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A. RECENT ADVANCES IN THE THEORY OF RECONSTRUCTING

MULTIDIMENSIONAL SIGNALS FROM PROJECTIONS

i. Introduction

The problem of reconstructing multidimensional signals from their projections is

of interest because x-ray photographs and electron micrographs can be considered to

be projections of three-dimensional objects. Thus mathematical techniques for per-

forming such reconstructions will permit us to reconstruct visually opaque objects from

their x-rays at different orientations and to determine the structure of macromolecules

from electron micrographs. In a previous reportI some techniques were discussed

whereby we could perform such a reconstruction; in the present report, some other

more powerful algorithms will be developed. One of these algorithms, in fact, permits

the reconstruction of a broad class of multidimensional signals of any dimensionality

from a single one-dimensional projection.

The idea of reconstructing functions from their projections can be applied to func-

tions of any dimensionality; however, the most interesting problems, since they have

useful applications, are the two-dimensional and the three-dimensional problems. By

extension, there is a one-dimensional problem, but it is a trivial case because the pro-

jection of a one-dimensional function is the function itself. Most of the derivations in

this report will be given in terms of the two-dimensional problem because it is notation-

ally and conceptually simpler than the three-dimensional problem, but we shall also

explore some of the issues that are unique to the three-dimensional case.

In both of the algorithms that are developed here it is assumed that the function

which is being reconstructed is bandlimited, and if a further assumption is made they

will yvield exact reconstructions. If these assumptions are not appropriate for the prob-
1-6

lem at hand, there are other techniques that will yield approximate reconstructions.
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Inasmuch as we shall deal with bandlimited functions exclusively, it is appropriate to

begin with a discussion of the properties of the projections of multidimensional band-

limited functions.

2. Projections of Bandlimited Functions

The assumption of bandlimitedness is not especially harsh, for although most func-

tions that we shall reconstruct are spacelimited. and hence strictly speaking not band-

limited, they are nearly so. Furthermore, if any algorithm is to be implemented on a

computer, it is necessary to reconstruct a sampled multidimensional function from

sampled projections. Thus bandlimitedness is implicitly assumed to a greater or

lesser degree by all digital reconstruction algorithms. In these algorithms we shall

explicitly assume bandlimitedness and then utilize this assumption in the design of our

algorithms, with the hope that they will yield high-quality reconstructions for nearly

bandlimited functions. The last premise must be verified experimentally.

LINES OF INTEGRATION Y
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Fig. XIII-1. Relationship between a projection and a slice.

The projections of a two-dimensional function (picture) can be considered as a col-

lection of line integrals taken perpendicular to an axis, which we call the projection

axis. Thus the projection perpendicular to the x axis, Po(x), can be defined as

po(x) = fC f(x, y) dy.

At a general angle 0, a projection can be similarly defined by

p (u) = f(u cos +v- sin , -u sin( +v - cos ) dv, (1)

and it satisfies the Fourier transform relation
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PO(u) - F(w cos 0, w sin 0),

where F(w x , wy ) represents the two-dimensional Fourier transform of f(x, y). The

right-hand side of Eq. 2 will be referred to as the slice of the two-dimensional Fourier

transform at an angle 6. Thus the one-dimensional Fourier transform of the projection

of a picture at an angle 0 to the x axis is a slice of the two-dimensional Fourier trans-

form of that picture at an angle 0 with the x axis. This relationship is illustrated in

Fig. XIII-1.

Fig. XIII-2. Region of Fourier plane over
which a bandlimited picture
is nonzero.

If we now assume that the picture is bandlimited, that is, that its frequency response

is nonzero only in that region of the Fourier plane illustrated in Fig. XIII-2, then we

can use the sampling theorem to express the picture in terms of its samples on a regular

Cartesian raster as in

sin WUx - ) sin Wy -rW (YW

( x - ~ ) y -~

f(x, y) =
m=-oo n=-oc

/f mi nur
f H ' W

Since all of the projections transform to slices, they too must be bandlimited (in one

dimension) and each projection can thus be expanded in terms of its samples as in

sin W0 u- rr

0( nT

86

po(u) =
n=-o

The bandwidth of each projection W e can be expressed as
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W

max{ cosO , sinO i

From Eqs. 4 and 5 we can ascertain the Nyquist sampling rate for each projection,

which is observed to be a function of 0, the projection angle. Since we must work with

sampled projections, this will prove to be an important quantity.

We can get an alternative expression for p6(u), not in terms of the samples of the

projections, but in terms of the samples of the picture itself. If we take the Fourier

transform of Eq. 3, we get

F(ox', Cy) =F y Tr
i

0  n-00
m=-oo n= -oo

where

WW(O x y

From Eq. 6 we can

Eq. 2).

(1, if I " --< W and Cy W

0, otherwise

evaluate F(w cos 0, o sin 0) which is the expression for a slice (from

F(c cos 0, o sin 0)

0 00

W -
i=--oo n= -o

fmTr rr) exp TJ (mcos0+nsin0)}f W ' -- ex -j :

x b (w cos 0, o sin 0).

Performing an inverse

tion at angle O.

p (u) T 2

Fourier transform on Eq. 7 gives an expression for the projec-

00 cc

M =
1=--co n =- oo

w nw)
mTr nw )sin W u- cos 0 - sin 0)

mu s ne
u cos - - sin 0

W W

In the two reconstruction techniques that follow, we must impose one further

restriction on the picture in addition to bandlimitedness. We must assume that the

digitized picture f( , ) be nonzero for integral values of m and n only when m

and n are in the range 0 < m, n - N-1, for some finite integer N. We call this

assumption quasi-spacelimitedness, although note that we do not assume that f(x, y) is

spacelimited (which would contradict the assumption that it is bandlimited), but only
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that its samples are spacelimited. This assumption has the effect of making the double

summations of Eqs. 3, 6, 7, and 8 finite. This, like the assumption of bandlimitedness,

is implicit in most reconstruction techniques, since only a finite number of samples

of the Fourier transform of the picture are generally computed, and only a finite

number of picture samples are reconstructed.

3. An Algorithm for Reconstructing a Function from N+l1 Projections

Equation 4 gives us the smallest sampling rate that can be employed for sampling

a projection in order that information not be lost by sampling. Each projection, of

course, can be sampled with a higher rate. The traditional approach for getting

samples of the slices of a picture is to find a sampling rate that is large enough so that

all of the projections can be sampled at the same rate. The resulting sequences can

then be aliased to give IM point sequences, and these M point sequences can then be

Fourier-transformed by using a discrete Fourier transform (DFT) algorithm to yield

M sample values along each slice. The M-point aliased sequence x(n) corresponding

to the infinitely long sequence x(n) is defined by

x(n) = x(Mm+n).

m=-oc

If this procedure is folloved, the Fourier transform of the picture will be known

at points lying on a polar lattice. The points of such a lattice can be thought of as the

intersections of the set of slices with a family of evenly spaced concentric circles,

including one of zero radius at the origin. Once the transform of the picture is known

at these points, the next step is to approximate the transform of the picture over the

whole plane and then perform an inverse Fourier transform. There are no nice

polar "sampling theorems" that will allow us to obtain directly the set f(W ' ,

As a different approach, let us therefore sample each projection at its own

Nyquist rate, or at a rate proportional to its Nyquist rate, then alias the resulting

sequences to N points (N is the width of the digitized picture) and use a DFT algo-

rithm to get samples of the Fourier transform of the picture. If this procedure is

followed, the Fourier samples which result lie at the intersection of the slices with a

family of concentric squares, as illustrated in Fig. XIII-3.

In the special case of a bandlimited quasi-spacelimited (BLQSL) function, a concen-

tric squares lattice has definite advantages over a polar one. Along any horizontal

or vertical lines in the Fourier plane, the Fourier transform of a BLQSL function is a

one-dimensional complex polynomial of degree N-1, and as a result any line in the

Fourier plane is completely specified by N-i samples that lie along that line.

Furthermore, a BLQSL function is completely specified by its DFT, that is, by the
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Fip. XIII-3. A set of samples of the Fourier transform of a bandlimited
function obtained by sampling each projection at a rate pro-
portional to its own Nyquist rate.

-*--*- - - - *----- X-POINTS AVAILABLE FROM

7 PROJECTIONS

. 6 - DFT POINTS

Fig. XIII-4. Set of Fourier plane samples by which an 8 X 8 picture can
be reconstructed exactly, under the assumption that the pic-
ture is bandlimited and quasi-spacelimited.
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samples of its Fourier transform at F W i, -- j ), -N + 1 -< i,j These points all lie

on the sides of the concentric squares or their extensions. These properties enable

us to reconstruct a BLQSL function exactly from a set of N concentric-squares pro-

jections.

Suppose, for example, we have a two-dimensional BLQSL function of dimension N.

Let us assume also that we have the

capability of obtaining the projections

of the picture at any angle we desire.

We can thus take N projections at N dis-

tinct angles in the range -450 < O < 450,

and we can also take one projection at

an angle outside this range. The known

points in Fourier space will then corre-

spond to those illustrated in Fig. XIII-4

(a) for the special case N= 8. Along each ver-

tical square side we thus have 8 samples

and.along these sides the Fourier trans-

form is a 7th-order polynomial in the

variable e Y. Then, using Lagrange

polynomials (or some other technique),

we can evaluate the Fourier transform

at all of the DFT points on each of the

(b) vertical lines, except for the one at ox
0. Now consider the horizontal sides.

Along each of these lines we also have

a polynomial of degree 7 and we also

have 8 samples, seven computed from

the column calculations, and the eighth

provided by the remaining projection.

Since this projection was taken outside

the range -450 < -< 450, it must inter-

sect all of the horizontal square sides

(c) (and must also not pass through any of

the DFT points whose value is already

Fig. XIII-5. known). Thus we can apply Lagrange

Comparison of reconstructions from a con- polynomials to the horizontal lines to
centric squares grid and from a concentric fill in the remaining DFT values. Con-
circles grid. (a) Original picture. (b) Con-
centric squares reconstruction. (c) Polar sequently, we know all of the DFT values

(concentric circles) reconstruction. exactly, and a BLQSL picture can be

QPR No. 105
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reconstructed from its DFT so that we know the set of picture samples exactly. If the

last projection had been taken perpendicular to the y axis, then the second round of

interpolation would not have been necessary, for the remaining DFT samples would be

available directly from the DFT of the last sampled projection.

In Fig. XIII-5 we show a concentric-squares reconstruction and compare it with

the corresponding concentric-circles (polar) reconstruction. Instead of using Lagrange

interpolation to exactly perform the reconstruction, a simpler approximate strategy was

employed. Linear interpolation was used to approximate the DFT samples from the

samples obtained from the projections in both reconstructions. Each reconstruction is

a 64 X 64 picture which was obtained from 64 projections. The projections were com-

puted from the original picture which is included for comparison. Note that the

concentric-squares reconstruction is truer to the original.

4. Reconstructing a BLQSL Picture from a Single Projection

Let us now restrict ourselves to the slice at an angle 0 = tan - 1 1/N. From Eq. 7

this slice can be written as

N-I N-1
•_ w_ m_ nWT exp j W(Nm+n)

\ N +1 /N + 1 m=O nO 2/N2 + I

fW NV/N + 
ifN

N

S0 otherwise

(9)

If we define g(Nm+n) = f TT ), then Eq. 9 becomes
N2-1

F N g- g(l) iexp j ul

+ 2+ 1=0 2 + 1N

= 0, otherwise

(10)
-io

Thus, over the region of interest, the slice at 0 = tan - 1 1iN is a one-dimensional poly-

nomial of degree N2-1 in the variable exp -j ), and the coefficients of that\W /
polynomial are simply the picture samples arranged as they would be if the picture

were scanned column by column. Since F ' N can be computed from

4( N V/-2
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N2 samples taken along the slice, and knowledge of a polynomial implied knowledge

of its coefficients, specification of N2 samples along the slice at 0 = tan-1 1/N implies

knowledge of the whole set of picture samples. (Similar statements can be made about

other slices in the Fourier plane.)

Let us now, for convenience, define G(Lo) = F + + , and let us

+ 2
2W N + N2  N

set A N3  Then if we compute G(kA) for k - + 1 ... 0 1, ... - 2 Y

we shall have N2 equally spaced samples of G(w) which extend over the entire band.

There is a strong reason for choosing this particular set of frequency samples on this

slice. If the projection p -1 1 (u) is sampled at its Nyquist rate, if the infinite
tan -

N
sequence that results is then aliased to give a sequence of length N , and if this

sequence is then Fourier-transformed by means of the DFT, the resulting N2 point

sequence is G(kAw). Substituting in Eq. 10, we have

2
N- 2 2

G(kAw) = g(l) exp k + i (1)
1 0 2 2
1=0

Examining Eq. 11, we see that G(kAw) corresponds to the first N 2 points of the N 3 point

DFT of the sequence formed by taking the N 2 picture samples column by column and

appending N 3 -N 2 zeros.

The sequence G(kAw) could be obtained from the sequence g(l) by means of a chirp

z-transform algorithm CZT.7 To obtain g(l) (the picture samples) from G(kAw), we thus

need an inverse CZT, which will be developed.

These results have an interesting interpretation in terms of another problem. The

impulse response of a two-dimensional nonrecursive digital filter behaves exactly like

the set of rectangular samples of a BLQSL picture and thus the impulse response, or

the two-dimensional frequency response, of such a filter is completely specified by its

frequency response along the line 0 = tan- 1 1/N. As well as providing an interesting

property for such filters, this result suggests a mapping between one-dimensional non-

recursive and two-dimensional nonrecursive filter designs that may be useful in filter

design. These implications are worthy of further study.

5. Reconstructing a Three-Dimensional BLQSL Function from

a Single Projection

Probably the simplest way to reconstruct a three-dimensional sequence from its

projections is to consider that three-dimensional sequence as a stack of two-dimensional
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sequences. If we think of these two-dimensional sequences as lying parallel to the

x-y plane, and then take a projection parallel to the x-y plane at an angle =
-l

tan - I 1/N with the x axis, then the resulting two-dimensional projection of the three-

dimensional object will be a stack of one-dimensional projection functions, each of which

is the projection of one member of the original stack of two-dimensional functions

and each of which is taken at its critical angle. This is a straightforward extension

of the two-dimensional problem and hardly requires elaboration. It would be a compu-

tationally efficient scheme, however, if a complete reconstruction were not desired, but

only a limited number of cross sections.

From a theoretical point of view, a more interesting approach to the three-

dimensional problem is to parallel the reasoning of the two-dimensional analysis. In

that case we found a line in the Fourier plane; if we knew the Fourier transform of the

picture along this line, then we knew the whole set of picture samples. Such a line also

exists in the three-dimensional case. This is that line which is traced out by the vector

S, where
c

N9 N 1

S+N +1 I+N4 + 1 N +N + 1I

Along this line the frequency response is a polynomial of degree N 3 -1, and the coeffi-

cients of this polynomial are the function samples f mTr ni- O m, n, p N-l,

wheive \ is the bandwidth, defined as in the two-dimensional case. If we sample this
3

line at N evenly spaced points over the band, then

N-1 N-1 N-1

(kAw) = \ f exp -j (N2n+Nn+p) ,

m=0 n=0 p=0

N 3  N 3

k = + 1 . 0, 1, . (12)2 2

Thus we have the first N 3 points of an N 5 point sequence. Equation 12 can be solved by

using the inverse chirp z-transform.

The projection of a three-dimensional function is two-dimensional, whereas the

critical line along which we desire the frequency response is one-dimensional. This

frequency response can be evaluated directly from the two-dimensional projection

samples (the projection is a bandlimited function) or equivalently a one-dimensional pro-

jection of the two-dimensional projection can be computed digitally and then transformed.

If the angle of this projection is chosen properly, this slice of a slice will corre-

spond to the desired line. It must be remembered however, when working with the
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W V " -27
N

CRITICAL LINE

/l

T-W AN
9 = TAN_ I N +

Fig. XIII-6. Two-dimensional slice of the Fourier transform of a
three-dimensional function taken perpendicular to the
plane = N . The bandwidths of the slice are shown,

y
as well as the location of the critical line, whose crit-
ical frequency response determines the whole three-
dimensional frequency response.

two-dimensional projection that although this is a bandlinmited function, the bandwidth

in the two orthogonal frequency variables is a function of the direction of that projec-

tion. In Fig. XIII-6 we show the relevant parameters for computing the frequency

response along the critical line when the original projection was projected onto the plane

x y

6. Inverse Chirp z-Transformi

The chirp z-transform (CZT) algorithm 7 is an efficient algorithm for evaluating

the sum

L-1

k n
Xk n= x(n)(A

n=0

where

A = A exp(j2rO )o o

W = W exp(jTrro ).

The CZT calculates the z-transform of the finite duration sequence x(n) at a set of

points that are regularly spaced on a spiral in the z plane as illustrated in Fig. XIII-7.7

Equation 11 can be seen to be of the same form as Eq. 13 if in place of the sequence x(n)

QPR No. 105
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we substitute the sequence g(l) = g(Nm+n) = f mr n and if we set A = exp -j N+ 1

and if W = exp(j2n/N 3 ). The sequence X k and A and W are known in this particular

case, and we desire a means of calculating g(l). What we need, therefore, is a means

of inverting Eq. 13 -- an inverse CZT.

Im (z) z - PLANE

0

Re (z)

Fig. XIII-7. Illustration of the independent parameters of the
CZT algorithm and the inverse CZT algorithm.

(Modified from Rabiner et al. )

Since the sequence Xk corresponds to samples of a polynomial of degree L-1, we

know that Eq. 13 can be inverted if there are more than L independent values of X k

or if K - L. This follows from the fact that the matrix of coefficients [(AWk) n ] is a

Vandermonde matrix. One possible technique to use is to invert (13) directly. For

values of K of the order of several thousand, however, this is computationally not

feasible.

Another approach which proves to be far more attractive computationally, although

at first appearance it would not be so, is to use the Lagrange polynomial interpolation

formula to reconstruct the complete polynomial over the whole z plane from the

set of K samples and then perform an inverse z-transform integral of this poly-

nomial to get the sequence x(n).
-1

If X(z) is a polynomial of degree L-1 in z-1 and if X(z) is specified at the points
-1 -1 -1

zo , z1 , .... L-', then
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L-1
-1

X(z)= X(z ) (z -,
rn m

m= 0

where

-1= [AWm -1
m

m = 0, 1, ... , L-1

-1)and C (z ) is a Lagrange interpolating polynomial
m

z -z-1)

(-m
-1 -1 ) ( - 1  - 1

.. -z m m-zm m-1 m m

Since the denominator of mn (z - 1 ) is a constant, let us write it as 1/C m .

X(z) =

m= 0

L-1L (-1z

Thus

-1
z

Equation 15 represents the z-transform of the sequence x(n) which we desire. Thus

we see that the sequence x(n) can be regarded as the impulse response of a bank of

resonators and a comb filter in cascade, as in Fig. XIII-8.

Uo(n) -z C X(zo
)

x(n)

L-1
M(z)=7- (z- -z- )

£=O

COMB FILTER

DIGITAL RESONATORS

Fig. XIII-8. Digital network implementation of the inverse CZT.
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Let us define h(n) to be the impulse response of the bank of resonators. From Eq. 15

we can write

L-1

h(n) = - C.X(z.) z. n = 0, 1 ... L-1.h (n)

i=0

If we recognize that z. AW - , then

L- L-1
h(n) -i(n+l) n+ - C(z) -i -in

h(n) -C.X(z.) A 1A X(Z W

i=0 i=0

n = 0, 1..... L-1. (16)

If we write

N-1

CZT(x(n), A, W, N) = x(n) A-n nk,  (17)

n=O

then we can write (16) in the form

n+ 1l -1
h(n) = -A CZT(C X(z ), W, W , L) (18)

n0

and thus h(n) can be evaluated efficiently by using the CZT algorithm itself.

The output sequence x(n) is then

x(n) = h(n) rm(n),

where Q denotes convolution. Inasmuch as we only care about the first L values of the

sequence x(n)and m(n)is a causal sequence of length L+1, only the first L values of the

sequence h(n)are necessary. This fact allows us to evaluate h(n)using a CZT, and will

further allow us to perform the convolution of(18)using high-speed convolution techniques.

Except for calculating the arrays C k and m(n), the computation of the inverse CZT

can all be done efficiently. In fact, the time required to calculate an inverse CZT

is approximately twice that required to calculate a CZT, and thus is roughly pro-

portional to 2L log 2 2L if L is a power of two. To the best of my knowledge, there

are no particularly convenient methods for calculating Ck and m(n). These quantities

do not depend upon the sequence Xk, but only on the location of the samples of the

z-transform in the z plane, and therefore they will be the same for all reconstructions
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of a given size, which will allow these arrays to be precomputed and stored. In this

sense, the calculation of these quantities can be overlooked when talking about compu-

tation titnes. To reconstruct a 32 X 32 array from a single projection requires approx-

imately 105 operations (complex multiplies and adds) if the calculation of these initial

arrays is overlooked, and it requires approximately 5000 complex storage locations.

To solve Eq. 13 by direct inversion would require approximately 109 operations and

roughly 106 complex storage locations.

A one-projection reconstruction algorithm is now being implemented.

R. -I. Mersereau
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B. TRANSIENT RESPONSE OF A VARACTOR-CONTROLLED

OSCILLATOR

A study has been made of the Q-related effects on the transient response of a

voltage-controlled negative-resistance oscillator. The equation governing the nonlinear

oscillations of a second-order time-invariant circuit has the form

2
dx+ x 6f = f x,

dt

in which f x, x is a general nonlinear function of the variable x and its derivative,
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and 6 is proportional to the reciprocal of the effective Q of the circuit. A perturbational

analysis of this equation yields a solution in which the instantaneous frequency of oscil-

lation wi is given by an expression of the form i = o + F(a), where a corresponds

to the magnitude of the amplitude envelope of the oscillations. This expression indicates

a possible variation in frequency because of a variation in the amplitude envelope during

a transient period of the oscillations. It can be argued that the frequency does not reach

a steady-state value until the amplitude reaches a steady-state value.

1. Cause and Mode of Transient Operation

An analysis of an idealized step-change in one of the frequency-determining elements

indicates that such a change could cause a disturbance from the equilibrium steady-state

oscillation. Such a disturbance implies that the state of the oscillation, specified

in the phase plane by x and dx/dt immediately after the change occurs, does not

correspond in general to a state that is located on the steady-state limit cycle. Standard

phase-plane analysis shows that if the state of the oscillator is described by a set of

coordinates (the operating point) not located on the limit cycle, the oscillation will

spiral to the stable limit cycle. This spiraling to the limit cycle corresponds to a

variation in the amplitude envelope. The nonlinear mechanism that determines the

steady-state limit cycle operation also controls this transient response back to the

steady state.

2. Specific Case - Van der Pol Negative-Resistance Oscillator

A specific case of an oscillator with a Van der Pol type of nonlinearity was studied,

Sdx\ 2 dxfx = (1-x ) -.
dt ) -dt

The analytical solution to a second-order approximation indicated that the parameter

6 ( ) has a strong influence on the transient response, a first-order effect on the

rate of amplitude variation, and a second-order effect on the frequency. These relations

take the form da/dt = 8B(a), and c.i = + 6 K(a), where the B(a) and K(a) are spe-

cific functions of a, corresponding to the solution of the Van der Poi equation.

It was noted that the lower the Q of the circuit, the faster the response back to the

steady state following some disturbance, but at the expense of frequency stability and

noise reduction properties of the oscillator in the steady state.

3. Lower Limit of Transient Response Time

Specific consideration of a varactor-controlled oscillator established a lower limit

for the transient response time. First, consider the case of a circuit with an infinite Q,
the harmonic oscillator, governed by the second-order differential equation
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2 2
dx 2 dx 1+2 x- + x = 0.

2 2 LC
dt dt

In this case, linear differential equation theory indicates that there is no transient

response associated with the basic oscillator equation. If we wish to consider o =

(1/LC)1/ 2 as the instantaneous frequency of the oscillation, the only transient response

of the oscillator would be the frequency transient associated with the capacitance tran-

sient of the varactor. Any discontinuity in the boundary conditions would cause no tran-

sient response because the natural frequencies lie on the imaginary axis and thus the

value of amplitude corresponding to the initial conditions on the harmonic oscillator

becomes the amplitude of the pure sinusoidal oscillation. Therefore, in this case, the

lower limit of the response time is that of the varactor transient.

We now consider a low-Q case, and make the assumption that the circuit responds
1/2

very rapidly to any disturbance from equilibrium. Again, we take k = (1/LC) , in

the second-order nonlinear differential equation

2dx6f x +-- x= 0,
2 dt LC

dt

as an approximate value of the instantaneous frequency. We can now approximate the

varactor capacitance transient by a series of small step-changes to which the oscillator

immediately responds. In this case, the varactor transient is again the lower limit of

the oscillator' s response time. This technique of approximating the variation in one of

the frequency-determining elements as a series of small discrete steps can be used to

examine the transient corresponding to a slowly varying input.

For intermediate values of Q, particularly at the high end of these values, the speed

and nature of the transient effects are dominated by the nonlinear mechanism of the

oscillator. Therefore, the lowest possible limit of the response time is that of the

varactor itself.

4. Improvement of VCO Transient Operation

The seriousness of this transient problem depends on the nature of the application

of such a voltage-controlled oscillator. Two suggestions can be made to speed up the

period of the transient response:

(a) Since the total time of the transient depends on the size of the disturbance from

the new limit cycle operation, make an effort to minimize the magnitude of this distur-

bance. The analytical results indicate that this minimization can be accomplished in

generai, and that in some cases it is possible to reduce the disturbance to zero, by

proper choice of the precise time within a cycle to effect a change in frequency.

(b) In order to benefit Irom both high- and low-Q operation, the effective Q of the
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circuit could be lowered during the period of the transient and switched back to the

higher Q for steady-state operation.

5. Past and Future Experimental Work

A few qualitative experiments presented definite evidence of the Q-related effect on

the amplitude envelope of the transient response and the possibility of a discontinuity of

operation caused by a step-change in the capacitance. Areas of future work include a

precise determination of the associated frequency transient and the practical application

of the techniques suggested by this initial work.

J. R. Samson, Jr.
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C. \MODEL FOl LOW-FREQIUENCY ATMIOSPHERIC NOISE

In a previous report1 we gave the background and principal experimental results of

a research program to develop a model for low-frequency atmospheric noise. The main

results in that report are summnarized as follows.

The conceptual form of a model for atmospheric noise, observed at the output of a

bandlimiting filter, is

y(t) = A(t) n(t),

where n(t) is a bandpass Gaussian process, and A(t) is a lowpass random process. The

variations of A(t) model the fluctuating power level of the atmospheric noise, which is

caused by electromagnetic radiation from lightning discharges. Since this radiation is

broadband, A(t) is common to nearby, but disjoint, frequency channels.

The measured probability density of y(t) exhibits wide variations in form, caused

principally by local weather patterns. \We classified the noise characteristics by weather

pattern as "quiet," "tropical," and " frontal."

The measured joint probability density of the noise, y(t), in one frequency channel

at 65 kHIz and the noise envelope in a channel at 83 kHz exhibits a strong correlation,

as suggested by the model. In particular, the plot of the variance of the noise, y(t), con-

ditioned on the value of the disjoint channel envelope, is a straight line, above some

threshold value.,

The envelope of the autocorrelation function of the noise, y(t), was found to be essen-

tially the autocorrelation of the bandlimiting filter.

Estimates of the fluctuating power level, A(t), were measured by integrating the
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magnitude of the noise, y(t), for periods of 1 ms and 10 ms. Autocorrelation of this

sample record shows that A(t) is dominated by an uncorrelated term, but exhibits two

second-order correlations of 3-4 ms and 300-400 ms. We qualitatively related these

second-order effects to physical mechanisms in the lightning-discharge process.

In the present report we shall present a mathematical model for the observed noise

process.

1. First-Order Noise -MAodel

First-order statistics of the atmospheric noise process are given by statistically

independent samples of

y(t) = n1 (t) + x(t) a(t) n 9 (t). (1)

2
The process nl(t) is a narrow-band Gaussian process with variance a-G. The process

2
n2(t) is also Gaussian with variance o-H . The autocorrelation of n 1 and n 2 is proportional

to the autocorrelation of the bandlimiting filter, and they are statistically independent.

The process x(t) is a two-state process with value one or zero, with probability pT and

qT' respectively. The lowpass process, a(t), is the inverse of a X process with

m degrees of freedom and unity variance parameter. Both a(t) and x(t) are common

to noise waveforms observed in different frequency channels.
3

The random process generated by a(t) n 2 (t) is the process suggested by Hall as a

model for atmospheric noise waveforms observed at the output of a bandlimiting filter.

We have added features as a possible way of providing the noise model with additional

degrees of freedom to account for the variability of the first-order observations and

the joint channel statistics. In some sense, we have moved closer to the phys-

ics of the actual noise process, which exhibits a constant low-level background noise

with discrete time periods when it goes into a non-Gaussian state corresponding to

the occurrence of a discharge. This time discreteness is modeled by the two-

state x(t) process, while the noise burst itself is modeled by the "HIall compo-

nent" of the noise.

It is not possible to express the envelope of the atmospheric noise model in a simple

form by proceeding formally from (1) and using the Hilbert transform definition of an

envelope. A suitable approximation, paralleling the previous definition, is given

by

v(t) = v (t) + x(t) a(t) v 2 (t). (2)

The processes v 1 (t) and v 2(t) are [Rayleigh, paralleling the characteristics of n 1 and n 2

above. The processes x(t) and a(t) are those defined above, whether v(t) is observed in

the same channel with y(t), or in a disjoint frequency channel.
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2. Comparison of Noise Model with Measured First-Order Noise

Characteristics

The probability density of the Hall noise component, both bandpass and envelope, can

be expressed in closed form. 3 The composite probability density for random variables y

and v is then given by a weighted sum of a Gaussian or Rayleigh density and the con-

volution of the Gaussian/Rayleigh with the Hall component. We have used numerical

methods to evaluate this convolution. To compare the model with observed data, we

have used the unconditional density of the bandpass noise and the envelope in disjoint

channels, and the conditional variance of y on v as a "link" between these distribu-

tions. These three variables are shown in a composite plot in Fig. XIII-9, where we

have used RF and E to indicate observed variables, corresponding to the model vari-

ables y and v, respectively.

Four parameters characterize either the radio-frequency or envelope density: 0-G,2
CH' PT and m. The variance of the background noise component, 0- G, can be estimated

from the conditional-variance plot as the intersection of the horizontal portion with

the radio-frequency axis. This horizontal portion is caused by the uncorrelated back-

ground noise component, nl(t). The value of pT can be estimated from the conditional

plot as the intersection of the value of the envelope, at which the conditional variance

begins to depend linearly on the envelope, with the cumulative envelope probability,

P(v < v ). This value of pT is common to both channels. For large values of the argu-

ment in either the y or v density, the Hall noise component dominates, and the log of

this density is given by

log [p(y)] a - (m+1) log (y) and log [p(v)]a - (m+2) log (v).

Thus m, common to both channels, can be estimated from the slope of the tails of the

observed unconditional densities. Although the probability density of the Hall noise

component is valid for any m > 0, we have restricted in to be an integer so that the

X-process generator can be used in simulation applications.

With these parameter values given approximately, the remaining parameters were

chosen, with the aid of a computer, to achieve the match of model and measured char-

acteristics shown in Fig. XIII-9. \We found that the resulting match was quite sensitive

to the entire set of parameters, and that a 10-20%0 change in any single parameter was

reflected in the quality of the three-curve match. Similar results were achieved for

"quiet" noise conditions and "quiet-tropical" transition conditions, characterized by

a value for PT of 0. 11 and 0.5, respectively. The match to "frontal" observations, char-

acterized by a PT of 0. 9, was not as good, although apparently adequate for design

use.

Several remarks should be made concerning the model and its application to
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the observed data.

If we consider the three data plots in Fig. XIII-9 as three curves to be represented

by mathematical expressions, then a minimum of 10 parameters is required for a set.

The noise model and associated assumptions on cross-channel dependence reduce this

number to 6.

The noise model with the parameters developed here also predicts other joint chan-

nel statistics, such as the conditional density of the bandpass noise, given an envelope

value, or the ratio of mean deviation to rms of this density.

The Hall noise component has an unbounded variance for m < 2, and hence the density

of y or v does. We have dealt with this problem in a manner similar to Hall's

by truncating the density at a point of maximum validity, generally 50-60 dB above a G'
The justification for this is its practicalness. Variance is only one of an infinite set of

possible parameters to describe a non-Gaussian distribution. Variance is very sensi-

tive to the large-amplitude, low-probability region of the distribution, whereas both

practical and desirable signal-processing realizations are relatively insensitive to this

region but very sensitive to the middle and low-amplitude region. To achieve our goal

of developing a useful noise model for signal-processing design, we have been concerned

principally with achieving a good match over the bulk of the probability distribu-

tion.

Our noise observations have been in RF bandwidths of 1, 10, and 20 kHz. Our

noise-model parameters show that the values of a0 G and o-H are linearly related, with

constant pT and m values, by the noise power bandwidth of the RF filter at these

observed bandwidths. We know, by the Central Limit theorem, that this relationship

cannot continue for arbitrarily small bandwidths because the noise waveform must

become Gaussian in nature. We do not have, at present, experimental data on which

to base changes in our model parameters to reflect this behavior.

3. Time Structure of the Model

Inspection of the sample records of the integrated estimates of A(t), and considera-

tion of the physical characteristics of the lightning discharges, show that the occurrence

rate of discharges is nonstationary over periods of tenths of seconds, and that the

amplitude of A(t) is correlated with this nonstationarity. We have approximated this

complex behavior by modeling x(t) as a two-state Markov process with an occurrence

rate which is also stochastic. The a(t) process is a nonlinear function of x(t), in that

it assumes a fixed random value (described by the density of a) for each transition of

x(t) from zero to one. The value of a(t) is independent of the occurrence rate of x(t),

which preserves the first-order noise model previously described. We are, then,

approximating each discharge event by a burst of Gaussian noise, added to the back-

ground level, where the rms value of each noise burst is described by the random
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variable a. Thus the model ignores the actual correlation of noise-burst power level

with event rate which is characteristic of multiple: discharges. 1

The duration of a given model discharge event is random, with the average value

given by the transition rate of the two-state x(t) generator, X10. This rate can be

chosen to approximate the behavior of the autocorrelation of the A(t) estimates. We

have found that a rate of 850 Hz provides reasonable agreement with all of the

Run) / RII(O)
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0----~~-
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-- Simulated
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Fig. XIII-10. Comparison of the autocorrelation of observed and
simulated 1-ms and 10-ms estimates (A(ti)) of the

atmospheric noise envelope. Tropical conditions and
model parameters.
(a) 10-ms estimates. (b) 1-ms estimates.
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observed data. This value agrees with the reported observation that the duration of a

typical single discharge event is approximately 1 ms. Figure XIII-10b shows the auto-

correlation of simulated estimates of A(t) compared with observed data. The first-order

model parameters of Fig. XIII-9 were used for the distributions required in this simu-

lation.

Various methods might be considered for stochastically modulating the occurrence

rate of x(t), which is the 01 transition rate of the x(t) generator. For the noise con-

ditions characterized by pT of 0. 75 and larger, any technique tends to " switch" between

a maximum rate, thereby producing a near continuum of x(t) events, and a minimum

rate. We have selected a second two-state Markov generator to modulate 01 and to

provide this behavior. The principal advantage of this approach is that simple analytic

expressions can be formulated to guarantee that the average value of pT' given by

PT =

SX01 ( t ) + X10

equals that required by the first-order model parameters. The average length of an

intense burst of x(t) is controlled by the 10-transition rate of the second two-state gen-

erator, and this is chosen to imitate the long-term correlation of the A(t) estimates.

The 01 transition rate is then fixed to provide the required pT. A comparison of

simulated estimates of A(t) and observed data for the long-term correlation is shown

in Fig. XIII-10a.

We incorporate our description of the x(t) a(t) time structure in (1), and see that the

time variation of x(t) a(t) is significantly longer than the variations nl(t) and n 2 (t) which

are given by the correlation time of the bandlimiting filter. Hence our model also pro-

vides the behavior required of the autocorrelation of y(t), that it be proportional to

the bandlimiting filter autocorrelation. This does not hold for bandwidths significantly

less than 1 kHz.

4. Conclusion

The complete atmospheric noise model that we have evolved can be synthesized with

uniform and Gaussian random-number generators for Monte Carlo simulations. These,

together with a table of model parameters describing the various noise conditions, allow

us to achieve a wide degree of simulation complexity. This would include the range from

simulation of independent samples of bandlimited noise, or an envelope, to joint channel

simulation including time structure.

Our noise model has retained Hall' s basic model as a description of the non-Gaussian

noise component of atmospheric noise, while extending its usefulness to the modeling

of the statistical dependence between disjoint frequency channels. Our final model
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has also incorporated several features proposed by others. In particular, the idea of

a switched process (the x(t) multiplier) was given by Kapp and Kurz,4 while a time-

variant Poisson process (for an impulse wave exciting a bandlimiting filter) was

originally suggested by Furutsu and Ishida,5 and recently incorporated in an analog

atmospheric noise simulator by Coon et al. We have demonstrated that the parameters

of our model can be chosen to represent adequately some statistical characteristics of

low-frequency atmospheric noise. We believe that the model can be extended to much

higher frequencies, since the non-Gaussian noise component at these frequencies is

dominated by the lightning-discharge leader structure which appears as a burst

of noise.

We have noted at several points that our model becomes invalid for RF bandwidths

significantly less than 1 kIIz. This bandwidth plays a central role in atmospheric noise

waveforms because it represents a lower limit at which the effect of individual discharge

events can be delineated at the output of the bandlimiting filter. The practical sig-

nificance of this fact is that if we use a bandwidth much less than 1 kHz, it becomes

increasingly difficult for any nonlinear or time-variant signal-processing structure to

mitigate the effect of individual noise bursts. In the limit of vanishingly small band-

widths, the output noise becomes Gaussian and the optimum signal processing structure

becomes linear for linear signal modulation. In contrast to this, we expect to show in

a subsequent report that a zero memory nonlinearity applied to atmospheric noise wave-

forms of 1-kHz bandwidth or larger results in improvements in signal-to-noise ratio

of 5-17 dB compared with a linear-processing structure of equivalent post-detection

bandwidth. This improvement is independent of the RF bandwidth, above 1 kHz. Thus

our model describes atmospheric noise waveforms in a bandwidth region that is most

important for signal-processing design.

Di. A. Feldman
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