) values of R >> 0 for special structure and data representation of S (see
the discussion in Section 1.1). Except for instances such as these where prior information about special
structure and data for S is given, such bounds on R are not known. Despite this lack of prior information
in general, one can still utilize the ellipsoid algorithm for solving (1) by using a standard “lift and conify”
transformation, see [3], that we now review and extend.

For any given value of x̄ (think x̄ = 0 for convenience), define:

W x̄ := {(w, θ) ∈ <n+1 : w − x̄ ∈ θ(S − x̄), θ > 0} . (5)

Notice that W x̄∩{(w, θ) : θ = 1} = S×{1}, i.e., the restriction of W x̄ to the slice of (x, θ) ∈ <n+1 defined
by θ = 1 is simply S. Also, W x̄ is a (translated) convex cone in <n+1 with base (x̄, 0). Therefore W x̄

is constructed by first lifting S to S × {1} ⊂ <n+1, and then conically extending S × {1} using the base
point (x̄, 0), hence the term “lift and conify.” One can solve (1) by instead working with the following
equivalent problem in one higher dimension:

compute (w, θ) satisfying (w, θ) ∈W x̄ . (6)



Freund and Vera: Convex Problem Geometry and Computational Complexity
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 5

The equivalence of (1) and (6) follows since solutions of one system can be converted to solutions of
the other system as follows:

(w, θ) ∈W x̄ ⇒ x := x̄+ (w − x̄)/θ ∈ S
x ∈ S ⇒ (w, θ) := (α(x− x̄) + x̄, α) ∈W x̄ for all α > 0 . (7)

Furthermore, a separation oracle for S can be readily converted to a separation oracle for W x̄, as follows.
If (ŵ, θ̂) is a given point, first check if θ̂ > 0; if not, then H+ := {(w, θ) : θ ≥ 0} is the requisite
separating halfspace. If θ̂ > 0, next check if x̂ := x̄ + (ŵ − x̄)/θ̂ is in S. If so, then (ŵ, θ̂) ∈ W x̄ and
we are done. Otherwise, the separation oracle for S outputs h 6= 0 for which hTx ≥ hT x̂ for all x ∈ S,
which then implies that hT (x̄+ (w − x̄)/θ) ≥ hT

(
x̄+ (ŵ − x̄)/θ̂

)
for all (w, θ) ∈W x̄. Simplifying yields

H+ := {(w, θ) : θ̂hTw − θ̂hT x̄ ≥ θ(hT ŵ − hT x̄)} as the requisite separating halfspace for (ŵ, θ̂) in this
case.

Because W x̄ is a (translated) convex cone in <n+1 with base (x̄, 0), W x̄ contains points in the (n+ 1)-
dimensional unit ball centered at (x̄, 0), which we denote by Bx̄

n+1:

Bx̄
n+1 := Bn+1((x̄, 0), 1) :=

{
(w, θ) ∈ <n+1 |

√
(w − x̄)T (w − x̄) + θ2 ≤ 1

}
.

Therefore, given only x̄, one can apply the ellipsoid algorithm to solve (6) (and hence solve (1)) using
the initial ball Bx̄

n+1, yielding the following “extended” version of the basic ellipsoid algorithm:

Extended Ellipsoid Method for Solving (1) with Unknown R
(a) Input: separation oracle for S, and initiating point x̄ ∈ <n.
(b) If x̄ ∈ S, output x̄ and Stop. Otherwise construct W x̄ using (5) and run the ellipsoid

algorithm in <n+1 starting with Bx̄
n+1 to compute a point in W x̄. Output (ŵ, θ̂) ∈W x̄.

(c) Set x̂← x̄+ (ŵ − x̄)/θ̂ and Stop.

In order to prove a complexity bound using the above extension of the ellipsoid method, we must bound
the ratio of the volume of Bx̄

n+1 to the volume of Bx̄
n+1∩W x̄. This is accomplished in the following lemma,

a variant of which was first presented in [3]:

Lemma 2.1 Suppose that S ∩B(x̄, R) contains a ball of radius r > 0. Then

ln

(
vol
(
Bx̄

n+1

)
vol
(
Bx̄

n+1 ∩W x̄
)) ≤ 1

2
ln(n) + 1.16 + n ln

(
1
r

+
R

r

)
+ ln(1 +R) .

Proof. We prove a slightly more general result which will imply the conclusion of Lemma 2.1 as a
special case. Consider the slightly more general definition of W x̄ parameterized by a scalar c > 0:

W x̄
c := {(w, θ) ∈ <n+1 : c · (w − x̄) ∈ θ(S − x̄), θ > 0} , (8)

and note that we recover W x̄ by setting c = 1. Notice that W x̄
c ∩ {(w, θ) : θ = c} = S × {c}, i.e., the

restriction of W x̄
c to the slice of (x, θ) ∈ <n+1 defined by θ = c is simply S. We will prove:

ln

(
vol
(
Bx̄

n+1

)
vol
(
Bx̄

n+1 ∩W x̄
c

)) ≤ 1
2

ln(n) + 1.16 + n ln

(√
R2 + c2

r

)
+ ln

(√
R2 + c2

c

)
. (9)

Notice that Lemma 2.1 follows immediately from (9) by setting c = 1 and using the inequality√
R2 + 1 ≤ R+ 1.

We now prove (9). By hypothesis there exists y for which B(y, r) ⊂ S ∩ B(x̄, R). By performing a
translation if necessary, we can assume that x̄ = 0, which simplifies the arithmetic manipulations below.
Define H := W x̄

c ∩ Bx̄
n+1 = {(w, θ) : c · w/θ ∈ S, θ > 0, ‖(w, θ)‖2 ≤ 1} and T := {(w, θ) : c · w/θ ∈

B(y, r), 0 < θ ≤ c}. Defining δ :=
√
R2 + c2, we first prove that T ⊂ B((0, 0), δ). To see why this is



6 Freund and Vera: Convex Problem Geometry and Computational Complexity
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

true, let (w, θ) ∈ T , then

‖(w, θ)‖2 = ‖(w − (θ/c)y + (θ/c)y, θ)‖2

=
√
‖(w − (θ/c)y + (θ/c)y‖22 + θ2

≤
√

(‖(w − (θ/c)y‖2 + ‖(θ/c)y‖2)2 + θ2

≤
√

((θ/c)r + (θ/c)‖y‖2)2 + θ2

≤ (θ/c)
√
R2 + c2

≤ δ .

Here the second inequality follows since ‖(c/θ)w − y‖ ≤ r for (w, θ) ∈ T , the third inequality follows
since B(y, r) ⊂ B(0, R), and the last inequality follows since θ ≤ c for (w, θ) ∈ T . This shows that
T ⊂ B((0, 0), δ). Therefore δ−1T ⊂ B((0, 0), 1) and hence δ−1T ⊂ H. It then follows that

Vol(H) ≥ Vol(δ−1T ) =
(

1
δ

)n+1 ∫ c

0

v(n)
(
θr

c

)n

dθ =
(
v(n)rn

δn+1cn

) (
θn+1

n+ 1

)∣∣∣∣c
0

=
v(n)rnc

δn+1(n+ 1)
,

where v(n) is the volume of the n-dimensional unit ball, see (4). Therefore

vol
(
Bx̄

n+1

)
vol
(
Bx̄

n+1 ∩W x̄
c

) =
vol
(
Bx̄

n+1

)
vol (H)

≤ v(n+ 1)δn+1(n+ 1)
v(n)rnc

=
Γ(n/2 + 1)π(n+1)/2δn+1(n+ 1)

Γ((n+ 1)/2 + 1)πn/2rnc
.

We bound the right-most term involving the ratio of two gamma function values using the following
inequality for the gamma function, see [16]:

Γ(x+ 1/2)
Γ(x+ 1)

<
1√

x+ 1/4
.

Using x = (n+ 1)/2 in the above yields

vol
(
Bx̄

n+1

)
vol
(
Bx̄

n+1 ∩W x̄
c

) ≤

 1√
n+1

2 + 1
4

 π(n+1)/2δn+1(n+ 1)
πn/2rnc

=
2(n+ 1)

√
π√

2n+ 3

(√
R2 + c2

r

)n(√
R2 + c2

c

)

≤ 3.18 ·
√
n

(√
R2 + c2

r

)n(√
R2 + c2

c

)
,

where the last inequality follows from the observation that 2(n+1)√
n(2n+3)

≤ 4/
√

5 for n ≥ 1 since the left

expression is decreasing in n for n ≥ 1. Lastly, taking logarithms yields (9). �

We acknowledge C. Roos [17] for several constructions used in the above proof. Lemma 2.1 yields the
following complexity bound for solving (1) using the extended ellipsoid method:

Theorem 2.2 Suppose that S is given via a separation oracle, that x̄ ∈ <n is given, and that the extended
ellipsoid algorithm is applied to solve (1). If R and r are positive scalars such that B(x̄, R) ∩ S contains
a ball of radius r, then the algorithm will solve (6), and hence solve (1), in at most⌈

2(n+ 1)
(

1
2

ln(n) + 1.16 + n ln
(

1
r

+
R

r

)
+ ln(1 +R)

)⌉
iterations, where each iteration makes one call of the separation oracle for S.

Proof. The iteration bound follows immediately from Lemma 2.1 and Theorem 2.1, noting that the
dimension of the space containing W x̄ is n+ 1 . �



Freund and Vera: Convex Problem Geometry and Computational Complexity
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 7

Notice that this complexity bound requires only the specification of an initializing point x̄, which one
can think of as the “reference point”. The condition “there exists R and r for which B(x̄, R)∩S contains
a ball of radius r” is only existential; prior knowledge of any R, r, or bounds thereon are unnecessary.
The complexity bound is monotone in three quantities, namely R/r, R, and 1/r. While it is tempting to
think that R/r will be the largest of these quantities, Examples 1.1 and 1.2 of Section 1 show that R or
1/r might be the dominant quantity. It is also curious that among these three quantities, the complexity
bound depends more weakly on R than on the other two quantities, roughly by a factor of n. We show
in Section 3 that the dependence of the complexity bound on R and 1/r (as well as on R/r) cannot be
removed. Therein we also show a weaker dependence on R than on R/r, but by a different factor than
given above.

For a given point x̄, we can say that S has favorable geometry relative to x̄ to the extent that there
exist values R and r satisfying (3) for which R/r, R, and 1/r are not too large. Put slightly differently,
S has favorable geometry relative to x̄ if S contains a ball whose radius r is not too small and whose
distance R from x̄ is not too large. Then Theorem 2.2 states that if S has favorable geometry relative
to x̄, then the extended ellipsoid algorithm will solve (1) relatively quickly. In Section 3 we study the
converse of this statement.

Last of all, notice that the complexity bound in Theorem 2.2 is not scale-invariant, which seems
unnatural at first glance. That is, one would expect if the units were changed so that both R and r were
doubled, say, then the complexity bound would remain unchanged, but this is not the case. The reason
for this has to do with the implicit choice of using c = 1 in the “lift and conify” construction used to
transform S to W x̄

c = W x̄
1 = W x̄ in the extended ellipsoid algorithm. Indeed, for a given value of c > 0 we

can implement the extended ellipsoid method described in Section 1, substituting W x̄
c for W x̄

1 = W x̄. The
specific choice of c = 1 used in the description of the extended ellipsoid algorithm is somewhat arbitrary,
but the choice of c must be given, i.e., “known” to the algorithm, so that the separation oracle for S can
be converted to one for W x̄

c . If we change units so that R and r are doubled, then if we double the value
of c from c = 1 to c = 2 it follows from (9) that the volume ratio bound and hence the complexity bound
will remain unchanged; hence the extended ellipsoid method is scale-invariant if c is re-scaled together
with R and r. Furthermore, it follows from (9) that if a value of R is known in advance for which (3)
is true for some r > 0, then setting c = R in (9) yields a volume ratio bound of O(ln(n) + n ln(R/r))
and hence an iteration complexity bound of O(n ln(n) +n2 ln(R/r)), whose sole dependence on R/r (and
whose independence of R and 1/r separately) is consistent with the complexity bound in Corollary 2.1.
However, it is precisely because R is not known that the dependence on R arises (even when R/r is O(1))
in Lemma 2.1 and hence in the complexity bound of Theorem 2.2.

The ellipsoid algorithm belongs to a larger class of efficient volume-reducing separation-oracle based
algorithms that includes the method of centers of gravity [8], the method of inscribed ellipsoids [7], and
the method of volumetric centers [19], among others. Results analogous to Theorem 2.1 can be derived
for these methods, for example for the method of centers of gravity the iteration complexity analogous to
Theorem 2.1 is O(ln(n) +n ln(1/r+R/r) + ln(1 +R)). For a more thorough discussion of the complexity
of volume-reducing cutting-plane methods, see [10].

3. Lower Bounds on Complexity of (1) for Separation Oracle Algorithms Theorem 2.2
showed that favorable geometry implies favorable complexity: if R/r, R, and 1/r are all small, then the
ellipsoid algorithm (and many other algorithms) will compute a solution of (1) in a small number of
iterations. In this subsection we study the converse question: does favorable complexity imply favorable
geometry? A naive approach to this question is as follows: supposing that a separation-oracle based
algorithm solves (1) in a low number of iterations, then prove that R/r, R, and 1/r all must be small.
This approach is obviously doomed to failure, as the algorithm could simply get lucky and compute a
solution of (1) by accident at an early iteration, regardless of the values of R/r, R, and 1/r. We therefore
consider our algorithm applied not to a single instance of (1) but rather applied to all instances in certain
collections of convex sets. For fixed values of x̄, R, and r, let S x̄,r,R denote the collection of convex sets
S ⊂ <n whose intersection with B(x̄, R) contains a ball of radius r, namely:

S x̄,r,R = {S ⊂ <n : S is convex and satisfies (3) } .

Now consider a (separation-oracle based) algorithm M for solving instances of (1). (For a precise def-
inition of a separation-oracle based algorithm see [12]; an intuitive notion of this type of algorithm is



8 Freund and Vera: Convex Problem Geometry and Computational Complexity
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

sufficient for our purposes.) An instance is a given convex set S, or more precisely, a separation oracle
for the convex set S. Now suppose we fix x̄, R, and r, and restrict our instances to (separation oracles
for) sets S in the collection S x̄,r,R. Let N x̄,r,R(M) denote the computational complexity of algorithm
M over all instances S ∈ S x̄,r,R. That is, N x̄,r,R(M) is the maximum number of oracle calls it takes the
algorithm M to solve (1) over all (separation oracles for) sets S in the collection S x̄,r,R. Our first lower
bound result is as follows:

Theorem 3.1 For any fixed x̄, R, and r satisfying R ≥ r > 0, let M be any separation-oracle based
algorithm applied over the collection of sets S x̄,r,R. Then

N x̄,r,R(M) ≥
⌊

log2

(
R

r

)
− 1
⌋
.

Proof. We use a type of argument used extensively in [12] that works by constructing output of a
separation oracle for a particular set S̄ ∈ S x̄,r,R for which the algorithm makes at least

⌊
log2

(
R
r

)
− 1
⌋

oracle calls. Without loss of generality we presume that x̄ = 0, which will lead to simpler arithmetic in
the proof. Let x1 be the first point used to query the separation oracle. (This point is generated by the
algorithm independent of any information from the separation oracle or, equivalently, the set in question.)
Let L0 = −R and U0 = R. If (x1)1 ≤ L0+U0

2 , the oracle will return “x1 /∈ S̄” together with the separating
halfspace H++ := {x ∈ <n : x1 >

L0+U0
2 } for which S̄ ⊂ H++. Henceforth in this proof and other proofs

we simply denote this as “S̄ ⊂ {x ∈ <n : x1 >
L0+U0

2 }.” If instead (x1)1 >
L0+U0

2 , the oracle will return
“x1 /∈ S̄” together with “S̄ ⊂ {x ∈ <n : x1 <

L0+U0
2 }.” In the first case we will define L1 := L0+U0

2 and
U1 := U0, whereas in the second case we define L1 := L0 and U1 := L0+U0

2 . We will construct the output
of the separation oracle in subsequent iterations in a manner that generalizes the above logic. After k
oracle calls we will have two scalar values Lk and Uk satisfying Lk < Uk, and the algorithm will have
generated x1, . . . , xk for which the oracle has responded “xi /∈ S̄” together with separating halfspaces of
the form “S̄ ⊂ {x ∈ <n : x1 > (or <) Li−1+Ui−1

2 }” (depending on the position of (xi)1) for i = 1, . . . , k.
The algorithm will next generate xk+1 and query the oracle with this point. If (xk+1)1 ≤ Lk+Uk

2 , the
oracle will return “xk+1 /∈ S̄” together with the separating halfspace “S̄ ⊂ {x ∈ <n : xk+1 >

Lk+Uk

2 }.”
If instead (xk+1)1 >

Lk+Uk

2 , the oracle will return “xk+1 /∈ S̄” together with the separating halfspace
“S̄ ⊂ {x ∈ <n : x1 <

Lk+Uk

2 }.” In the first case we will define Lk+1 := Lk+Uk

2 and Uk+1 := Uk, whereas
in the second case we define Lk+1 := Lk and Uk+1 := Lk+Uk

2 . We proceed inductively until the algorithm
has made K = blog2(R/r) − 1c oracle calls (iterations) and we have generated a (monotone increasing)
sequence {Li}Ki=0 and a (monotone decreasing) sequence {Ui}Ki=0 according to the above rules.

Now define
S̄ = {x ∈ <n : ‖x‖ ≤ R, LK + δ ≤ x1 ≤ UK − δ}

where δ := R · 2−(K+1). Then it follows that the separating hyperplanes generated from the oracle calls
are consistent with the instance S̄. We first argue that the points x1, . . . , xK /∈ S̄. To see this define
Ci := {x ∈ <n : ‖x‖ ≤ R and Li + δ ≤ x1 ≤ Ui − δ} for i = 1, . . . ,K. Then it follows that xi /∈ Ci and
S̄ ⊂ CK ⊂ · · · ⊂ C2 ⊂ C1, therefore xi /∈ S̄ for i = 1, . . . ,K. We claim that S̄ ∈ S x̄,r,R. Notice trivially
that S̄ ⊂ B(x̄, R) (recall that x̄ = 0), so it remains to prove that S̄ contains a ball of radius r. To see
this, notice that Ui − Li = 2R2−i for all i = 0, . . . ,K, and observe that the upper/lower bounds on the
first coordinate of points in S̄ satisfy:

UK − δ − (LK + δ)
2

=
UK − LK

2
−R · 2−(K+1) = R · 2−(K) −R · 2−(K+1) = R · 2−(K+1) ≥ r ,

from which it easily follows that B(y, r) ⊂ S̄ for y = UK+LK

2 (1, 0, . . . , 0). Hence S̄ ∈ S x̄,r,R and by
construction, xi /∈ S̄, i = 1, . . . ,K. Therefore the algorithm makes at least K oracle calls, proving the
result. �

The general technique used in the above proof (and which will also be used to prove the other two
lower bound theorems in this section) was borrowed from [12]. Notice that it involves inductively using
the output of the given algorithmM to create a “resisting (separation) oracle” for a particular (algorithm
dependent) set S̄ ∈ S x̄,r,R, in such a way that the algorithm must make at least a certain number of
oracle calls. (The appelation “resisting oracle” was aptly introduced by Nesterov in [13].) In the above
proof, which is essentially unidimensional, the resisting oracle is constructed in such a way that for at



Freund and Vera: Convex Problem Geometry and Computational Complexity
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 9

least K oracle calls, the algorithmM generates points xi which are not contained in the instance S̄. This
approach will be modified in the proofs of the two additional lower bounds of Theorems 3.2 and 3.3.

The method of centers of gravity [8] can be shown to achieve the lower bound in Theorem 3.1; the
proof of this result can be gleaned from similar arguments in [12].

We next show that the lower bound complexity also depends monotonically on R even when R/r is
bounded above by a constant. Analogous to the family of sets S x̄,r,R, we will need a suitable family of
(separation oracles for) convex sets that will serve as instances for applying any algorithm M to solve
(1). For fixed values of x̄, R, and aspect ratio bound A, let T x̄,R,A denote the collection of convex sets
S ⊂ <n that satisfy:

(i) there exists R̄ and r̄ for which B(x̄, R̄) ∩ S contains a ball of radius r̄,
(ii) R̄ ≤ R, and
(iii) R̄/r̄ ≤ A.

For a given separation-oracle based algorithmM, let N x̄,R,A(M) denote the computational complexity
of algorithm M over all instances S ∈ T x̄,R,A. That is, N x̄,R,A(M) is the maximum number of oracle
calls it takes the algorithmM to solve (1) over all (separation oracles for) sets S in the collection T x̄,R,A.
We have:

Theorem 3.2 For any fixed x̄, R, and A satisfying R ≥ 1 and A ≥ 4, let M be any separation-oracle
based algorithm applied over the collection of sets T x̄,R,A. Then

N x̄,R,A(M) ≥ blog2 log2(R+ 1)c .

We offer the following interpretation of this theorem before proving it. For any given algorithm M,
there exists a (separation oracle for a) convex set S̄ ∈ T x̄,R,A for which the iteration complexity of the
algorithm grows at least as log2 log2(R), independent of 1/r or the aspect ratio A of S̄, provided that
R ≥ 1 and A ≥ 4.

Proof of Theorem 3.2. The proof uses ideas communicated privately from Nemirovsky [11],
and constructs a resisting oracle for a particular set S̄ ∈ T x̄,R,A. However, unlike the “binary evasion”
strategy used to prove Theorem 3.1, in this proof the evasion takes place on an exponential scale, using
intervals of the form [2Li , 2Ui ] as opposed to [Li, Ui]. Without loss of generality we presume that
x̄ = e1 := (1, 0, . . . , 0), which will lead to simpler arithmetic in the proof. Let x1 be the first point used
to query the separation oracle. (This point is generated by the algorithm independent of any information
from the separation oracle or, equivalently, the set in question.) Let K = blog2 log2(1 + R)c, and define
L0 = 0 and U0 = 2K . We will construct the separation oracle inductively as follows. If (x1)1 ≤ 2

L0+U0
2 ,

the oracle will return “x1 /∈ S̄” together with the separating halfspace “S̄ ⊂ {x ∈ <n : x1 > 2
L0+U0

2 }.”
If instead (x1)1 > 2

L0+U0
2 , the oracle will return “x1 /∈ S̄” together with the separating halfspace “S̄ ⊂

{x ∈ <n : x1 < 2
L0+U0

2 }.” In the first case we will define L1 := L0+U0
2 and U1 := U0, whereas in

the second case we define L1 := L0 and U1 := L0+U0
2 . On subsequent iterations we will construct

the output of the separation oracle in a manner that generalizes the above logic. After k oracle calls
we will have two scalar values Lk and Uk satisfying Lk ≤ Uk, and the algorithm will have generated
x1, . . . , xk for which the oracle has responded “xi /∈ S̄” together with separating halfspaces of the form
“S̄ ⊂ {x ∈ <n : x1 > (or <) 2

Li−1+Ui−1
2 }” (depending on the position of (xi)1) for i = 1, . . . , k. The

algorithm will next generate xk+1 and query the oracle with this point. If (xk+1)1 ≤ 2
Lk+Uk

2 , the oracle
will return “xk+1 /∈ S̄” together with the separating halfspace “S̄ ⊂ {x ∈ <n : xk+1 > 2

Lk+Uk
2 }.” If

instead (xk+1)1 > 2
Lk+Uk

2 , the oracle will return “xk+1 /∈ S̄” together with the separating halfspace
“S̄ ⊂ {x ∈ <n : x1 < 2

Lk+Uk
2 }.” In the first case we will define Lk+1 := Lk+Uk

2 and Uk+1 := Uk, whereas
in the second case we define Lk+1 := Lk and Uk+1 := Lk+Uk

2 . We proceed iteratively until the algorithm
has made K oracle calls (iterations) and we have generated a (monotone increasing) sequence {Li}Ki=0

and a (monotone decreasing) sequence {Ui}Ki=0 according to the above rules.

Now define the following objects:



10 Freund and Vera: Convex Problem Geometry and Computational Complexity
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

δ := 1/4 r̄ := 2UK−2LK

2 − δ R̄ := 2UK − 1

ȳ := 2LK +2UK

2 e1 S̄ := {x ∈ <n : ‖x− ȳ‖ ≤ r̄} .
Then it follows that the separating hyperplanes that were the output after each oracle are consistent
with the instance S̄. We first argue that the points x1, . . . , xK /∈ S̄. To see this define Ci := {x ∈ <n :
2Li + δ ≤ x1 ≤ 2Ui − δ} for i = 1, . . . ,K. Then it follows that xi /∈ Ci and S̄ ⊂ CK ⊂ · · · ⊂ C2 ⊂ C1,
therefore xi /∈ S̄ for i = 1, . . . ,K.

We claim that S̄ ∈ T x̄,R,A. We first prove that S̄ ⊂ B(x̄, R̄) ⊂ B(x̄, R). Indeed, let x ∈ S̄, then
noticing that Ui − Li = 2K−i for all i = 0, . . . ,K whereby UK − LK = 1, and we have:

‖x− x̄‖ ≤ ‖x− ȳ‖+‖ȳ− x̄‖ ≤ r̄+
2LK + 2UK

2
−1 = 2UK −δ−1 < R̄ ≤ 2U0−1 = 22K

−1 ≤ R+1−1 = R ,

thus showing that x ∈ B(x̄, R̄) ⊂ B(x̄, R) and proving this first part of the claim.

We complete the proof by showing that R̄/r̄ ≤ A. First observe:

r̄ =
2UK − 2LK

2
− δ =

2LK+1 − 2LK

2
− δ =

2LK

2
− 1/4 ≥ 2L0

2
− 1/4 =

1
2
− δ = 1/4 ,

from which it follows that:

R̄

r̄
=

2UK − 1
2UK−2LK

2 − δ
=

2LK+1 − 1
2LK−1 − δ

=
2LK+1 − 1

2LK−1 − 1/4
= 4 ≤ A .

Hence S̄ ∈ T x̄,R,A and by construction, xi /∈ S̄, i = 1, . . . ,K. Therefore the algorithm makes at least
K oracle calls, proving the result. �

Remark 3.1 Note in the proof of Theorem 3.2 that the instance S̄ constructed in the proof has an aspect
ratio bounded above by 4, and also satisfies r̄ ≥ 1/4. Therefore we could equivalently re-phrase Theorem
3.2 to state that A = 4 rather than A ≥ 4.

Last of all, we show that the lower bound complexity also depends monotonically on 1/r even when
R/r is small. Analogous to the family of sets T x̄,R,A, we will need a suitable family of (separation oracles
for) convex sets that will serve as instances for applying any algorithm M to solve (1). For fixed values
of x̄, r, and aspect ratio bound A, let U x̄,r,A denote the collection of convex sets S ⊂ <n that satisfy:

(i) there exists R̄ and r̄ for which B(x̄, R̄) ∩ S contains a ball of radius r̄,
(ii) r̄ ≥ r, and
(iii) R̄/r̄ ≤ A.

For a given separation-oracle based algorithmM, let N x̄,r,A(M) denote the computational complexity
of algorithmM over all instances S ∈ U x̄,r,A. That is, N x̄,r,A(M) is the maximum number of oracle calls
it takes the algorithm M to solve (1) over all (separation oracles for) sets S in the collection U x̄,r,A. We
have:

Theorem 3.3 For any fixed x̄, r, and A satisfying 0 < r < 1/4, and A ≥ 4, let M be any separation-
oracle based algorithm applied over the collection of sets U x̄,r,A. Then

N x̄,r,A(M) ≥
⌊

log2 log2

(
1
4r

)⌋
.

We offer the following interpretation of this theorem before proving it. For any given algorithm M,
there exists a (separation oracle for a) convex set S̄ ∈ U x̄,r,A for which the iteration complexity of the
algorithm grows at least as log2 log2(1/r), independent of R or the aspect ratio A of S̄, provided that
r < 1/4 and A ≥ 4.

Proof of Theorem 3.3. The proof is similar in structure to that of Theorem 3.2, except that instead
of exponentially scaled intervals [2Li , 2Ui ] we use inverse exponentially scaled intervals [2−Li , 2−Ui ], and
some other arithmetic is different as well. Let K = blog2 log2(1/(4r))c, L0 := 2K , U0 := 0, and without
loss of generality we presume that x̄ = (1/2)L0e1, which will lead to simpler arithmetic in the proof.



Freund and Vera: Convex Problem Geometry and Computational Complexity
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 11

Let x1 be the first point used to query the separation oracle. (This point is generated by the algorithm
independent of any information from the separation oracle or, equivalently, the set in question.) We
will construct the separation oracle inductively as follows. If (x1)1 ≤ (1/2)

L0+U0
2 , the oracle will return

“x1 /∈ S̄” together with the separating halfspace “S̄ ⊂ {x ∈ <n : x1 > (1/2)
L0+U0

2 }.” If instead
(x1)1 > (1/2)

L0+U0
2 , the oracle will return “x1 /∈ S̄” together with the separating halfspace “S̄ ⊂ {x ∈

<n : x1 < (1/2)
L0+U0

2 }.” In the first case we will define L1 := L0+U0
2 and U1 := U0, whereas in the

second case we define L1 := L0 and U1 := L0+U0
2 . On subsequent iterations we will construct the output

of the separation oracle in a manner that generalizes the above logic. After k oracle calls we will have
two scalar values Lk and Uk satisfying Lk > Uk, and the algorithm will have generated x1, . . . , xk for
which the oracle has responded “xi /∈ S̄” together with separating halfspaces of the form “S̄ ⊂ {x ∈
<n : x1 > (or <) 2

Li−1+Ui−1
2 }” (depending on the position of (xi)1) for i = 1, . . . , k. The algorithm

will next generate xk+1 and query the oracle with this point. If (xk+1)1 ≤ (1/2)
Lk+Uk

2 , the oracle will
return “xk+1 /∈ S̄” together with the separating halfspace “S̄ ⊂ {x ∈ <n : xk+1 > (1/2)

Lk+Uk
2 }.” If

instead (xk+1)1 > (1/2)
Lk+Uk

2 , the oracle will return “xk+1 /∈ S̄” together with the separating halfspace
“S̄ ⊂ {x ∈ <n : x1 < (1/2)

Lk+Uk
2 }.” In the first case we will define Lk+1 := Lk+Uk

2 and Uk+1 := Uk,
whereas in the second case we define Lk+1 := Lk and Uk+1 := Lk+Uk

2 . We proceed iteratively until the
algorithm has made K oracle calls (iterations) and we have generated a (monotone decreasing) sequence
{Li}Ki=0 and a (monotone increasing) sequence {Ui}Ki=0 according to the above rules.

Now define the following objects:

δ := min
{

1
4

(
1
2

)L0
, r
}

r̄ := (1/2)UK−(1/2)LK

2 − δ R̄ := (1/2)UK − (1/2)L0

ȳ := (1/2)LK +(1/2)UK

2 e1 S̄ := {x ∈ <n : ‖x− ȳ‖ ≤ r̄} .

Then it follows that the separating hyperplanes that were the output after each oracle are consistent
with the instance S̄. Note that R̄ > 0; to see this observe that Li − Ui = 2K−i for all i = 0, . . . ,K,
whereby LK − UK = 1 and:

R̄ =
(

1
2

)LK−1

−
(

1
2

)L0

=
(

1
2

)LK
(

2−
(

1
2

)L0−LK
)
> 0 .

We first argue that the points x1, . . . , xK /∈ S̄. To see this define Ci := {x ∈ <n : (1/2)Li + δ ≤ x1 ≤
(1/2)Ui − δ} for i = 1, . . . ,K. Then it follows that xi /∈ Ci and S̄ ⊂ CK ⊂ · · · ⊂ C2 ⊂ C1, therefore
xi /∈ S̄ for i = 1, . . . ,K.

We claim that S̄ ∈ U x̄,r,A. We first prove that S̄ ⊂ B(x̄, R̄). Indeed, let x ∈ S̄, then we have:

‖x− x̄‖ ≤ ‖x− ȳ‖+ ‖ȳ − x̄‖ ≤ r̄ +
(1/2)LK + (1/2)UK

2
− (1/2)L0 = (1/2)UK − (1/2)L0 − δ < R̄ ,

thus showing that x ∈ B(x̄, R̄) and proving this first part of the claim.

We next show that r̄ ≥ r. We have:

r̄ =
(1/2)LK−1 − (1/2)LK

2
− δ =

1
2

(
1
2

)LK

− δ ≥ 1
2

(
1
2

)L0

− δ =
1
2

(
1

22K

)
− δ ≥ 4r

2
− δ = 2r − δ ≥ r .

Last of all, we show that R̄/r̄ ≤ A, which will complete the proof. We have:

R̄

r̄
=

(1/2)UK − (1/2)L0

1
2

(
1
2

)LK − δ
≤ 2(1/2)LK − (1/2)L0

1
2

(
1
2

)LK − 1
4

(
1
2

)L0
= 4 ≤ A .

Hence S̄ ∈ U x̄,r,A and by construction, xi /∈ S̄, i = 1, . . . ,K. Therefore the algorithm makes at least K
oracle calls, proving the result. �

Remark 3.2 Note, just as in the case of Theorem 3.2, that in the proof of Theorem 3.3 that the instance
S̄ constructed in the proof has an aspect ratio bounded above by 4. (Also notice in the proof that R̄ ≤ 1.)
Therefore we could equivalently re-phrase the theorem to state that A = 4 rather than A ≥ 4.



12 Freund and Vera: Convex Problem Geometry and Computational Complexity
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

4. Discussion and Further Questions

4.1 On Stronger Lower Bounds There is a significant gap between the lower bound results in
Theorems 3.1, 3.2, and 3.3 and the upper bound result in Theorem 2.2. One reason for the gap has
to do with the absence of any dimensional factor n in the lower bound results. This is partially an
artifact of the proof constructions in the lower bound theorems, which are all essentially unidimensional
in nature. It might be of interest to strengthen the lower bound theorems by taking explicit advantage
of the dimension n in constructing suitable resisting oracles with stronger lower bounds. But even when
n = 1 there is a gap between the lower bound and the upper bound results concerning the dependence on
R and 1/r in Theorems 3.2 and 3.3, by a logarithmic factor. It would also be interesting to strengthen
these lower bound results by removing the extra logarithmic factor in the lower bound results.

4.2 Lower Bounds on Complexity for the (self-concordant) Barrier Model Taken together,
Theorems 3.1, 3.2, and 3.3 show that there exist problem instances in certain families characterized by
unfavorable geometry, that require more computational effort to solve by any separation oracle algorithm.
This naturally begs the question whether such an implication might extend to the case where the set is
described instead by a self-concordant barrier. In particular, consider the case when S is presented in
conic format (2) and the cone K has a computable self-concordant barrier. It is shown in [5] that in this
case favorable geometry of S implies favorable computational complexity of a suitably defined barrier
method for solving (1). However, it is an open challenge to prove an assertion that unfavorable geometry
implies (say, in the worst case) a large number of iterations of any (self-concordant) barrier method.

Acknowledgments. This research has been partially supported through the Singapore-MIT Al-
liance and AFOSR Grant FA9550-08-1-0350. We are grateful to two anonymous referees for their sug-
gestions on ways to improve the paper. The second author would also like to acknowledge the support
of the MIT Sloan School of Management as this research was carried out while being a visiting professor
there.

References

[1] A. Belloni and R. Freund. A geometric analysis of Renegar’s condition number, and its interplay with conic
curvature. Mathematical Programming, to appear, 2008.

[2] R. Bland, D. Goldfarb, and Michael J. Todd. The ellipsoid method: a survey. Operations Research,
29(6):1039–1091, 1981.

[3] R. M. Freund and J. R. Vera. Condition-based complexity of convex optimization in conic linear form via
the ellipsoid algorithm. SIAM Journal on Optimization, 10(1):155–176, 1999.

[4] R. M. Freund and J. R. Vera. Some characterizations and properties of the “distance to ill-posedness” and
the condition measure of a conic linear system. Mathematical Programming, 86(2):225–260, 1999.

[5] Robert M. Freund. Complexity of convex optimization using geometry-based measures and a reference point.
Mathematical Programming, 99:197–221, 2004.

[6] M. Grötschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. Springer-
Verlag, Berlin, 1998.

[7] L.G. Khachiyan. A polynomial algorithm in linear programming. Soviet Math. Dokl., 20(1):191–194, 1979.

[8] A.L. Levin. On an algorithm for the minimization of convex functions. Soviet Mathematics Doklady, 6:286–
290, 1965.

[9] L.Porkolab and L.Khachiyan. On the complexity of semidefinite programs. Journal of Global Optimization,
10:351–365, 1997.

[10] T.L. Magnanti and G. Perakis. A unifying geometric solution framework and complexity analysis for varia-
tional inequalities. Mathematical Programming, 71:327–351, 1995.

[11] A. Nemirovsky. private communication. 1998.

[12] A.S. Nemirovsky and D.B. Yudin. Informational complexity and efficient methods for solving complex
extremal problems. Ekonomika i Matem. Metody, 12:357–369, 1976.

[13] Yuri Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic Publishers, Norwell, MA,
2004.

[14] J. Renegar. Some perturbation theory for linear programming. Mathematical Programming, 65(1):73–91,
1994.

[15] J. Renegar. Linear programming, complexity theory, and elementary functional analysis. Mathematical
Programming, 70(3):279–351, 1995.



Freund and Vera: Convex Problem Geometry and Computational Complexity
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 13

[16] Wolfram Research. Gamma function: Inequalities. http://functions.wolfram.com/GammaBetaErf/Gamma/
29/, downloaded in June 2008.

[17] C. Roos. private communication. 1999.

[18] F. Rosenblatt. Principles of Neurodynamics. Spartan Books, Washington, DC, 1962.

[19] P. Vaidya. A new algorithm for minimizing convex functions over convex sets. In Proceedings of the 30th IEEE
Symposium on Foundations of Computer Science, pages 338–343, Los Alamitos, CA, 1989. IEEE Computer
Soc. Press.

http://functions.wolfram.com/GammaBetaErf/Gamma/29/
http://functions.wolfram.com/GammaBetaErf/Gamma/29/

