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1. HIGH-SPEED NONLINEAR PLASMA WAVEST

When a wave propagates without changing its shape, particles move along constant
energy orbits in the wave frame. Thus the distribution function is known at all points
in phase space if it is specified at some position, say x = X If we take the distribu-

tion function to be Maxwellian at x = X

2 B 2
f(x_, v) = no\)671r PV no'\/57v e Plutw)™ (1)

where B = 2m/kT, u is the phase velocity, and w is the particle velocity in the wave
frame; the distribution function at other points is obtained as (1) evolves along constant

energy orbits.

2
i(x, v) = n_ N/ e Rlute)” (2)

where

cC=Ww '\,/ 1 - 2(94>/mw2 (3)

and ¢ is the wave potential.
This distribution function describes untrapped particles. Further specification of
the trapped particle distribution must be made for a complete description. Several

trapped particle distributions have been studied.l’ 2 In the large phase velocity limit,

*This work was supported in part by the U.S. Atomic Energy Commission
(Contract AT(30-1)-3980).

TThis work was performed at the University of South Florida, Tampa.
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plasma waves consistent with each of these distributions converge to the same asymp-
totic form (because in this limit the number of trapped particles becomes negligibly
small and their exact distribution is thus inconsequential). This asymptotic limit is the
subject of this report.

The electron density is given by

B(utc) 2

n=§°° dwfxw)—n /g lee > , (3)

-0
c +n

where n = 2e¢/m and the broken integral means that the range -N-n <c <N -7 is excluded.
This range represents excluded regions. The integrand is peaked near ¢ = -u with
a width of order B ~1/2. For Buz » 1, the integrand is negligibly small near the excluded
region and the range of integration may be extended from - to o with little error. The
asymptotic limit is insensitive to the details of the trapped distribution.

The density can now be expressed

Ba 00 ’a—xf _ 2
=n ﬁ \g dx e a@X , (4)
[0 m -0 2
1 - 2ay + x
where
-1/2
2 n
a=u"+m, a=uNas= 1+ — , X = (utc)/Na.
u
Using the generating function for Gegenbauer polynomials3
(1-2atra’ Z c) (5)
=0
we can write
=2 - Z (n+1) C_ 1(2) X, (6)

/\/1—2ax+)(2 n=0

where Cn(a) = Cil—l/z)(a), Co =1, Cl = —a and the higher order Gegenbauer polynomials

are related by the recursion relation

(n42)C o = (2n41)aC | + (1-n)C . (7)

n+2
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Term by term integration of (4) then gives

(8)

i (2m+1) C, . (a) T(m+1/2)
n=-n .
o I'(1/2)

m=0

A similar procedure yields the electron pseudopotential integral

0]
g =
3€O

n mea i (2m+1) D, . (a) T(m+1/2)
, (9)
a

Mgth I(1/2)

m=0

and

(n+2)D_,, = (2n-1)a D | + (3-n)D_. (10)

n+2
It is also possible to express (8) and (9) in terms of Legendre polynomials, although
less compactly.
Retaining the first two terms of (8) gives

n

n
_ o 3 N o2kT 1
e R (11)

/1+ﬂ/u2 u” mu (1+1’1/uz)2

The first term in (l11) is recognized as the result obtained by Akhiezer and

Lyubarskii4 for nonlinear waves in a zero-temperature plasma using the fluid equations.
The second term, then, is a finite temperature correction. A zero-temperature plasma
wave oscillates at the plasma frequency regardless of wavelength or amplitude. The
correction term introduces a wavelength-dependent frequency shift (giving the Bohm-
Gr0555 dispersion relation in the small amplitude limit) and an amplitude-dependent
frequency shift (proportional to ¢2 for small amplitudes). To see this, we expand (11),

in powers of n/uz, retaining quadratic terms.

n n
3 3 5
n=n |[1l-—5(1+ —=5)+2—(1+— (12)
© 2u? < 2[3u2> 8 .2 ( [3u2> )
Poisson's equation is then
V2¢+kg¢—6¢2= 0, (13)
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where
2
2pu” + 3
uzkcz)—ws > (14)
2Bu
2
Bu” + 5
wo=2 2 3B (15)
Bu
n e2
m2= °__ - (16)
p m€o

2
For small amplitudes, the term involving ¢ is negligible and the wave frequency

approaches w, = kou given by

mf):&(u 3z>, (17)
p 2Bu

which is the Bohm-Gross dispersion relation. For larger amplitudes, (13) has an exact

solution in terms of elliptic functions. The frequency, correct to order d>2, is given

by

2
m

(W
N
—
(5,2}
3
%

(18)

For larger amplitudes, numerical solution of Poisson's equation using (8) shows that

the waveform becomes increasingly nonsinusoidal, finally "breaking" at ¢ ~ %—, but

at these large amplitudes trapped particles can no longer be neglected and the expan-
sion given above is inapplicable, and a more complete analysis is required.
R. W. Flynn, W. P. Allis

[Dr. R. W. Flynn is a member of the Department of Physics, University of South
Florida, Tampa.]
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2. EVEN MOMENTS OF THE NONLINEAR DISTRIBUTION
2
FUNCTION f=n NB/7 e~P(ute)
2
The nonlinear distribution function f = no'\)B [ e_B(u+C) has proven to be useful in
a variety of nonlinear wave problerns.l_3 Here B = m/2kT, u is the wave's phase veloc-
ity, w = v - u is the velocity of an electron relative to the wave, and%- mc2 =
1

5 mW2 - eV is the total energy of an electron in the wave frame. V is the electrostatic

potential and n = eV/kT.
This distribution function describes a Maxwellian distribution modified by the pres-

ence of an electrostatic potential, whose amplitude and waveform is determined by solving
Poisson's equation self-consistently. We make the additional prescription that the
distribution of trapped particles is the analytic continuation of the velocity-symmetric
part of the untrapped distribution. We present here several expansions for velocity
moments of this distribution., We will define 1p as the pJCh velocity moment in the

wave frame

[e.o]
I = § wP(w) dw. (1)
PV

When f is separated into its symmetric part, fs = % f(utc) + % f(u-c), and its antisym-
metric part, fa = %f(u+c) —%f(u—c), it is clear that only the symmetric part con-
tributes to the even moments, and only the antisymmetric part contributes to the odd
morments., Because the trapped particle distribution is the analytic continuation of
fs, even moments can be obtained without difficulty, even though f itself varies dis-
continuously in passing from the trapped to untrapped distributions. fa’ on the other
hand, contains the discontinuity because it must equal zero for the trapped particles.
Since the amplitude of the wave appears later in the calculation we do not know which
particles are trapped and cannot, in general, find the odd moments before completely
solving the problem. We can, however, find Il’ the wave-frame particle current, by
using the continuity equation.

We will be primarily interested in Io = n, the electron density, and -I;—l I2 =T,
the kinetic energy density in the wave frame. We can demonstrate that the pseudo-

potential integral

o $ 0
g = § do n = dé dw f(w) 2)
0 S‘O S.-oo (
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is equal to 2[T(¢)-T(0)] by reversing the order of integration in (2).

In what follows, we will consider only even moments.

LT
n S
O

2 2
%e—s(u'}'c) + % e—ﬁ(u_c) (3)

)n

-pc’ N 1/2 (pu”
e Z H, (87 “c) (4)
n=0

(2n)!

In obtaining Eq. 4 we have used the generating function for Hermite polynomials

o0

2 n
e—Z +2XZ= Z i (x)i_'. (5)

n=0

and the symmetry property Hn(—x) = (—1)n Hn(x). It is more convenient to express

fs in a way that explicitly displays its dependence on c2 instead of ¢. To do this
we express the Hermite polynomial in terms of a Laguerre polynomial, using the iden-
tity

H, (%) = (-1)® 2209 L:/Z(xz), (6)

thus

SE

(7)

00 2n 2.n
a2 (-1)" 20 Eu) -1
t_=ePC Z L /2602).
oz

=0 (2n)!
1
Tz

I~ = i using
r(n+7) ('z')n

The expression Zznn!/(Zn)! can be expressed more compactly as
the identity

1/2 22z-1/2

T(2z) = (2n)” T(z) r(z + %)

and the Pochhammer notation

I'(z+n)

(z)_=
T I(z)

Thus
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o0 ﬁu )
1 -1/2 2
0 Z L~ 7(Bc™)

° <>

We can now use the summation theorem below to separate Ln(c ) into explicit

5

dependence on w2 and n.

00 (_1)k
L;(x+y) = Z =T ykL;+k(x). (8)
k=0

Using (8), we have

. . .
% '\/gfs=e_ﬁwz Z Z ( 1) (BU ) E m—1/2 9)
n=0 m=0 )
n

The pth moment is obtained by multiplying (9) by wP and integrating over w. This

requires evaluation of

0 2
Q=S dw wP e PV /2,2

P Yo

(=)
r ort——
1 Z (m-p/2)

ﬁ(p+1)/2

where we have used the standard integral

T'(y) T'(1+ptn-vy)

® 1
S‘ dx e ¥ xV LM (%)=
m n! T(1+p-vy)

and the Pochhammer notation. Thus

p+1 (m_3>
n, I’< 2 ) 2 n (—Buz)rl nm
L= ZZ ) n! m! (10)

EOETEE T

Small Potential Expansion
Recalling the series defining the confluent hypergeometric function

n
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0
Z

M(a, b, z) = Z (b) 1’—1—

we see that the pth moment can be written

N~

) -ﬁu2>a-!-. (11)

)

n T'\—— p

Ip = 0 2 Z M<m - '2",
o7t 1(3)

It is often convenient to separate the m summation into a series with m < p/2 (for which

this confluent hypergeometric function is proportional to a Laguerre polynomial) and

a series for m = p/2. This gives

p+ 1\ p/2 -
O L

2 -1/2 2
L, (-pu )T—

TR Ay )

I

+

+ o0
% F(P 2 ) M( 1 —puz)na+p (12)
o2 (L) o e (atp)!

where we have used the identity

n! L,a(x)
M(-n, a+1,x) = ——,
(2+1)n

In particular, this gives

0

a
2"1
n=I=nOZM(,2, -pu” ) = (13)

a=0

for the electron density, and

n ) atl

n
L=:2]1+2pu°+ M( a, <, -pu (14)
2" 25 aZO ( 2 )(a+l)!

for 12’ which is proportional to the wave-frame kinetic energy density, and the sum-

mation term is the pseudopotential.

QPR No. 103 78



(VI. PLASMAS AND CONTROLLED NUCLEAR FUSION)

Small Phase Velocity Expansion

Self-consistent plasma waves do not propagate at phase velocities less than approxi-
mately the thermal velocity. It is nevertheless useful to have a small u expansion of
(10) for sheath formation studies, and so forth. If the m summation in (10)is performed

first, we get

I —_

n! n

S (-pu”)
Z BP(n), (15)
-

where

n
n-1 p
B0 = (5) [(n—§> e”] (16)

SO Bﬁ(n) is a Boltzmann factor times an nth polynomial in n.
R. W. Flynn, W. P. Allis

[This work was performed at the University of South Florida. Dr. R. W. Flynn is a
member of the Department of Physics, University of South Florida, Tampa. ]
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3. THE MAXIMUM AMPLITUDE OF A NONLINEAR
PLASMA WAVE

The Distribution Function

The distr‘ibutionl

n —(ut )2 n G2
f=-—2ce ¢l 22 "W (cosh2uc- sinh 2uc), (1)
N N
where
u=~Nm/2kT u
QPR No. 103
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w=v-u, m=eV/kT

and
c =w -n (2)

are dimensionless variables representing phase velocity, electron velocity, potential,
and electron energy, satisfies the collisionless Boltzmann equation identically. It
gives a Maxwell-Boltzmann distribution for u = 0 and a linear Vlasov wave as n = 0.
It may therefore be used to extend the linear regime (except for Liandau damping) to large
amplitudes.

The distribution is plotted in Fig. VI-1, and exhibits surprisingly large discontinui-
ties. The jump in f for w = 0, ¢ = +N -7, offers no difficulties. As w goes through

zero ¢ is assumed to change sign also in order to maintain the proper limit as n = 0.

[ T T 1T 1
o7/u2
-0.1
-0.05
-0.02
0.05
e, 0.02 | O.i ]
n/u"=0.1 ' 002
0.05
o -0.02
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21— |
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[ 1 | | | |

@)
n

2
Fig. VI-1. Distribution f = (Ut
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The gap between w = +Nn at ¢ = 0 corresponds to electrons trapped below m = 0 in the
potential well. The energy c2 is negative in this region so that cosh 2uc - sinh 2uc
becomes cos 2u]c] + i sinh Zulcl. The imaginary term presents no difficulty because
the reflection of electrons at the sides of the potential well of the wave symmetrizes

the distribution and cancels this term. However, for large enough n the cosine term
oscillates, and this seems unphysical. We shall make three alternative assumptions:

(a) For analytical purposes it is convenient to keep cos Zu]c ] This is called "analytic
continuation."

(b) We may set

2 (3)

cos 2ulc| =0 for 2 < —(m/4u)

and we shall call this the "empty well." Sen and Bakshi2 use an empty well but set the

limit at c2 = 0. Our results differ from theirs only at small phase velocities.

(c) We may set

cosh 2uc =1 for c2 <0 (4)

and shall call this the "filled well." The empty well is obviously not an equilibrium
distribution. The filled well produces a Maxwell-Boltzmann distribution for posi-
tive potentials., One might wish to extend this distribution to the top of the well,

but we have not done this.

The Electron Density

The distribution (1) has been integrated on the IBM 360/65 computer at the Uni-

versity of South Florida to obtain
+00
n_(un)= [ fdw (5)

and the results are shown on Fig. VI-2.

Foru=0, n_=n/ e, For slow waves u < 0.926 the density n_ has a maximum
at positive potentials, as might be expected for trapped particles, but for u > 0.926
the maximum occurs at negative potentials. It is characteristic of free-streaming
electrons that their velocity is less and therefore their density greater at more nega-
tive potentials. Eventually, the smaller number of electrons reaching a negative poten-
tial outweighs the greater density of those that do reach it and the density drops back
through n, at approximately M = -1.25 uz.

On the positive potential side, one example (u = 2.5) of the analytic assumption is
given to show the nature of the oscillations due to cos Zu’c I They become large for

n > u2 - 1. The empty wells are shown in Fig. VI-2b and the filled wells in Fig. VI-2c.
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potential too many electrons would be trapped so that space charge would be positive
where the potential has a minimum, which is not self-consistent. For an empty well

the pseudopotential rises continuously for positive potentials so there is always an uPe
Both MNm and m, are plotted in Fig. VI-4 to show how the maximum amplitude of a
wave increases with the phase velocity. For a filled well the pseudopotential has a max-
imum on the positive side too, and this maximum is lower than that at the negative
potential. It is the positive potential which limits a filled well, and indeed it does so
because the Boltzmann factor puts more electrons in the well than there are ions
available to give the required positive space charge. For a slightly less filled well the
maxima on both sides can have the same height, and in that case a shock solution is pos-

sible. Trapping increases the wavelength (the curvature of { is less for the filled well)

and eventually kills the wave.

Fig. VI-5. Pseudopotential for small phase
velocities.

Figure VI-5 shows the pseudopotential for slow waves u < 0.926. There are clearly
no waves around n = 0 as the curvature is wrong, but the curves do have a minimum at
a small positive potential. This indicates the existence of wave solutions satisfying the
Vlasov equations but with both maximum and minimum potentials positive. It is possible
that these represent moving striations, but it will be necessary to include ion motion
before this is understood.

W. P. Allis, R. W, Flynn

[This work was performed at the University of South Florida. Dr. R. W. Flynn is a
member of the Department of Physics, University of South Florida, Tampa. ]
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1. STARK PROFILES OF THE Hel 4471 A LINE AND OF ITS TWO
FORBIDDEN COMPONENTS, MEASURED IN A LASER-PRODUCED
PLASMA

Introduction

Stark profiles of allowed spectral lines emanating from dense plasmas and interacting
with neighboring forbidden transitions have recently been calculated for a few special
cases.l-3 Subsequently, experiments were undertaken to verify the underlying the-
oretical assumptions and to open the way for new diagnostic methods. At relatively low
plasma densities, where the widths of the allowed and forbidden components are small
compared with their wavelength separation, conventional theory was shown to be inade-
quate around the forbidden componen’c.4 This failure was ascr‘ibe@l5 to the fact that
theory neglects the dynamics of the perturbing ions. Indeed, when proper allowance
was made for ion motions, great improvements between the corrected theory and exper-
iment were reported.é’ 7 At higher densities, where the allowed and nearby forbidden
lines overlap strongly, the effect of ion motions on the line profile should be entirely
negligible, and any failure of the theory to reproduce the experimental profiles would
have to be ascribed to some other cause. Recent measurements of helium line profiles
made in this regime of densities show somewhat conflicting results. In one of these
works,8 made at a plasma density of ~1 X 1016 cm_3, experiment and theory are said
to be in fair agreement. In the other Work,9 however, significant departures are

observed at densities 3 X 1016 to 1x 1017 em™3:

the separation between the peaks of
the allowed and forbidden lines is not as large, and the dip between them not as deep,
as theory would have it.

As a result of these conflicting observations, we have undertaken an independent
experiment to see whether at high plasma density a genuine discrepancy indeed exists
between experiment and theory. In our experiment we generate the plasma by means
of a repetitive CO2 laser which produces some 10 to 15 plasma pps. This allows us to

scan the optical line profile continuously with good time and space resolution and thus

s
This work was supported by the U.S. Atomic Energy Commission (Contract
AT(30-1)-3980).
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to free the experiment from the usual problems of shot-to-shot variations. We study
the profiles of the strongly overlapping allowed line 23P-43D at 4471 A and the near for-
bidden component 2 P-4>F at 4470 A, for densities of 3.4 X 10'® cm™ and 5.0 x

lO16 crn_3. We observe disagreements with theory similar to those reported by

Nelson and Barnard.9 On the other hand, the profile of the distant forbidden 23P-43P
transition at 4517 2&, which interacts but weakly with the aforementioned two lines,
agrees very well with theory. Although this line has received little attention from
the experimentalists, it appears to have potential assets in the diagnostics of dense

plasmas.

Experimental Results

Detailed descriptions of the experimental setup, reduction of data, and properties

7,10 The plasma is produced by

of the optically generated plasma are given elsewhere.
a transversely excited atmospheric pressure (TEA) CO2 laser. This laser yields
1-2 MW pulses of radiation at a wavelength of 10.6 u. The pulse duration is approxi-
mately 200 ns and the repetition rate ~12 pps. The laser radiation is focused into a gas
cell by means of a 3.8 cm focal length germanium lens. The cell is filled with spec-~
troscopically pure helium to a pressure of 3/4 atm. The light from the helium plasma
generated by the laser pulses is tocused by means of a condensing lens onto the slits

of a 0.5 m spectrometer provided with a motor-driven wavelength scan (Jarrell-Ash,
Model 83-020) and a photomultiplier output. The output signal from the photomultiplier
is fed into a boxcar integrator (PAR Model 160) and then to graphic display equipment.
The boxcar gate width is typically 250 ns and thus represents the time resolution of our
measurements. The gate can be set to any desired time delay relative to the time the
laser is fired. This enables us to probe the entire afterglow history of the slowly
decaying plasma. All measurements reported in this paper are made at a fixed time

of 5 us.

At this time the plasma is in the form of a cigar, about 0.6 cm long and 0.2 cm in
radius. Although the light appears to be emitted quite symmetrically about the major
axis of the cigar, the emission is very inhomogeneous, suggesting the existence of
strong radial density and temperature gradients. For that reason, the line shape
and intensity of all spectral lines in question are measured at 20 different lateral
positions with a spatial resolution of 0.01 cm and the results Abel-inverted by means
of a computer-generated program. This yields "true" line profiles at any desired radial
distance from the plasma axis.

To obtain the radial distribution of the plasma density we make use of the isolated
23P-43S line of neutral helium centered at 4713 A. This is done by computer-fitting
the theoretical Stark broadened line profile to the experimental profiles (which were first

Abel-inverted as described above). As an independent check, we also determine






self-absorption observed for the 5876 A line causes no serious difficulties. We do not
use this line for density determination but only to obtain values of the electron tempera-

ture from the integrated line intensity, as discussed previously.
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substantial error in intensity causes but a minor error in the temperature.

Fig. VI-T.
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Figure VI-6 illustrates a typical recorder output of the three helium lines of central

concern to this report. At the top of the figure we have the 23P -43D allowed line almost

completely merged with the 23P-43F forbidden component. At the bottom of the figure
we have the distant forbidden line, 23P-43P. The plots refer to the case when the spec-
trometer looks directly toward the plasma center. Good signal-to-noise ratio is evident
even for the distant forbidden line whose peak intensity is only about 5% that of the
allowed line.

We have obtained data like that shown in Fig. VI-6 for some 20 lateral positions
of the plasma cigar, and by Abel inversion derived the "true" profiles at various
radial positions r. In this report we selected two positions, where the plasma den-

sities N and electron temperatures T have the following values (as determined by

40 T T T

N=3.4x10°® cm?

¢
1
30 T=27000 °K " ]
)
M

20

[ARBITRARY UNITS]
o
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4430 4440 4450 4460 4470 4480 4490
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)
Fig. VI-8. Profiles of the allowed 23P-43D and the forbidden 23P-43F

transitions (a), and the forbidden 23P-43P transition (b).
The results refer to a radial position within the plasma,
r=0.16 cm.
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the aforementioned methods):

r, =0.10 cm; N=5.0><1016 cm—3; T

33,900°K

r, = 0.16 cm; N=3.8><1016cm'3; T = 27, 000° K.

Comparisons between experiment and theory are shown in Figs. VI-7 and VI-8 for the
two radial positions in question, The solid points represent the Abel-inverted measure-
ments. The solid lines represent theoretical profiles of the 23P-43D, 3F, 3’P lines com-
puted by the same methods employed earlier by Griem.1 In these computations we
use the values of temperature and density stated above (with the exception of the value
N=38x10%cm™ at r, which we replace by N = 3.4 X 1076 cm™3; this gives some-
what better agreement with theory, but the new choice of density lies well within the

15% error brackets quoted earlier).

Discussion

Figures VI-7 and VI-8 show that all is well with regard to the distant forbidden
23P-43P line, but that something is certainly amiss with regard to the 23P-43D, 3F pair
of lines. Here we find discrepancies between experiment and theory very similar to
those observed by Nelson and Barnard.9 Whereas the overall halfwidth of the pair of
lines agrees well with theory, the detailed structure does not; the observed peak separa-
tion is smaller and the dip between the two lines shallower than predicted by theory. It
is clear that merely changing the plasma density in the theoretical profile does not lead
to better agreement. For example, lowering the density brings the peaks closer
together. On the other hand, this makes the total halfwidth too small and the ratio of
peak intensities even 1afger. The wavelength scale of the experimentally determined
profile may have a uniform shift of no more than +1.0 A but a shift of this magnitude
would leave the discrepancy essentially the same. It may also be thought that the inten-
sity ratio of the peaks is modified by self-absorption and that the filling in of the
dip between the peaks is caused by an outer plasma region of relatively low density. We
can refute sélf-absorption as a cause of error since our measurements show convincingly
that this is negligible at the time of measurement. Also, line shape errors caused by
density gradients should not be a problem since the Abel transformation of our
results effectively corrects for the presence of gradients.

We note that the computations in the table of Barnard et al.2 yield a somewhat smaller
peak separation than do our calculations based on the work of Griem.l Even here,
however, the agreement between theory and experiment is not very satisfactory.

We are thus led to the following conclusions in regard to plasma diagnostics by means

of the 2°P-4D, >F pair of lines. To determine the plasma density, it is the halfwidth

QPR No. 103 91



(VI. PLASMAS AND CONTROLLED NUCLEAR FUSION)

which is the most trustworthy. More specifically, at low densities it is the halfwidth
of the allowed line alone, and at high densities (N > 1 X 1016 cm-3) it is the combined
halfwidth of the strongly overlapping allowed and forbidden lines. The wavelength sep-
aration between the two peaks is a much less reliable way of obtaining the density. The
use of the intensity ratio of the allowed to the forbidden lines as a means of deducing N

16 -3
cm

is good at low densities only (N <1 X 10 ). Here the ratio is determined by

the ionic fields which mix the 43D and 43F states, and the ratio is thus a sensitive func-
tion of the ambient plasma density. At higher densities, both lines become weaker with
increasing N, and their ratio changes but slowly: now electron broadening becomes an
important factor in determining the intensity ratio. In this regime of N the use of the
intensity ratio is not too reliable, partly because it is relatively insensitive to the

magnitude of N, and partly because it is subject to theoretical uncertainties in cal-
culations of the electron contribution to the line broadening.

In contrast to the above, the 23P-43P forbidden line at 4517 A is in satisfactory
agreement with theory and its exploitation as a diagnostic tool should be examined
further.

G. Bekefi, E. V. George, B. Ya'akobi

[Dr. Ya'akobi is a member of the Department of Physics and Astronomy, University
of Maryland. ]
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1. FEASIBILITY OF STATIONARY TOKAMAK:{

At present, considerable hope for controlled thermonuclear fusion relies on the
Tokamak approach. To generate electric power, continuous operation is desirable,
and the feasibility of a steady-state Tokamak would therefore provide a major incen-
tive for further development. The recent discovery of the "bootstrap effect" 1,2 indi-
cates a way to achieve the steady state, since with this effect the toroidal current
necessary for equilibrium is driven by the radial pressure gradient of the confined
plasma itself rather than by the usual transformer pulse, provided the gradient and a
"seed current" are maintained externally. This can be accomplished by neutral par-
ticle injection which provides simultaneous mass, current, and heat inputs. Using the
build-up theory of ion density and current on injection parallel to the magnetic field,3 and
extending the theory of Bickerton et al.! to cover the relevant cases, conditions for the
steady-state operation are delineated. The Kruskal-Shafranov stability criterion limits
the injection current so that parallel injection alone cannot balance the banana-diffusion
losses. For a steady state, additional particle injection without further increase of the
current is required; for example, by injection perpendicular to the field, or by
pellets.

In this report we wish merely to outline the problem, which will be treated more
extensively in a later publication. \

The basic relation for the gradient-driven current in the banana regime is

*This work was supported by the U.S. Atomic Energy Commission (Contract
AT(30-1)-3980).

TDr. D. Bruce Montgomery is at the Francis Bitter National Magnet Laboratory.

IThis work was supported in part by the U.S. A.E.C. at the Oak Ridge National
Laboratory.
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. __ /r T on
I = /;Bear’ (1)

where the symbols have the usual meanings. A possible derivation of this result has been

[e5)

given in an earlier r‘eport.4 Be is the poloidal magnetic field, and through Ampere's
law is connected with jb. It can be shown that a seed current Iseed(r) must be provided

near r = 0, along with a particle source S, balancing diffusion losses in the steady state:
on
S(r)=-2mrD 5=

with (2)

r =2
D= /% By nTn(r),

where m is the Spitzer resistivity.

These equations and Ampere's law lead to coupled nonlinear equations for n(r) and
I(r}), the steady-state density and current profiles. The boundary conditions should be
n(0) = no, 1{0) = 0. In order to obtain an analytical solution, however, one must restrict

the calculation to the region

where ro is the "source radius," and rp the plasma radius, prescribe
I(ro) = IO, n(ro) =n,,

and assume that the seed current and particle source are essentially contained in r < .
that is, Iseed = 0 and S = const. forr = r.. Unfortunately, this model does not reveal
the extent to which the seed current dominates the behavior of n and I at r = O.5

If the "bootstrap effect" is weak

I )

o = Iseed(ro
n = n(0).

Parametrizing IO and S through

2
_ R Io
6= T P2 Tol
or mn Tec
and (4)
= 8S
- 2
5nonc
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(where we have converted to CGS units, and c is the speed of light). Bickerton et al.1
have solved for I(rp)/IO and rp/ro as functions of a and 6.

Sufficient conditions for the validity of Eq. 3 are a « 1, a6 « 1. If the "bootstrap
effect" is strong, Eq. 3 breaks down and one cannot easily identify the total current at
ro with the seed current and n, with n(0).

The relative strength of particle-to-current source is measured by the parameter

xz = ab - (l—a)2 (5)
and all results of Bickerton and his co-workers1 are for xz > 0. With the Kruskal limit
on the seed current, however, the injected steady-state Tokamak plasmas are in the
regime )\2 <0, a>1, §< 6C ., < 1. The limit xz = 0 can be reached both from small and

rit
large values of the source strength a, for a given seed current 6. The zeros are at

(1£NT+4/3). (6)

[\Jlo»

1,27

It can be shown that for a < @, LIRS no physical steady-state solution exists, but

crit

fora»1, 6 < 6crit < 1 a solution does exist, leading to

I(r ) 1/2 r 2/5

P <1+3)<1+C—1+0('2)> L e (7)

i = 3 2 a y = + . + 0(a 7) s e

o) o
h —-A—lné—l—L c,=C +1 and A = 2 + §, This solution shows the cur
where ¢, =3 5 A Cr=Cyt R = . sho -

rent magnification and the plasma pinching resulting from the seed current and particle
input, in this limit. [These results may be somewhat in error quantitatively, since this
limit violates the conditions of Eq. 3. Numerical integration, starting at r = 0 rather
than at r_ will give precise answers.]

It remains to determine the possible values of ¢ and 6 on injection. More physi-

cally, Eq. 4 can be written

a==f —_— . (8a)
>0 Poi/ "o'ie
Z
6=+ _9__ R 5/2 b
"z A\, (8b)
T

where ﬁe and B are the poloidal and total B, Poi is the poloidal plasma ion gyro radius,
fls is the injected number density per second, Vie is the ion-electron collision fre-
quency, and IT is the current generating the toroidal field. If the Kruskal limit is
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)= 1

’

to be observed at ro that is, if q(rO

3/2
r
s< 6 . =4(=0
crit B\ R

Atpy~1, B~ (rp/R)a/2 and one gets

. 3/2
0< as;<;9> <1 (9)
p

for the range of permitted values of 6. (6§ = 0 would correspond to zero seed current.)
Thus a, is determined from Eq. 6 and Eq. 9 as

v 3/4
a2:l+<r—-> 21
p

and the regime )\2 <0, a> @y will indeed be of practical interest.
Callen and Clarke> have determined n_ and I ~1 as
S o seed

(10)

Lvor r
I = o' s o 1
S N 2R 10’
o) o)

where H(r) is a form factor depending on toroidal effects, Ib is the injected beam cur-

rent, >‘o = (n )_1 and T is the slowing down time for a beam ion. Since

a
o charge exchange

the slowing down is mainly a result of ion-electron collisions, T vi—el' Note that

the effective seed current is much larger than the beam current resulting from a "stor-
age effect." (An injected ion "lives" many times its transit time around the machine
before it is thermalized.) From Eq. 10 we find
r
o I T
_ . _b o 1
S(ro) = So 2mr dr ns(r) iy 7R 10

and a coupling between the seed current and particle source strength
IS/S =ev Ty
becomes apparent, peculiar to parallel injection. In'terms of « and & this relation is
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T nrze2 r
2.-1 _ e m o o /;_
L T R 7 =K (11)

b mcz(w T )
le S

where Eb is the beam energy.
It follows that for usual Tokamak densities (<1014/cm3) k is a small number. Taking

& to the Kruskal limit in Eq. 9, Eq. 11 becomes

a=Nk& ., «l.
crit

Together with Eq. 9 this determines ¢ and § on parallel injection, leading to xz <0
(Eq. 5)and a < ¢y (Eg. 6). As mentioned, no physical steady-state solution exists
in this regime because such small values of a do not provide a quantity of source par-

ticles equaling the banana-diffusion losses given by the flux

“p
2
(nvr>~ T Poi’e] (12)

where Vei T (M/m)vie. A balance can be reached if additional particles are introduced

such that

2
* r .
n, o, /ey
nv., R 2 m
O 1le r
O
or (13)
r
A '
¢=3 R m"™6

With & restricted by (9) such large values of a lead to well-behaved solutions for n(r)

and I(r) characterized by )\2 <0, a>a,, with a large current magnification and plasma

2’
pinching given by Eq. 7.

In contrast to these encouraging results is the fact that in practice, although present
technology is able to provide sufficient amounts of seed current, the amount of particle

input to offset diffusion losses is rather large. For example, to reach

S =1
n v.
O 1€

in a plasma volume of 105 cm3, typically (e.g., for the Ormak-experiment) 21020 ppSs

or 216 A are required.
I wish to thank J. D. Callen for numerous suggestions and discussions, and
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am obliged to him and to J. F. Clarke for making their results available prior

to publication.
D. J. Sigmar
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