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The pion-mass dependence of hyperon electromagnetic properties is determined using two-flavor heavy

baryon chiral perturbation theory. Specifically we compute chiral corrections to the charge radii, magnetic

moments, and magnetic radii of the spin one-half hyperons, as well as the charge radii, magnetic

moments, magnetic radii, electric quadrupole moments, and quadrupole radii of the spin three-half

hyperons. Results for the nucleon and delta are also included. Efficacy of the two-flavor theory is

investigated by analyzing the role played by virtual kaons. For the electromagnetic properties of spin one-

half hyperons, kaon loop contributions are shown to be well described by terms analytic in the pion mass

squared. Similarly kaon contributions to the magnetic moments of spin three-half hyperons are well

described in the two-flavor theory. The remaining electromagnetic properties of spin three-half resonances

can be described in two-flavor chiral perturbation theory, however, this description fails just beyond the

physical pion mass. For the case of experimentally known hyperon magnetic moments and charge radii,

we demonstrate that chiral corrections are under reasonable control, in contrast to the behavior of these

observables in the three-flavor chiral expansion. The formulas we derive are ideal for performing the pion-

mass extrapolation of lattice QCD data obtained at the physical strange quark mass.

DOI: 10.1103/PhysRevD.81.034017 PACS numbers: 12.39.Fe, 14.20.Jn

I. INTRODUCTION

Before the advent of QCD, the spectrum of the lowest-
lying hadrons provided a clue to the underlying flavor
symmetries of the theory of strong interactions. The
lowest-lying mesons and baryons seem to be organized
into SUð3Þ multiplets; and, the lightest states, the pseudo-
scalar mesons, are suggestive of spontaneously broken
chiral symmetry, SUð3ÞL � SUð3ÞR ! SUð3ÞV . Explicit
chiral symmetry breaking introduced by three light quark
masses would give rise to small masses for the octet of
pseudoscalar Goldstone bosons. From a modern perspec-
tive, such features of low-energy QCD can be explained
using a model-independent framework that describes the
interactions of the lowest-lying hadrons with the pseudo-
Goldstone modes. This theory is chiral perturbation theory
(�PT) [1,2]; and, for three light quark flavors, the lowest-
lying baryons are grouped into multiplets of the unbroken
SUð3ÞV symmetry. The �PT framework provides a rigor-
ous description of low-energy QCD provided the light
quark masses, mu, md, and ms, are much smaller than the
QCD scale, mu, md, ms � �QCD.

In the presence of electromagnetic interactions, SUð3Þ
restricts possible baryon magnetic moment operators, for
example. Consequently relations between magnetic mo-
ments emerge. With vanishing quark masses, group theory
permits only two magnetic moment operators for the octet

baryons. Including the magnetic transition between the �0

and � baryons, there are eight known magnetic moments,
and hence six SUð3Þ symmetry relations are predicted [3].
In heavy baryon �PT (HB�PT) [4,5], these Coleman-
Glashow relations emerge from the leading-order (LO)
operators in the chiral expansion. In Table I, we summarize
the Coleman-Glashow relations. Experimentally the rela-
tions are reasonably well satisfied, and in some cases
suggest that SUð3Þ breaking could be treated
perturbatively.
Baryon electromagnetic properties can be determined

using SUð3Þ HB�PT beyond LO [6–9]. At next-to-leading
order (NLO), the magnetic moments receive contributions
that are nonanalytic in the quark masses, without additional
low-energy constants.1 In this scheme, deviations from the
Coleman-Glashow relations first arise from the leading
meson loop contributions, which depend on a few known
axial coupling constants. These predictions are shown in
Table I, with the relevant formulas collected in the
Appendix. The agreement with experiment is not very
good. Large corrections at next-to–next-to-leading order
(NNLO), which scale as the ratio of the kaon mass to octet

*fjjiang@ctp.mit.edu
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1Technically when the decuplet resonances are included, new
NLO operators are possible. These new operators are merely the
LO operators multiplied by the chiral singlet quantity �=��,
where � is the average splitting between the decuplet and octet
baryons, and �� is the chiral symmetry breaking scale. As the
determination of such low-energy constants requires the ability
to vary �, we shall subsume such NLO operators into the LO
ones.
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baryon mass, mK=MB � 0:45, are certainly possible [10];
however, one must go to next-to–next-to–next-to-leading
order to determine if the expansion is truly under control.
Nonetheless, if SUð3Þ HB�PT is converging for the
Coleman-Glashow relations, it does so slowly. It could be
possible that quantities protected from large SUð3Þ break-
ing converge more quickly. At NLO, there are three rela-
tions between magnetic moments that are insensitive to the
nonanalytic quark mass dependence [6,11]. At NNLO,
there are even two relations that eliminate the linear de-
pendence on the strange quark mass [12]. These higher-
order relations are all well satisfied experimentally.
Unfortunately HB�PT does not make parameter-free pre-
dictions for these higher-order relations.

Whatever the status of the Coleman-Glashow and
higher-order relations between magnetic moments in
�PT, the SUð3Þ chiral corrections to individual baryon
magnetic moments do not appear to be under perturbative
control. Renormalizing the NLO loop contributions such
that they vanish in the chiral limit renders them scale
independent. Hence we can compare just the loop contri-
butions to the experimental moments to determine whether
the perturbative expansion is under control. Defining the

relative difference ��B ¼ j�loop
B =�Bj, we have tabulated

the size of SUð3Þ loop contributions to baryon magnetic
moments in Table II. The size of these loop contributions

suggests that convergence of the SUð3Þ chiral expansion
for baryon magnetic moments is slow at best.
Large loop contributions to baryon magnetic moments

can arise from virtual kaons, and attempts have been made
to improve the SUð3Þ expansion of baryon observables.
One approach is to use a long-distance regularization
scheme that subtracts different short-distance effects com-
pared to dimensional regularization [13]. Another ap-
proach is to treat the baryons relativistically. This is
equivalent to the conventional heavy baryon approach
with a resummation of a certain subset of diagrams.
Results for baryon electromagnetic properties using the
infrared regularization scheme of Ref. [14] show some
improvement [15]. Recent work employing a different
scheme, however, shows promising results for both octet
and decuplet baryons [16–18].
Our approach to the problem is altogether different. We

begin with the observation that it is possible to reorganize
the three-flavor chiral expansion into a two-flavor one
thereby excluding the kaon and eta loops [19–26]. The
SUð2Þ theory of hyperons exploits the hierarchy of scales
mu, md � ms ��QCD. Consequently the strange quark

mass dependence is either absorbed into the leading low-
energy constants of SUð2Þ, or arises through power-law
suppressed terms, �ðm=msÞn, which are absorbed into
low-energy constants of pion-mass dependent operators.

TABLE II. Relative size of NLO loop contributions compared to the experiment in SUð2Þ and SUð3Þ HB�PT.
Theory ��p ��n ���þ ���� ��� ���� ���0 ����

SUð3Þ HB�PT 66% 41% 120% 21% 220% 74% 210% 176%

SUð2Þ HB�PT 39% 57% 17% 35% 0 18% <1% <1%

TABLE I. Relations between octet baryon magnetic moments. The SUð3Þ HB�PT results quoted are NLO values for the numerator
divided by experimental values for the denominator. NLO expressions for the numerators are provided in the Appendix. The �% is the
relative percent difference of the HB�PT calculation compared to the experimental value.

Relation Experiment HB�PT j�%j
LO (Coleman-Glashow)

ð��� ����Þ=ð��� þ���Þ ¼ 0 0.28 0.50 77%

ð�n � 2��Þ=ð�n þ 2��Þ ¼ 0 0.22 0.61 180%

ð�n ���0 Þ=ð�n þ��0 Þ ¼ 0 0.21 0.58 180%

ð�p ���þÞ=ð�p þ��þÞ ¼ 0 0.064 0.21 230%

ð�n þ��� þ�pÞ=ð�n þ��� ��pÞ ¼ 0 0.048 0.14 190%

ð ffiffiffi
3

p
�n þ 2���Þ=ð

ffiffiffi
3

p
�n � 2���Þ ¼ 0 0.014 0.15 970%

NLO (Caldi-Pagels)
�pþ�

�0þ���þ�n�2��

�p��
�0������nþ2��

¼ 0 0.038 0 � � �ffiffi
3

p
���þ�

�0þ�n���ffiffi
3

p
�����

�0��n���
¼ 0 0.036 0 � � �

ð��þ þ��� þ 2��Þ=ð��þ ���� � 2��Þ ¼ 0 0.015 0 � � �
NNLO (Okubo)

ð��þ þ��� � 2��0 Þ=ð��þ ���� þ 2��0 Þ ¼ 0 � � � 0 � � �
6��þ��þþ����4�

�0�4�n�4
ffiffi
3

p
���

6�����þþ���þ4�
�0þ4�n�4

ffiffi
3

p
���

¼ 0 0.028 0 � � �
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Here m is used to denote the average of the up and down
quark masses. The resulting theory sums all potentially
large strange quark mass contributions to all orders.
Improved convergence over SUð3Þ has been explicitly
shown for hyperon masses [22], isovector axial charges
[25], and pion-hyperon scattering lengths [26]. We under-
take the study of hyperon electromagnetic properties in
order to arrive at chiral corrections that are under better
control perturbatively. The size of SUð2Þ chiral corrections
to baryon magnetic moments derived in this work are also
shown in Table II. For hyperons, the results seem to in-
dicate improvement over SUð3Þ HB�PT. Additionally ex-
pressions we derive for the pion-mass dependence of
hyperon electromagnetic properties are ideal for perform-
ing lattice QCD extrapolations. In extrapolating lattice
QCD data on hyperon properties, typically only the pion-
mass extrapolation is required as the strange quark mass is
fixed at or near its physical value. Such extrapolations for
strange hadrons are most economically done with SUð2Þ
�PT.

For states lying above the nucleon isodoublet, efficacy of
the two-flavor theory strongly depends on the underlying
SUð3Þ dynamics.2 Kinematically, hyperons are forbidden
to produce kaons through strong decays. The nearness of
strangeness-changing thresholds, however, can lead to sig-
nificant nonanalytic quark mass dependence in hyperon
observables. Such dependence may not be adequately cap-
tured in the two-flavor theory because explicit kaons are
absent. Because of the size of hyperon mass splittings, spin
three-half hyperon resonances are particularly sensitive to
kaon contributions. The SUð2Þ chiral expansion of kaon
loop contributions has been demonstrated to be under
control for hyperon masses and isovector axial charges
[27,28]. Here we additionally explore the effects of virtual
kaons on the electromagnetic properties of hyperons. For
the spin one-half hyperon electromagnetic properties, kaon
loop contributions are well captured by terms analytic in
the pion mass squared. The same remains true for magnetic
moments of the spin three-half hyperons. Electromagnetic
radii and quadrupole moments of the hyperon resonances
are shown to be quite sensitive to the nearby kaon thresh-
olds. The SUð2Þ expansion of these kaon contributions
appears to converge at the physical pion mass, however,
the efficacy of the two-flavor theory does not extend con-
siderably far beyond the physical point.

Our presentation has the following organization. In
Sec. II, we review two-flavor HB�PT for hyperons and
introduce electromagnetism into the theory. Using this
two-flavor theory, we calculate the electromagnetic prop-

erties of the spin one-half and spin three-half hyperons in
Sec. III. We work at NLO in the chiral and heavy baryon
expansions. Following that, we investigate the effect of
virtual kaons on the various electromagnetic properties of
hyperons in Sec. IV. Additionally the size of chiral correc-
tions to these observables is determined by making contact
with experimental data. The predicted pion-mass depen-
dence is compared with available lattice data. Expressions
from SUð3Þ HB�PT needed for the remarks in the intro-
duction have been collected in an Appendix. Finally Sec. V
concludes our study.

II. SUð2Þ HB�PT FOR HYPERONS

In this section, we briefly review the SUð2Þ effective
Lagrangians for hyperons, and importantly include elec-
tromagnetic interactions. We largely follow the formula-
tion used in [22]. For comparison purposes, we give first
the well-known chiral Lagrangian for nucleons and deltas
with electromagnetism. For ease, we write the local elec-
tromagnetic operators in a way which is general to each
isospin multiplet.

A. Strangeness S ¼ 0 baryons

At leading order, the effective Lagrangian for the nu-
cleon and delta resonances including interaction terms with
pions is given by [29,30]

LðS¼0Þ ¼ i �Nv �DN � i �T�v �DT� þ � �T�T
�

þ 2gA �NS � AN þ g�Nð �T�A
�N þ �NA�T

�Þ
þ 2g�� �T�S � AT�; (1)

where N is the nucleon doubtlet N ¼ ðp; nÞT , and the
decuplet field Tijk is symmetric under any permutation of

the indices i, j, k 2 f1; 2g. The delta resonances are em-

bedded in Tijk as T111 ¼ �þþ, T112 ¼ �þ=
ffiffiffi
3

p
, T122 ¼

�0=
ffiffiffi
3

p
, and T222 ¼ ��. Further, the tensor products be-

tween nucleon and resonances are given by ð �TATÞ ¼
�TkjiAi

lTljk, and ð �TANÞ ¼ �TkjiAi
lNj�kl. The derivatives

D� appearing in Eq. (1) are both chirally covariant and

electromagnetically gauge covariant, and act on N and T
fields in the following manner:

ðD�NÞi ¼ @�Ni þ ðV�ÞijNj þ trðV�ÞNi;

ðD�T�Þijk ¼ @�ðT�Þijk þ ðV�ÞilðT�Þlkj þ ðV�ÞjlðT�Þilk
þ ðV�ÞklðT�Þijl: (2)

The vector and axial fields of pions, namely V� and A�, in

the presence of an electromagnetic gauge field, A�, are

given by

2This is true even for the quartet of delta resonances. The
isosinglet � baryon lies 0.12 GeV below the delta multiplet. The
nonanalytic contributions to delta properties from K� intermedi-
ate states, however, are well described by terms analytic in the
pion mass squared, and consequently nonanalytic in the strange
quark mass.
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V� ¼ 1
2ð�@��y þ �y@��Þ þ 1

2ieA�ð�Q�y þ �yQ�Þ;
(3)

A� ¼ i

2
ð�@��y � �y@��Þ � 1

2
eA�ð�Q�y � �yQ�Þ;

(4)

with � ¼ expði�=fÞ, where the pion fields � live in an
SUð2Þ matrix

� ¼
1ffiffi
2

p �0 �þ

�� � 1ffiffi
2

p �0

 !
; (5)

and f ¼ 130 MeV is the pion decay constant in our con-
ventions. The light quark electric charge matrix, Q, is
given by Q ¼ diagð2=3;�1=3Þ.

In determining electromagnetic properties at NLO in the
SUð2Þ chiral expansion, there are additional electromag-
netic tree-level operators needed from the higher-order
Lagrangian. We give a general discussion of these opera-
tors for an arbitrary SUð2Þ multiplet before writing down
the operators special to the case of the nucleon and delta
fields. These operators can be grouped by their multipo-
larity, ‘. For the spin one-half baryons, the allowed multi-
poles are ‘ ¼ 0 and 1, corresponding to the electric charge
and magnetic dipole form factors, respectively. For the spin
three-half baryons, the possible multipoles are ‘ ¼ 0–3;
which, in order, correspond to the electric charge, magnetic
dipole, electric quadrupole, and magnetic octupole form
factors. The local operators for each multipolarity consist
of a tower of terms that can be organized by the number of
derivatives. Terms possessing more derivatives are, of
course, higher-order in the power counting. Given that
the total charge is fixed by gauge invariance, the leading
electric form factor operators contribute to the electric
charge radii. These operators contribute at NLO, and are
needed for our calculation. For the magnetic form factor,
the leading magnetic moment operators are LO in the
chiral expansion and will also be needed for our computa-
tion. The leading magnetic radii operators, however, occur
at NNLO, and will not be considered here. Electric quad-
rupole operators first appear at NLO in the chiral expan-
sion, and are hence required in our computation. Local
contributions to quadrupole radii enter at next-to–next-to–
leading order, and will not be needed. Magnetic octupole
moments are not generated at NLO from loops or local
contributions. Finally, there are generally two flavor struc-
tures permitted for each multipole operator in the limit of
strong isospin. Linear combinations of these structures can
be identified with isovector and isoscalar contributions
from the electromagnetic current.

Having described in general the types of operators
needed, let us now give operators relevant for the S ¼ 0
isospin multiplets. The electromagnetic operators for the
nucleon have the form: ONa

‘ ¼ �NO‘QN, and ONb
‘ ¼

�NO‘NtrðQÞ, where only the flavor dependence has been

written explicitly.3 TheO‘ arise from the multipole expan-
sion of the electromagnetic field, and are flavor singlets.
Here the a and b merely denote the two possible flavor
contractions. For ‘ ¼ 0, we require only the leading con-
tribution to O‘¼0 which gives rise to the electric charge
radius, namelyO‘¼0 ¼ ev�@�F

��. The coefficients of the

operators ONa
‘¼0 and ONb

‘¼0 are the relevant low-energy con-

stants for the computation of the nucleon charge radii. For
‘ ¼ 1, we require the leading magnetic moment operators,
for which the required multipole structure involving the
photon field is O‘¼1 ¼ ie

2MN
½S�; S��F��. There are again

two low-energy constants corresponding to the coefficients
of the operators ONa

‘¼1 and ONb
‘¼1.

The multipole operators for the delta have a different
structure due to the vector indices carried by the Rarita-
Schwinger fields. For a general multipole operator, O��

‘ ,

there are only two flavor contractions possible for the delta,
namely OTa

‘ ¼ ð �T�O
��
‘ QT�Þ, and OTb

‘ ¼ ð �T�O
��
‘ T�Þ

trðQÞ. Again a and bmerely denote the two different flavor
structures, the O��

‘ are flavor singlets, and the coefficients

of such operators are the required low-energy constants.
For the electric form factor, we require operators contrib-
uting to the charge radius, for which the relevant photon
operator isO��

‘¼0 ¼ ev	@
F
	
g��. Operators contributing

to the magnetic moments require O��
‘¼1 ¼ ie

2MN
F��. The

occurrence of the nucleon mass renders the delta magnetic
moments in units of nuclear magnetons. From our discus-
sion above, we finally require the electric quadrupole
operators, for which the relevant multipole structure is
given by O��

‘¼2 ¼ ev	ð@�F	� þ @�F	� � 1
2g

��@
F
	
Þ.

B. Strangeness S ¼ 1 baryons

At leading order, the heavy baryon effective Lagrangian
for strangeness S ¼ 1 hyperons, namely, the �, �, and ��,
is given by

L ðS¼1Þ
2 ¼ ��ðiv � @Þ�þ tr½ ��ðiv �D� ���Þ��

� ð ����½iv �D����� ���
�Þ; (6)

where the spin one-half � and spin three-half �� fields can
be written in matrix form

� ¼
1ffiffi
2

p �0 �þ

�� � 1ffiffi
2

p �0

 !
; and

�� ¼ ��þ 1ffiffi
2

p ��0
1ffiffi
2

p ��0 ���

 !
:

(7)

The former field transforms as an adjoint, while the latter
transforms as a two-index symmetric tensor. Appearing in

3The full chiral structure of all local electromagnetic operators
can be obtained by the replacement, Q ! 1

2 ð�Q�y þ �yQ�Þ,
which generates pion loops at higher orders than we are
considering.
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the free Lagrangian is the parameter ��� ¼ Mð0Þ
�

�Mð0Þ
�

(���� ¼ Mð0Þ
�� �Mð0Þ

� ) which is the mass splitting between

the � and � (�� and �) in the chiral limit. In writing
Eq. (6), we have adopted the power counting scheme "�
m�=�� � k=��, where k is a typical residual momentum,

and �� ¼ 2
ffiffiffi
2

p
�f is the chiral symmetry breaking scale.

We will treat ��� ¼ 77 MeV and ���� ¼ 270 MeV as
small parameters �" in our power counting scheme as
well. The covariant derivativesD� appearing above act on

� and �� as

D �� ¼ @��þ ½V�;��; (8)

ðD��
�
�Þij ¼ @�ð��

�Þij þ ðV�Þikð��
�Þkj

þ ðV�Þjkð��
�Þik � trðV�Þð��

�Þij: (9)

The leading-order interaction terms between the S ¼ 1
baryons and pions are contained in the Lagrangian [22]

LðS¼1Þ ¼ g�� trð ��S�½A�;��Þ þ 2g���� ð ����S � A��
�Þ

þ g���ð ����A��þ ��A���
�Þ

þ
ffiffiffi
2

3

s
g��½trð ��S � AÞ�þ �� trðS � A�Þ�

þ g���½ð ����A�Þ�þ ��ðA���
�Þ�: (10)

The tensor products between spin one-half and spin three-
half baryons have been denoted with parentheses, and are

defined by: ð ���A��Þ ¼ ���ijAj
k��

ki, ð ���A�Þ ¼
���ijAj

k�k
l�li, and ð ���AÞ ¼ ���ijAj

k�ki.

Electromagnetic interactions have been included in the
S ¼ 1 Lagrangian using the vector and axial vector fields
of pions which are given above in Eqs. (3) and (4), re-
spectively. Additionally there are local electromagnetic
interactions required from the higher-order Lagrangian.
Using the notation set up in the discussion about the S ¼
0 baryons, the operators required in the S ¼ 1 sector have

the form O�a
‘ ¼ trð ��O‘½Q;��Þ, O�b

‘ ¼ trð ��O‘�Þ trðQÞ,
and O�b

‘ ¼ ��O‘�trðQÞ, for the spin one-half baryons,

O��a
‘ ¼ ��O‘trðQ�Þ þ trð ��QÞO‘�, for their transitions,

and finally O��a
‘ ¼ ð ���

�O
��
‘ Q��

�Þ and O��b
‘ ¼

ð ���
�O

��
‘ ��

�Þ trðQÞ, for the spin three-half baryons. The

required O‘, and O��
‘ have been detailed above. All op-

erators are accompanied by low-energy constants; and, in
SUð2Þ �PT coefficients in the S ¼ 0 sector are unrelated to
those in the S ¼ 1 sector.

C. Strangeness S ¼ 2 baryons

The leading-order free Lagrangian for strangeness S ¼
2 cascades, namely, the spin one-half� and spin three-half
��

�, is given by

L ðS¼2Þ
2 ¼ ��iv �D�� ����ðiv �D� ���� Þ��

�; (11)

where cascade fields are both packaged as doublets � ¼
ð�0;��ÞT and �?

� ¼ ð��0
� ;���

� ÞT . Above the covariant

derivativeD� acts on both� and��
� in the same manner,

ðD��Þi ¼ @��i þ ðV�Þji�j � 2trðV�Þ�i; (12)

ðD��
�
�Þi ¼ @�ð��

�Þi þ ðV�Þijð��
�Þj � 2 trðV�Þð��

�Þi:
(13)

Further, the parameter ���� is the mass splitting between

the �� and � in the chiral limit, ���� ¼ Mð0Þ
�� �Mð0Þ

�
¼

215 MeV, and will be treated as a small parameter �" in
the power counting. Additionally the leading-order inter-
action Lagrangian between the cascade baryons and pions
reads [22]

L ðS¼2Þ ¼ 2g��
��S � A�þ 2g���� ����S � A��

�

þ g���ð ����A��þ ��A���
�Þ: (14)

Electromagnetism has been included in the S ¼ 2
baryon Lagriangian via the vector and axial fields of pions,
Eqs. (3) and (4). Local electromagnetic operators are fur-
ther required. In our notation, the required operators have

the formO�a
‘ ¼ ��O‘Q� andO�b

‘ ¼ ��O‘�trðQÞ, for the
spin one-half cascades, and O�a

‘ ¼ ���
�O

��
‘ Q��

� and

O��b
‘ ¼ ���

�O
��
‘ ��

�trðQÞ, for the spin three-half cascades.

The required low-energy constants are the coefficients of
these operators.

D. Strangeness S ¼ 3 baryon

The strangeness S ¼ 3 baryon is the � which is an
SUð2Þ singlet. The free Lagrangian at leading order is

simply L ¼ ���iv �D��, where the action of the cova-

riant derivative is specified by D��� ¼ @��� �
3 trðV�Þ��, and only yields a total charge coupling to the

photon. At this order, there are no pion-omega axial inter-
actions [22]. The leading pion interactions arise from chiral
symmetry breaking operators in the S ¼ 3 sector, and
generate tadpole graphs which scale as m2

� � "2.
Consequently the electromagnetic properties of the � are
determined by local operators. These operators have the

form O�b
‘ ¼ ���O

��
‘ ��trðQÞ.

III. BARYON ELECTROMAGNETIC PROPERTIES

Baryon electromagnetic form factors at or near zero
momentum transfer enable one to extract the electromag-
netic moments and radii. In the heavy baryon formalism,
these form factors can be obtained from the matrix ele-
ments of the electromagnetic current J�. For the case of

spin one-half baryons, one has the decomposition
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h �Bðp0ÞjJ�jBðpÞi ¼ euy
�
v�GE0ðq2Þ

þ ½S�; S��
MN

q�GM1ðq2Þ
�
u; (15)

where q ¼ p0 � p is the momentum transfer, and uy and u
are Pauli spinors. The Sachs electric and magnetic form
factors are GE0ðq2Þ and GM1ðq2Þ, respectively. The charge
form factor is normalized to the total hadron charge at zero
momentum transfer, GE0ð0Þ ¼ Q. The charge radius hr2E0i,
magnetic moment �, and magnetic radius hr2M1i are de-
fined in terms of the form factors by

hr2E0i ¼ 6
d

dq2
GE0ð0Þ;

� ¼ GM1ð0Þ; and hr2M1i ¼ 6
d

dq2
GM1ð0Þ:

(16)

Notice that for the charge and magnetic radii, we do not
employ the physically correct definitions. We use (6 times)
the slope of the electric and magnetic form factors at zero
momentum transfer, rather than additionally dividing by
the value of the respective form factors at zero momentum
transfer.4 We choose to work with the form factor slopes
rather than the physical radii for two reasons both of which
are related to lattice QCD applications. First, the defini-
tions in Eq. (16) are directly proportional to the current
matrix element. Differences of current matrix elements
satisfy useful properties, most notably differences within
an isospin multiplet are independent of sea quark charges
[31]. Currently lattice QCD computations are largely re-
stricted to vanishing sea quark charges, and we have
chosen our normalization to expedite comparison with
lattice data. Second, in the case of magnetic radii, the
physical normalization becomes ambiguous in comparing
with lattice QCD computations. One can choose to divide
by either the magnetic moment in nature, or as obtained on
the lattice. The former does not introduce additional pion-
mass dependence, whereas the latter is a more physical
definition. We sidestep these issues altogether by using
Eq. (16) and reminding the reader throughout.

The one-loop diagrams necessary to determine the elec-
tric and magnetic form factors of spin one-half baryons at
NLO are shown in Fig. 1. There are additionally tree-level
diagrams with an electromagnetic multipole operator in-
sertion. These have been calculated but not depicted.
Results for spin one-half hyperon properties will be pre-
sented below in each strangeness sector.

Similar to the spin one-half baryons, the electromagnetic
properties of spin three-half baryons are encoded in their
form factors. These form factors can be deduced from
current matrix elements

h �Tðp0ÞjJ�jTðpÞi ¼ �euy�O���u�; (17)

where u� is a Pauli spinor-vector satisfying the Rarita-

Schwinger type constraints, v � u ¼ 0, and S � u ¼ 0. The
tensorO��� can be parametrized in terms of four indepen-
dent form factors [32,33]

O��� ¼ g��

�
v�GE0ðq2Þ þ ½S�; S��

MN

q�GM1ðq2Þ
�

� 1

2M2
N

�
q�q� � 1

4
g��q2

�

�
�
v�GE2ðq2Þ þ ½S�; S��

MN

q�GM3ðq2Þ
�
: (18)

The charge and magnetic form factors lead to the charge
radii, magnetic moments, and magnetic radii via Eq. (16).
The electric quadrupole form factor GE2ðq2Þ produces the
quadrupole moment Q and quadrupole radius hr2E2i,
namely,

Q ¼ GE2ð0Þ; hr2E2i ¼ 6
d

dq2
GE2ð0Þ: (19)

The magnetic octupole moment and radius can be defined
similarly. Notice again that our definitions do not corre-
spond to the physical electromagnetic radii. Instead, we
use (6 times) the slope of the form factors at vanishing
momentum transfer.
To calculate the spin three-half baryon electromagnetic

form factors at NLO in HB�PT, we determine the loop
diagrams shown in Fig. 2, and the tree-level contributions
that arise from the insertion of LO and NLO electromag-
netic operators. NLO contributions to the magnetic octu-
pole form factor vanish leaving only the result for a
pointlike spin three-half particle, which in our units is
GM3ð0Þ ¼ QðMN=MTÞ3. Results for spin three-half hy-
peron properties will be presented below in each strange-
ness sector.

FIG. 1. One-loop diagrams which contribute at NLO to the
electromagnetic form factors of spin one-half hyperons. Pions
are represented by a dashed line, the wiggly line denotes the
photon, and the single (double) lines are the symbols for spin
one-half (spin three-half) hyperons. Diagrams shown on the
bottom row are needed for wave function renormalization.

4The exception is the definition of electric radii of neutral
particles, for which one customarily chooses to divide by the
proton charge.
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A. S ¼ 0 baryon electromagnetic properties

Here we collect the results for the nucleon and delta
electromagnetic properties at NLO in SUð2Þ HB�PT. The
results for the nucleon are not new, while a few of the
results for the deltas are. In this section, we furthermore
give the definitions of the nonanalytic functions arising
from loop graphs. These functions will appear for all
baryon electromagnetic properties.

1. Nucleons

The nucleon charge radii are given by [34,35]

hr2E0iN ¼ c0 þ Ið1=2Þ3 c1ð�Þ � Ið1=2Þ3

2

ð4�fÞ2

�
�
ð1þ 5g2AÞ log

m2
�

�2
� 20

9
g2�NGð�Þ

�
: (20)

For the nucleon isodoublet, the third component of isospin

is given by Ið1=2Þ3 ¼ diagð1=2;�1=2Þ. At this order, the

charge radii have nonanalytic dependence on the quark
masses. Contributions with intermediate state deltas de-
pend upon the function Gð�Þ, with the pion-mass depen-
dence kept implicit. This function has the form

Gð�Þ � Gð�;m�Þ

¼ log

�
m2

�

4�2

�
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 �m2
�

p
� log

�
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 �m2
� þ i"

p
�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 �m2
� þ i"

p �
: (21)

We have renormalized the functionG so that it satisfies the
property,Gð�;m� ¼ 0Þ ¼ 0. The radii depend on two low-
energy constants, c0 and c1ð�Þ, which contribute to the
isoscalar and isovector radii, respectively. Only the latter
has scale dependence.

The nucleon magnetic moments at NLO take the follow-
ing form [34,35]:

�N ¼ ��0 þ Ið1=2Þ3 ��1 � Ið1=2Þ3

8MN

ð4�fÞ2
�
g2AFð0Þ

þ 2

9
g2�NFð�Þ

�
; (22)

and depend upon a different function, Fð�Þ, that is non-
analytic in the quark mass. This function also treats the
pion-mass dependence implicitly, and its explicit form is
given by

Fð�Þ � Fð�;m�Þ

¼ �� log

�
m2

�

4�2

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

�

q
log

�
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 �m2
� þ i"

p
�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 �m2
� þ i"

p �
: (23)

Notice that we have renormalized F to satisfy the property,
Fð�;m� ¼ 0Þ ¼ 0. Consequently the scale dependence of
the low-energy constants is exactly cancelled, and the
renormalized parameters, ��0 and ��1, are scale indepen-
dent. A useful value of the function is at � ¼ 0, for which
we have Fð0Þ ¼ �m�.
The magnetic radii of the nucleon doublet take the form

[34,35]

hr2M1iN ¼ �Ið1=2Þ3

8MN

ð4�fÞ2
�
g2AF ð0Þ þ 2

9
g2�NF ð�Þ

�
; (24)

with the nonanalytic quark mass appearing in the function
F ð�Þ, which is defined as

F ð�Þ � F ð�;m�Þ

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

�

p log

�
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 �m2
� þ i"

p
�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 �m2
� þ i"

p �
: (25)

This function is singular in the chiral limit. The value of
F ð�Þ at � ¼ 0 is given by F ð0Þ ¼ � �

2m�
. Notice there are

no local terms, and consequently no undetermined
parameters.

2. Deltas

For the deltas, the charge radii at NLO in the SUð2Þ
chiral expansion take the form

hr2E0i� ¼ c0;� þ Ið3=2Þ3 c1;�ð�Þ � 2Ið3=2Þ3

ð4�fÞ2
�
1

81
ð81þ 25g2��Þ

� log
m2

�

�2
þ 5

9
g2�NGð��Þ

�
; (26)

with the third component of isospin given by Ið3=2Þ3 ¼
diagð3=2; 1=2;�1=2;�3=2Þ. These results are consistent
with those obtained by one-loop matching of the SUð3Þ
results given in [31,33] onto SUð2Þ. Notice that there are
only two independent low-energy constants for the quartet
of deltas, c0;� and c1;�ð�Þ, which correspond to the iso-

FIG. 2. One-loop diagrams which contribute at NLO to the
electromagnetic form factors of spin three-half hyperons. At the
bottom are wave function renormalization diagrams. Diagram
elements are as in Fig. 1.
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scalar and isovector contributions, respectively. Only the
latter is scale dependent.

The functionGð�Þ depends nonanalytically on the quark
mass, and has been given above in Eq. (21). For m� > �,
the deltas are stable and their radii are real-valued quanti-
ties. As the pion mass is lowered down to �, the function
Gð��Þ becomes singular. At the point m� ¼ �, the delta
can fluctuate into �N states, and it appears additionally
necessary to treat pion radiation to arrive at finite values for
physical quantities. With lattice QCD applications in mind,
we will restrict our attention to the region m� > �.

For magnetic moments of the deltas, a thorough analysis
exists in Ref. [36] using a modified SUð2Þ power counting
[37]. With our power counting, we have

�� ¼ ��0;� þ Ið3=2Þ3 ��1;� � Ið3=2Þ3

8MN

ð4�fÞ2
�
1

27
g2��Fð0Þ

þ 1

6
g2�NFð��Þ

�
: (27)

Again there are only two independent low-energy con-
stants among the four delta magnetic moments. The func-
tion Fð�Þ has been given above in Eq. (23). The value of
Fð��Þ is not singular when m� ¼ �; however, when
m� < �, one must properly handle the imaginary contri-
bution to the magnetic amplitude in physically measurable
cross sections [36]. The magnetic radii of the deltas do not
depend on any local terms at NLO. These radii are given by

hr2M1i� ¼ �Ið3=2Þ3

8MN

ð4�fÞ2
�
1

27
g2��F ð0Þ þ 1

6
g2�NF ð��Þ

�
:

(28)

The function F ð�Þ entering the magnetic radii has been
given in Eq. (25). The value ofF ð��Þ is singular atm� ¼
�, but we restrict our attention to m� > �.

The electric quadrupole moments of the deltas take the
following form at NLO

Q � ¼ �Q0;� þ Ið3=2Þ3
�Q1;�ð�Þ þ Ið3=2Þ3

8M2
N

ð4�fÞ2

�
�
� 2

81
g2�� log

m2
�

�2
þ 1

18
g2�NGð��Þ

�
: (29)

The function Gð�Þ is given in Eq. (21). These expressions
agree with those derived using one-loop matching of the
SUð3Þ results of [38] onto SUð2Þ. For the quadrupole mo-
ments, there are both isoscalar and isovector low-energy
constants; the former is scale independent.

Finally the electric quadrupole radii are given by

hr2E2i� ¼ Ið3=2Þ3

8M2
N

ð4�fÞ2
�
� 2

81
g2��Gð0Þ þ 1

18
g2�NGð��Þ

�
:

(30)

The required function G entering the quadrupole radii is
given by

G ð�Þ ¼ 1

10

�
2

�2 �m2
�

þ �

½�2 �m2
��3=2

� log

�
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 �m2
� þ i"

p
�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 �m2
� þ i"

p ��
; (31)

which satisfies Gð0Þ ¼ �ð5m2
�Þ�1. Notice there are no

low-energy constants for the quadrupole radii at this order.
Both quadrupole moments and quadrupole radii become
singular when m� ¼ �, but we consider the region m� >
� for which the deltas are stable.

B. S ¼ 1 baryon electromagnetic properties

Now we collect expressions for the S ¼ 1 baryon elec-
tromagnetic properties to NLO in SUð2Þ HB�PT. The
required functions arising from loop graphs are identical
to those appearing in the description of S ¼ 0 baryon
properties.

1. � and � baryons

For the triplet of � baryons, we find their charge radii
have the form

hr2E0i� ¼ c0;� þ Ið1Þ3 c1;�ð�Þ � Ið1Þ3

ð4�fÞ2
��

2þ 5

2
g2��

�
log

m2
�

�2

þ 5

6
g2��Gð����Þ þ 5

3
g2���Gð���� Þ

�
; (32)

where the third component of isospin is Ið1Þ3 ¼
diagð1; 0;�1Þ. There are two low-energy constants, c0;�
and c1;�ð�Þ. These expressions cannot be derived directly

from matching SUð3Þ results onto SUð2Þ. In the particular
limit��� ¼ 0, however, we can check our results by using
one-loop matching conditions, and they agree with [9].
Notice that the one-loop corrections to the charge radius

of the �0 vanish. The same is true of the �, for which we
have hr2E0i� ¼ c� þOðm�Þ. The leading nonanalytic

quark mass dependence of the�0 and� charge radii arises
at NNLO. The one-loop corrections to the transition charge
radius between � and �0 baryons, however, are nonvan-
ishing and lead to the result

hr2E0i�� ¼ c�� � 1

ð4�fÞ2
�
5g��g��Gð���Þ

þ 10

ffiffiffi
2

3

s
g���g���Gð���� Þ

�
: (33)

This result can be checked against [9] in the limit of
��� ¼ 0 using one-loop matching of SUð3Þ onto SUð2Þ.
The magnetic moments of the � baryons are given by

�� ¼ ��0;� þ ��1;� þ Ið1Þ3

4MN

ð4�fÞ2
�
� 1

2
g2��Fð0Þ

� 1

6
g2��Fð����Þ þ 1

6
g2���Fð���� Þ

�
: (34)
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The nonanalytic quark mass dependence of the I3 ¼ 0
baryon magnetic moments vanishes at NLO, as can be
seen for the �0. Additionally we have �� ¼ ��� þ
Oðm2

�Þ, with the first nonanalytic dependence of the form
�m2

� logm2
� entering at NNLO. The transition moment

between the �0 and � receives NLO corrections, and is
given by

��� ¼ ���� þ 4MN

ð4�fÞ2
�
�g��g��Fð���Þ

þ
ffiffiffi
2

3

s
g���g���Fð���� Þ

�
: (35)

When ��� ¼ 0, expressions for S ¼ 1 baryon magnetic
moments agree with those derived from matching the
SUð3Þ results of [6] onto SUð2Þ.

At NLO, the magnetic radii of the � are given by

hr2M1i� ¼ Ið1Þ3

4MN

ð4�fÞ2
�
� 1

2
g2��F ð0Þ � 1

6
g2��F ð����Þ

þ 1

6
g2���F ð���� Þ

�
; (36)

while that of the � is given by hr2M1i� ¼ 0þOðm0
�Þ. The

magnetic transition radius is given by

hr2M1i�� ¼ 4MN

ð4�fÞ2
�
�g��g��F ð���Þ

þ
ffiffiffi
2

3

s
g���g���F ð���� Þ

�
: (37)

Taking ��� ¼ 0, we can partially check these expressions
by carrying out the one-loop matching of SUð3Þ results in
[9] onto SUð2Þ.

2. �� baryons
For the triplet of �� baryons, we consider the stability

regime in which m� >���� , and all observables are real
valued. As the pion mass is lowered, the electromagnetic
radii and quadrupole moments become singular at m� ¼
���� and ���� . To work at these pion masses, one must
treat the effects from pion radiation. The magnetic mo-
ments of the �� do not become singular as the pion mass is
lowered; however, the magnetic amplitude becomes com-
plex valued.

The electric charge radii of the �� are given to NLO by

hr2E0i�� ¼ c0;�� þ Ið1Þ3 c1;�� ð�Þ � Ið1Þ3

ð4�fÞ2
�
1

18
ð36þ 25g2���� Þ

� log
m2

�

�2
þ 5

3
g2���Gð����� Þ

þ 5

6
g2���Gð����� Þ

�
: (38)

The magnetic moments have the form

��� ¼ ��0;�� þ Ið1Þ3 ��1;�� � Ið1Þ3

4MN

ð4�fÞ2
�
1

6
g2����Fð0Þ

þ 1

4
g2���Fð����� Þ þ 1

2
g2���Fð����� Þ

�
; (39)

while the magnetic radii are

hr2M1i�� ¼ �Ið1Þ3

4MN

ð4�fÞ2
�
1

6
g2����F ð0Þ

þ 1

4
g2���F ð����� Þ þ 1

2
g2���F ð����� Þ

�
:

(40)

For the electric quadrupole form factor, we have a
similar pattern

Q �� ¼ �Q0;�� þ Ið1Þ3
�Q1;�� ð�Þ þ Ið1Þ3

4M2
N

ð4�fÞ2

�
�
� 1

9
g2���� log

m2
�

�2
þ 1

12
g2���Gð����� Þ

þ 1

6
g2���Gð����� Þ

�
; (41)

for the quadrupole moments, and

hr2E2i�� ¼ Ið1Þ3

4M2
N

ð4�fÞ2
�
� 1

9
g2����Gð0Þ

þ 1

12
g2���Gð����� Þ þ 1

6
g2���Gð����� Þ

�
;

(42)

for the quadrupole radii. In the particular limit ��� ¼ 0,
we have checked the �� results using one-loop matching
from SUð3Þ calculations to SUð2Þ. For the dipole and
quadrupole moments, the SUð3Þ expressions are contained
in [38], while expressions for the charge radii appear in
[31,33]. The magnetic and quadrupole radii, however, have
not been determined in SUð3Þ.

C. S ¼ 2 baryon electromagnetic properties

The electromagnetic properties of the spin one-half and
spin three-half cascades are collected in this section. The
spin one-half are presented first, followed by the spin three-
half.

1. � baryons

For the isodoublet of spin one-half cascades, we have the
following results for their charge radii at NLO in SUð2Þ
HB�PT:

hr2E0i� ¼ c0;� þ Ið1=2Þ3 c1;� � Ið1=2Þ3

2

ð4�fÞ2
�
ð1þ 5g2

��
Þ

� log
m2

�

�2
þ 10

3
g2
���Gð���� Þ

�
: (43)
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The magnetic moments of the spin one-half cascades fall
into a similar pattern

�� ¼ ��0;� þ Ið1=2Þ3 ��1;� þ Ið1=2Þ3

8MN

ð4�fÞ2
�
�g2

��
Fð0Þ

þ 1

3
g2
���Fð���� Þ

�
: (44)

The cascade magnetic radii are given by

hr2M1i� ¼ Ið1=2Þ3

8MN

ð4�fÞ2
�
�g2

��
F ð0Þ þ 1

3
g2
���F ð���� Þ

�
:

(45)

These expressions can be derived from SUð3Þ results in
[6,9] by using the one-loop matching conditions to SUð2Þ.

2. �� baryons
For the doublet of �� baryons, we consider the stability

regime in which m� > ���� , and all observables are real
valued. As the pion mass is lowered, the electromagnetic
radii and quadrupole moments become singular at m� ¼
���� , and near this point contributions from pion radiation
must be considered. The magnetic moments of the ��
baryons do not become singular as the pion mass is low-
ered; however, the magnetic amplitude becomes complex
valued for m� <���� .

For the electric charge radii of the�� baryons, we obtain

hr2E0i�� ¼ c0;�� þ Ið1=2Þ3 c1;�� � Ið1=2Þ3

2

ð4�fÞ2

�
�
1

9
ð9þ25g2

���� Þ logm
2
�

�2
þ5

3
g2
���Gð����� Þ

�
:

(46)

The magnetic moments of the �� baryons take the form

��� ¼ ��0;�� þ Ið1=2Þ3 ��1;�� � Ið1=2Þ3

8MN

ð4�fÞ2

�
�
1

3
g2
����Fð0Þ þ 1

2
g2
���Fð����� Þ

�
; (47)

while the magnetic radii are

hr2M1i�� ¼ �Ið1=2Þ3

8MN

ð4�fÞ2
�
1

3
g2
����F ð0Þ

þ 1

2
g2
���F ð����� Þ

�
: (48)

The electric quadrupole moments of the �� appear at
NLO as

Q�� ¼ �Q0;�� þ Ið1=2Þ3
�Q1;�� ð�Þ þ Ið1=2Þ3

8M2
N

ð4�fÞ2

�
�
� 2

9
g2
���� log

m2
�

�2
þ 1

6
g2
���Gð����� Þ

�
;

(49)

while the quadrupole radii are

hr2E2i�� ¼ Ið1=2Þ3

4M2
N

ð4�fÞ2
�
� 2

9
g2
����Gð0Þ

þ 1

6
g2
���Gð����� Þ

�
: (50)

One can verify these expressions by using one-loop match-
ing conditions to SUð2Þ on the SUð3Þ results given in
[31,33,38].

D. S ¼ 3 baryon electromagnetic properties

Finally for the isosinglet �, the nonanalytic quark mass
dependence vanishes at NLO. The leading quark mass
dependence of its electromagnetic observables is entirely
analytic. Specifically, each electromagnetic observableO�

can be written in the form O� ¼ 	O þ 
Om
2
�.

IV. DISCUSSION

Above we have derived expressions for the various
electromagnetic properties of hyperons in SUð2Þ �PT. To
explore the behavior of these properties in two-flavor chiral
expansion, we consider two aspects. First we investigate
the efficacy of the two-flavor expansion by considering the
contributions from virtual kaons. Next we estimate the size
of SUð2Þ chiral corrections by using phenomenological
input to determine the low-energy constants of the two-
flavor theory. Here we also explore the pion-mass depen-
dence of the electromagnetic properties, and make contact
with available lattice QCD data.

A. Kaon contributions

The spin three-half hyperon resonances are not consid-
erably far from inelastic thresholds. For example, the ��
resonance lies a mere 0.05 GeV below threshold for KN
decay. It is natural to wonder how well the nonanalyticies
associated with kaon production are described in a two-
flavor expansion. Consider a generic �S ¼ �1
strangeness-changing baryon transition, B0 ! KB. The
SUð3Þ-breaking mass splitting between baryons we denote
�BB0 , and is given by

�BB0 ¼ MB0 �MB: (51)

When �BB0 >mK, the decay is kinematically allowed.
While none of the hyperons lie above the kaon production
threshold, some are not considerably far below, such as the
��. In SUð2Þ �PT, the relevant expansion parameter de-
scribing virtual kaon contributions has been determined
[27,28]

"BB0 ¼
1
2m

2
�

1
2m

2

s

� �2
BB0

; (52)

wherem
s
is the mass of the pseudoscalar s�smeson. While

not a physically propagating particle, the 
s mass can be
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determined using �PT, or calculated using lattice QCD.
The latter yields the value m
s

¼ 0:686 GeV [39,40]. The

breakdown of the SUð2Þ description is possible due to the
pole in the expansion parameter, "BB0 . The SUð2Þ expan-
sion of the virtual kaon contributions, however, is expected
to behave reasonably because of the size of "BB0 at the
physical pion mass. For the worst case scenario, we have
the largest expansion parameter "N�� ¼ 0:24, although
higher-order corrections shift this value upwards. Not all
low-energy observables are safe, however. Processes with
external momentum, for example ��� scattering, have not
been considered, and certainly must fail in SUð2Þ �PT
above 0.05 GeV. For the low-energy properties determined
in this work, we explore kaon contributions on an
observable-by-observable basis.

In SUð3Þ �PT the kaon loop diagrams with an
SUð3Þ-breaking baryon mass splitting generically involve
a logarithm depending on both mK and �BB0 . For diagrams
of the sunset type, the logarithm has the form

L ðm2
K;��BB0 Þ ¼ log

���BB0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
BB0 �m2

K þ i�
q

��BB0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
BB0 �m2

K þ i�
q �

;

(53)

and contains the nonanalyticites associated with kaon pro-
duction (which occurs when �BB0 >mK). Virtual kaon
contributions to baryon magnetic moments, for example,
are described by the function

FThðm2
K;��BB0 Þ ¼ ð�2

BB0 �m2
KÞ1=2Lðm2

K;��BB0 Þ; (54)

where we have retained only the nonanalyticites that can be
associated with kaon production (this has been denoted by
the subscript Th). The omitted chiral logarithm, logm2

K, has
a well-behaved expansion about the SUð2Þ chiral limit,
with an expansion parameter, "SUð2Þ ¼ m2

�=m
2

s

¼ 0:04.

The SUð2Þ expansion of FThðm2
K; �BB0 Þ is well behaved

for m� & 0:3 GeV. This was demonstrated in [28], i.e.
the same function enters the description of kaon contribu-
tions to hyperon axial charges. Thus we conclude that an
SUð2Þ expansion of hyperon magnetic moments can de-
scribe the nonanalytic kaon loop contributions for both
spin one-half and spin three-half hyperons.

The kaon contributions to the remaining hyperon elec-
tromagnetic properties must be investigated. The electric
charge radii, magnetic radii, and electric quadrupole mo-
ments all receive long-distance kaon contributions propor-
tional to the function

GThðm2
K;��BB0 Þ ¼ �BB0

ð�2
BB0 �m2

KÞ1=2
Lðm2

K;��BB0 Þ: (55)

In the SUð2Þ chiral expansion, this function is approxi-
mated by terms analytic in the pion mass squared, namely,

GThðm2
K;��BB0 Þ ¼ Gð0Þ

Th þm2
�G

ð2Þ
Th þm4

�G
ð4Þ
Th þ . . . ;

(56)

where only the pion-mass dependence has been explicitly
shown. The first few terms in the expansion are given by

Gð0Þ
Th ¼ GTh

�
1

2
m2


s
;��BB0

�
;

Gð2Þ
Th ¼ � 1

�2
BB0 � 1

2m
2

s

�
�2
BB0

m2

s

� 1

4
Gð0Þ

Th

�
;

Gð4Þ
Th ¼

1

8

1

½�2
BB0 � 1

2m
2

s
�2
�
�2
BB0

m2

s

ð4�2
BB0 � 5m2


s
Þ þ 3

4
Gð0Þ

Th

�
:

(57)

These terms have nonanalytic dependence on the strange
quark mass and constitute the matching conditions be-
tween the two- and three-flavor theories.
To explore the SUð2Þ expansion of kaon contributions to

hyperon charge and magnetic radii, we show the kaon
contribution GThðm2

K;��BB0 Þ of Eq. (55) in Fig. 3. Here
we specialize to the case KN fluctuations of the � and ��
baryons. The depicted KN contributions are also relevant
for the quadrupole moments of�� hyperons. The full result
is compared with successive approximations derived by
expanding about the SUð2Þ chiral limit. The results show
that the virtual kaon contributions can be described in the
two-flavor effective theory. Results are better for the �
baryon, as the perturbative expansion appears to be under
control up to m� � 0:3 GeV. For the ��, however, the
perturbative expansion does not hold very far beyond the
physical pion mass. The figure also depicts a fictitious case
where the mass splitting takes the value � ¼ 0:485 GeV.
For this splitting, the expansion parameter is not small,
"BB0 ¼ 6:9, and the range of pion masses for which an
SUð2Þ treatment remains effective is exceedingly small.
The long-distance kaon contributions to the electric

quadrupole radii are proportional to a different function

G Thðm2
K;��BB0 Þ ¼ 1

10

�
2

�2
BB0 �m2

K

� �BB0

ð�2
BB0 �m2

KÞ3=2
Lðm2

K;��BB0 Þ
�
:

(58)

In the SUð2Þ chiral expansion, this function is approxi-
mated by a series of terms analytic in the pion mass
squared,

G Thðm2
K;��BB0 Þ ¼ Gð0Þ

Th þm2
�G

ð2Þ
Th þm4

�G
ð4Þ
Th þ . . . ;

(59)

where only the pion-mass dependence has been explicitly
shown. The first few terms in the expansion are given by
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G ð0Þ
Th ¼ GTh

�
1

2
m2


s
;��BB0

�
;

Gð2Þ
Th ¼ 1

10

1

½�2
BB0 � 1

2m
2

s
�2
�
1þ �2

BB0

m2

s

� 3

4
Gð0Þ

Th

�
;

Gð4Þ
Th ¼ 1

20

1

½�2
BB0 � 1

2m
2

s
�3
�
1þ 9

4

�2
BB0

m2

s

� �4
BB0

m4

s

� 15

16
Gð0Þ

Th

�
:

(60)

Notice we have written these latter two expressions in

terms of Gð0Þ
Th , as opposed to Gð0Þ

Th .

To explore the SUð2Þ chiral expansion of hyperon elec-
tric quadrupole radii, we plot the kaon contribution
GThðm2

K;��BB0 Þ as a function of the pion mass in Fig. 4.
Shown along with GTh are successive approximations to
this function that are derived by expanding GTh in powers
of the pion mass squared. We consider three test values for

the splitting, � ¼ 0:25 GeV, �N�� ¼ 0:45 GeV, and � ¼
0:485 GeV. From Fig. 3, we see that: for the smallest
splitting the expansion works beyond twice the value of
the physical pion-mass, for theN�� splitting the expansion
works up to a little beyond the physical pion-mass, and for
the largest splitting the expansion works only for vanish-
ingly small pion masses. This pattern is the same as that
observed in Fig. 3.
From this detailed investigation of kaon loop contribu-

tions, we expect the magnetic moments of spin one-half
and spin three-half hyperons to be well described in an
expansion about the SUð2Þ chiral limit. The same is true for
the electromagnetic radii of spin one-half hyperons, for
which we have seen kaon contributions remain perturba-
tive up to m� � 0:3 GeV. For the radii and quadrupole
moments of spin three-half hyperons, however, the two-
flavor chiral expansion is not effective very far beyond the
physical pion mass. The increased sensitivity in these
observables is due to the threshold singularities in the
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FIG. 4 (color online). Contribution from the K-N loop diagram for the quadrupole radius. Plotted versus the pion mass and shown by
a dashed (green) line is the nonanalytic contribution GThðm2

K;��BB0 Þ. We show three plots corresponding to three different mass
splittings. Results for the �� quadrupole radii are shown in the middle. Also shown is the kaon contribution for a lighter and heavier
external-state baryon (left and right) with splittings � ¼ 0:25 GeV and � ¼ 0:485 GeV, respectively. Compared with these curves are
the first three approximations that are analytic inm2

�, see Eq. (59). The flat (red) curve is the zeroth-order approximation, the light solid
(blue) curve includes the first-order correction proportional tom2

�, and finally the black curve includes all terms tom4
�. Notice from left

to right the plots show a span of 20 and then 200 greater in range.
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nonanalytic functions, Eqs. (55) and (58). By contrast,
kaon contributions to the masses, axial charges, and mag-
netic moments vanish at the kaon threshold due to phase-
space factors. For the case of radii and quadrupole mo-
ments, the kaon contributions become singular near thresh-
old. This nonanalyticity is not well described by an SUð2Þ
expansion, although the behavior appears to be under
control at the physical pion mass. Based on this observa-
tion, we expect curvature terms (arising from the second
derivatives of the form factors) to be poorly behaved in
SUð2Þ.

B. SUð2Þ chiral corrections
To investigate the chiral corrections to hyperon electro-

magnetic properties, we use phenomenology to fix the
values of the low-energy constants. The values of masses,
magnetic moments, and charge radii are taken solely from
experimental data [41]. For the axial charges, we use
known experimental values, when available, and lattice
extrapolated values for g��, and g�� [42]. For the axial
charges of spin three-half hyperons, little information is
known, and so we adopt the SUð3Þ chiral perturbation
theory estimate [43], along with tree-level matching con-
ditions between the SUð2Þ and SUð3Þ theories.5

From the values of the low-energy constants, we can
address to what extent loop contributions are perturbative.
The SUð2Þ HB�PT results show an improvement over
SUð3Þ HB�PT for some of the electromagnetic properties.
For example, the size of one-loop corrections to the octet
baryon magnetic moments has been shown in Table II for
both SUð2Þ and SUð3Þ. For the nucleon magnetic moments,
there appears to be no reason to choose SUð2Þ over SUð3Þ.
For the strangeness S ¼ 1 hyperons, however, there is
improvement in most cases and for the S ¼ 2 baryons,
the improvement is phenomenal. This pattern of improve-
ment follows that seen for baryon masses [22], and axial
charges [25]. There are two transparent physical reasons
for improvement with increasing strangeness. First, the
nonrelativsitic approximation increases in validity with
increasing strangeness. Second, the axial coupling con-
stants generally decrease in size with increasing strange-
ness. Comparing the nucleon and cascade magnetic
moments, we see that the ratio of pion-cascade loops to
pion-nucleon loops scales as g2

��
=g2A ¼ 0:04. There is a

further reduction in the chiral corrections to the cascade
magnetic moment arising from isospin algebra: pion-delta
quartet loops and pion-cascade resonance loops differ by a
sign. In the case of the nucleon magnetic moment, both
one-loop graphs come with the same sign, while in the case

of cascade magnetic moments, the two one-loop graphs
come with opposite signs. This sign difference leads to a
cancellation of terms that are already small in magnitude
compared to the nucleon case.
While the SUð2Þ theory suffers from a mild proliferation

of low-energy constants, there are a few quantities for
which we can make predictions. We are able to determine
the magnetic moments6

��0 ¼ 0:65; Reð��0Þ ¼ �0:74; Reð���Þ ¼ �4:2:

(61)

Our value for ��0 agrees well with that determined from
the SUð3Þ covariant baryon �PT without decuplet fields
[16]. The value we find forReð���Þ is�20% smaller than
that derived from the SUð3Þ covariant baryon �PT [18].
Corrections arising from NNLO terms [see Eq. (63) be-
low], however, could easily bring our value into agreement.
While our value forReð��0Þ differs from that of [18], this
magnetic moment is small and NNLO corrections to our
result are expected to be comparatively large. Our one-loop
expressions for magnetic moments exhibit the isospin re-
lations

2��0 ¼ ��þ þ��� ; 2���;0 ¼ ���;þ þ���;� ;

��þþ ���� ¼ 3ð��þ ���0Þ; (62)

which the results of [16–18] indeed satisfy. Results from
[18] for the magnetic moments of the ��, moreover, are
purely isovector. This suggests that the low-energy con-
stant ��0;�� ¼ 0, which is also what one obtains from

matching to SUð3Þ at one-loop order.
At NLO, the magnetic radii for each of the baryons, as

well as the quadrupole radii of the spin three-half baryons
depend on only reasonably known low-energy constants.
Using these values, the SUð2Þ predictions for magnetic
radii of the octet baryons are shown in Fig. 5. For the
spin three-half resonances, however, values of the chiral
corrections at the pion production threshold are infinite.
Additional physics stemming from pion radiation is re-
quired in order to make predictions for physical amplitudes
near the threshold (and likely at the physical pion mass
too). We believe that the singularities encountered in elec-
tromagnetic radii and quadrupole moments deny the reso-
nances these properties, i.e. one cannot define such
contributions to current matrix elements without also con-
sidering pion radiation. This situation is unlike the case of
magnetic moments, where the amplitude develops a finite
imaginary part associated with the resonance decay.
We imagine our results to be most useful in comparing

with lattice QCD simulations of hyperon properties. The
expressions we derived above parametrize the pion-mass
dependence of the various hyperon electromagnetic prop-

5One-loop matching may modify these resonance axial
charges considerably, as is suggested by considering the loop
corrections to the tree-level value of the axial charge of the delta
resonance, g��, in SUð2Þ [44]. The axial charges of decuplet
baryons, however, have not been calculated beyond tree level in
SUð3Þ.

6The imaginary parts for the magnetic moments of deltas and
hyperon resonances can also be determined.
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erties. In principle, we could compare the pion-mass de-
pendence of lattice QCD data with that predicted by our
formulas. This is complicated in practice due to lattice
approximations and lattice artifacts. In the computation
of electromagnetic properties, the self-contractions of the
current operators are notoriously difficult to calculate due
to statistical noise. These contributions have been omitted
from virtually all computations of current matrix elements.
Fortunately in the strong isospin limit, the disconnected
parts cancel in differences of current matrix elements
within an isospin multiplet of fixed strangeness [31].
Given the available lattice data [45,46], we can compare
our predictions with the magnetic moment differences
calculated on the lattice: �p ��n, ��þ ���� , ��0 �
��� , and ��þþ ���þ . Additionally we can compare our
predictions with differences of magnetic radii7: hr2M1ip �
hr2M1in, hr2M1i�þ � hr2M1i�� , and hr2M1i�0 � hr2M1i�� . Such
comparisons are made in Fig. 6. A final caveat must be
issued about the lattice data for spin one-half baryons
obtained in [45]. We have plotted the data at values corre-
sponding to the valence pion mass employed in the simu-
lation. The lattice study employs a mixed-action
formulation with differing quark actions for the valence
and sea quarks. Consequently the mixed mesons (consist-
ing of a quark and antiquark from the different fermion
discretizations) are not protected from additive mass re-
normalization proportional to the lattice spacing squared.
The size of this mass shift has been numerically deter-
mined [47,48]. Rather than formulate and perform compu-
tations using mixed-action �PT [49–52] to compare with
the lattice data, we have neglected these discretization
effects on the magnetic moments.

In the figure, we have included an uncertainty band for
our chiral computation. Because we have a consistent
power counting, our computation comes with error esti-

mates from the omitted higher-order terms. To obtain error
estimates for magnetic moments, we have included the
analytic term from the NNLO computation. For magnetic
moment differences, we have

��NNLO
p�n ¼ AN

8g2Am
2
�

ð4�fÞ2 ;

��NNLO
�þ��� ¼ A�

4MN

M�

2g2��m
2
�

ð4�fÞ2 ;

��NNLO
�0��� ¼ A�

4MN

M�

2g2
��

m2
�

ð4�fÞ2 ;

��NNLO
�þþ��þ ¼ A�

4MN

M�

2g2��m
2
�

ð4�fÞ2 :

(63)

A way to estimate the unknown parameters, AB, is to use
the fourth-order SUð3Þ computation of [8]. The values
�NNLO
p�n ¼ 0:11, and �NNLO

�þ��� ¼ 0:16 yield parameters

AN ¼ 1:2 and A� ¼ 1:6 that are of natural size.
Reasonable uncertainty bands are generated by varying
AN and A� in the range [0, 3], i.e. letting the SUð3Þ result
vary generously �	 100%. The NNLO result for the
cascade, ��NNLO

�0��� ¼ 0:17, leads to a parameter A� 2

orders of magnitude greater than natural size. This is
because the SUð2Þ expansion should behave considerably
better than the SUð3Þ expansion used in [8]. To take this
improvement into account, we scale the fourth-order SUð3Þ
computation by g2

��
MN=M�, which yields A� ¼ 3:0. As

this is an order of magnitude estimate, we vary A� in the
range ½�3; 3�. As there is no fourth-order computation
available for the �, we shall assume that reasonable varia-
tion of A� is also in the range ½�3; 3�. To obtain error
estimates for magnetic radii, we have included the NNLO
analytic terms

�hr2M1iNNLOp�n ¼ A0
N

2g2A
ð4�fÞ2 ;

�hr2M1iNNLO�þ��� ¼ A0
�

4MN

M�

2g2��

ð4�fÞ2 ;

�hr2M1iNNLO�0��� ¼ A0
�

4MN

M�

2g2
��

ð4�fÞ2 :

(64)

The unknown parameters can be estimated by comparing
with the fourth-order SUð3Þ computation of [15]. At the
physical pion mass our computation for the nucleon and
sigma are within�15% of the three-flavor results. Inflating
this difference by a factor of 2 as a measure of our uncer-
tainty, we find ½�3; 3� constitutes a reasonable range for
A0
N and A0

�. Our value for the isovector magnetic radius of

the cascade differs dramatically from the value found using
SUð3Þ. This is an observable for which the SUð2Þ and
SUð3Þ predictions can be tested. Assuming naturalness,
we guess the range ½�3; 3� over which to vary A0

�
.
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FIG. 5 (color online). SUð2Þ HB�PT results for the octet
baryon magnetic radii. Note that with Eq. (16), we do not
employ the customary definitions for these radii.

7With Eq. (16), we define the radii to be (6 times) the slope of
the form factors at zero momentum transfer, so that differences
of radii are independent of sea quark charges in the isospin limit.
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FIG. 6 (color online). Pion-mass dependence of magnetic moments and radii in SUð2Þ. The stars represent physical values, while the
solid circles with error bars are lattice results of [45,46]. Dashed lines show the imaginary part. Uncertainty bands arise from NNLO
terms as explained in the text. For each observable, the plot range spans the same magnitude with the exception of the cascade: its
magnetic moment plot spans 1=6 the range of the other magnetic moment plots, while its magnetic radius plot spans 1=15 the range of
the other magnetic radii plots.
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The curves in Fig. 6 show reasonable agreement with the
lattice data. Results are generally better for maximal
strangeness. This is expected as the effectiveness of the
effective theory also increases with strangeness. For delta
observables, the large value of the delta axial coupling,
g��, may hinder the convergence of SUð2Þ. Higher-order
�PT corrections may be needed to address the lattice
extrapolation. To this end, refined values for the hyperon
axial couplings are needed, e.g. lattice results for sigma
magnetic moments might suggest that the axial couplings
in the S ¼ 1 sector are overestimated. At this stage, it is
difficult to provide a definitive reason for the discrepancies.
On top of effects from the finite lattice volume and lattice
spacing, there are also additional uncertainties in the lattice
calculation, such as: modeling the momentum transfer
dependence of form factors, or analogously fitting the
magnetic field dependence of energies.

There exists further lattice data for which we cannot
form isospin differences to compare with our formula,
namely, the magnetic moment of the �, and charge radii
of the p and ��. For these cases, however, we can still
explore the pion-mass dependence in light of the data.
Connected �PT can be employed to determine the modi-
fication to pion loop diagrams due to electrically neutral

sea quarks [31], however, this requires an extension of our
work to partially quenched theories. We leave this work to
future investigation. To compare the remaining lattice data
with our formulas, we assume that the disconnected con-
tributions are negligible. If there are considerable differ-
ences between our predicted pion-mass dependence and
the lattice data, it could indicate that disconnected dia-
grams are important. Plots for the remaining electromag-
netic properties are shown in Fig. 7. We also show the pion-
mass dependence of the �� transition moment which has
not been calculated using lattice QCD (and has only con-
nected contributions).
To arrive at the error bands shown in the figure for

charge radii, we include the analytic term from NNLO,
and estimate its size based on fourth-order SUð3Þ compu-
tations. The analytic term for �� at NNLO has the form

�hr2E0iNNLO�� ¼ C�

2g2��

ð4�fÞ2
m�

M�

: (65)

From [53], the fourth-order correction has the numerical
value �hr2E0iNNLO�� ¼ 0:17 ½fm2�, which corresponds to

C� ¼ 0:9, for which a reasonable range is ½�3; 3�. As
the nucleon charge radii are used as input for the fourth-
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FIG. 7 (color online). Comparison between SUð2Þ HB�PT predictions for the pion-mass dependence of baryon electromagnetic
properties and lattice data for their connected parts. The stars represent physical values, while the solid circles with error bars are
lattice results for charge radii [45], and for the omega moment [46]. The uncertainty bands on our calculation arise from neglected
NNLO terms as explained in the text. We include the transition moment between the � and � baryons as an advertisement. This
magnetic moment has not been determined on the lattice, and has only connected contributions.
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order analysis, we cannot estimate the size of CN . As a
guess, we takeCN also to vary within the range ½�3; 3�. For
the �-�transition moment, the SUð3Þ computation yields
�NNLO
��

of the same size as �NNLO
�þ��� [8]. We thus use the

same NNLO term to estimate the uncertainty. For the
magnetic moment of the � baryon, only local terms enter
at NNLO and lead to

��NNLO
� ¼ A�

2m2
�

ð4�fÞ2 : (66)

As there is no fourth-order calculation available for the �,
we guess the uncertainty band for�� by varying A� in our
customary range ½�3; 3�. Results for the omega suggest
that disconnected diagrams may not be sizable, and that
our simple prediction for the pion-mass dependence can
well accommodate the data. The same appears to be true of
the proton’s charge radius, and of the negative sigma’s
charge radius.

V. CONCLUSION

In this work, we explore two-flavor �PT for hyperons.
We include electromagnetism into SUð2Þ HB�PT, and
derive the electromagnetic moments and radii of both
spin one-half and spin three-half hyperons. An important
aspect of our investigation is to address effects from the
nearness of inelastic thresholds. To this end, we consider
the SUð2Þ expansion kaon loop contributions. We find that
the pion-mass dependence of kaon loops is well described
in SUð2Þ for a majority of the hyperon electromagnetic
properties. Exceptions encountered are the radii and quad-
rupole moments of the hyperon resonances, for which our
results suggest that two-flavor �PT is effective at the
physical pion-mass, but not much farther.

Using experimental results for spin one-half baryon
magnetic moments, we are able to deduce values for the
SUð2Þ low-energy constants. Knowledge of these values
allows us to compare the size of loop contributions relative
to the leading local terms. We find an improvement in the
convergence of SUð2Þ over SUð3Þ for most hyperon elec-
tromagnetic observables. We also compare our predictions
for the pion-mass dependence of these electromagnetic
observables with lattice QCD data. The trends of the data
are reasonably captured by our formulas, but not without
discrepancies. We look forward to future lattice data at
lower pion masses and larger volumes. Improvements in
lattice QCD calculations will allow us to refine the values
of axial couplings, and other low-energy constants appear-
ing in the SUð2Þ theory. From these values, we will be able
to demonstrate the convergence pattern of �PT, and make
predictions for other observables.
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APPENDIX: RESULTS FROM SUð3Þ HB�PT

In this Appendix, we provide expressions for the
Coleman-Glashow relations using the three-flavor chiral
expansion. These expressions depend on three axial cou-
plings: those for the octet baryons, D and F, as well as that
of the transition between octet and decuplet baryons,C. We
use the standard SUð3Þ heavy baryon chiral Lagrangian
[4,5]. At NLO, one has the following expressions for the
Coleman-Glashow relations [6]:

��� ���� ¼ 2MN

9�2
�

½6ðD2 � 6DF� 3F2Þ�Fð0Þ

� C2�Fð�Þ�; (A1)

�n � 2�� ¼ � 4MN

9�2
�

½9ðDþ FÞ2�Fð0Þ þ 2C2�Fð�Þ�;
(A2)

�n ���0 ¼ � 4MN

9�2
�

½18ðD2 þ F2Þ�Fð0Þ þ C2�Fð�Þ�;
(A3)

�p ���þ ¼ 2MN

9�2
�

½6ðD2 þ 6DF� 3F2Þ�Fð0Þ

þ 5C2�Fð�Þ�; (A4)

�n þ��� þ�p ¼ � 2MN

9�2
�

½12ðD2 þ 3F2Þ�Fð0Þ

� C2�Fð�Þ�; (A5)

ffiffiffi
3

p
�n þ 2��� ¼ � 4MNffiffiffi

3
p

�2
�

ð3D2 � 2DFþ 3F2Þ�Fð0Þ:

(A6)

Notice there are, of course, no local terms to be accounted
for in these combinations of magnetic moments. We have
employed the abbreviation �� ¼ 4�f, where f is the

chiral limit meson decay constant. Additionally MN is
the nucleon mass, and appears for each baryon magnetic
moment because the moments are given in units of nuclear
magnetons. The nonanalytic quark mass dependence enters
through the SUð3Þ breaking function �Fð�Þ, which is
given by �Fð�Þ ¼ FðmK;�Þ � Fðm�;�Þ, where the func-
tion Fðm;�Þ has been given previously in Eq. (23), and
�Fð0Þ ¼ �ðmK �m�Þ. To evaluate the Coleman-Glashow
relations, we use the values [6] D ¼ 0:61, F ¼ 0:4, and
C ¼ 1:2, and take the charged pion and kaon masses, along
with � ¼ 0:29 GeV.
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