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A. ULTRASONIC DISPERSION IN PIEZOELECTRIC SEMICONDUCTORS

We are continuing our investigation of the dependence of the phase velocity for

piezoelectrically stiffened transverse waves in CdS on the electrical conductivity and

applied drift field. In a previous progress report1 we showed that our experimental

results were not in good agreement with White's theory.2 In his derivation, White takes

into account the effect of electron trapping by defining a trapping factor fo, which is a

real number equal to the fraction of the acoustically bunched space charge which is

mobile. Under this assumption, the relaxation time, T, for equilibration between the

trapped electrons and those in the conduction band is much smaller than the acoustic-

wave period, and, therefore, the free and trapped bunched electrons oscillate in phase.

For an arbitrary T, the trapping factor has the complex form

f - jWT
f= o (1)

1 - jWT

This result can be derived either phenomenologically 3 or from a detailed treatment of

the trapping kinetics.4 By using this complex trapping factor, we obtain the following

expression for the sonic velocity, vs , which gives good agreement with our experimental

results:

v (W E)I y( y-awc/w) + (w/wD+a)(w/woD c/w+a)

s Ed) (y-a c/)2 + (/WD c/w+a) 2

+ higher order terms in k2} ,  (2)

where w is the acoustic-wave angular frequency, a is the electrical conductivity, Ed
is the applied drift field, v0 is the "zero-field" unstiffened phase velocity, k2 (<<1) is

the square of the electromechanical coupling constant, y = 1 + 'Ed/V s is the drift

parameter, wec = a/E is the conductivity relaxation frequency, WD = (e/kT) vs/p ' is the
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Fig. VI- 1. Variation of phase velocity with applied drift field and elec-
trical conductivity, for a 32-MHz transverse wave in CdS at
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20. 00C. The value for o- is 1.3 X 10 - 5  cmO
(a) Theoretical curves calculated from Eq. 2, using f =

2 o
0. 18, T = 2. 6 ns, k = 0. 036, v = 1.75 km/s. ValuesO
for t, obtained independently from ultrasonic amplifi-
cation measurements at 406 MHz, vary from 206-

2 -1 -1
332 cm V s over the conductivity range 1 -c to
1024 a .

(b) Theoretical curves calculated using T = 0 and f = 0. 68

were adjusted to give the same effective drift mobility
as in (a).
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diffusion frequency, ' 2 + 2 /(o+2 2)]. is the effective drift mobility, and

a = (1-f ) w/(f +wT).

Measurements of the dependence of the ultrasonic velocity on the applied drift field

were carried out over the frequency range 32-345 MHz, and over a range of electrical
-5 -z -1 -1

conductivities from 10 to 10 2 cm . With the aid of a visual curve-fitting pro-

gram on a computer with CRT output display, we found that Eq. 2 provided a good fit to

the data over the entire range of measurement, with the values f = 0. 18 and T = 2. 6 nso
used.

Figure VI-la shows the experimental results obtained at 32 MHz, and the corre-

sponding theoretical curves, calculated from Eq. 2, with the values for fo and T given

above used. For comparison, the same data are shown in Fig. VI-ib, but with the the-

oretical curves calculated for 7 = 0 (White's theory).

We wish to express our gratitude to M. Beeler of Project MAC, an M. I. T. Research

project sponsored by the Advanced Research Projects Agency, Department of Defense,

under Office of Naval Research Contract Nonr-4102(02), for his kindness in providing

the curve-fitting program.
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B. NONLINEAR SOUND TRANSMISSION THROUGH AN ORIFICE

When sound of sufficiently high amplitude is transmitted through a sharp-edged

orifice in a plate, flow separation will occur, and the velocity of the oscillatory

flow through the orifice is no longer linearly related to the incident sound pressure.

As a result, the transmitted sound will be distorted so that its frequency spectrum

will be different from that of the incident sound.

This effect has been studied experimentally for the case in which the incident

sound is a pure tone. In this experiment the orifice plate was set across a duct that was

terminated by a 100% absorber.1

The experimental results are shown in Figs. VI-2 and VI-3. In Fig. VI-2 the

drop in sound-pressure level across the orifice plate is shown as a function of the

level of the driving sound pressure. This result refers to the frequency (150 Hz)
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of the incident sound. At sound-pressure levels about 130 dB we note that AL increases

with the sound-pressure level, reaching a value of ~22 dB when the driving sound-

pressure level is 162 dB. In other words, this nonlinear "transmission loss" is ~18 dB

larger than the linear value.

In Fig. VI-3 the spectrum of the transmitted sound pressure when the driving

pressure level is 162 dB at a frequency of 150 Hz is shown. We note that the trans-

mitted spectrum contains a large number of harmonics and that the odd harmonics

predominate.

In attempting to understand these results, we shall assume that the acoustic

oscillations through the orifice can be treated quasi-statically. This means that the

steady flow characteristic relating pressure drop and flow is assumed valid also in

the acoustic case.

Thus, if the sound pressure on the "upstream" and "downstream" sides of the

orifice are P 1 and P3' the average velocity in the orifice is given by

uo = C 1  1  3 , 
(1)

where C 1 is an orifice coefficient, C1 = 0. 61.

Since on the downstream side the sound-pressure field is an outgoing wave (no

reflections), we have

P 3 
= (Ao/A 1 )pcuo' (2)

where Ao is the orifice area, A l is the duct area, p is the air density, and c is the

speed of sound. If we also include an inertial component in the air flow, it follows

from Eqs. I and 2 that we can relate P1 and Uo through the equation

puo IuJ A du
P1 - C + pcu + pt d- (3)1 2C2 Al cuo m dt

1

where t is a characteristic thickness of the orifice (including mass end correction).m
We now wish to determine the time dependence of the orifice velocity, u o , that corre-

sponds to a harmonic driving pressure pl = Ptot cos wt. We shall not solve Eq. 3 in

its complete form here, but consider only the high-intensity region in which the first

term predominates. The time dependence of the orifice velocity is then simply

u e C nd tcos wt = u max cos ete (4)

We expand this in a Fourier series
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Fig. VI-2. Sound-pressure level difference 20 log (pl/p 2)
between the two sides of a thin orifice plate in
a duct as a function of the sound-pressure level
20 log (p 1 /Pref) on the source side of the plate.

Orifice diameter 0. 7 cm; duct diameter 6. 2 cm;

frequency 150 Hz. Pref = 0. 0002 dyn/cm.
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Fig. VI-3. Recorded spectrum of pressure wave transmitted
through the orifice plate at 162 dB driving sound-
pressure level.
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u (t) = Z U cos nwt

and obtain

U =T/2
n 4

U n rJ
max 0

1/a
(cos x) cos nx dx

[( 1+2n)r( 1-2n -1]
4 4

8 N-

(1-4n )

U =0
n

where 1

are

is the gamma function. The first few harmonic components of the velocity

= 8 \2fY 2zU=-l1 2 4 3 ,] 3
3.4 3

3 1.11

U -i
3 7

5U U5 77 1

3
7 77 1'

Having obtained the frequency spectrum of the velocity in the aperture, we can deter-

mine the corresponding spectrum of the transmitted sound pressure from

Pt = f Pn cos Wt
A

0
Pn n pcU n .

It follows that the relative strength of the pressure amplitudes is obtained from the

result in Eq. 7. First, we note that the even harmonics are absent. The odd harmonics

decrease with the order n approximately as 1/n 2 for large n. If the level of the first

harmonic is chosen as reference, 0 dB, we see that the levels of the third, fifth, and

seventh harmonics are -18 dB, -24. 6 dB, and -29. 2 dB. In other words, there is a large

drop of 18 dB in level between the first and the third, whereas the level difference

between the third and the fifth is only 6. 6 dB. This is in excellent agreement with

experimental results.
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In order to determine the absolute level of the transmitted sound in terms of the

driving pressure PI, we have to solve for uo in Eq. 3 and use it in Eq. 1. In the high-
o 0 2

level regime such that pu /2C2 >> (A /A 1) pcu , that is, u > (A /A) 2C c and pu /2C 2

ptm duo/dt, the calculation is simple and we get u0 = C 1 2p/p and

P3 A 1 pcC 1

(9)

P 3 /pc 2 = C 1 (A /A 1) p 1l/pc2

The corresponding pressure-level difference in this high-level region can be expressed

as

20 log (pl/P 3 ) =-20 log (pl/Pref) + 20 log (A 1 /AoC 1 ) - 98. 5, (10)

where pref = 0. 0002 dyn/cm . This expression shows that the pressure-level difference

across the plate increases with the level of the driving pressure, an increase of 5 dB

for every increase of 10 dB in the pressure level, in excellent agreement with experi-

ments.

The absolute value of the predicted level difference is approximately 2 dB higher than

the observed value in this high-level region. In view of several possible sources of

error, this may be regarded as reasonably good agreement.
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