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1. HIGH-SPEED NONLINEAR PLASMA WAVEST

When a wave propagates without changing its shape, particles move along constant

energy orbits in the wave frame. Thus the distribution function is known at all points

in phase space if it is specified at some position, say x = xo. If we take the distribu-

tion function to be Maxwellian at x = xo,

2 2
f(x o,v) = n f7e - v = n o N e -P(u + w)O O O (1)

where p = 2m/kT, u is the phase velocity, and w is the particle velocity in the wave

frame; the distribution function at other points is obtained as (1) evolves along constant

energy orbits.

f(x, v) = n 0 e -I ( u + c )2

where

c = W 1 - 2e/mw 2

(2)

(3)

and c is the wave potential.

This distribution function describes untrapped particles. Further specification of

the trapped particle distribution must be made for a complete description. Several

trapped particle distributions have been studied. l ' 2 In the large phase velocity limit,
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plasma waves consistent with each of these distributions converge to the same asymp-
totic form (because in this limit the number of trapped particles becomes negligibly
small and their exact distribution is thus inconsequential). This asymptotic limit is the
subject of this report.

The electron density is given by

n = c dw f(x, w)= n d c (u+c) (3)
00 -0 2

where -q = 2e/m and the broken integral means that the range -q- <c < N1-r is excluded.

This range represents excluded regions. The integrand is peaked near c = -u with
a width of order /2 For u2 >> 1, the integrand is negligibly small near the excluded

region and the range of integration may be extended from -oo to oo with little error. The
asymptotic limit is insensitive to the details of the trapped distribution.

The density can now be expressed

n= n L dx e ap, (4)

S 1 - 2 aX + X

where

21/2

a =u + ti, a = u/J= 1+ 2 , y = (u+c)/)2.

Using the generating function for Gegenbauer polynomials 3

00

(1-2at+a-v (- )(t) an (5)n a
n= 0

we can write

X - a = (n+l) Cn+l(a) Xn (6)

1 - 2 aX + n= 0

where Cn(a) C (-/2) (a), C = 1, C = -a and the higher order Gegenbauer polynomialsn 0 ' 1
are related by the recursion relation

(n+ 2 )Cn+ 2 = (2n+1)aCn+ 1 + (1-n)C n .  (7)
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Term by term integration of (4) then gives

(2m+l)C m+(a) r(m+i/2)
n= -n mm (8)

o mm r(1/2)m=0 a

A similar procedure yields the electron pseudopotential integral

n meao
o
0
3E _

m=O

(2m+1) D 2 m+(a) F(m+1/2)
2m + /2)

a m m I(1/2)

(-3/2)(a),
Dn(a)C (a), D = 1, D = -3a

(n+2)Dn+ 2 = (2n-l)a Dn+l + (3-n)Dn.

It is also possible to express

less compactly.

Retaining the first two terms

(10)

(8) and (9) in terms of Legendre polynomials, although

of (8) gives

S 0 3 ' ZkT 1

1 + /u 2 u mu /u
(11)

The first term in (11) is recognized as the result obtained by Akhiezer and

Lyubarskii 4 for nonlinear waves in a zero-temperature plasma using the fluid equations.

The second term, then, is a finite temperature correction. A zero-temperature plasma

wave oscillates at the plasma frequency regardless of wavelength or amplitude. The

correction term introduces a wavelength-dependent frequency shift (giving the Bohm-

Gross 5 dispersion relation in the small amplitude limit) and an amplitude-dependent

frequency shift (proportional to 2 for small amplitudes). To see this, we expand (11),

in powers of 1/u 2 , retaining quadratic terms.

28 4

2u 2pu u pu

Poisson' s equation is then

V2 + k2 - 62 = 0,O0
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where

2 2 2 2 p u 2 + 3
u k = 2 (14)o p 2u

45 2 e 3 Pu Z+ 5 (15)

pm 2 2

2
n e

o (16)p mE

For small amplitudes, the term involving 42 is negligible and the wave frequency

approaches co = k u given by

2 21 3
= 1+ , (17)

0 p \ 2pu

which is the Bohm-Gross dispersion relation. For larger amplitudes, (13) has an exact

solution in terms of elliptic functions. The frequency, correct to order 42 , is given

by

2 2 15 max
W = C 321 . (18)

For larger amplitudes, numerical solution of Poisson' s equation using (8) shows that
2

the waveform becomes increasingly nonsinusoidal, finally "breaking" at 4) , but

at these large amplitudes trapped particles can no longer be neglected and the expan-

sion given above is inapplicable, and a more complete analysis is required.1

R. W. Flynn, W. P. Allis

[Dr. R. W. Flynn is a member of the Department of Physics, University of South
Florida, Tampa.]
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2. EVEN MOMENTS OF THE NONLINEAR DISTRIBUTION

FUNCTION f = n 1/e - P(u+c) 2

2

The nonlinear distribution function f = n -e - P( u + c ) has proven to be useful in
1-3 0

a variety of nonlinear wave problems. Here P = m/2kT, u is the wave' s phase veloc-
1 2

ity, w = v - u is the velocity of an electron relative to the wave, and - mc =

1 mw - eV is the total energy of an electron in the wave frame. V is the electrostatic
2
potential and r~ = eV/kT.

This distribution function describes a Maxwellian distribution modified by the pres-

ence of an electrostatic potential, whose amplitude and waveform is determined by solving

Poisson's equation self-consistently. We make the additional prescription that the

distribution of trapped particles is the analytic continuation of the velocity-symmetric

part of the untrapped distribution. We present here several expansions for velocity
th

moments of this distribution. We will define I as the p velocity moment in the
P

wave frame

I = wPf(w) dw. (1)
P -00

1 1
When f is separated into its symmetric part, fs = f(u+c) + - f(u-c), and its antisym-

1 1
metric part, f 1 f(u+c) - f(u-c), it is clear that only the symmetric part con-

tributes to the even moments, and only the antisymmetric part contributes to the odd

moments. Because the trapped particle distribution is the analytic continuation of

fs, even moments can be obtained without difficulty, even though f itself varies dis-

continuously in passing from the trapped to untrapped distributions. fa, on the other

hand, contains the discontinuity because it must equal zero for the trapped particles.

Since the amplitude of the wave appears later in the calculation we do not know which

particles are trapped and cannot, in general, find the odd moments before completely

solving the problem. We can, however, find Ii, the wave-frame particle current, by

using the continuity equation.
m

We will be primarily interested in Io = n, the electron density, and -12 = T,

the kinetic energy density in the wave frame. We can demonstrate that the pseudo-

potential integral

0 0 -00
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is equal to 2[T(P)-T(0)] by reversing the order of integration in (2).
In what follows, we will consider only even moments.

1
n

o

2 2
f e-Pi(u+c) 1 e-p(u-c)

/ P s 2

co

= ec 0

n= 0

H 2n(/2 (pu2)n
(2n)!

In obtaining Eq. 4 we have used the generating function for Hermite polynomials

oo
2

-z +2xz Ie =

n= 0

Hn(x) zn n!

and the symmetry property H (-x) = (-1)n H (x). It is more convenient to express
fs in a way that explicitly displays its dependence on c2 instead of c. To do this

we express the Hermite polynomial in terms of a Laguerre polynomial, using the iden-
tity

H2n(x) = (-1)n 22nn! L-1/2(x2),

thus

e-P c 2  (-1)n 22nn! (pu ) n

n= 0 (2n)!

L-1/2 2)

The expression 22nn!/(2n)! can be expressed more

the identity

F(2z) = (2Z)-1/2 2 2z-1/2 (z) F(z+ 1)

(7)

S 21 1 usingcompactly as using

n

and the Pochhammer notation

F(z+n)
(z)n - r(z)

Thus

QPR No. 103
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1 f = e -pc 2 00 (l)n (pu 2 )n L-1/2( c 2
n s n

n= 0
n

We can now use the summation theorem below to separate Ln(c ) into explicit
2 a

dependence on w and r.

k
(-1)

k! kL a+k(x).
k ! Y n

Using (8), we have

1 f =
n 0

O

oo

e- Pw 2  
o

n= 0 m=O

(-)n 2u) n m
(-1) (u m-1/2(Pw 2

1,, m! n

th
The p moment is obtained by multiplying (9) by

requires evaluation of

Q = s -00

wp and integrating over w. This

2 L /2(
dw wp epw Lm- 1/2 w

n

-1 (m-p/2)n

(p+1)/2 n

where we have used the standard integral

0o dF(y) F(1+p+n-y)
dx e - x xY-1L 

[ (x)=

0 m n! F(1+p.-y)

and the Pochhammer notation. Thus

(p+1)nP p/
( m - 2) n m

n (-Bu ) ii

n! m!

n

Small Potential Expansion

Recalling the series defining the confluent hypergeometric function

QPR No. 103
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M(a, b, z) = -- (a)
n=0 (b)n= 0 n

th
we see that the p moment can be written

n
oI -

P p/2

m

-pu ) 'm!r(2  Mm 2 ,

7(2\j n

(11)

It is often convenient to separate the m summation into a series with m < p/2 (for which

this confluent hypergeometric function is proportional to a Laguerre polynomial) and

a series for m >, p/2. This gives

n
I -
P p/2

n
+ o

Pp/2

(p + 1) p/2FQ-- Z a!

a=1 a
a

2

where we have used the identity

n! La(x)
M(-n, a+l, x) =

(2+1)n

In particular, this gives

00 a

n= I = n M a, , pu-Z)-

a= 0

for the electron density, and

00
12 = 1 + 2pu 2 + M a, , - Pu2

a= 0

-1/2 (- 2 )(p/2)-a

a (-ap

(a, a+p

2 (a+p)!

for 12, which is proportional to the wave-frame kinetic energy density, and the sum-

mation term is the pseudopotential.
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Small Phase Velocity Expansion

Self-consistent plasma waves do not propagate at phase velocities less than approxi-

mately the thermal velocity. It is nevertheless useful to have a small u expansion of

(10) for sheath formation studies, and so forth.

first, we get

n r(p +)
/o -- -

e/

If the m summation in (10) is performed

2 n
(-Pu P

n! ( ), (15)

n-1
B ()=( dr )

Pn ]
2 e , (16)

so B (rj) is a Boltzmann factor times an n t h polynomial in r1.
n

R. W. Flynn, W. P. Allis

[This work was performed at the University of South Florida. Dr. R. W. Flynn is a
member of the Department of Physics, University of South Florida, Tampa.]
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3. THE MAXIMUM AMPLITUDE OF A NONLINEAR

PLASMA WAVE

The Distribution Function

of Philip M. Morse

The distribution1

n
f o e-(u+c)

\f Tre

n
o -w= e1

- W

N, _Tr

(cosh 2uc - sinh 2uc),

where

u = Jm/ kT u'

QPR No. 103
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w = v- u, 11 = eV/kT

and

2 2
c =w -"1 (2)

are dimensionless variables representing phase velocity, electron velocity, potential,
and electron energy, satisfies the collisionless Boltzmann equation identically. It

gives a Maxwell-Boltzmann distribution for u = 0 and a linear Vlasov wave as q - 0.
It may therefore be used to extend the linear regime (except for Landau damping) to large

amplitudes.

The distribution is plotted in Fig. VI-1, and exhibits surprisingly large discontinui-

ties. The jump in f for w = 0, c = ±+7J-, offers no difficulties. As w goes through

zero c is assumed to change sign also in order to maintain the proper limit as -q - 0.

2 /u2
v /

Fig. VI-1. Distribution f = e(u+c)2
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The gap between w = -~f at c = 0 corresponds to electrons trapped below -q = 0 in the
2

potential well. The energy c is negative in this region so that cosh 2uc - sinh 2uc

becomes cos 2u Ic + i sinh 2u c . The imaginary term presents no difficulty because

the reflection of electrons at the sides of the potential well of the wave symmetrizes

the distribution and cancels this term. However, for large enough rq the cosine term

oscillates, and this seems unphysical. We shall make three alternative assumptions:

(a) For analytical purposes it is convenient to keep cos 2u c . This is called " analytic

continuation."

(b) We may set

cos 2u cj = 0 for c < -(/4u)2 (3)

and we shall call this the "empty well." Sen and Bakshi 2 use an empty well but set the
2

limit at c = 0. Our results differ from theirs only at small phase velocities.

(c) We may set

2
cosh 2uc = 1 for c < 0 (4)

and shall call this the "filled well." The empty well is obviously not an equilibrium

distribution. The filled well produces a Maxwell-Boltzmann distribution for posi-

tive potentials. One might wish to extend this distribution to the top of the well,

but we have not done this.

The Electron Density

The distribution (1) has been integrated on the IBM 360/65 computer at the Uni-

versity of South Florida to obtain

n (u, ) = o f dw (5)

and the results are shown on Fig. VI-2.

For u = 0, n = n e . For slow waves u < 0. 926 the density n has a maximum
0

at positive potentials, as might be expected for trapped particles, but for u > 0. 926

the maximum occurs at negative potentials. It is characteristic of free-streaming

electrons that their velocity is less and therefore their density greater at more nega-

tive potentials. Eventually, the smaller number of electrons reaching a negative poten-

tial outweighs the greater density of those that do reach it and the density drops back
2

through no at approximately -ilm = -1. 25 u2

On the positive potential side, one example (u = 2. 5) of the analytic assumption is

given to show the nature of the oscillations due to cos 2u c . They become large for

r > u - 1. The empty wells are shown in Fig. VI-2b and the filled wells in Fig. VI-Zc.

QPR No. 103
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0.4

0.2 0.5

:0
0

-9 -8 -7 -6 -5 -4 -3 -2 -I
7

(a)

I 2 3 4 5 6 7 8 9

(b)

0 I 2 3 4 5 6 7 8 9
(c)

(c)

Fig. VI-2. Electron density n_, (a) at negative potentials, (b) with

empty well, (c) with filled well.

The former decrease roughly as 1/4 , the latter decrease first then increase due to

the Boltzmann factor el and cross n = n around2m = u2 - 1. It is seen that the

analytic continuation is quite satisfactory for small amplitude waves, but must be

discarded for amplitudes close to the maximum for filled wells.

The Pseudopotential

The pseudopotential is defined by

n+-n E E
=X1 J + - di= 0 (6)

o  46)

0

the second equality following from Poisson' s equation. Thus E(r) implicit in this equa-

tion satisfies exactly the Vlasov equations. The integral has been evaluated by the

computer with the assumption n+ = no and the results are shown in Fig. VI-3.

The effect of this assumption is discussed elsewhere. Montgomery and Joyce 3 have

shown how to interpret these plots by analogy with force potentials. If the pseudo-

potential forms a well and a horizontal line cuts it at 1l and '2, an oscillation is pos-

sible between these voltages. The field E = 0 at both intersections so that average space

charge neutrality is assured, and E2 is given at any point by the height of the line above

the curve. If the curvature is such that 4(in) forms a hill instead of a well, no periodic

wave is possible.

For u > 0. 926 all these plots show positive curvature at nr = 0 and hence waves

are possible. However, the pseudopotential curves have a maximum at 11m ~
2

-1. 25 u and therefore no wave exists whose negative potential is beyond this limit.

This is the point at which n_ = no and consequently n_ = n+ and p = 0. Beyond this

QPR No. 103
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-9 -8 -7 -6 -5 -4 -3 -2 -1 0 I 2 3 4 5 6 7 8 9

Fig. VI-3. Pseudopotential (a) at negative voltages, (b) for empty well,
(c) for filled well.

1.6

10C 1.5-

8- 1.4-

6 - - 1.3

4- - .2 FILLED
WELL

FILLED

WELL EMPTY
2 - W - I - WELL

EMPTY
WELL

-4 - 0.8

-6 - - 0.7-

2 3 I 2

U U

(a) (b)

Fig. VI-4. (a) Maximum voltage amplitude.
(b) Maximum density amplitudes.
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potential too many electrons would be trapped so that space charge would be positive

where the potential has a minimum, which is not self-consistent. For an empty well

the pseudopotential rises continuously for positive potentials so there is always an 12'
Both -1lm and ?12 are plotted in Fig. VI-4 to show how the maximum amplitude of a

wave increases with the phase velocity. For a filled well the pseudopotential has a max-

imum on the positive side too, and this maximum is lower than that at the negative

potential. It is the positive potential which limits a filled well, and indeed it does so

because the Boltzmann factor puts more electrons in the well than there are ions

available to give the required positive space charge. For a slightly less filled well the

maxima on both sides can have the same height, and in that case a shock solution is pos-

sible. Trapping increases the wavelength (the curvature of 4i is less for the filled well)

and eventually kills the wave.

1.25 .0

0.75 05u=05

-0.2 -

.25

-0.4

-0.6

-0.8 .

Fig. VI-5. Pseudopotential for small phase
velocities.

0.75

-1.6

0
0.5 0

-3 -2 - 0 2 3

Figure VI-5 shows the pseudopotential for slow waves u < 0. 926. There are clearly

no waves around 1- = 0 as the curvature is wrong, but the curves do have a minimum at

a small positive potential. This indicates the existence of wave solutions satisfying the

Vlasov equations but with both maximum and minimum potentials positive. It is possible

that these represent moving striations, but it will be necessary to include ion motion

before this is understood.

W. P. Allis, R. W. Flynn

[This work was performed at the University of South Florida. Dr. R. W. Flynn is a
member of the Department of Physics, University of South Florida, Tampa.]
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C. Plasma Diagnostics
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1. STARK PROFILES OF THE He I 4471 A LINE AND OF ITS TWO

FORBIDDEN COMPONENTS, MEASURED IN A LASER-PRODUCED

PLASMA

Introduction

Stark profiles of allowed spectral lines emanating from dense plasmas and interacting

with neighboring forbidden transitions have recently been calculated for a few special
1-3

cases. Subsequently, experiments were undertaken to verify the underlying the-

oretical assumptions and to open the way for new diagnostic methods. At relatively low

plasma densities, where the widths of the allowed and forbidden components are small

compared with their wavelength separation, conventional theory was shown to be inade-

quate around the forbidden component. 4 This failure was ascribed 5 to the fact that

theory neglects the dynamics of the perturbing ions. Indeed, when proper allowance

was made for ion motions, great improvements between the corrected theory and exper-
6,7

iment were reported. At higher densities, where the allowed and nearby forbidden

lines overlap strongly, the effect of ion motions on the line profile should be entirely

negligible, and any failure of the theory to reproduce the experimental profiles would

have to be ascribed to some other cause. Recent measurements of helium line profiles

made in this regime of densities show somewhat conflicting results. In one of these
8 16 -3works, made at a plasma density of ~1 X 10 cm , experiment and theory are said

to be in fair agreement. In the other work, 9 however, significant departures are
16 17 -3

observed at densities 3 X 10 to 1 X 10 cm : the separation between the peaks of

the allowed and forbidden lines is not as large, and the dip between them not as deep,

as theory would have it.

As a result of these conflicting observations, we have undertaken an independent

experiment to see whether at high plasma density a genuine discrepancy indeed exists

between experiment and theory. In our experiment we generate the plasma by means

of a repetitive CO 2 laser which produces some 10 to 15 plasma pps. This allows us to

scan the optical line profile continuously with good time and space resolution and thus

This work was supported by the U. S. Atomic Energy Commission (Contract
AT(30-1)-3980).
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to free the experiment from the usual problems of shot-to-shot variations. We study

the profiles of the strongly overlapping allowed line 2 3 P-4 3 D at 4471 A and the near for-
3 3 16 -3

bidden component 2 P-4 F at 4470 A, for densities of 3.4 X 10 cm and 5. 0 X
16 -3

10 cm We observe disagreements with theory similar to those reported by

Nelson and Barnard. On the other hand, the profile of the distant forbidden 23 P-4 3 p

transition at 4517 A, which interacts but weakly with the aforementioned two lines,

agrees very well with theory. Although this line has received little attention from

the experimentalists, it appears to have potential assets in the diagnostics of dense

plasmas.

Experimental Results

Detailed descriptions of the experimental setup, reduction of data, and properties

of the optically generated plasma are given elsewhere. 7 , 10 The plasma is produced by

a transversely excited atmospheric pressure (TEA) CO2 laser. This laser yields

1-2 MW pulses of radiation at a wavelength of 10. 6 [. The pulse duration is approxi-

mately 200 ns and the repetition rate ~12 pps. The laser radiation is focused into a gas

cell by means of a 3. 8 cm focal length germanium lens. The cell is filled with spec-

troscopically pure helium to a pressure of 3/4 atm. The light from the helium plasma

generated by the laser pulses is focused by means of a condensing lens onto the slits

of a 0. 5 m spectrometer provided with a motor-driven wavelength scan (Jarrell-Ash,

Model 83-020) and a photomultiplier output. The output signal from the photomultiplier

is fed into a boxcar integrator (PAR Model 160) anc then to graphic display equipment.

The boxcar gate width is typically 250 ns and thus represents the time resolution of our

measurements. The gate can be set to any desired time delay relative to the time the

laser is fired. This enables us to probe the entire afterglow history of the slowly

decaying plasma. All measurements reported in this paper are made at a fixed time

of 5 [s.

At this time the plasma is in the form of a cigar, about 0. 6 cm long and 0. 2 cm in

radius. Although the light appears to be emitted quite symmetrically about the major

axis of the cigar, the emission is very inhomogeneous, suggesting the existence of

strong radial density and temperature gradients. For that reason, the line shape

and intensity of all spectral lines in question are measured at 20 different lateral

positions with a spatial resolution of 0. 01 cm and the results Abel-inverted by means

of a computer-generated program. This yields "true" line profiles at any desired radial

distance from the plasma axis.

To obtain the radial distribution of the plasma density we make use of the isolated

2 P-43S line of neutral helium centered at 4713 A. This is done by computer-fitting

the theoretical Stark broadened line profile to the experimental profiles (which were first

Abel-inverted as described above). As an independent check, we also determine

QPR No. 103
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the density from an analysis of the 21 P-3 1D line at 6678 A. The two sets of measure-
ments agree to better than 15% at all radial plasma positions studied. The electron
temperature and its radial distribution are deduced from the intensity ratio of the He II
4686 A line and the He I 5876 A line.

Since self-absorption of radiation could invalidate many of the above (and succeeding)
interpretations, a careful study is made of this effect. Light emitted by the plasma in
a direction away from the spectrometer slits is reflected back into the plasma by means
of a spherical mirror. Measurement of the relative increase in the spectrometer output
gives the absorptivity of the medium at any desired wavelength. In this way we find
that at the time of observation (5 is in the afterglow) self-absorption of all lines
employed is negligible, with the exception of the strong 5876 A line of He I. The mild

4410 4430 4450 4470 4490

4490 4510 4530 4550

WAVELENGTH (A)

Fig. VI-6. The measured intensity profiles of the allowed 23 P-4 3 D He I line
and the forbidden 23 p-4 3 F line (a), and the forbidden 23 P-4 3 p
line (b). The measurement is taken at 5 ps in the afterglow of
the laser-produced helium plasma, and the spectrometer looks
directly toward the plasma center. The peak intensity of the
distant forbidden line shown in (b) is ~1/20 that of the allowed
line shown in (a).
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self-absorption observed for the 5876 A line causes no serious difficulties. We do not

use this line for density determination but only to obtain values of the electron tempera-

ture from the integrated line intensity, as discussed previously. In this case even a

substantial error in intensity causes but a minor error in the temperature.

I i II

5.0 x 10 cm

33900 'K

4440 4450 4460
(a)

4520 4530 4540 4550

WAVELENGTH (A)

(b)

4470 4480 4490

4560 4570

Fig. VI-7.

QPR No. 103

Profiles of the allowed 2 3 P-4 3 D and the forbidden 2 3 P-43F

transitions (a), and the forbidden 23P-4 3 P transition (b). The

results refer to a radial position within the plasma, r = 0. 10 cm.

The points denote Abel-inverted experimental data and the dashed

line merely connects the pertinent experimental values. The

solid line is from theoryl and has been calculated for values of

N and T determined independently (see text).
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Figure VI-6 illustrates a typical recorder output of the three helium lines of central

concern to this report. At the top of the figure we have the 23 P-4 3D allowed line almost

completely merged with the 23P-43F forbidden component. At the bottom of the figure

we have the distant forbidden line, 23 P-43 P. The plots refer to the case when the spec-

trometer looks directly toward the plasma center. Good signal-to-noise ratio is evident

even for the distant forbidden line whose peak intensity is only about 5% that of the

allowed line.

We have obtained data like that shown in Fig. VI-6 for some 20 lateral positions

of the plasma cigar, and by Abel inversion derived the "true" profiles at various

radial positions r. In this report we selected two positions, where the plasma den-

sities N and electron temperatures T have the following values (as determined by

20 -

10 -

0-
4430 4440 4450 4460 4470 4480 4490

(a)

4520 4530 4540

WAVELENGTH (A)
(b)

4550 4560 4570

Profiles of the allowed 2 3 P-4 3 D and the forbidden 23P-43F

transitions (a), and the forbidden 2 3 p-4 3 P transition (b).
The results refer to a radial position within the plasma,
r = 0. 16 cm.

0 -

4510

Fig. VI-8.
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the aforementioned methods):

16 -3
rl = 0. 10 cm; N = 5. OX 10 cm ; T = 33, 900'K

16 -3
r 2 = 0. 16 cm; N = 3. 8 X 10 cm ; T = 27, 0000 K.

Comparisons between experiment and theory are shown in Figs. VI-7 and VI-8 for the

two radial positions in question. The solid points represent the Abel-inverted measure-

ments. The solid lines represent theoretical profiles of the 23P-43D, 3F, 3P lines com-

puted by the same methods employed earlier by Griem.1 In these computations we

use the values of temperature and density stated above (with the exception of the value
16 -3 16 -3

N = 3. 8 X 10 cm at r 2 which we replace by N = 3.4 X 10 cm ; this gives some-

what better agreement with theory, but the new choice of density lies well within the

15% error brackets quoted earlier).

Discussion

Figures VI-7 and VI-8 show that all is well with regard to the distant forbidden

2 3P-4 3P line, but that something is certainly amiss with regard to the 23 P-4 3D, 3F pair

of lines. Here we find discrepancies between experiment and theory very similar to

those observed by Nelson and Barnard. 9 Whereas the overall halfwidth of the pair of

lines agrees well with theory, the detailed structure does not; the observed peak separa-

tion is smaller and the dip between the two lines shallower than predicted by theory. It

is clear that merely changing the plasma density in the theoretical profile does not lead

to better agreement. For example, lowering the density brings the peaks closer

together. On the other hand, this makes the total halfwidth too small and the ratio of

peak intensities even larger. The wavelength scale of the experimentally determined

profile may have a uniform shift of no more than ±1. 0 A but a shift of this magnitude

would leave the discrepancy essentially the same. It may also be thought that the inten-

sity ratio of the peaks is modified by self-absorption and that the filling in of the

dip between the peaks is caused by an outer plasma region of relatively low density. We

can refute sdlf-absorption as a cause of error since our measurements show convincingly

that this is negligible at the time of measurement. Also, line shape errors caused by

density gradients should not be a problem since the Abel transformation of our

results effectively corrects for the presence of gradients.

We note that the computations in the table of Barnard et al.2 yield a somewhat smaller

peak separation than do our calculations based on the work of Griem.1 Even here,

however, the agreement between theory and experiment is not very satisfactory.

We are thus led to the following conclusions in regard to plasma diagnostics by means

of the 23P-43D, 3F pair of lines. To determine the plasma density, it is the halfwidth
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which is the most trustworthy. More specifically, at low densities it is the halfwidth

of the allowed line alone, and at high densities (N > 1 X 1016 cm-3 ) it is the combined

halfwidth of the strongly overlapping allowed and forbidden lines. The wavelength sep-

aration between the two peaks is a much less reliable way of obtaining the density. The

use of the intensity ratio of the allowed to the forbidden lines as a means of deducing N

is good at low densities only (N < 1 X 1016 cm 3 ). Here the ratio is determined by

the ionic fields which mix the 43D and 43F states, and the ratio is thus a sensitive func-

tion of the ambient plasma density. At higher densities, both lines become weaker with

increasing N, and their ratio changes but slowly: now electron broadening becomes an

important factor in determining the intensity ratio. In this regime of N the use of the

intensity ratio is not too reliable, partly because it is relatively insensitive to the

magnitude of N, and partly because it is subject to theoretical uncertainties in cal-

culations of the electron contribution to the line broadening.

In contrast to the above, the 2 3 P-4 3 P forbidden line at 4517 A is in satisfactory

agreement with theory and its exploitation as a diagnostic tool should be examined

further.

G. Bekefi, E. V. George, B. Ya'akobi

[Dr. Ya'akobi is a member of the Department of Physics and Astronomy, University
of Maryland.]
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1. FEASIBILITY OF STATIONARY TOKAMAKt

At present, considerable hope for controlled thermonuclear fusion relies on the

Tokamak approach. To generate electric power, continuous operation is desirable,

and the feasibility of a steady-state Tokamak would therefore provide a major incen-

tive for further development. The recent discovery of the "bootstrap effect"1, z indi-

cates a way to achieve the steady state, since with this effect the toroidal current

necessary for equilibrium is driven by the radial pressure gradient of the confined

plasma itself rather than by the usual transformer pulse, provided the gradient and a

" seed current" are maintained externally. This can be accomplished by neutral par-

ticle injection which provides simultaneous mass, current, and heat inputs. Using the

build-up theory of ion density and current on injection parallel to the magnetic field,3 and

extending the theory of Bickerton et al. 1 to cover the relevant cases, conditions for the

steady-state operation are delineated. The Kruskal-Shafranov stability criterion limits

the injection current so that parallel injection alone cannot balance the banana-diffusion

losses. For a steady state, additional particle injection without further increase of the

current is required; for example, by injection perpendicular to the field, or by

pellets.

In this report we wish merely to outline the problem, which will be treated more

extensively in a later publication.

The basic relation for the gradient-driven current in the banana regime is

This work was supported by the U. S. Atomic Energy Commission (Contract
AT(30-1)-3980).

tDr. D. Bruce Montgomery is at the Francis Bitter National Magnet Laboratory.

$This work was supported in part by the U. S. A. E. C. at the Oak Ridge National
Laboratory.
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,/ r T an
b - B , (1)

where the symbols have the usual meanings. A possible derivation of this result has been

given in an earlier report.4 B 0 is the poloidal magnetic field, and through Ampere' s

law is connected with jb. It can be shown that a seed current Iseed(r) must be provided

near r = 0, along with a particle source S, balancing diffusion losses in the steady state:

8n
S(r) = -21TrD -ar

with (2)

r -2
D= B Tn(r),

where Tr is the Spitzer resistivity.

These equations and Ampere's law lead to coupled nonlinear equations for n(r) and

I(r), the steady-state density and current profiles. The boundary conditions should be

n(O) = n , I(0) = 0. In order to obtain an analytical solution, however, one must restrict

the calculation to the region

r <rd<r
o p

where r is the " source radius," and r the plasma radius, prescribe
o p

I(ro) Io, n(r o ) a no'

and assume that the seed current and particle source are essentially contained in r < ro

that is, I = 0 and S = const. for r > r . Unfortunately, this model does not reveal

the extent to which the seed current dominates the behavior of n and I at r = 0.

If the "bootstrap effect" is weak

Io Iseed (r o

(3)
n = n(O).

Parametrizing Io and S through

2

R 120

o o

and (4)

8S
a- 2

5n oc
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(where we have converted to CGS units, and c is the speed of light). Bickerton et al.1

have solved for I(r p)/I ° and r p/r as functions of a and 8.

Sufficient conditions for the validity of Eq. 3 are a << 1, a6 < 1. If the "bootstrap

effect" is strong, Eq. 3 breaks down and one cannot easily identify the total current at

r with the seed current and n with n(O).
o o

The relative strength of particle-to-current source is measured by the parameter

k2 = a5 - (1-a) 2  (5)

and all results of Bickerton and his co-workers1 are for X > 0. With the Kruskal limit

on the seed current, however, the injected steady-state Tokamak plasmas are in the

regime X2 < 0, a > 1, 6 < 6crit < 1. The limit k2 = 0 can be reached both from small and

large values of the source strength a, for a given seed current 6. The zeros are at

a ,- I = 6 (1+± J 1+4/ 6). (6)
1, 2 2

It can be shown that for a < al, 6 -< 6crit no physical steady-state solution exists, but

for a > 1, 6 < 6 crit < 1 a solution does exist, leading to

1(rp) 1/2 rp 2/5

S 1+ 1 + + (a + + (a )  (7)
o o

where c = Aln 1  c2 = C + and A = 2 + 6. This solution shows the cur-

rent magnification and the plasma pinching resulting from the seed current and particle

input, in this limit. [These results may be somewhat in error quantitatively, since this

limit violates the conditions of Eq. 3. Numerical integration, starting at r = 0 rather

than at r0 will give precise answers.]
It remains to determine the possible values of a and 6 on injection. More physi-

cally, Eq. 4 can be written

2

a= o (8a)5 oi n i.

2

6 Io 5/2 (8b)

T

where p0 and p are the poloidal and total P, p0i is the poloidal plasma ion gyro radius,

n is the injected number density per second, vie is the ion-electron collision fre-

quency, and I T is the current generating the toroidal field. If the Kruskal limit is
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to be observed at ro, that is, if q(ro) l,

t ( )3/26 6 crit = R

At 1, p ~ (r /R)3/2 and one gets

S3/2
0< 6j r p <1 (9)

for the range of permitted values of 6. (6 = 0 would correspond to zero seed current.)

Thus a2 is determined from Eq. 6 and Eq. 9 as

r 3/4
a 1+ >1

22 ( r p ) 1and the regime X < 0, a > a 2 will indeed be of practical interest.

Callen and Clarke 3 have determined As and I Iseed as

I

s 2  H(r)
ek 42 r R

o p

(10)

Iv7 r
s bos o 1

s X V 2R 10'O O

where H(r) is a form factor depending on toroidal effects, Ib is the injected beam cur--1 b teijce emcr
rent, X = (no charge xchange)- and Ts is the slowing down time for a beam ion. Since
the slowing down is mainly a result of ion-electron collisions, T -v-. Note that

S le
the effective seed current is much larger than the beam current resulting from a , stor-
age effect." (An injected ion "lives" many times its transit time around the machine
before it is thermalized.) From Eq. 10 we find

r I r

S(r o ) = 21r dr n (r=) b r o 1
S 0 s ek V 2R 10

and a coupling between the seed current and particle source strength

I /S = ev T

becomes apparent, peculiar to parallel injection. In terms of a and 6 this relation is
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T nre r
2 -1 em o o

a z 4 M k, (11)
b mc (v. r )

where E b is the beam energy.

It follows that for usual Tokamak densities (<10 /cm) k is a small number. Taking

6 to the Kruskal limit in Eq. 9, Eq. 11 becomes

a = k << 1.
crit

Together with Eq. 9 this determines a and 5 on parallel injection, leading to .2 < 0

(Eq. 5) and a < a 1 (Eq. 6). As mentioned, no physical steady-state solution exists

in this regime because such small values of a do not provide a quantity of source par-

ticles equaling the banana-diffusion losses given by the flux

(n r) POi'ei r
p

where .ei = (M/m)vie. A balance can be reached if additional particles are introduced

such that

2

s Pi M
= 2

n v. 2 P2 m
o le r

0
or (13)

2 M

With 6 restricted by (9) such large values of a lead to well-behaved solutions for n(r)

and I(r) characterized by 2Z < 0, a > a?, with a large current magnification and plasma

pinching given by Eq. 7.

In contrast to these encouraging results is the fact that in practice, although present

technology is able to provide sufficient amounts of seed current, the amount of particle

input to offset diffusion losses is rather large. For example, to reach

n

n v.
o le

in a plasma volume of 10 cm , typically (e. g., for the Ormak-experiment) >100 pps

or >16 A are required.

I wish to thank J. D. Callen for numerous suggestions and discussions, and
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am obliged to him and to J. F. Clarke for making their results available prior

to publication.

D. J. Sigmar
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