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Università Campus Bio-Medico, 00128, Rome, Italy

Hermano Igo Krebs
hikrebs@mit.edu
Newman Lab for Biomechanics and Human Rehabilitation, Department of Mechanical
Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.;
Burke Medical Research Institute, Department of Neurology and Neuroscience, Weill
Medical College of Cornell University, White Plains, NY 10605, U.S.A.; and
Department of Neurology, University of Maryland School of Medicine, Baltimore,
MD 21201, U.S.A.

Humans have the ability to learn novel motor tasks while manipulating
the environment. Several models of motor learning have been proposed
in the literature, but few of them address the problem of retention and in-
terference of motor memory. The modular selection and identification for
control (MOSAIC) model, originally proposed by Wolpert and Kawato,
is one of the most relevant contributions; it suggests a possible strategy
on how the human motor control system learns and adapts to novel en-
vironments. MOSAIC employs the concept of forward and inverse mod-
els. The same group later proposed the hidden Markov model (HMM)
MOSAIC, which affords learning multiple tasks. The significant draw-
back of this second approach is that the HMM must be trained with a
complete data set that includes all contexts. Since the number of contexts
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or modules is fixed from the onset, this approach does not afford incre-
mental learning of new tasks. In this letter, we present an alternative
architecture to overcome this problem, based on a nonparametric regres-
sion algorithm, named locally weighted projection regression (LWPR).
This network structure develops according to the contexts allowing in-
cremental training. Of notice, interaction force is used to disambiguate
among different contexts. We demonstrate the capability of this alterna-
tive architecture with a simulated 2 degree-of-freedom representation of
the human arm that learns to interact with three distinct objects, repro-
ducing the same test paradigm of the HMM MOSAIC. After learning
the dynamics of the three objects, the LWPR network successfully learns
to compensate for a novel velocity-dependent force field. Equally impor-
tant, it retains previously acquired knowledge on the interaction with the
three objects. Thus, this architecture allows both incremental learning of
new tasks and retention of previously acquired knowledge, a feature of
human motor learning and memory.

1 Introduction

Humans are able to learn a large repertoire of motor behaviors and ma-
nipulate objects with different dynamic properties. Also, they exhibit capa-
bilities of fast adaptation to different environmental situations and show
high reactivity in fast movements. Several studies, including experiments
on the adaptation of unimpaired subjects to novel force fields, led to the
concept of an internal model (e.g., Ito, 1970; Shadmehr & Mussa-Ivaldi,
1994; Flanagan, Wolpert, & Johansson, 2001; Flanagan, Vetter, Johansson,
& Wolpert, 2003; Franklin, Osu, Burdet, Kawato, & Milner, 2003). Internal
models are thought to be neural representations of human body and of
the interaction environment, generated by the central nervous system and
continuously evolving during learning (Craik, 1943). They may represent
an efficient mechanism to build and solve complex computational issues of
motor control (Miall, Weir, Wolpert, & Stein, 1993; Miall & Wolpert, 1996;
Wolpert & Ghahramani, 2000). In particular, they may play a fundamental
role in generating anticipatory actions and performing fast and coordi-
nated movements (Kawato, 1999) while maintaining low stiffness (Gomi
& Kawato, 1996). It was hypothesized that the cerebellum acquires multi-
ple internal models in order to adapt to different environmental situations,
and each model is tuned to a specific context (Wolpert & Kawato, 1998).
Evidence was provided through studies on the cerebellum based on fMRI
(Imamizu, Kuroda, Miyauch, Yoshioka, & Kawato, 2003).

Several computational solutions found in the robotics and neuroscience
literature try to implement human learning of multiple tasks by generating
multiple internal models (Gomi & Kawato, 1993; Narendra & Balakrishnan,
1997; Wolpert & Kawato, 1998; Haruno, Wolpert, & Kawato, 2001; Doya,
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Samejima, Katagiri, & Kawato, 2002; Petkos & Vijayakumar, 2007). Most of
the approaches require defining in advance the number of internal mod-
els needed to perform different tasks; the context is often inferred using a
Bayesian probabilistic model in order to select the proper internal model for
the particular context (Wolpert & Kawato, 1998; Haruno et al., 2001; Doya
et al., 2002; Petkos & Vijayakumar, 2007). Furthermore, retention and inter-
ference in motor memory remain unsolved issues. A biologically inspired
model that accounts for these issues could be used to analyze and improve
motor training procedures. As we are exploring the common traits between
motor learning and motor recovery from stroke, such models could be used
to improve and validate neurorehabilitation therapy protocols.

Modular selection and identification for control (MOSAIC) is a compu-
tational model that copes with the problem of learning multiple motor tasks
under a biological framework (Wolpert & Kawato, 1998). It proposes the
notion of paired internal forward and inverse models for human motor
learning and control, thus suggesting a possible strategy used to learn and
adapt to different dynamic conditions. The forward and inverse models act
respectively as predictors and controllers. Each forward and inverse model
pair is coupled in a module, where each module specializes in a different
context (task). Two implementations were described for the responsibility
function, which is used to select among modules: one was based on the
soft-max likelihood function, which was proposed in the original version
of the MOSAIC (Wolpert & Kawato, 1998), and another was based on a hid-
den Markov model (HMM), which was proposed in an extended version of
the MOSAIC (Haruno et al., 2001).

The HMM is a probabilistic model of context transitions. Contrary to
the soft-max likelihood function, the HMM performs this switching role
quite well (Haruno et al., 2001). However, because the HMM estimates the
probability of switching from one module to another (transition probabil-
ities), the HMM MOSAIC needs to be trained on the complete task space
(manipulated objects). This implies that incremental learning cannot be ac-
complished (Rabiner, 1989). The number of modules is fixed and set at the
beginning of the training; objects (tasks) lying outside the polyhedral de-
fined by the objects used for training cannot subsequently be added to the
model (Haruno et al., 2001). This is a major limitation of the HMM MOSAIC
since humans can learn novel tasks in an orderly fashion. This limitation
precludes us from employing the HMM MOSAIC in neurorehabilitation to
model motor recovery from stroke. For subjects recovering from stroke, the
ability to learn different motor tasks in an orderly fashion is crucial (Krebs,
Hogan, Aisen, & Volpe, 1998; Hogan et al., 2006; Krebs et al., 2007).

To extend the HMM MOSAIC to such circumstances requires develop-
ing new methods that afford dynamic allocation of hidden states. In fact,
the machine learning community has been developing such novel HMM
methods (e.g., Beal, Ghahramani, & Rasmussen, 2002), but so far all att-
empts employ heavy sampling methods, which are not suitable for motor
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control. We are also exploring alternative approaches to model this feature
of motor learning. Here, instead of using a model-switching strategy, with a
predefined number of multiple internal models, we report on an approach
that allows a single internal model to handle multiple contexts and affords
incremental learning. In contrast to the other approaches in the literature,
our approach employs the interaction force to directly infer the context. We
use a locally weighted projection regression (LWPR) network (Vijayakumar,
D’Souza, & Schaal, 2005) to implement the inverse model. LWPR networks
belong to the class of locally weighted learning algorithms (Atkeson, Moore,
& Schaal, 1997). These algorithms exploit spatially localized linear models
to approximate nonlinear functions and have been successfully used for
incremental learning in robotic platforms (Schaal, Atkeson, & Vijayakumar,
2002; Bacciu, Zollo, Guglielmelli, Leoni, & Starita, 2004; Zollo et al., 2008). A
salient feature of the LWPR network is its reduced computational burden,
which is accomplished by projecting the network inputs onto orthogonal
directions using a partial least squares (PLS) algorithm (Geladi & Kowalski,
1986) and performing regressions in the reduced space (Vijayakumar et al.,
2005). Such a method allows incremental learning as long as inputs to the
network are spatially separated in the “input domain.” We use the inter-
action force between the hand and the environment to perform such a
separation in the input variables space.

Our aim is to learn different tasks without limiting a priori the number
of tasks and minimizing interference with the previously learned tasks. We
demonstrate that our LWPR-based architecture is capable of learning to
manipulate the same three objects trained in the HMM MOSAIC literature
(Haruno et al., 2001), each presented in a separate training session, and
after completing such training, learning a new task (compensating for the
perturbations generated by a velocity-dependent force field) while retaining
the previously acquired tasks. In other words, this architecture is capable of
acquiring and retaining new motor tasks presented in an orderly fashion,
thus providing a more realistic model for human lifelong learning capability
and for the neurorehabilitation process.

Several studies have investigated arm-reaching movements of unim-
paired subjects exposed to a robot-generated velocity-dependent pertur-
bation force (e.g., Shadmehr & Mussa-Ivaldi, 1994; Krebs, Brashers-Krug,
et al., 1998; Osu, Hirai, Yoshioka, & Kawato, 2004; Davidson & Wolpert,
2004). These studies demonstrated that after an adequate number of trials,
subjects were able to produce forces that counteracted the forces applied
by the robot. In our case, the forces produced by the simulated force field
define a novel task that the LWPR architecture has to learn to manipulate.

2 LWPR-Based Control Architecture

The LWPR-based architecture is shown in Figure 1. It consists of a pro-
portional derivative (PD) controller, which generates a feedback torque τ FB
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Figure 1: Proposed LWPR-based architecture. It consists of an inverse model
and a PD feedback controller. The inverse model is implemented using the
LWPR algorithm. Its inputs are the desired Cartesian trajectory in terms of
position, velocity, and accelerations and the interaction force F acting at the
hand. The output is the feedforward torque (τ̂FF ). The PD feedback controller
inputs are the actual and desired angular positions and velocities (θ, θd and
θ̇ , θ̇d ), which are derived from the Cartesian trajectory by means of analytical
inverse kinematics. The output is the feedback torque τ fb. The feedback and
the feedforward motor commands are combined to generate the training signal
according to the feedback error learning strategy. The block labeled D stands
for a sample unit delay. The force input F is used to learn an inverse dynamic
model of the arm plus the environment.

proportional to the difference between the desired and actual joint trajectory,
and an adaptive inverse model of the arm, whose output is a feedforward
torque τ̂FF. The trajectory is planned in the Cartesian space, and the corre-
sponding joint angles are computed by inverse kinematics. This choice does
not limit the validity of our approach. In the case of redundant systems,
redundancy can be managed by the selection of appropriate algorithms
(Baillieul & Martin, 1990).1 We train an inverse model that inputs the de-
sired Cartesian trajectory and the interaction forces between the hand and
the environment to generate the proper torques to compensate for these
external forces while following the desired trajectory. The learning scheme
should be able to learn novel data presented in an orderly fashion while
minimizing interference and retaining previously learned tasks. Such data
account for the different tasks experienced according to the interaction force
level.

1For redundant systems like humans, analytical inverse solutions to the kinematics
do not exist normally. Thus, differential and numerical solutions need to be employed.
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We illustrate our approach with a simulated arm made up of two rigid
links moving in the horizontal plane, without any friction. The dynamic
equation of the arm can be written as follows:

I (θ )θ̈ + C(θ, θ̇ )θ̇ = τ − J T F, (2.1)

where:
� θ, θ̇ , θ̈ : respectively, angular position, velocity, and acceleration of the

arm (2 × 1)
� I : inertia matrix (2 × 2)
� C: centripetal and Coriolis matrix (2 × 2)
� τ : control torque vector (2 × 1)
� JT : transpose of the Jacobian matrix (2 × 2)
� F: interaction forces vector acting on the arm in Cartesian space (2 × 1)

The inverse model is implemented using the LWPR network
(Vijayakumar et al., 2005), which approximates a nonlinear function (i.e.,
the dynamic model) by means of piecewise linear regressions. Each linear
model approximates the nonlinear function within a region of domain de-
termined by a gaussian kernel called a receptive field (RF). The RF assigns
a weight to an input data vector x according to the following function:

wk = e(− 1
2 (x−ck )T Dk (x−ck )), (2.2)

where wk is the value of the kth gaussian kernel and ck the center of the RF.
The matrix Dk (distance metric) determines the size and shape of the RF,
thus defining the region of validity of the kth linear model. Each model gives
its individual prediction according to the following linear relationship:

ŷk = (x − ck)T bk + b0,k = x̃Tβk

x̃ = ((x − ck)T , 1)T , βk = (bk, bo,k),
(2.3)

where bk and b0,k are the parameters of the kth linear model (i.e., the
regression coefficients). Linear models are added on an as-needed basis:
whenever input data do not activate any existing RFs above a threshold,
a new linear model is added, with the corresponding RF centered at that
point. In our simulation, this threshold is set to 0.1. The algorithm then tunes
the parameters Dk and βk for each RF using nonparametric regression tech-
niques (Schaal & Atkeson, 1998; Vijayakumar et al., 2005). The output ŷ of
the network is given by the weighted sum of the individual predictions ŷk ,

ŷ =
∑K

k=1 ŷkwk∑K
k=1 wk

, (2.4)

where K is the number of linear models that have been allocated.
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Table 1: The Characteristics of the Three Objects.

Object M (Kg) B (N s/m) K (N/m)

1 1 2 8
2 5 7 4
3 8 3 1

To approximate the mapping described in equation 2.1, the network
inputs are the desired Cartesian trajectory and interaction forces at the
hand, and the outputs are the feedforward torques. The inverse model
is trained using a feedback error learning strategy. In this approach, the
feedback controller is exploited to convert trajectory errors into the motor
command space, thus providing an error signal to train a neural network
(Kawato, 1990). The LWPR algorithm requires a target signal, and since
the target motor commands are not available, the following pseudo-target
signal (Shibata & Schaal, 2001) is adopted:

τFF (t − 1) = τ̂FF (t − 1) + τFB(t), (2.5)

where τFF is the network target (i.e., the feedforward torque), τ̂FF is the
network output, and τFB is the feedback controller output.

3 Model Testing and Validation

3.1 External Forces. Arm simulations are carried out first with the same
three objects described in the HMM MOSAIC (Haruno et al., 2001), followed
by reaching movements within a velocity-dependent force field (Shadmehr
& Mussa-Ivaldi, 1994). The interaction force when interacting with the three
objects is described by

F = Mp̈ + B ṗ + K p

p = [x y]T ,
(3.1)

where M is the 2 × 2 mass matrix, B is the 2 × 2 damping matrix, and K is
the 2 × 2 stiffness matrix. These equal value diagonal matrices are exactly
the same as described in Haruno et al. (2001). The sole difference is that
we allow the interaction forces to actuate on both x and y axes. Table 1
summarizes the parameters for the three objects.

Because it has been used extensively in previous motor learning
research, we chose an experimental design similar to that of Shadmehr
and Mussa-Ivaldi (1994). The perturbation forces were velocity dependent,
a conservative force field ( �F T · �V = 0) according to the following relations
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Figure 2: Desired acceleration, velocity, and position profiles on the x and y
axis generated by an Ornstein-Uhlenbeck process. The bottom right plot shows
the resulting hand trajectory.

(Krebs, Brashers-Krug, et al., 1998):

[
Fx

Fy

]
=

[
0 Bc

−Bc 0

][
ẋ

ẏ

]
, (3.2)

where Bc is a coefficient equal to 40 N s/m; the velocity in x-y direction
(ẋ, ẏ) is given in m/s; and the forces in the x-y direction (Fx, Fy) are in
newton, with the force field actuating in a clockwise fashion.

3.2 Desired Trajectory. To allow proper comparison, we employed the
same desired trajectories employed by Haruno et al. (2001) in the sim-
ulations of the HMM MOSAIC model. Trajectories are generated by an
Ornstein-Uhlenbeck (OU) process (Uhlenbeck & Ornstein, 1930). A stochas-
tic process Xt is an OU process if it is stationary, gaussian, Markovian,
and continuous in probability. It can be described by the following linear
stochastic differential equation:

dXt = −ρ(Xt − µ) dt + σ · dWt, (3.3)

where Wt is Brownian motion with a unit variance parameter and µ, ρ, and
σ are constants. From equation 3.3, a desired stochastic acceleration profile
is generated for each axis. Figure 2 shows the desired hand accelerations,
velocities, and positions and the resulting hand path.
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In the case of the force field, the desired trajectory is a reaching move-
ment. Human reaching movements tend to be straight in Cartesian space
and have a typical bell-shaped velocity profile (Flash & Hogan, 1985;
Morasso, 1981). The hand trajectory is obtained by minimizing the jerk,
which leads to the following general solution for each coordinate:

x(t) = ao + a1t + a2t2 + a3t3 + a4t4 + a5t5, (3.4)

where the constants ai are found by imposing boundary conditions on po-
sitions, velocities, and accelerations. We consider the boundary conditions
as zero velocity and acceleration at the start and end of movement.

3.3 Training. To resemble human learning that occurs in orderly fash-
ion, we included four distinct training sessions. During the first three train-
ing sessions, the simulated human arm was holding one of the three HMM
MOSAIC objects (i.e., first object 1, then object 2, and finally object 3) and
was commanded with a desired trajectory generated by the OU process.
The resulting network was then trained during a reaching arm movement
in the presence of the velocity-dependent force field. The LWPR network
adds linear models and corresponding RFs as needed during execution of
the movement.

3.4 Stability. One of the major drawbacks of LWPR is the sensitivity
to the initial conditions (Vijayakumar et al., 2005), especially to the initial-
ization of the distance metric matrix Dk (see equation 2.2). In our case, to
ensure convergence of the learning algorithm, this initialization and the
PD gains must be carefully selected. Also, the network inputs and outputs
must be normalized according to their physical ranges of variation. Table 2
shows the selected ranges for our case.

At the beginning of each training session, the distance metric matrix Dk

associated with each RF was initialized with the inverse of the variance of
the input data (Schaal et al., 2002). The matrix Dk is chosen as diagonal and
is of the following form:

Dk = h




d1 0 · · · 0

0 d2 · · · 0
...

. . .

0 d8




di = 1
σ 2

i

,

(3.5)

where σ 2
i is the variance of the ith input and h is a scalar coefficient equal

to 0.5. Here the subscript i goes from 1 to 8 since the input vector has eight
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Table 2: Ranges of Variation for Variable Normalization for the LWPR Network.

x [−0.25,0.25] m
y [0,0.6] m
ẋ [−2,2] m/s
ẏ [−2,2] m/s
ẍ [−3,3] m/s
ÿ [−3,3] m/s
Fx [−10,10] N
Fy [−10,10] N
τsho [−10,10] Nm
τelb [−10,10] Nm

Note: Each variable is normalized to
ensure convergence of the learning
algorithm.

entries (six components for the desired Cartesian trajectory, velocity, and
acceleration and two components for the external force). This matrix defines
the initial shape of the RF activation function. The shape of an RF defines the
region of validity of the corresponding linear model, according to the value
of the gaussian kernel (see equation 2.2). By initializing the matrix Dk with
the inverse of the variance of the training input data, we are assuming that
some prior information is known as to the distribution of these data. This
is especially useful when dealing with data that have different distribution
among the training sessions, as is the case of the interaction forces in the
four tasks.

The PD gains of the feedback controller must also be initialized properly.
In Nakanishi and Schaal (2004), sufficient conditions were provided for
choosing the feedback gains in order to ensure stability of the feedback error
learning scheme. The approach was based on the strict positive realness
(SPR) of the error dynamics and was demonstrated for single input–single
output systems. In general, small values allow large deviations from the
reference trajectory, thus producing an inaccurate training signal, while
high values lead to instability. The feedback control torque τFB is computed
in the joint space as follows:

τFB = K p θ̃ + Kd
˙̃θ

θ̃ = θd − θ,
(3.6)

where K p and Kd are the 2 × 2 matrices of the proportional and derivative
gains and regulate the arm stiffness and damping during training and θd and
θ is the 2 × 1 vector of the desired and actual angular position, respectively.
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Table 3: nMSE for Each Task.

nMSE PD + nMSE PD + Inverse
Task nMSE PD Alone Inverse Model model After FF �nMSE

OBJ 1 0.1402 0.0265 0.0263 −0.0002
OBJ 2 0.2247 0.0455 0.0481 0.0026
OBJ 3 0.3440 0.0490 0.0843 0.0353
Force Field 0.0011 7.16E-08

Notes: �nMSE is the difference between the nMSE after and before learning the FF task.
Negative values indicate improved performance.

For object 1, the following values (Berniker, 2000) are used:

K p =
(

20 40

40 50

)

Kd =
(

2 4

4 5

)
.

(3.7)

For objects 2 and 3, the gains are increased by a factor of 2 and 4, respec-
tively. These values for the gains were derived heuristically. After learning,
the gains were set again to their base values (i.e., the values adopted for
object 1). This is not unlike human behavior during adaptation to novel
dynamics. At the first stages, we co-contract to compensate for external
disturbances, and later, as we learn to manipulate the task dynamics, we
reduce the stiffness and generate a compensatory force to the external dis-
turbance (Franklin et al., 2003; Milner & Franklin, 2005). For training on the
velocity-dependent force field, we employed the same K p and Kd used for
object 1.

4 Results

Table 3 contains values of the normalized mean square error (nMSE) for each
training session. The nMSE is defined as the mean square error divided by
the variance of the target data values. The first two numerical columns
show the nMSE when using the PD controller alone or combined with the
trained inverse model, respectively. As expected, the nMSE is always lower
when using the PD control combined with the inverse model. In the third
column, the nMSE is reported for the tasks performed with the three objects
after learning the force field (FF) task. A measure of the interference during
learning is provided by �nMSE in the last column, which is the difference
between the nMSE after and before learning with the FF task.

Figure 3 shows the training results of the inverse model for movements
lasting 0.6 seconds, while the arm holds each of the three different objects.
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Figure 3: Training with three distinct objects. The figure shows the desired x-
axis acceleration (solid gray line) and actual acceleration when using the PD
controller (dotted line) and when using both the PD and the trained inverse
model (dark line). Each plot from top to bottom corresponds to the arm holding
one of the three distinct objects, and each plot lists the normalized mean square
error (nMSE) for the PD alone case and the combined PD and inverse model.
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Figure 4: Hand trace during reaching and a force field perturbation. The figure
shows the hand trajectory when using the PD controller alone (dotted line) and
after training the inverse model (solid line). Note the hook in the untrained case
(PD controller alone).

Each plot shows the desired hand acceleration and the actual accelerations
when using the PD controller alone or combined with the inverse model.
Despite the sharpness of the desired acceleration profile, the inverse model
allows tracking of the acceleration reference, compensating for the inter-
action forces exerted by the objects. For example, in the case of object 3,
the nMSE drops from 0.344 to only 0.049 when the PD controller is used in
conjunction with the inverse model.

Figure 4 shows the results of the subsequent training of the same network
on arm reaching movements exposed to the perturbation force field. The
reaching movement lasts for 1.2 s and covers 20 cm of displacement.
The figure shows a top view of the hand trace before and after training
the inverse model. Note the clockwise “hook” similar to experimental data
on unimpaired subjects during initial exposure to the perturbation force
field (Shadmehr & Mussa-Ivaldi, 1994; Krebs, Brashers-Krug, et al., 1998).
After training the inverse model, the hand path is close to a straight line,
owing to the torque compensation due to the inverse model. The nMSE
between desired and actual position decreases from a value of 0.0011 to a
value of 7.16E-08, when using the inverse model, showing an almost perfect
compensation of the perturbing forces.

Learning is performed online; namely, linear models are added during
arm movements. The maximum number of epochs is set to 5, since no
reduction of the nMSE is obtained with further learning. At the end of the
training sessions, 80 linear models are allocated.

Figure 5 shows the retention results. After learning the objects task and
subsequently the force field task, the network was tested again on the objects



2022 L. Lonini et al.

Figure 5: Retention of learning. The figure shows the retention and forgetful-
ness of the previously learned dynamics of the three objects. After training the
inverse model on the perturbation force field, we tested the network for reten-
tion, and as can be seen, the LWPR inverse model is still able to compensate for
the forces exerted by each object. Of note, the nMSE for the inverse model reveals
poorer performance than in Figure 3, which is in line with another characteristic
of human motor learning, acquisition, and retention.
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task. Again each plot corresponds to the arm holding one of the three objects.
The network successfully acquires the ability to compensate for the novel
velocity-dependent force field, and of note, it retains previously acquired
knowledge on the interaction with the three objects. As shown in Table 3, the
nMSE is always notably below the values obtained with the PD controller
alone. In the worst case corresponding to object 3, the nMSE increases from
0.0490 to 0.0843, which is far smaller than the 0.344 value obtained for the PD
controller alone and might indicate forgetfulness. For the best case, object
1’s nMSE slightly decreased after learning the force field task, meaning that
no negative interference occurred. Thus, the proposed architecture shows
features of motor learning, including forgetfulness and retention.

5 Discussion

Acquisition and retention of multiple internal models is a general compu-
tational approach to cope with the problem of learning multiple tasks and
quickly adapt to different contexts (Wolpert & Kawato, 1998; Haruno et al.,
2001; Doya et al., 2002; Petkos & Vijayakumar, 2007). Most of the control
architectures proposed in the literature share the approach of learning mul-
tiple models and using a probabilistic model to switch or mix the outputs in
order to obtain motor commands suitable for each context. To our knowl-
edge, they do not allow incremental acquisition and retention of multiple
motor tasks.

MOSAIC is an important representative model of human motor learning
and adaptation to different contexts. MOSAIC has a modular architecture
made of a fixed number of modules that should be able to learn multi-
ple different tasks. Through a soft-max function or on a later version, an
HMM, MOSAIC is able to learn and switch between multiple tasks. Of
note, the HMM MOSAIC was introduced later to improve switching be-
tween modules with respect to the soft-max version, especially when the
manipulated object changes infrequently (every 200 ms or more). There
are two major drawbacks in these schemes. First, when a fixed number of
modules is used, the architecture cannot learn additional novel contexts.
In other words, the MOSAIC model is not capable of subsequently adding
new objects whose properties lie outside the tetrahedron defined by the a
priori trained modules. Second, although the HMM MOSAIC model is able
to learn and correctly select among the a priori defined objects, training
of the HMM requires simultaneous training of all states. In order to learn
transitions between the states (number of objects), objects must change dur-
ing the movement. In other words, the model must learn all the contexts
at the same time. While this handicap might not invalidate this model for
some applications, retention is a key feature of motor learning. Humans do
not retrain the entire repertoire of previously learned tasks when learning
a new task. They are capable of learning new tasks presented an in orderly
fashion.
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We proposed learning of a single inverse model that is subject to differ-
ent interaction forces using a nonparametric regression network, the LWPR.
This network is based on local linear approximators and is capable of min-
imizing interference with previously learned tasks, provided that the new
task occupies a different space (i.e., activates different RFs). As with other
approaches in the literature (Haruno et al., 2001; Doya et al., 2002), our
approach mixes the output of different linear models to approximate the
target function (see equation 2.4). However to our knowledge, for the first
time, we propose the use of an additional input of the interaction force to
infer the context directly. We do not need to estimate the context through
a probabilistic model. Other studies have shown that we learn both the
inverse dynamic model of arm and the interaction forces to control the
kinematics of manipulated objects (Dingwell, Mah, & Mussa-Ivaldi, 2002).
In addition, we use the haptic information given by the interaction force
during learning of a skilled task (Huang, Gillespie, & Kuo, 2006).

As shown in the simulations, the proposed architecture allows learning
different tasks, such as manipulation of three distinct objects and compen-
sation of perturbation forces, in an orderly fashion, and it is able to retain
learning. Furthermore, in contrast to other methods (Haruno et al., 2001),
the inverse model is not required at onset. The only information required
in advance is an estimate of the variance of the input data for each task. Of
note, an unexpected limitation of the proposed algorithm to model human
motor learning is its fast convergence. Only a limited number of repetitions
are usually sufficient for the LWPR network to learn each task (five epochs in
our object learning example). For the perturbation force field, the hand trace
was almost straight after the second trial as compared to the 160 movements
experimentally observed in humans (Krebs, Brashers-Krug, et al., 1998).

6 Conclusion

We presented a novel model for motor control of the human arm movement
based on a nonparametric regression network, the LWPR. This approach,
though using a simple control scheme, showed its ability to acquire and
retain learning of different tasks presented in an orderly fashion. By training
an inverse model with additional input, the interaction force, the network
is capable of discriminating among different contexts. Moreover, the LWPR
network benefits from local approximation, which allows retention of
previously learned tasks. At this stage, one can only speculate that such
a computational scheme might be highly advantageous in many different
situations. For example during locomotion, the interaction forces during
the swing and stance phases are quite distinct, as are the body dynamics.
Likewise when handling a tool, the initial reaching arm movement to the
work space is unconstrained, while the actual tool manipulation is highly
constrained and possibly requires tool stabilization. In conclusion, to the
best of our knowledge, our model provides significant advantages over
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previous models of motor learning of multiple tasks. That is, our model not
only addresses key deficiencies of past efforts including serial acquisition
of learning and retention, which are key features of human motor learning;
it may also herald new insights and a deeper understanding of the motor
system, with important implications for basic research in neuroscience and
translational applications to neurorehabilitation and advanced robotics.
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