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A. POSSIBLE DESORPTION METHODS FOR MOLECULAR MICROSCOPY

Scanning desorption molecular microscopy is a method for studying surfaces by use

of neutral molecules. The output is an image of the spatial variation of the interaction

of neutral molecules with the specimen surface.l For example, neutral molecules may

be desorbed from a specimen surface by a scanning electron beam which heats the speci-

men surface locally and thereby desorbs neutral molecules. The desorbed molecules

can be either a previously applied staining species (S), which bind preferentially to cer-

tain sites on the surface, or a species (I) that are intrinsic to the specimen.

Although in many cases the scanning electron-beam method appears to promise

satisfactory performance, there are several potential problems. First, and this is

particularly true for biological samples, some degree of electron radiation damage

is to be expected. Second, in materials science applications, the desorption power

requirement would be taxing, since metallic specimens seem to require four orders of

magnitude more power than typical biological specimens. In view of these problems,

several alternative desorption methods will be qualitatively described.

1. Chemical-Beam Desorption

In this method the following arrangement is envisioned (Fig. I-1). A beam of

desorbing ions, D+ , is focused and allowed to impinge on the specimen surface. (A

neutral beam of D should also work, but would probably be more difficult to produce,

focus, and scan.) Suppose that a staining species, S, has been previously applied to

the surface. Then it is envisioned that D is selected so that a reaction

D + S + beam energy -X + V

with a reasonable cross section exists, where V is some volatile reaction product, and
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X is either nonvolatile or nonexistent. If V is sufficiently volatile compared with S,

V will be emitted wherever the beam (D+ or D) impinges on a region where S resides.

S, in turn, can be detected by a large solid-angle universal ionizer (U. I.). Although it

D
+ 

or D
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Chemical-beam desorption.
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may not be easy to find suitable reactions, the chemical-beam desorption method has

the following advantages. Since heat generation is not required, this method may be use-

ful in materials science applications where thermal desorption requires very high

desorbing powers. Also, if a neutral beam of D can be used, there should be no radia-

tion damage. Finally, this method may be directly applicable to a microscopic investi-

gation of catalysis for which it offers a method of studying the spatial variations in

function of a catalytic surface. It is emphasized that most methods of microscopy

yield only structural information, whereas in this case both structural and functional

information may be obtained.

2. Desorption from Below with an Electron Beam

The basic configuration planned for desorption molecular microscopy utilizes a

scanning electron beam which impinges on the specimen from above, that is, from the

side of the surface to be studied (Fig. I-Za). All electrons in the beam necessarily pass

through the specimen surface, and therefore constitute a potential source of specimen

radiation damage. Another possible configuration is shown in Fig. I-Zb. In this case

the electron beam impinges on a laminar specimen structure from below. For the

three-layer structure shown as an example, the following behavior is expected: elec-

trons from the beam pass through region 3 (low Z, high thermal conductivity; e. g.,

magnesium) with moderate energy loss and pass mainly into region 2 (high Z, poorer

thermal conductivity; e. g., lead) where almost all of the energy is dissipated in a

"bloom" volume. Only a few electrons reach region 1, the specimen, and the specimen

surface to be studied is farthest removed from the source of electrons. Thus electron

radiation damage should be greatly reduced compared with the case in which the
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Fig. 1-2. Electron-beam desorption, with the beam impinging on
the specimen: (a) from above and (b) from below.

electron beam impinges from above.

Unlike the case of desorption from above, where a simplified calculation of the

heat pulse shows that the ci sorbing temperature rise is very sharp in time and space,

the "bloom" in Fig. I-2b is expected to generate only a gentle temperature rise at the

specimen surface (qualitatively, curve T). The desorption rate, n, is a strong function

of temperature, T, through the approximate equation

nI A exp(-Eo/kT),

where no is some attempt rate, E 0 is an activation energy, and k is Boltzmann's con-

stant. Thus the spatial variation in desorption (qualitatively, curve D in Fig. I-2b)

should be sharpened and nevertheless may give sufficient desorption contrast.

If it is necessary to prevent all electrons from reaching the specimen, additional thin

layers can be provided between regions 1 and 2 so that a thin capacitor is formed. The

potential drop across the capacitor can be made a few volts and of the correct sign, so

that electrons are completely repelled from the specimen and radiation damage is

avoided.

3. "Spark Chamber" Desorption

If the thin capacitor mentioned above has the correct properties, a very large

quantity of heat may be produced by triggering a discharge of the capacitor (or driving

the triggered discharge with an external source) by allowing high-energy electrons from

a scanning electron beam to pass through the capacitor (Fig. 1-3). To be suitable, an

insulating material must be found which sustains sufficient damage in terms of ionized

bonds to initiate the discharge. The material must also be sufficiently reversible in the
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sense that, upon cessation of a rapid but moderate current, the discharge path will heal

and recover to a high resistance. Also, the diameter, d, of the discharge region must

not spread appreciably during the discharge time (-10 - 6 10- 4 s). The advantages of

this potential desorption method are large heat production with low radiation damage,

since presumably only a few (1-10 2 ) high-energy electrons per minimum resolvable area

may be needed to trigger a discharge.

SPECIMEN T

DISCHARGE REGION

COLD TRAP

Fig. 1-3.

Spark chamber desorption method.

In summary, several possible methods of desorption other than the straightforward

exploitation of local heating by a conventional scanning electron beam have been

described qualitatively in this report. Valuable discussions with J. G. King, M. G. R.

Thomson and other members of the Molecular Beams Group are acknowleged.

J. C. Weaver
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