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1. Introduction

In this report we formally obtain some results regarding likelihood ratios and

mutual information for (conditional) Poisson processes with stochastic intensity func-

tions. Our results for likelihood ratios are an extension of results obtained recently

by Snyderl ' Z by a somewhat different approach (Snyder considers the case where the

stochastic intensity function is Markovian while our results include the case of non-

Markovian stochastic intensities). To the best of our knowledge, the results for mutual

information are new.

2. Likelihood Ratios

We consider the following problem. Given the observations {N(u), u-- u -<t of a con-

ditional Poisson counting process, determine so as to minimize an expected risk

function, which of the following hypotheses is true. 3

H 1 : X r(t) = ko +X(t) (1)

or oH X r(t) = X, (2)

where X r (t) is the (stochastic) intensity function of N(t). X might represent the rate
o 2

of arrival of photons from background radiation. Following Snyder, by a conditional

Poisson counting process, we mean that if {(r(t), t >0O is given, then {N(t), t >0} is an

integer valued process with independent increments, and for t > 0,
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Pr [N(t + At)-N(t)=l xr(t)] = Xr(t) At + o(At)

(3)

Pr [N(t + At)-N(t)=0 Xr(t)] = 1 - XrAt + o(At).

The method by which we obtain the likelihood ratio for the detection problem is
4-6

quite similar to that used by Duncan to obtain results for additive white Gaussian

noise channels. We first consider the likelihood ratio conditional on knowledge of

X (t). This is equivalent to the detection problem with known intensity function and
r 7-13

the form of the likelihood ratio is well known. The unconditional likelihood ratio

is then obtained by averaging over X(t) and utilizing certain properties of stochastic

integrals.

The likelihood ratio for the detection problem above conditional on knowledge of

X(t) has been shown by Reiffen and Sherman to be

st + x(u)
= X(t) = exp k(u) du + in dN(u) (4)

p(N I Ho) [ 0

where

p(Nt H 1 , X) = conditional probability density of the observed counting process

Nt = {N(u), 0 < u <t}, given X(t), under the assumption that H1 is true.
O

p(N Ho = conditional probability density of N , under the assumption that H
is true. 0

The second integral on the right-hand side of (4) (and all other integrals involving dN(u))

will be interpreted in the sense introduced by Ito (see Doobl).

Before averaging (3) over possible paths of X(t), we shall put (3) into a more con-

venient form by use of the Ito differential rule. Snyder 2 has shown that if zt is a

scalar Markov process satisfying the stochastic differential equation,

dzt = at dt + bt dNt ,  (5)

where at and bt are nonanticipative functionals of the Poisson counting process Nt ,

and t(zt) is a differentiable function of zt and t, then

dqt(zt) = (zt) + (zt) a dt + [t(zt+bt)-t(zt)]dNt. (6)

Applying (6) to (4), we find that X(t) satisfies the following stochastic differential

equation:
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dx(t) = -X(t) X(t) dt +
Lx Xo x(t)

X(t) e I n - X(t) dN(t)
(7)

= -x(t) x(t) dt + - X(t) X(t) dN(t),

or equivalently

X(t) = X(o) -
0

X(u) %(u) du + -
o0

X(u) X(u) dN(u).

We now take the expectation of both sides of (7) with respect to all possible paths of

X(t). From (4),

A(t) = EX[X(t) ] ,

we see that X(t) is related to the unconditional likelihood ratio, A(t),

(9)

where EX[. ] denotes averaging over all sample paths of X(t). Thus

A(t) = A(o) - EX X(u) X(u) du + E X(u)X(u) dN(u)
0 0

(10)

= A(o) - EX[X(u)X(u)] du +
0 o 0

In Eqs. 8-10, it is important to keep in mind that N(u) is the observation and thus

fixed, as far as the expectation in (9) and (10) is concerned.

The stochastic differential equation corresponding to (10) is

dA(t) = -EX[X(t)X(t)] dt + - Ex[X(t)X(t)] dN(t)
o

(11)
1

o
EX[(t)X(t) ]= - A(t) dt

E[X(t)]

EX[X(t)X(t) ] A(t) dN(t).
EX[X(t)]

EX[x(t)k(t)]

EX[X(t)]

EiXL(t)p(Nt I , H)]

E,[ t Ip X, H1

-X(t) = E x(t)i N

t
= conditional expectation of X(t), given No, under

H1 is true.
the assumption that

least-squares realizable estimate of X(t), under the assumption that
H 1 is true.
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Thus, we find that the likelihood ratio, A(t), is the solution to the stochastic dif-

ferential equation

A 1 ^

dA(t) = -xt) A(t) dt + - k(t) A(t) dN(t). (13)
o

The solution to (13) is

A(t) = expL (u) du + In dN(u) . (14)

A

Our result (14) can be verified by application of the Ito differential rule for Poisson

counting processes to (14) and noting that we obtain (13). Furthermore, (14) clearly

has the proper value at t = 0.

Comparing (14) with (4), we see that the likelihood ratio for stochastic intensity

functions is equivalent to that for known intensity functions, in the sense that the

causal minimum mean-square estimate of the intensity is incorporated in the detec-

tor in the same way as if it were known. An analogous relationship has been

obtained for stochastic signals on additive white Gaussian noise channels by Duncan. 4 ' 5

The form above for the likelihood ratio is identical to that obtained by Snyder 2

for Markovian X(t). Snyderl also has some results concerning means of obtaining

causal minimum mean-square estimates of k(t).

3. Mutual Information Results

We shall now apply our results for likelihood ratios to the problem of computing the

mutual information between the message process m and the conditional Poisson counting

process {N(t), t >0} when the stochastic intensity function of N(t) is X + X(m, t). Our
6 15 o

approach is quite similar to that of Duncan and Zakai who obtained mutual infor-

mation results for additive white Gaussian noise channels: We convert the problem

of calculating certain probabilities into a detection problem by introducing a dummy

hypothesis corresponding to Ho of the previous section. By using appropriate like-

lihood ratio results and some properties of stochastic integrals, we are able to obtain

results in terms of certain causal filtering estimates.

Let us define

N t = channel output in time interval [u, t] = counting process

Sr(t) = k(t, m) + ko = intensity function of N(t)

m = message.

The mutual information between Nt and m is given (see Gelfand and Yaglom 1 5 by
0
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I[N m = E log. (15)

The likelihood ratio appearing in the expression for the mutual information can be

written

p(Ntm p(NtIm
(16)

where

likelihood ratio for detection between the hypothesis that X (t)
-(Nt X(t, m) + Xo with the particular m and the hypothesis that Xr(t) =

p(Nt )

. = likelihood ratio for detection between the hypothesis k = X(t, m) + X with
(Nt m random and the hypothesis that k =

r o

Now, from section 2,

p(Nt m ) rt 0 t FX+(u, m)
= exp X(u, rn) du + t In 0 (u m) dN(u) (17)

p(N t )u)

oro- exp X(u) du + YIn X. dN(u), (18)

A
where X is the conditional mean of X(u, m), given N(u), o - u -< t. That is,

X(t)= EIX(t' m) I Nt, X(t) = X(t, m) +X]. (19)

Thus we have

QPR No. 98 107



(VIII. DETECTION AND ESTIMATION THEORY)

t At X + k(u, m)
I(Nto , m) = E [-X(u, m)+ (u)] du + In A dN(u) .

OX + (u)
(20)

The first integral can be shown to be zero by utilizing the properties of a conditional

expectation:

E [(u, m)-X (u)]du}
=E o E[ (u, m)IN t -X(u) du = 0.

To evaluate the second integral, we write

t in + X(u,) dN(u)
n 0 + dN(u) =

0O I

X + X(u, m)
n A

X 0 + X(U)
[dN(u) -k(u, m)du] + 5O In o

0

t X + X(u, m)
E In o ]- [dN(u)-k(u, m)du] = 0

from the definition of the stochastic integral, since N(u)- fOu
14

(Doob ).

Thus we have

[t t X + X(u, m)
ILN ,m = E In o k(u, m) dt.

tX w n+ (u)

Next, we note that

IN 0, m Y

(22)

k(u, m) du is a martingale

(23)

E{ln [o + X(u, m)] (u, m)-ln [X + X(u)] X(u, m)} du.

t
Again taking expectations conditional on No we obtain

I[N, m] =
0

n (u)] n [ u u]
E In [Xo+ k(u)] k(u) -In [Xo + k(u)] k(u) du,
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where

In [o + k(u)] k(u) = realizable least-squares estimate of X(u,m) In [ko +(u,m)],

given the observations {N(s), O - s -- u}, under the assumption
that (t) = X(t, m) + X

One can readily verify that I[N , m] is a monotone increasing function of t.

In the case of large background intensity, that is,

X >> X(u, m)

A

X0 >> X(u),

we can relate IIN t,m to a realizable least-squares filtering error by using the expansion

In [Xo+X] = In X + X/Xo

to obtain

I[ No'm = E[ (u)-k(u)] du = E{p(u)} du, (25)

A

where p(u) is the conditional variance of the estimate X(u).

A somewhat more interesting result can be obtained by using this expansion

on Eq. 23 to obtain

I[Nto, m] = E{[X(u, m)-(u)] X(u, m)} du. (26)

A A
The error, X(u, m) - X(u), is seen to be orthogonal to X(u) as follows:

E{[X(u, m)-X(u)](u)} = E(E [(u, m)-X(u)]X(u) Nt = 0,

so that (12) is equivalent to

I N m = 5 E ([X(t, m)-X(u)]2) du. (27)
o0

Equation 27 is our desired result for the relationship between the mutual information

and the realizable filtering error for the estimation of X(t).

A result quite similar to (27) was obtained for the mutual information on the white

Gaussian channel with (or without) feedback by Duncan and Zakai. They consider

the problem

y(t) = s, ys, m) ds + w(t), (28)
0
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where m denotes the message, y(t) denotes the channel output at time t, yS denotes the
path y(u), o - u < s, w(t) is a Brownian motion, and m is the channel input. The result
that they obtain is that the amount of information between the message m and the output
path yo I [' m , is related to a causal mean-square filtering error by

Iym = E Yo, 1 -Y, yo _ 2 ds, (29)

where

(s,yo = E [s, yo, m Iy ].

4. Summary

We have formally derived some results regarding likelihood ratios and mutual infor-
mation for (conditional) Poisson processes with stochastic intensity functions. The
results emphasize the role of realizable least-squares estimates of the stochastic inten-
sity. Several comments on extensions and utilization of the results presented here
are appropriate.

1. The derivation here is formal; for example, we have assumed that several
interchanges of integration and expectation are valid without giving sufficient condi-
tions. It would be of interest to rigorously establish these results by using appro-
priate Radon-Nikodym derivative results, 17 , 18 Borel fields, and so forth.

2. We can readily extend our result to cover the case of feedback channels, by
making a minor extension of the likelihood ratio results. Vector channels can also
be readily considered, by minor modifications to the likelihood-ratio results.

3. These results may be of interest in optical communication, 9 biomedical data
processing, 1 and studies of auditory psychophysics.19

J. E. Evans
[Mr. James E. Evans is an M. I. T. Lincoln Laboratory Staff Associate.]
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