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Models of human behaviors have been built using many different frameworks.  In this 

paper, we make use of Hidden Markov Models (HMMs) applied to human supervisory 

control behaviors. More specifically,  we  model  the  behavior  of  an  operator  of  multiple  

heterogeneous  unmanned  vehicle systems.  The  HMM  framework  allows  the  inference  

of  higher  operator  cognitive states  from  observable operator interaction with a computer 

interface. For example, a sequence of operator actions can be used to compute a probability 

distribution of possible operator states. Such models are capable of detecting deviations from 

expected operator behavior as learned by the model. The difficulty with parametric 

inference models such as HMMs is that a large number of parameters must either be 

specified by hand or learned from example data. We compare the behavioral models 

obtained with two different supervised learning techniques and an unsupervised HMM 

training technique. The results suggest that the best models of human supervisory control 

behavior are obtained through unsupervised learning. 

Nomenclature 

 = Probability of going from state i to state j  

 = Maximum likelihood estimate of  

A = State transition matrix 

 = Probability of observing symbol c in state i 

 = Maximum likelihood estimate of   

 = Observable emission matrix 

H = Hidden Markov Model 

 = Length of observation sequence s 

M = Number of observable symbols 

N = Number of hidden states 

 = t-th observation in sequence s 

 = Set of possible hidden states 

 = Property of being at state i at time t 

V = Set of possible observables 

 = Forward probability 

 = Backward probability 

 = Viterbi backtrack pointer 

 = Probability of the observation sequence and           

that the state at time t is i 

 = Likelihood of model H 

 = Initial probability of being in state i 

 = Initial probability vector 

 = Probability of the observation sequence and 

that the state at time t and t+1 are i and j 

  = Smoothed estimator for  

 = Learning rate for all ’s 

 = Learning rate for all ’s 

 = Smoothed estimator for  

I. Introduction 

ehavioral models of human operators engaged in complex, automation-mediated high-risk domains, such as 

those typical in human supervisory control (HSC) settings, are of great value because of the high cost of 

operator failure
1
. Although generic models of full human behaviors are intractable, smaller scale models of 

behaviors in specific contexts are desirable both to predict possible system failures in various modes of operation, as 

well as to predict the impact of design interventions. While many techniques have been used to model different 

aspects of human behavior
2, 3

, partially observable models such as Hidden Markov Models (HMM) have been shown 

to be a good fit for modeling unobservable operator states
4, 5

. In this paper we concentrate on HMMs applied to the 
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human supervisory control context. HMMs are stochastic models of time series processes mainly used for the 

modeling and prediction of sequences of symbols. In the HSC context, HMMs can be used to recognize and predict 

human operator behavior, given some level of intermittent interaction with an automated system
6
.   

 One difficulty in using HMMs to model any real world process is that the model is parametric; any HMM 

inference algorithm requires an a priori description of the likelihood of specific observations and the likelihood of 

state changes. These parameters can be specified according to domain knowledge, or acquired from training data in 

a “model learning” process. For example, Bayesian model learning computes model parameters so as to maximize 

the likelihood of the model given a training data set. The learning algorithms can either be unsupervised or 

supervised. While an unsupervised learning algorithm only makes use of the information contained in the training 

data set to extract the optimal set of model parameters, supervised learning methods require that the data is 

augmented with a priori information, or labels, in order to guide the learning process. The labels usually consist of 

input data associated with the expected model output, defined by a subject matter expert. The supervised 

methodology has been favored by the machine learning community in the past for two reasons: (1) the simplest 

supervised learning methods offer better computational efficiency compared to unsupervised learning methods, and 

(2) the labels in the training data are assumed to be derived from reliable ground-truth, thereby increasing the 

amount of information captured in the model. Our focus in this paper is on operator models of human behavior and, 

in this context, we argue that it is fundamentally impossible to correctly label the training data because operator 

cognitive states are not observable. Without ground-truth, we hypothesize that human bias
7, 8

 is unavoidably 

introduced into the training data labels, which greatly influences the learning process, and may generate 

uninformative or incorrect models. 

 In order to support our hypothesis, we define the HMM formalism along with the mathematical description of 

three learning techniques we compare: (1) purely supervised learning
9

, (2) unsupervised learning
9
 and (3) smooth 

supervised learning
10

. We then introduce the data set used to train the models, present the results and finally offer 

our conclusions on the respective values of the different techniques. 

II. Hidden Markov Models 

A. Formal Definition 

HMMs were first formally defined by Baum et al.
11

 and their application was popularized by Rabiner et al.
9
 

HMMs have since then been used in a large number of different contexts and have proven valuable in diverse fields 

such as speech recognition
12

, financial data prediction
13

, signal processing
14

, and generic temporal data clustering
15

. 

HMMs consist of stochastic Markov chains based around a set of hidden states whose value cannot be directly 

observed. Each hidden state generates an observable symbol according to a specific emission function. Although the 

sequence of hidden states cannot be observed directly, the probability of being in a specific state can be inferred 

from the sequence of observed symbols. Transition functions describe the dynamics of the hidden state space. There 

are thus two types of probability parameters: the state transition probabilities and observable symbol output 

probabilities. Given a finite sequence of hidden states, all the possible transition probabilities and symbol output 

probabilities can be multiplied at each transition to calculate the overall likelihood of all the output symbols 

produced in the transition path up to that point. Summing all such transition paths, one can then compute the 

likelihood that the sequence was generated by the HMM. 

Adopting the classic notation from Rabiner et al.
9
, let N be the number of states  in the HMM 

and M be the number of observation symbols  (i.e. the dictionary size). Let  denote the property 

of being in state  at time . The state transition probability from state  to state  is  where 

 The symbol output probability function in state i is , where . 

The model parameters must be valid probabilities and thus satisfy the constraints: 

 

 

 

 

(1)  

 

The initial probability of being in state  at time  is  where . Thus, an HMM is formally 

defined as the tuple: . Figure 1 illustrates the HMM concept by showing a graphical 

representation of a 3-state model, where the set of hidden states’  transition probabilities are defined as a 

set of ’s. Each state has a probability density function of emitting a specific observable. 
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Fig. 1. A Three-state Hidden Markov Model. 

An HMM is said to respect the first order Markov assumption if the transition from the current state to the next state 

only depends on the current state such that . 

Three main computational issues need to be addressed with HMMs: model evaluation, most likely state path, and 

model learning. The first issue is the evaluation problem, i.e. the probability that a given sequence is produced by 

the model. This value is useful because, according to Bayes’ rule, it is a proxy for the probability of the model given 

the data presented. We can thus compare different models and choose the most likely one by solving the evaluation 

problem. The evaluation problem is solved with the forward/backward dynamic programming algorithm. Let  the 

be the s
th

 training sequence of length , and the t
th

 symbol of  be , so that . We can define the 

forward probability  as the probability that the partial observable sequence  is generated and that the 

state at time t is j. The forward probability can be recursively computed by the following method: 

 

 

 

 

(2)  

 

where  if j can be the first state and  otherwise. 

Similarly, we can define the backward probability  as the probability of the partial observable sequence 

 and that the state at time t is i. The backward probability can also be recursively computed as follows: 

 

 

 

 

(3)  

 

where  if i can be the last state and  otherwise. 

We can now compute the likelihood that the given training sequence  is generated by HMM and solve the 

state evaluation problem: 

 

 
 (4)  
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The second issue consists of determining the most probable (“correct”) path of hidden states given a sequence of 

observables: the most common way to solve this problem is by the Viterbi algorithm
16

. The Viterbi algorithm is a 

dynamic programming algorithm that finds the most probable sequence of states  given 

 by using a forward-backward algorithm across the trellis of hidden states. More specifically, let  

be the highest probability path across all states which ends at state i at time t: 

 

  (5)  

 

The Viterbi algorithm finds the maximum value of  iteratively, and then uses a backtracking process to decode 

the sequence of hidden states taken along the path of maximum likelihood 

Finally the last problem is the learning of the model, which is, given a sequence of observable, what is the 

maximum likelihood HMM that could produce this string? The different solutions to this problem are described in 

the next section. 

B. Learning Strategies for Hidden Markov Models 

HMMs are useful for modeling sequences of data because their structure provides inferences over unobservable 

states. The parameters of an HMM  , i.e. the characteristics of the sequences of data being modeled, are trained to 

maximize , the sum of the posterior log-likelihoods of each training sequence . Conceptually, 

the easiest way to model data is to start from known examples and associated model states. Provided that a large 

enough corpus of annotated data (pairs of input and desired output) is available, different supervised learning 

techniques can be used to estimate the parameters of the HMM. However, if no annotated data is available, it is still 

possible to automatically derive the probabilistically optimal parameters of the HMM model. This case corresponds 

to unsupervised learning. 
For ease of notation, we introduce  as the probability that the sequence  is generated by the HMM and 

that the state at time t is i. We also define  as the probability that the sequence  is generated by the HMM 

and that the state at time t and t+1 are i and j respectively: 

 

 
 (6)  

 

 
 (7)  

 

Classic Supervised Learning 

 Classic supervised learning is the simplest way to extract model parameters from labeled data. In essence, the 

idea is to maximize the probability of the observations. 

Let us again assume that our training data consists of sequence of observations . It can be shown that the Most 

Likely Estimate (MLE) of emission probability distribution given the training data is distributed according to the 

frequency of emissions in the data. We can calculate the frequency by counting how often an observation was 

generated by a state. Similarly, the most likely transition distribution given the data is distributed according to the 

frequency of transition from one state to another in the data. Ordinarily, we cannot count the frequency of state 

transitions or observation emissions from a particular state because the state is hidden. However, supervised learning 

makes the assumption that during training, we have access to the underlying state sequence and can therefore “label” 

each observation in  with the corresponding true, hidden state. The transition matrix of  can therefore be 

computed directly by counting the relative frequency of the transition between all states i and j. Similarly, the 

emission functions  can be computed by counting the number of times a specific observation c has been 

observed given a state j. More formally, if we define  as the number of time state  follows state  

and  as the number of time state j is paired with emission c: 

 

 
 (8)  
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 (9)  

 

The MLE estimates  of  then are: 

 

 
 (10)  

 

Similarly, the MLE estimates  of are: 

 

 
 (11)  

 

Using this supervised learning technique to compute the HMM model parameters is very simple and runs in , 

where   is the length of a sequence. 

 

Unsupervised Learning 

It may be, however, that even during training it is not feasible to have access to the underlying hidden state. 

Without this label, we cannot use the above algorithm because when counting state transitions, we no longer know 

which state transitioned to where at each time step and we no longer know which state to assign credit for each 

observation. We can, however, use unsupervised learning algorithms to not only infer the labels but also infer the 

model during training. The most commonly used algorithm for HMMs is a form of Expectation-Maximization (EM) 

called the Baum-Welch algorithm. Just as in supervised learning, the goal of the Baum-Welch algorithm is to 

maximize the posterior likelihood of the observed sequence  for a given HMM. More formally, Baum-Welch 

computes the optimal model  such that: 

 

 
 (12)  

 

We cannot, however, use equations (10) and (11) directly because we do not know the state at each time step t. 

EM operates by hypothesizing an initial, arbitrary set of model parameters. These model parameters are then used to 

estimate a possible state sequence  via the Viterbi algorithm. This is the expectation or E-Step of the 

EM algorithm. The model parameters are then re-estimated using equations (10) and (11) given the state labels . 

This is the maximization or M-Step of the EM algorithm. We could make the assumption that the state sequence  

is correct; however, the state sequence can be very uncertain in cases, and assuming that the state sequence is correct 

is likely to lead to failures in determining the model parameters. The EM algorithm takes the uncertainty of the state 

sequence estimate into account by using the probability of being in state  at time t to estimate transition and 

emission probabilities. The probability  is re-estimated using  and  based not on the frequency of state 

transitions from i to j in the data, but on the likelihood of being in state i at time t and the likelihood of being in state 

j at time t+1. Note that our frequencies or counts in equations (10) and (11) are not integer counts but likelihoods 

and are therefore fractional.  Similarly,  is re-estimated with as the likelihood of being in state i when the 

observation was c. The equations of re-estimation are: 

 

 
 (13)  

 

 (14)  

 

Through this iterative procedure, it can be proven that the Baum-Welch algorithm converges to a local optimum. 

The process described above assumes that the model structure (i.e. the number of hidden states) is known in 

advance. In most practical settings, this assumption is unrealistic and the structure of the model must be determined 

through a process called model selection. While there are many different criteria used to determine the validity of a 

model, we adopt in this work an information-theoretic metric called the Bayesian Information Criterion
17

 (BIC). 
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This metric allows the comparison of different models, in particular with different number of hidden states, trained 

on the same underlying data. The BIC penalizes the likelihood of the model by a complexity factor proportional to 

the number of parameters P in the model and the number of training observations K. 

 

  (15)  

 

Smooth Supervised Learning 

 Smooth supervised learning was first introduced by Baldi et al.
18

 in order to avoid issues with sudden jumps or 

absorbing probabilities of 0 during the parameter update process. The absorption property of null probabilities is an 

issue because once a transition or emission function is set to 0, it cannot be used again. The idea for the supervised 

case is to minimize the distance between the a-priori labels and the labels estimated as most likely by the HMM. 

This algorithm can be tailored for sequence discrimination
10

, and we can replace the usual  and  with real-

value parameters  and  defined as (with  being a constant): 

 

 
 

 

(16)  

 

Let be the target value of the likelihood of the pre-labeled observations and associated symbols given 

the HMM H. The probability will depend on the length of the sequence, so we introduce  which scales the 

probability with respect to the length of the sequence. and are constants that normalize  for different 

observation sequence sizes: 

 

  

 
(17)  

 

The algorithm thus tries to maximize   in order to maximize the fit of the model to the data. Given  and  as 

learning rates, the update rules for  and  are as follows: 

 

 

 

 

(18)  

 

In order to reach convergence, the constants and learning rates need to be changed for each new training set. 

Because the solution space is highly-non-linear there is no analytical method to choose these parameters 

appropriately; hence the constants and rates have to be found by a very time-consuming process of trial and error to 

maximize the model likelihood. 

C. Hidden Markov Models of Human Supervisory Control Behavior 

 We posit that the dual-chained structure of HMMs is well suited to modeling human behavior in a supervisory 

control system. HMMs are appropriate because while the operator cognitive states are not directly observable, they 

can be inferred from his or her actions. This is similar to the HMM notion of hidden states that must be inferred 

from observable symbols. Thus, we liken the hidden states of the HMM to the unobservable operator states that 

must be inferred from directly observable behaviors such as user interface interactions. Based on similar premises, 

some researchers have used HMMs to model human attention allocation based on eye-tracking data
4
. In contrast, we 

use HMMs in order to detect patterns in user behavior based on user interface events which constitute the observable 

symbols. The hidden states then can be seen as higher cognitive states or intent that gave rise to the pattern of 

observable actions. For example, a controller selecting an unmanned vehicle (UV) would be an observable symbol, 

whereas his intention to replan the UV’s goal would be a hidden operator state. 
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III. Experiment and Results 

A. RESCHU 

Data used to develop the HMM of a human supervisory control system, specifically that of a single operator 

controlling multiple unmanned vehicles, was obtained from the experiment described in Nehme et al
19

. While the 

goal of the original experiment was to validate a discrete event simulation of an operator controlling multiple 

heterogeneous unmanned vehicles, the recorded user interface interactions represent a rich corpus of supervisory 

control behavior. In the experiment, the Research Environment for Supervisory Control of Heterogeneous 

Unmanned Vehicles (RESCHU) simulator was used to allow a single human operator to control a team of UVs 

composed of unmanned air and underwater vehicles (UAVs and UUVs) (Figure 2).  

 

 
Fig. 2. The RESCHU interface 

 

In RESCHU, the UVs perform surveillance tasks with the ultimate goal of locating specific objects of interest in 

urban coastal and inland settings. UAVs can be of two types: one that provides high level sensor coverage (High 

Altitude Long Endurance or HALEs, akin to Global Hawk UAVs), while the other provides more low-level target 

surveillance and video gathering (Medium Altitude Long Endurance or MALEs, similar to Predator UAVs). In 

contrast, UUVs are all of the same type. Thus, the single operator controls a heterogeneous team of UVs which may 

consist of up to three different types of platforms, each with different characteristics.  

In the rules of this simulation, the HALE performs a target designation task (simulating some off-board 

identification process). Once designated, either MALEs or UUVs perform a visual target acquisition task, which 

consists of looking for a particular item in an image by panning and zooming the camera view. Once a UV has 

visually identified a target, an automated planner chooses the next target assignment, creating possibly sub-optimal 

target assignments that the human operator can correct. Furthermore, threat areas appear dynamically on the map, 

and entering such an area could damage the UV, so the operator can optimize the path of the UVs by assigning a 

different goal to a UV or by adding waypoints to a UV path in order to avoid threat areas.  

Participants maximized their score by 1) avoiding threat areas that dynamically changed, 2) completing as many 

of the visual tasks correctly, 3) taking advantage of re-planning when possible to minimize vehicle travel times 

between targets, and 4) ensuring a vehicle was always assigned to a target whenever possible. Training was done 

through an interactive tutorial and an open-ended practice session. After participants felt comfortable with the task 

and the interface, they started a ten minute experimental session. After completing the experiment, the participants 

could see their score which corresponded to the total number of targets correctly identified. All data were recorded 

Visual 

Task 
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Pane  

UV 
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Time 

Line 
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Water  
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to an online database. The data of interest for this project consisted of user interactions with the interface in the 

manner of clicks, such as UV selections on the map or on the left sidebar, waypoint operations (add, move, delete) 

goal changes, and the start and end of visual tasks.  

Data was collected on 49 subjects via the experimental procedure described above. The data collected amounts to 

about 8 hours of raw experimental data and about 3500 behavioral sample points. The average length for each 

sequence consisted of about 71 user interface events. 

B. Applying Hidden Markov Models to Human Supervisory Controller Behavior 

Determining the parameters of a Hidden Markov Model of user behavior requires training the model on the 

observed behavioral data. The raw behavioral data, which consists of the logged user interface events described 

above, cannot be used directly by the HMM learning algorithms, and must be pre-processed. Figure 3 shows this 

process, which consists of a grammatical and a statistical phase. 

 

 
 

Fig. 3. A combined grammatical and statistical approach is used to infer future behavior from a stream of current behavior. 

First, in the grammatical phase, low level input data (the logged events) are translated into abstract events by the 

use of a syntactic parser. The grammatical rules were established through a cognitive task analysis
20

 (CTA) that 

highlighted the important interactions of the operator with the interface. The goal of the CTA was to define clusters 

of events that are similar in the cognitive sense. In particular, the CTA focused on the formal elicitation of (1) the 

information required for each operation, (2) the result of each operation and (3) the objective function used to 

evaluate the outcome of the actions. The resulting grammatical space is shown in Table 1. User interactions were 

first discriminated based on the type of UV under controlled. This is the y-axis of the grammar. Then, the 

interactions with each of the UV types were separated into different modes: selection on either the sidebar or on the 

map, waypoint manipulation (addition, deletion and modification), goal changes, and finally, the visual task 

engagement. This is the x-axis of the grammar. The sequences of low-level user interactions were thus translated 

into a sequence of integers suitable for the statistical phase. 

Table 1.  The RESCHU grammar. 

All       

Underwater UV       

Aerial UV       

High Altitude UV       

UV Type / Mode Select 

Sidebar 

Select 

Map 

Waypoint 

Edit 

Waypoint 

Add/Del 

Goal Visual 

Task/Engage 

 

The second step of the process is the statistical learning phase which tries to model this time sequence of data. 

During this phase, the HMM parameters are trained using sequences of either labeled or unlabeled data. The initial 

HMM parameters were randomly chosen. In this experiment, we used 49 data traces of individual user trials, and we 

used a 3-fold cross-validation by training the algorithm on 46 subjects and keeping 3 subjects as a test set. This 

procedure was repeated multiple times in order to ensure the learning process was not over-fitting the data. 

C. State Labeling 

For the HMM leveraging supervised learning, labels are needed. However, due to the futuristic nature of the 

single operator-multiple unmanned vehicle system, no subject matter expert is available to label the data by hand. 

Through the cognitive task analysis, we derived an initial set of labels that were known to be recurrent. This set of 

patterns was iteratively re-defined by a Subject Matter Expert in order to increase the proportion of labeled states. 

Without a more principled way to determine the internal state of each operator, the task analysis suggested that 

certain sequences of user-interface interactions could be grouped as clusters or states. For example, a common task 

for an operator is to replan the path of a UV and the CTA allowed us to determine the necessary steps to perform 

that task. The a priori labels consisted of: 

1. Normal Navigation: interactions with the waypoints, map selections 
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2. Monitoring: interaction with the UVs based on selection on the sidebar or the map  

3. Visual Task: set of action that results in the visual/engage action  

4. Preemptive Threat Navigation: adding a series of waypoints in order to simplify changing the course of 

the vehicle should the need arise. 

This labeling scheme allowed us to cover about 80% of the training sequences and any observable that did not 

get labeled was dropped from the training set. These labels align with those basic underlying operator functions that 

form the core of supervisory control of unmanned vehicles which include navigation, vehicle health and status 

monitoring, and payload management
21

   (which in this case is the visual task.) 

D. Classic Supervised Model 

The model below represents the HMM obtained with the classic supervised learning method. All transitions with 

a weight under 5% are not drawn for legibility purposes. In general, the supervised learning algorithms find the 

optimal set of parameters for state transitions and the emission functions. Models can contain four states which may 

correspond to any type of interaction as defined by the a-priori patterns along with a specific category of UV or UVs 

that is the most likely to have produced the observable. The annotated arrows between the states represent the 

probability of going from one state to another. The emission functions are not represented explicitly but are 

encapsulated in the hidden state labeling. With the RESCHU data set, the obtained model shows that given the 

subject-matter expert-defined states, operator interactions with the HALEs do not appear as a distinct state. While 

operators interacted with the HALEs less than they did with the MALE UAVs and the UUVs, because there was a 

clear pattern in the use of a HALE prior to use of a MALE for unknown targets, we anticipated that this would be a 

state with a clearly assigned meaning. 

 
Fig. 4. Model of a human operator of multiple unmanned systems obtained with classic supervised learning 

E. Smooth-Supervised Models 

The model in Fig. 5 represents the model obtained with the smooth supervised learning method. Again, all 

transitions with a weight under 5% are not drawn for legibility purposes. The model obtained is different from the 

one obtained through classic supervised learning. While the transition probabilities between hidden states as less 

deterministic (as indicated by the higher number of likely transitions between hidden states), operator interaction 

with the HALEs again disappear and do not appear as a state as defined by the learning algorithm. 
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.  
Fig. 5. Model of a human operator of multiple unmanned systems obtained with smooth supervised learning 

F. Unsupervised Models 

Because there is no prior knowledge assumed about the model structure, the unsupervised method first requires 

performing model selection in order to determine how many hidden states the model should have. Models with a 

number of hidden states ranging from 2 to 15 were trained multiple times with different randomly assigned initial 

parameters in order to avoid convergence to a local optimum. The training was performed through the unsupervised 

Baum-Welch learning technique. The BIC for each model was computed and 4-state models appeared to be the most 

adequate models structure. Figure 6 represents the model obtained by the process described above. Again, all 

transitions with a weight under 5% are not drawn for legibility purposes. This model is markedly different from the 

models obtained with the supervised learning techniques, most notably in that the HALE and UUV interactions are 

grouped together in a clearly distinct state. This denotes that the unsupervised model was able to recognize the much 

less frequent interactions with UUVs and HALEs as different from that with the MALEs. 

 
Fig. 6. Model of a human operator of multiple unmanned systems obtained with unsupervised learning 

IV. Discussion and Model Comparisons 

Given the three different models, it is interesting to consider how fast the training converges to a stable set of 

parameters, and how good the data fit the models after the training process. Figure 7 shows the evolution of the three 

learning techniques over the course of 50 learning iterations.  



 

American Institute of Aeronautics and Astronautics 
092407 

 

11 

 

 
Fig. 7. Model fit in terms of test set likelihood for the three different training techniques 

 

The first thing to note is that, as expected, the supervised algorithm converges in the first iteration and provides a 

constant performance baseline. The first few iterations of the smooth supervised algorithm, conversely, are quite 

poor. However, at the 25
th

 iteration, the smooth supervised model surpasses the classic supervised model and 

plateaus at around the 30
th

 iteration. The first few learning iterations of the unsupervised model behave very closely 

to the smooth supervised. After the 3
rd

 iteration, however, while the smooth supervised model plateaus for the first 

time, the unsupervised algorithm log likelihood continues to increase and converges at the 20
th

 learning iteration. In 

terms of log likelihood, the performance differences are clear: the unsupervised learning method gives rise to a 

model that is more likely than both supervised methods. The smooth supervised model provides slightly superior 

posterior log likelihood than the classic supervised one.  

Adopting a human-centric point of view, it is interesting to compare how much human effort was required to 

generate the above models. For both supervised methods, the cost of labeling the data was quite high as our initial 

undertaking was to execute a cognitive task analysis of the single operator - multiple unmanned systems in order to 

define a likely set of behaviors. Cognitive task analyses are labor intensive and are somewhat subjective, so there is 

no guarantee that the outcome behaviors are correctly identified.  

Moreover these a priori defined patterns then had to be tagged in all the sequences in order to construct the 

corpus of training and testing data. In order to avoid the known risks of human judgment bias
22

 in the state definition 

process, an iterative approach was adopted in which multiple acceptable sets of state definitions were compared to 

the data. The set of definitions that provided the better explanation for the states was then chosen. It is important to 

note that expert knowledge of the task was required in all phases of this lengthy process. Thus, in addition to being 

extremely time-intensive, it is recognized that expert labeling is a costly and sometimes subjective process that can 

unnecessarily constrain the resulting models to the types of behaviors seen as important by human experts5.  

The classic supervised algorithm was straight-forward to execute and, by design, converged in one single 

iteration. In the case of the smooth supervised algorithm, however, we had to spend a considerable amount of effort 

tweaking the learning parameters and the different constants in the error distance function in order to achieve a 

reasonable convergence point. Unfortunately, due to the highly non-linear features of the solution space, it was 

impossible to use standard optimization algorithms such as grid-based exploration or sequential quadratic 

programming (SQP). Our approach then was to use a process similar to simulated annealing in which we initially 

chose a large number of random algorithm parameter values and focused the exploration around the most 

“promising” initial points, where promising was measured as the closeness between the expected and modeled 

distance in label-space. Finally, the Baum-Welch (unsupervised) method required some effort coding but 

subsequently did not require human intervention to reach convergence.  
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Table 2.  Qualitative performance summary of the learning algorithms. 

Algorithm Convergence Speed Performance Human Effort Required 

Straight Supervised Best Worst Better 

Smooth Supervised Worst Better Worst 

Unsupervised Better Best Best 

 

Table 2 shows a qualitative summary of the arguments presented above. We suggest that even when experts are 

available to decide which operator states should be labeled, uncertainty and subjective judgment cannot be 

eliminated from the process. Furthermore, even with a defined state space of labels, it is not possible for an expert to 

look at the data and unambiguously assign labels to observable states. This is especially true for states with no clear 

ground truth. The possible bias introduced in the labeling process is detrimental to the fit and therefore the predictive 

ability of the model obtained through supervised learning. Therefore, we submit that unsupervised methods should 

be preferred to the supervised technique in modeling human interactions with automated systems.  

In addition to the quantitative metrics such as convergence speed and performance, it is interesting to analyze the 

models for the explanatory mechanism they can provide. For the supervised models, the results obtained are similar 

in that they overtly emphasize the role of the MALEs and UUVs. Both supervised models, based on the human-

biased grammar, disregard a major part of the problem space: the existence of a 3
rd

 vehicle category (the HALEs). 

The unsupervised learning technique, on the contrary, segregated the HALE and UUV interactions in a separate 

state. The unsupervised technique also detected that there were very few marine targets, and thus the majority of the 

interactions with UUVs were spent in target visual task and not replanning. Such examples show the richness of the 

interpretation that can be obtained from analyzing a non-biased model that is based on statistical properties of 

operator interactions. The unsupervised model can thus be used as an exploratory tool for the human behaviors, 

which could be useful for design, training and monitoring of unmanned vehicle supervisory control systems.  

Analyses, both quantitative (i.e. model likelihood) and qualitative (i.e. model interpretation), indicate that for the 

purpose of modeling HSC operator states, the use of supervised learning is inherently flawed. The results we 

obtained showed that the supervised models yielded not only poorer prediction rates, but also failed to capture 

important characteristics of operator behavior. The poor results could be blamed, quite rightly, to poor a priori 

labeling of the states, and that the results could have been very different with better labeling. While we agree, this 

again highlights the subjective nature of expert state labeling in the presence of uncertainty. In the specific context 

of human supervisory control modeling, we argue that it is very difficult, if not impossible, to obtain a correct set of 

labels. Even using multiple experts to label in hopes of reducing the negative impact of imperfect labeling is not 

guaranteed to lead to better results
23

. 

The nature of correct -or even close enough- labels is very domain specific, and when modeling high-risk 

systems such as those in command and control systems, we propose that the more conservative and objective 

unsupervised approach is superior. Application of supervised learning methods to domains with known ground truth 

and objective label identification, such as determining facial expressions
24

 or melodic content
25

 do not suffer from 

these limitations. However, our results demonstrate that the lack of known ground-truth to annotate operator states 

leads to poor models, and that unsupervised learning should be strongly considered for future work in similar 

contexts. 

V. Conclusion 

In this paper we compared models of human supervisory control obtained through supervised learning and 

unsupervised learning. Our results suggest that not only do the supervised learning methods require significantly 

more human involvement both in terms of state labeling and parameter adjustments, they also tend to perform worse 

than the models obtained with unsupervised learning. The lack of accessible ground truth to label operator cognitive 

states and inherent human decision making biases in labeling hinders the supervised learning of operator models. 

Although domain specific, we propose that operator modeling efforts could greatly benefit from using unsupervised 

learning techniques. 
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