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A. Confinement Systems

RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

1. Physics of High-Temperature Plasmas

U.S. Atomic Energy Commission (Contract AT(ll1-1)-3070)

Bruno Coppi

An understanding of the physics of high-temperature plasmas is of primary impor-
tance in the solution of the problem of controlled thermonuclear fusion. One of the goals
in this field of research is the magnetic confinement and heating of plasmas with den-

sities of the order of 1014 particles/cm3 and thermal energies between 5 keV and 10 keV.
The macroscopic transport properties (e. g., particle diffusion, thermal conductivity,
and electrical resistivity) of plasmas in these regimes are weakly affected by two-body
collisions between particles. These plasmas are significantly influenced by the types
of collective modes such as density fluctuations caused by microinstabilities that can be
excited in them.

We have carried out a theoretical and experimental program in this general area
during 1974 and presented relevant contributions at national and international confer-
ences. Several papers have been published in professional journals. Our primary focus
has been the experimental effort developed around the Alcator machine. Our purpose
has been to realize plasmas capable of sustaining very high current densities without
becoming macroscopically unstable, in order to achieve the highest possible rate of
resistive heating of the plasma itself.

We may point out the following achievements:

a. Average plasma densities in deuterium of ~2 X 1014/cm3, which represents a
record for toroidal plasma experiments with relatively long energy replacement times
(~20 msec).

b. Record values of average current densities (700 - 800 A/cm 2 ) corresponding to
total plasma currents of ~200 kA.

c. Duration of plasma equilibria up to 300 msec without the assistance of a feedback
system; this also is a record.

d. Production of stable plasmas with evidence from particle density measurements,
thermonuclear neutron production, and electrical resistivity of a high degree of purity
(that is, Z = 1).

A new experimental facility (Rector) that was proposed in 1973 has been brought into
operation and is being used to investigate the confinement properties of toroidal plasma
columns with noncircular cross sections. The main objective of the experiment has been
achieved, since a plasma cross section with 2:1 elongation has been obtained and proved
to be stable. To our knowledge, this is the first time that a relatively long-lived toroi-
dal configuration with noncircular cross section and without a surrounding metallic
shell has been realized.

The Thomson scattering system developed by the Euratom-CNEN laboratory of
Frascati and the sophisticated electrical diagnostic system developed by collaborators
of the Euratom-F. O. M. Laboratory at Jutphaas have been operated successfully and
have already provided a firm basis for the understanding of the new plasma regimes
that have been attained.
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B. Laser-Plasma Interactions

RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

National Science Foundation (Grant GK-37979X1)

E. Victor George

An experimental program is under way to study the interaction of high peak power
lasers with target plasmas. The general aspect of this research is directed toward
understanding the precise details of the interaction, including the amount of energy
deposited (by the interaction) in the plasma by the laser. We are also examining the use
of plasma spectroscopy as a diagnostic probe of plasma turbulence. The interaction
program is divided into two basic, though interrelated, areas of research: CO 2 and

14 17 -3
dye laser interactions with low-density (ne in the range 10 -10 cm ) helium target

plasmas; and studies on the plasma produced by irradiating a solid target with an ~10 J,
~1 ns CO 2 laser. Details of our experimental program were given in Quarterly Progress

Report No. 112 (pp. 54-55).

In studying the interaction of intense laser pulses with nlow" density (n in the range

10141017 cm-3) target plasmas it is necessary to choose suitable diagnostic tools.
During the past several years we have developed the experimental techniques for
obtaining both spatially and temporally resolved emission line shapes from plasmas, and
hence we have concentrated our diagnostic effort in this direction. Our present
interest is focused on detecting the strength of the laser-plasma interaction using opti-
cal satellites. The strength of the satellite lines depends on the average plasma field
fluctuations. The positions of these lines yield the local electron density. We feel that
the shape of the satellite line, when properly unfolded from its "natural" shape, should
yield the turbulent spectrum of the plasma fluctuations.

A prerequisite for using this technique is to ascertain the "natural" line shape of the
satellite line or lines, and to determine the effect on the emission spectra of a high-
power CO 2 laser beam. This work has been highly successful and is nearing completion.

Before undertaking plasma experiments we decided that it was imperative to observe
the satellite or satellites caused by the oscillating laser field, that is, o = CO 2 in a

helium target plasma. From such work we have developed a theoretical model that
determines the "natural" satellite line profile. These predictions compare well with
experiment. Details of the theoretical model and a brief description of the experimental

apparatus have been published. 1 A comprehensive article on this work is being prepared
for publication.

Experimental apparatus for the optical mixing stimulated plasmon production and
laser-solid target experiments are nearing completion, and progress on this work will
be reported at a later date.

References

1. D. Prosnitz and E. V. George, "Emission Profiles of Laser-Induced Optical
Satellite Lines in a Helium Plasma," Phys. Rev. Letters 32, 1282 (1974).
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1. THREE-DIMENSIONAL DISPERSION RELATIONS FOR THIRD-

ORDER LASER-PLASMA INTERACTIONS. II

National Science Foundation (Grant GK-37979X1)

Duncan C. Watson, Abraham Bers

Introduction

We shall use the theory of coherent wave coupling in three dimensions, which was
presented in Quarterly Progress Report No. 113 (pp. 117-126), to extend our unified
description of laser-driven instabilities 1 to the filamentation 2 and modulation 3 instabil-
ities.

Isolation of Specific Instabilities from the Determinantal Equation

For very small (ELI not all of

(K+) M , (K+)S , (K) M , (K) S , (K_)M , (K_)S  (1)

can simultaneously be of order unity. Let (K+)M , (K_)M be small and the rest of (1) of
order unity. Use the result that

(C = C = C = (C = 0. (2)
MM MM MM MM

Then to order ELI we have 3

(K+)M +ELI (C ) EL(+C) EL+C MM

0 E(C SM (K) S EL(C)SM (3)

E _C MM C MS (K_)M + EL 2 (_C MM

This describes the self-filamentation and self-modulation of the laser light. The 2 X 2
upper-left and lower-right subdeterminants describe the modified Brillouin instability.

The additional roots thus introduced are not important, since the modified Brillouin

growth rate goes to zero in the region of (k, w) space where the filamentation and modu-
lation roots are found, that is, the neighborhood of the origin (0, 0). Contrast this with

the case of the coalescencel of the modified-decay and oscillating-two-stream instabil-
ities, where both have appreciable growth rates in the same region of k-space.
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Three- Dimensional Dispersion Relation

From (3), taking only the electron contributions to the nonlinear currents,' and

assuming the phase-velocity disparities

__/k__, l++/k+l > c_/k_ , Ic+/k+ > vTe >> I/kl, (4)

we get

2 22c +k c
p + 

1 2 + Ix21 X
A+ D

X_ 1 ks Y0= kD k2 2 kD (5)

L

Y
kXD

X Y

2 22
A3 +kc
p - + ly211-

03

where

vLe pe
X v (e * e )

VTe c+ M+ L

VLe pe
Y v (e * e ).VTe _ M- L

Te -expand (5) and obtain the dispersion relation

We expand (5) and obtain the dispersion relation

k2c2 V 2

s Laser
2 2

( 4v
Te

k2c2

s
2

(a

2 - - )2
pe (eM+ eL

2 2 2 2
c+ pA k+ c

pe (e M -  L)

+ 2 2
( -w -k

- p -
We now use (8) to describe the filamentation and modulation instabilities by specifying

the region of (k, )-space as follows. Consider the neighborhood of the origin (0, 0)

where the hypersurfaces

(K+)M = 0, (K_)M = 0

are tangent, so that correspondingly

(k, a) = (±k L' ±WL).
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We expand the electromagnetic dispersion functions about the tangent point to first order
in frequency and to second order in wavevector. Then with damping ignored (8) becomes
the dispersion relation for

Three-dimensional Filamentation and Modulation Instability

2 2
kc V2  k c2 p p(eM+ L p (eM eL

1- 2 Laser s

22 8v2 2 WL L -L 2
Te - k v - cZ/2L)v +k c /2L

(11)

Physical Mechanisms Leading to Instability

The physical mechanisms underlying the filamentation and modulation instabilities

can be described in macroscopic terms. Suppose that the laser pump wave acquires a

slight modulation, or equivalently that two small electromagnetic sidebands are super-

imposed on the steady uniform laser pump. Furthermore, suppose that the phase.veloc-

ity of this modulation is less than the ion sound speed c . Then the radiation pressure
s

pattern arising from the modulation of the laser intensity will lead to density striations

in the plasma which constitute variations in the dielectric constant of the plasma. Since

this constant decreases with density, these variations in dielectric constant focus the

laser light into the less dense plasma regions. This increases the radiation pressure

in those regions, thereby further expelling the plasma and increasing the depth of the

density striations.

This process can be visualized most easily in the- case wherein the modulation is

directly across the laser beam and its phase velocity is zero. This is the "filamentation

instability." The plasma acquires density striations in the form of parallel slabs lying

in the direction of laser propagation. The performance of the resulting parallel-slab

dielectric waveguide as a means of confining the laser radiation to the regions between

the slabs can be calculated. This performance factor for the slab waveguide, together

with radiation-pressure calculations of the rate at which the plasma-slab structure

increases in strength, yields the growth rate for the filamentation instability, as we shall

now show.

It can be seen from (11) that the growth rate of the filamentation instability depends

very little on the orientation of the density striations with respect to the polarization

of the laser, provided these striations have a wavelength much greater than that of the

laser. For illustrative purposes, therefore, take the striation wavevector perpendic-

ular to the laser polarization. A cross section of the irradiated plasma in the plane

of the laser propagation and the striation wavevector is shown in Fig. XIII-1.

Treat the plasma density striations as a given static structure, that is, a sinusoidal
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y
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PLASMA DENSITY' ELECTRIC FIELD IS MODU-

n(r)= no -A n Cos ky LATED WITH LOCAL VALUE

ELOCAL

Fig. XIII-1. Cross section of plasma undergoing filamentation
instability.

index-profile dielectric-slab waveguide. The performance of this waveguide may be

found by standard methods. The result to first order in the index variations is

_L AE
ELocal = 1 2 2 E cos k E (12)

Now the refractive index is a decreasing function of plasma density

W 2
E P 1 neq- 1 - 1 (13)E 2 2 mEo WL WL eo

We use (12) and (13) to relate the variation in the "radiation pressure" (more strictly

termed the effective pressure of coherent oscillations) to the variation in plasma density:

noA (VL ) -= 2  An (v ) (14)SLocal k2c2 po Lase r )

coherent = n (VLocal)/2. (15)
oscillations

Also

APThermal =Te (16)
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Thus the "ponderomotive force" overcomes the electron thermal pressure gradient if

2
po V

S Laser> 2 (17)
kV Z 2  2 v Te'

2  2  2 2 c2
Laser Le k V1 e s

4c 2  2c 2  2 0 2
pe pi

For a fixed striation spatial frequency k, (18) fixes the threshold laser intensity. For

a fixed laser intensity, (18) delimits the neighborhood of the origin in which the wave-

vector k of the instability can exist. When the inequality (18) is satisfied, the striations

can grow in time with growth rate y and all quantities associated with them have tem-

poral variation e y . The electrons are forced into the regions of higher plasma density

and drag the ions with them. To the extent that the neutralization is not complete, there

will exist a small electrostatic field with wavevector and frequency

(k, ) = (key, iy). (19)

For the ions, the linearized quasi-static fluid equations are

avi qi
- E e (20)at m. staticey 

(20)1

ani -
=-n .V" v.. (21)8t ol 1

These quasi-static quantities have temporal variation e , and therefore

An. kqAn1 kqi p e a k
- E (22)n . 2 statico01 'y m.

For the electrons, the linearized quasi-static fluid equations are

2
av Ap V( v2  )qave (coherent )  e

+ Estatic e (23)at n 2 m static y

an
at -no V v . (24)

These quasi-static quantities have temporal variation e , and therefore
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Ane kqe peak
oe 2 static

2 2 2 Laser 2
Te 2c 2  pe me

Substituting in Poisson's equation and assuming quasi neutrality, we obtain the formula

for the growth rate of the filamentation instability:

V 2

2 Laser 2 2 2

S 2c 2  k cs (26)

The more exact result from the generalized coupling-of-modes approach embodied in

(11) is that the growth rate of the filamentation instability satisfies the biquadratic

V 44
2 Laser 2  k c 2 2

2 pi 4 4 k s(27)c k c + 4-y w L

The quantity in brackets is the correction factor to the waveguide performance caused

by the finite temporal growth rate of its refractive-index striations. For striations with

wavevector k not perpendicular to the laser polarization eL , (11) and hence (27) contains

an additional geometric correction factor satisfying the inequalities

2
k L 2 2(28)

2 2 < (eM+ eL) = (eM eL) 1 (28)
k +kL

Thus in physical terms we may explain the dispersion relation (11) for the case of fila-

mentation instability, that is, the case

k ' k L = 0. (29)

For the modulation instability, the striation wavevector k is still almost perpendic-

ular to the laser wavevector k L . This allows the laser modulation pattern to move along

the laser beam with the laser light group velocity, while the phase velocity of the plasma

striations is still less than, or comparable to, the ion sound speed. Again, for illus-

trative purposes, take k perpendicular to the laser polarization e L . A cross section

through the plasma that is undergoing the modulation instability is shown in Fig. XIII-2.

The basic physical mechanisms for the filamentation and modulation instabilities are
the same. Spatial variations in laser light intensity set up a ponderomotive force, more
precisely a gradient in the effective pressure of coherent oscillations. The pondero-

motive force drives plasma into regions of less intense laser light. These denser regions
have a lower refractive index than other regions, so that the laser light is further
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VELOCITY OF LASER-LIGHT
MODULATION -ENVELOPE
TRAVELLING ALONG BEAM

REGIONS OF DENSER PLASMA

PLASMA DENSITY

n (7)= no-
&n cos ( kyy + kzz)

/k= ph

VL -g

Fig. XIII-2. Cross section of plasma undergoing modulation
instability.

repelled from them and the positive feedback loop is completed. We shall not try to

rederive the modulation growth rate from this macroscopic picture, since this involves

calculating the performance of the inclined traveling dielectric-slab waveguide sketched

in Fig. XIII-2 and would not provide additional physical insight. Rather, for growth-

rate calculations we refer to the general dispersion relation (11) and take the case

0 k kL << kkL .

By neglecting the geometric factors (eM± eL) , the dispersion

tic in w for fixed k of the following form [compare (27)]:

(30)

relation becomes a quar-

V2  442 Laser 2 k c - k2c 2  (31)
2c 2  pi 4 4 -Lg 2 2 s

k c - 4 -k v WL

which must be solved numerically.

Reference s

1. D. C. Watson and A. Bers, Quarterly Progress Report No. 113, Research Labora-
tory of Electronics, M.I.T., April 15, 1974, pp. 59-74.
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Z. J. W. Shearer and J. L. Eddleman, Phys. Fluids 16, 1753 (1973).

3. J. Drake, P. K. Kaw, Y. C. Lee, G. Schmidt, C. S. Liu, and M. N. Rosenbluth,
Phys. Fluids 17, 778 (1974).

2. THREE-DIMENSIONAL PULSE RESPONSE FOR WAVE-WAVE

INTERACTIONS IN THE PRESENCE OF INHOMOGENEITY

National Science Foundation (Grant GK-37979X1)

Frank W. Chambers, Abraham Bers

In this report we examine the three-dimensional pulse response of wave-wave inter-

actions in an infinitely extended but inhomogeneous plasma. We apply this to the laser-

pellet plasma interactions described for a homogeneous plasma in a previous report.1

We begin by deriving the one-dimensional mode-coupling equations from a general inte-

gral description of a mode by WKB techniques. We determine the dominant inhomoge-

neity effect, that is, the dephasing introduced in the coupling coefficient. We generalize

the partial differential equations including dephasing effects only to three dimensions.

Then we solve the three-dimensional equations first by making appropriate velocity

transformations similar to those for the homogeneous case.2 The one-dimensional solu-

tion of Rosenbluth et al. 3 ' 4 is reviewed and generalized to solve the transformed three-

dimensional equation. The technique for constructing the entire three-dimensional

space-time response in the presence of inhomogeneity from the calculated responses for

specific triplets of coupled waves is presented. Finally, the three-dimensional inhomoge-

neous responses for the previously discussed laser-plasma instabilities are calculated.

A single mode in a plasma with inhomogeneity and an external source current may

be represented by

D rr-r', t-t', Err' (r',t') d r'dt ' -J1(r t) (1)2 1 -i, E0

The nonlocal or dispersive nature of the medium is included in the integration over the

primed coordinates; the inhomogeneity is included in D which depends on the average

position (r +r')/2, as well as the separation r-r'. The nonlinear interactions are

included in the external current J1 NL that is due to the presence of other modes in the

plasma. For three-wave coupling of modes the current driving, say, mode 1 because

of modes 2 and 3 is

(2) 
2(2)i NL 1 NL 2 E 3'  (

where the necessary tensor-vector contraction on the right-hand side is understood and
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the superscript 2 indicates that the conductivity and nonlinear current are second order

in electric fields. The factor (-l E o) is included in Eq. 1 so D will have the conven-

tional normalization.

Equation 1 is an integral equation for the E field of mode 1; we wish to reduce it to

a differential equation for the space-time evolution of the mode. To simplify the problem

and highlight the inhomogeneous effects, we shall replace D with a scalar D and take
(2)

E 1 parallel to J1 NL' we shall allow the variables to depend only on x, and take the inho-

mogeneity to be in the x direction. We begin by assuming that the electric fields can

be represented by WKB modes

Ei(x,t) = Ei0u(x,t) expi f0 k(x) dx -i i .  (3)

A transformation is made to local coordinates, and D and E l are expanded in Taylor's

series. The equations are then separated by order, under the assumption of a weak

space-time dependence; D and u l (x, t) are zeroth order, aD/ax and aul/ax, 8ul/at are

first order. The integrations in Eq. 1 become Fourier-Laplace transforms and the

resultant equations dividing out E 1 0 are

Zeroth Order: D(k(x), c, x) u l (x, t) = 0. (4)

-i a2  k(x) a au (x, t)
First Order: D(k(x), w, x) u(x, t) + i D(k(x), c, x)

8au(X, t) a 8 D(k(x), c, x) -J(2) (x, t)
-i D(k(x), o, x) ul (x, t) =

ak ax 2 k ax -i(xt)E 10

(5)

Equation 4 is the local dispersion relation and gives k(x) as a function of o and x. Equa-

tion 5 describes the pulse evolution resulting from both WKB and nonlinear effects; these

effects can be separated by allowing

ul(x,t) -  ul(x,t) X Ul(X). (6)

nonlinear WKB
effects effects

We substitute Eq. 6 in Eq. 5. Then the resulting equation can be separated to yield the

equation for Ul (x)

2 ak(x) Ul(X) 1 8 8D(k(x), co, x)

2 ak 2 ax 8ak ax 2 ak ax U1 (X) = 0. (7)
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This differential equation describes the spatial dependence of the mode amplitude U l (x)
caused by WKB effects. Presumably it can be solved and the mode electric fields in the

plasma can then be described by

Si(x) = Ei0Ui(x). (8)

These spatially dependent modes form a new basis in which to describe the nonlinear

interaction. Defining a local group velocity and an energy density as

-8 D(k(x), u, x)

vgi(x) = ak Ii k (9)
gi 8D(k(x), 0, x)

8ao W w., k.
1 1

(x)) ) (x), (10)

we find that the equation describing the nonlinear interaction is

au1 (x, t) 8ul(x, t) _-T(2) 2 (x) ) (: (x)
S x NL Z u2(x, t) u3(x, t)at +Vg I (x) x - 4( Wi0 (x) 2

X exp -if o {kl(x) -k 2 (x)-k 3 (x)} dx + i(wl- 2 -w 3)tJ. (11)

Equation 11 looks similar to the usual homogeneous coupling-of-modes equation that has

been derived more rigorously elsewhere. 5 The group velocity now depends on position,

the portion of the' coupling coefficient-in braces also depends on position, and there is

an x-dependent phase factor. Henceforth in our further calculations we shall assume

exact frequency matching

01 - 0 2 - (3 = 0, (12)

and exact wave-number matching at x = 0 and linearize our mismatch about that point.

Thus

k l (x) - k 2 (x) - k 3 (x) K'x (13)

K'Ic [kl(x) - k2(x)-k3(x)] x (14)

The problem that we wish to consider now is three-wave coupling where each mode

amplitude is described by an equation of the form of (11). We include a weak phenom-
enological damping i(x) that may be position-dependent. The equations describing the
interaction with these approximations are
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+Vgl+(X)a +y1 (x) ul = K u -iK e (15)

S 2 * +iK'x /2 (16)

at +vg2(x) ax +Y2(x)) u2 = Kl3e(6

K u u +iK'x2 /2
at +vg3(X)-x +y3 (x ) u3 = K3UlU2 e (17)

where the K i are determined by permutations of Eq. 11. We make the strong pump

approximation so ul - U 1 0 , independent of space and time. Now Eqs. 16 and 17 are

coupled linear equations describing the system whose pulse response we seek.

In solving (16) and (17) we do not want to include all x dependencies of the parameters

but rather to determine the dominant effect and calculate only that. We must compare

the mismatch in the exponent with the varying coefficients in the differential equation.

If the plasma parameters vary over the scale length L, we would expect the varying

coefficients v gi(x), Ki(x), and y.i(x) to modify the solution significantly, but only over

this scale length. The mismatch, however, enters the problem differently. We.know
2

that if the mismatch in frequency, 6o, becomes comparable to the growth rate yo (yo

I K2 K3 1 ul 0 12, then with our present normalizations) the growth is suppressed.5 Since

our mismatch in k increases linearly with position 6k = K'x, we can solve for the dis-

tance from the origin, crit' at which the mismatch in k corresponds to a mismatch in

w that will suppress the coupling. The mismatches are related through the mode group

velocity so that

b = VgK' tcrit Yo (18)

We can approximate K' = k/L and consequently

Yo
Id ~- OL << kL. (19)crit Vg

The last inequality follows because Yo/vg can be considered as a spatial growth rate and,

since we are considering weak coupling, Yo/vg << k and hence fcrit << L. This tells us

that as the pulse response spreads mismatch effects will become important when the

pulse edge has propagated a distance i crit and other effects will not be important until

the pulse spreads a distance L. Hence we are concerned only with dephasing effects

and we shall assume that on the scale of Icrit, vgi , Yi and K i are constant. Of course,

in several instances, the estimation K' = k/L is not adequate and the inhomogeneity

effects attributable to Yi(x), vgi(x), and Ki(x) may become significant.

By including only the mismatch as the largest inhomogeneity effect, we can convert

Eqs. 15-17 from the mode E-field amplitudes ui(r, t) to the more conventional normal-

ized action density a.(r, t). There is a weak spatial dependence in the conversion factor
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which, in keeping with our previous approximations, we shall neglect. We identify

K2al0= K 3 a 1 0 = K3al0 , since we are assuming conservative interactions. 5 Furthermore,

we generalize the equations to three dimensions by taking dot products with the group

velocities. Note that this does not change the mismatch factor because the inhomoge-

neity is assumed only in the x direction. Since we have assumed a large amplitude pump

and can insert a point excitation in mode 2, we can rewrite Eqs. 16 and 17 as

• + a+iK'x2/2 3+ vg + y a = yoa 3 e + a 2 0 6 ( r) (t) (20)
a g ar

+vg3 3 .a oae e+ (21)(at g3 +rar

The space-time evolution of the pulse described by these equations with K' = 0 has

been discussed in a previous report. 2 Our approach will be to reduce Eqs. 22 and 23 to

a one-dimensional coupled pair of equations by rewriting them for a moving, rotated

observer. We will recover the one-dimensional equations which have already been
4

solved elsewhere.

Restricting our two group velocities to lie in the x-y plane, let us consider an

observer traveling at Vy, where Vy is determined as in Fig. XIII-3, such that the

observer sees the two modes propagating in exactly opposite directions. We choose the

y direction so that this observer motion does not introduce any time dependence in the

mismatch factor. We make the transformation

r= r + Vt (22)

t' = t. (23)

Further, we define V2 , V3 which are antiparallel as

V2  g2 - V (24)

V 3 = Vg 3 - Vy. (25)

Finally, we make a rotation of coordinates from x, y to rj, rl, where rll is parallel to
V2 , V3 . With these two changes of reference frame Eqs. 20 and 21 in two dimensions

become

S+V2 a2 oa exp{iK'/2 (r cos 0 + 2rllrl cos 0 sin 0 + r sin ))

r l

+ a2 0zo6(r 1 ) 6(r, ) 6(t) (26)
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- _V3 .8ri-] + a( Y2a:" 2 2 2
+ 3 o ex iK'/2 (r cos +2r Irl cosE sinO +r2 sin )}.

(27)

These equations are fairly complex, especially since they contain terms that mix rll and

r 1 . They do have one vastly simplifying feature; there are only derivatives with respect

to r 1l. We propose a solution of the form a i = ai(r1l) 6(rl). If we put this in Eqs. 26 and

27 and integrate over r l , we obtain

+ V 2  a + 2 a 2 = oa exp{iK'/2 r2 cos 2 0} + a 2 0 6(r 11 ) 6(t) (28)

+ V 3 +y 3 a yoa exp{iK'/2 r2 cos }. (29)

These equations are essentially one-dimensional, since V 2 , V 3 are parallel to rll. They

correspond to the equations whose pulse response has been calculated by Rosenbluth,

White, -and Liu4 if V 2 * V 3 < 0 and we let K' - K' cos 2 0. Although there are numerous

algebraic and typographical errors in the paper of Rosenbluth et al., the conclusions

presented are correct for an infinite inhomogeneous plasma and may be summarized as

follows. At first the pulse grows and spreads as if the inhomogeneity were not present.

It grows at approximately the homogeneous growth rate until a gain of e "X has taken

place, where X = y2/(K' cos2 06V2 V 3 ). At this point the pulse gain saturates, although the

pulse still spreads out spatially at the group velocities of the two modes. As K' - 0 the

pulse never saturates, and the absolute instability is recovered. These conclusions

apply only when the damping is negligible, but this is the most interesting case. After

the very lengthy task of correcting the algebraic errors of Rosenbluth et al. we have

applied the approach to the V 2 * V 3 > 0 case, and we have found, as have others, 3 that

the same result applies; that is, unaffected growth until a gain of e 7TX has occurred and

then saturation. Note that when the pulse is in the process of saturating the pulse struc-

ture becomes very complex 4 and our qualitative description is not sufficient. We can

associate the cos 60, which we used to modify the K', as modifying the V 2 and V 3 . It
may be seen from Fig. XIII-3 that this changes X. Thus

2 2
Yo Yo
" = 2 ' 3x (30)

K'V2V3 cos 0 K' vg2x g3x

This is illustrated schematically in Fig. XIII-4 which shows an unstable pulse in two

dimensions. We illustrate the pulse growing, propagating, and saturating. Note that

this result is different from the "two" or "three" dimensional solutions of Liu,
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Fig. XIII- 3.

A

Coordinate systems used in transforming the inhomogeneous
mode-coupling equations. The transformation to a moving
observer is indicated in the (vx-v y)-plane. The angle e is
defined. The rotation in real space from x,y to an r, r 1
basis is indicated in the upper diagram.

Fig. XIII-4. Space-time pulse evolution. Pulse amplitude vs position is
shown at three successive times. At t = t 3 saturation has

occurred after a gain of eoccurred after a gain of e
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Rosenbluth, and White, 6 where a sheet initial excitation is used and the y dependence of

the pulse response is lost.

One aspect of the resulting pulse response requires a closer look. This is the sur-

prising result that if either wave is propagating purely in the y direction, X - 00 and we

are led back to the homogeneous plasma result. We can see this immediately from

Eqs. 20 and 21. Suppose mode 3 propagates only in the y direction, then if we make

the substitution a3 = a3 exp(+iK'x 2 /2), we can commute the exponent through the differ-

ential operator that has only a/8y and cancel exp(+iK'x 2 /2) from either side of (21). When

we substitute for a 3 in (20) the inhomogeneous exponents again cancel and we are left with

the usual homogeneous coupled-mode equations.

This result has a simple physical explanation. Suppose vg2 v g3x. Then mode 3

will be produced all along x with its phase shifted by approximately exp(+iK'x /2) to pro-

duce maximum growth of the system. When, however, the mode 3 produced at various

x's propagate into the same region (which will never happen if vg3x = 0) they can inter-

fere destructively because of their shifted phases. This interference is illustrated sche-

matically in Fig. XIII-5, which is a diagram for a computer algorithm to integrate the

inhomogeneous mode-coupling equations. The scheme is to propagate the waves one

step at a time and then couple them through the coupling terms in Eqs. 20 and 21. The

0 1 - (x-)2

I I

PATH PATH 2

g3 X- 3  X- 2  X-1 0 ". XI X2  " X 3

Vg2 T=0 T= 1 T =2

Fig. XIII-5. Accumulated phase for mode 2 at T = 2 on two different paths.
Each coupling is indicated by a large dot and the phase change

introduced in the produced wave (a 2 or a 3 ) is indicated by the
dot.
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dark lines labeled 1 and 2 are separate paths both of which produce mode 2 at T = 2.

path 1 involves only one coupling at x = X_ 1 . The phase shift introduced by this coupling

is exp(iK'X 2
1/2) and the black dot indicates the coupling. On path 2 we start with

mode 2, convert to mode 3 at T = 1, and go back to mode 2 at T = 2. The total phase

introduced by the couplings is indicated in Fig. XIII-5. We note that the difference in

accumulated phase is 56 = K'X 1X-1, and since X 1 ~ V T and X ~ g3xT the mismatch
1 g2x and X_1  v Tg3x

enters as the product of the x components of the group velocities. It is obvious from

Fig. XIII-5 that if, say, vg 3 were in the y direction phase shifts would be introduced

but that these shifts would be path-independent and hence would not lead to destructive

interference.

This destructive interference causes the instability to saturate in gain. Anything that

can work to destroy it can reduce the effect of the inhomogeneity, for example, finite
interaction length7 ' 8 or the addition of small random fluctuations to the mismatch. 9

While discussing the 90 ° scattering problem it should be noted that at 90 k - 0 and wex
can no longer use the WKB approximation. This problem has been addressed by Liu,

Rosenbluth, and White. 1 0 ,11

Another interesting effect may occur at 90 * propagation for one of the modes. Spe-
cifically, the K' may diverge such that the product K'vg2x g3x remains finite. This

occurs if the dispersion relation is of the form

2 2
f(k) = - (x). (31)pe

Both the electromagnetic wave and the electron plasma oscillation dispersion are of this
form. If we assume that the density varies linearly in space over a scale length L, that
is, n = no(1 +x/L), then 8wpe /x = pe /2L and it follows that

o pe pe

x oLVgx (32)

We recall the formula for K' from (14), and if we assume that all three mode dispersion

relations are of the form of (31), we can write

2
vpe Vg2xVg3x Vg3x Vg2x

K'v v + -. (33)
g2x g3x 2L Vglx 2 3

Now there is no zero in K' or divergence in X at 90 0; this will be seen later in the com-
puted results. We must use great caution in believing the results at 90 0 because of the
breakdown of the WKB theory.

Now we shall illustrate how to construct the response in three dimensions,
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considering all possible coupled waves. This process is similar to work reported pre-

viously.2 We are given k1 as kLaser fixed along the x axis (plane polarized with E
1 Laser Laser

along the z axis). Given an angle for k2, we can calculate k 2 and k3 so that w and

k matching conditions are satisfied. This determines the one-wave triplet described

by Eqs. 20 and 21 for which the pulse response is known. We then step the angle of k2

and repeat the procedure. The spatial response is now made up of all responses for the

different wave triplets growing and saturating in accordance with the previously pre-

sented solution. Since this is rather difficult to represent graphically, we present the

saturation amplitude as a function of the angle of k2 . If the group velocity of mode 2 is

much larger than that of mode 3, as in Raman, Brillouin, and plasmon-phonon interac-

tions, the angle of k2 is essentially the direction in which the spatial pulse response lies.

(a)
kL

(1
(c)

(b)

(d)

Fig. XIII-6. Inhomogeneous gain logl0 (e ) vs o, the k2 angle, for laser-plasma

interactions. Plasma parameters are T = 1 keV, T. = 50 eV, P =

15 2 e 110 W/cm , L = 100 km. Interactions are (a) two-plasmon at ope/w =

.475; (b) Raman at ope/ ~ = .45; (c) plasmon-phonon at wp /w~ = .9;

(d) Brillouin at wpe/Wf = .9. For the Raman case gain vs , the k3 angle

is plotted as a dashed line. The gain e in each case is indicated in the
upper right of each circle. The geometry is shown in the diagrams
on the left. Gains are calculated for the x-z plane with the laser propa-
gating in the x direction, plane-polarized in the z direction.
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The results of this inhomogeneous calculation for the various instabilities are pre-

sented in Fig. XIII-6 for typical plasma parameters. The response is plotted in the

x-z plane with the laser propagating in the x direction and plane-polarized in the

z direction. The final saturated gain vs the angle 0 of the wavevector k2 is plotted in

polar coordinates.

In Fig. XIII-6a we present the two-plasmon gain as log 1 0 (e ( ) ) vs angle. The
10

maximum gain is 10 . The largest gain occurs when k2 is approximately at 450 and

135 . Referring to Eq. 33, we find that the dominant mismatch (since vglx >> Vg2x Vg3x )

is due to the plasmons. Since 3 e and x cc k and vg3x oc k 3x and k2 x +

k3x = klx, the factor K'vg2xg3x actually turns out to be a constant nearly independent of

angle. Hence, as can be seen from Eq. 30, X essentially traces out the variation of the
2

coupling coefficient yo (6); hence, the four-lobed pattern is similar to the spatial
1

response that we described in a previous report. It is important to note that the maxi-
10

mum gain is 10 . Undoubtedly some other effect such as pump depletion or particle

trapping will become important before this large gain has taken place. Hence for the

two-plasmon instability with these parameters the mismatch effect of the inhomogeneity

is negligible.

In Fig. XIII-6b we present the results for Raman scattering. We plot the gain vs the

angle C of k3 as a dashed line. The null at 90 arises because the calculation is in the

x-z plane and in this plane the Raman coupling coefficient vanishes at 900. Referring

to Eq. 33, we find that the dominant mismatch, since vg 3 << vgl Vg2 is the mismatch

of the plasmon. This mismatch effectively suppresses the scattering and the maximum

gain is 105. At an angle just past 90 ", however, the plasmon mismatch (greatly reduced

because vg2x is small) exactly cancels the mismatch caused by the two electromagnetic

waves and X -o o. This special angle has been much discussed. 11 We also plot gain

vs angle for k 3 and we can see that the ~90 ° scattering of the electromagnetic wave cor-
responds to a nearly forward-going plasmon. To produce Raman scatter at other than

the special angle would require an incident laser power flux greater than the 1015 W/cm2

which we assume.

In Fig. XIII-6c and 6d we present the results for the plasmon-phonon and Brillouin
interactions. In performing these calculations we have ignored mismatch effects intro-
duced on the ion acoustic wave by temperature and expansion velocity gradients, even
though these effects may be important.6 Hence our calculation of the effect of the mis-
match will turn out to indicate that it is less important than actually it may be. The
expression for K'vg2xVg3x (Eq. 33) is modified by omitting the vg2x/w3 term. The
results for the plasmon-phonon interaction show tremendous gains wherever the coupling
coefficient does not vanish. In this case there is also a special angle similar to the
Raman case where X - oo. At such large gains, however, the only conclusion that we
can draw is that the mismatch has no effect because the very slow acoustic velocity
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prevents the destructive interference from occurring except after a very long time. The

Brillouin results show that the mismatch has very little effect in the near forward direc-

tion (at 0 a the coupling coefficient vanishes). The reason for this is the mismatches of

the two electromagnetic waves nearly cancel, as shown by Eq. 33. Even in the backward

direction there is a gain of 102 1. At lower power levels the mismatch could limit the

Brillouin scatter.

In summary, we have derived equations describing the mode amplitudes for nonlinear

wave-wave interactions in an inhomogeneous infinite extent plasma. Using these equa-

tions and assuming that the dephasing effects are the dominant ones, we have solved for

the three-dimensional pulse response. We have calculated the saturation amplitude vs

angle for several instabilities of current interest in laser-induced fusion studies.
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C. Symbolic Computation for Plasma Dynamics Problems

RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

National Science Foundation (Grant GK-37979X1)

Abraham Bers, Frank W. Chambers, Nathaniel J. Fisch, John L. Kulp, Jr.

We have completed the implementation of symbolic computation for studying non-
linear wave-wave interactions as described by the hydrodynamic, two-fluid model of a

plasma in a magnetic field. We chose the hydrodynamic plasma model rather than the
Vlasov plasma model because it is simpler to use in solving nonlinear equations by per-
turbation techniques. All required mathematical machinery was readily available on
the MACSYMA system, and we have now implemented the solution of these equations to
second order on MACSYMA so that any three-wave interaction in a magnetic field can
be studied in detail. The implementation includes means for extracting approximate
formulations, as well as exact numerical results, of the growth rate of parametric
wave interactions driven by a pump wave. A report describing our research during the
past two years on these aspects of symbolic computation in plasma physics is being pre-
pared and will be published as a Research Laboratory of Electronics Technical Report.
We have been able to derive approximate analytic formulations of the excitation of ion
waves (ion acoustic, electrostatic ion cyclotron, and magnetoacoustic) by pump waves
near the lower hybrid frequency. These interactions are of importance, since RF
energy near the lower hybrid frequency can be linearly coupled into a plasma wave and
the parametric excitation of large amplitude ion waves by such a plasma wave could

lead to heating the ions. 1

Theoretical work on higher order nonlinear interactions driven by a pump has been

completed. 2 This work gives a unified description of such interactions to third order
in the electric field, and will allow for systematic extension of symbolic computation to
such interactions. We have shown that, based on this theory, at high pump powers
some of the well-known. interactions that have been studied independently to second order

in the electric field coalesce and thereby acquire very different growth characteristics. 3

Theoretical work on describing the time-space evaluation of nonlinear wave inter-
actions also continues. We have shown how the evolution of pump-driven, coupled-
mode instabilities can be studied in three dimensions, including the effects of plasma
inhomogeneities. These studies have led us to propose a simple explanation for the
observed 450 backscattering of light at three-halves of the laser frequency in laser-

target experiments.4, 5

In the past year we have discovered a generalization of the resonance broadening
6

concept that is applicable to all nonlinear interactions of weak turbulence theory. This
generalization allows us to describe correctly all wave-particle and wave-wave turbu-
lent interactions, and we hope it will form the basis on which symbolic computation can
be used for studying such interactions.

Our plans for next year are to extend symbolic computation to studying nonlinear
wave interactions to third order in a magnetized plasma for both fluid and Vlasov models.
We plan to complete the three-dimensional stability analysis of coupled-mode interac-
tions, including the effects of finite geometry and pump depletion. We hope also to
extend our understanding of resonance broadening to turbulent interactions in a mag-
netic field, and initiate symbolic computation for such phenomena of current interest.
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D. Intense Relativistic Beam-Plasma Interactions

RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

National Science Foundation (Grant GK-37979X1)

George Bekefi, Abraham Bers, Thaddeus Orzechowski, Marcio L. Vianna

Suppression of electrical breakdown in a vacuum gap between two electrodes sub-
jected to intense electric fields is a problem of quite recent interest. The need to insu-
late the space between conductors so that voltages of millions of volts across 0.1-10 cm
gaps can be maintained without breakdown for at least short periods of time (<1 [s)
arises, for example, in the design of high-voltage transmission lines, energy storage
systems, ion diodes, and microwave generators. By having a sufficiently strong mag-
netic field parallel to the emitting surface, it is hoped that most of the electrons can be
turned back to the source and thus prevented from crossing the gap. The magnetic field
may be provided by an external source or it may be self-generated by the current flow
in the diode or transmission line, but it may also be a hybrid combination of both. This
is the underlying idea of "magnetic insulation." The concept is by no means novel; it
was exploited years ago in connection with the smooth-bore magnetron. What is new is
the parameter range of currents and voltages which is far beyond anything that was
attempted in the early days. The high voltages introduce relativistic effects, but more
important, the tremendous current densities make it mandatory to account properly for
self-electric and self-magnetic fields within the gap. Dense, hot plasmas are formed
at the cathode (and anode) during the initial stages of electron beam formation and their
presence has important consequences on the characteristics of the vacuum gap.

During the past year we began to study magnetic insulation, using as our energy
source the Cogen III high-voltage facility. Through the generosity of the Sandia Labo-
ratories we now have use of a second facility, Nereus, on which most of our future
research will be based.

During the coming year we plan studies in the following areas.

a. The motioh of cathode and anode plasma produced during the high-voltage pulse.
This will be studied both in the absence of a magnetic field and in the presence of a
large field oriented transversely to the plasma motion.

b. A magnetically insulated diode is a copious source of microwave radiation. We
intend to study this radiation with a view to understanding the instability that caused it.
Such a system could then be optimized for possible use as an efficient high-power micro-
wave generator.

c. The blow-off-anode plasma may be used.as a source of ions and the electron
diode may be converted to an ion diode by suitable choice of geometry and by suitable
preparation of the anode. Such a system has potential for use as an intense source of
high-energy ions.
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E. Fusion Technology Studies

RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

U. S. Atomic Energy Commission (Contract AT(11-1)-3070)

Lawrence M. Lidsky, Peter A. Politzer, David J. Rose'

We are expanding our work on the technological problems associated with the design
and construction of a controlled thermonuclear reactor. Our goals are to evaluate the
engineering requirements for a fusion reactor, to assess the possible applications of
this power source, and to produce the engineering data required for the design of the
reactor. We have in progress at present a study of the possibilities inherent in fission-
fusion symbiosis. This concept envisions the use of fusion-generated neutrons for the
production of fissionable fuels, as well as in the transmutation of radioactive waste
products. Also in progress is an experimental study simulating the cyclic stresses that
are expected in the first wall of a theta-pinch reactor. This program will determine
the fatigue stress limits and fracture mechanisms for niobium and other first-wall
candidate materials. We are participating in the development of an intense 14-MeV
neutron source which is needed for testing possible reactor materials and a high-flux
14-MeV environment. We have built and are beginning preliminary measurements on
a device that will allow us to observe the dynamics of fuel pellet interactions with high-
energy density plasmas.

1. Fission-Fusion Symbiosis

U. S. Atomic Energy Commission (Contract AT(11-1)-3070)

Lawrence M. Lidsky

It appears likely that fusion reactors will be copious sources of excess neutrons.
These may be used to produce power directly (usually through heavy-element fission),
to generate fissile fuel for use in conventional fission reactors, or for nuclear trans-
mutation. We have been assessing the relative merits of these various schemes with
respect to various engineering and economic constraints. We shall concentrate our

efforts on the optimization of fuel-breeding in conjunction with the Th-U 2 3 3 cycle. A
related goal is the development of a detailed engineering model of a helium-cooled sym-
biotic blanket based on HTGR technology.

2. High-Intensity Neutron Source

U. S. Atomic Energy Commission (Contract AT(11-1)-3070)

Lawrence M. Lidsky

Several years ago, we developed a conceptual design for an intense source of
14-MeV neutrons for use in fusion reactor materials testing. It appears likely that such
a gas target source will be built. We are performing experimental measurements of the
detailed behavior of the beam-heated jet in a quarter-scale intermittently pulsed model
of the proposed device. Our goal is to compare theoretical predictions and extensive
numerical computations (from several laboratories) with experimental results. The
interaction is so complex and the engineering design so sensitive to behavior in the
transonic interaction zone that experimental work is essential to guide the design of
the full-scale source.
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3. Pellet Fueling of Fusion Reactors

U. S. Atomic Energy Commission (Contract AT(11-1)-3070)

Peter A. Politzer, David J. Rose, Jay L. Fisher

We are engaged in a continuous analytic and experimental study of the possibility of
refueling a steady-state fusion reactor by injection of small solid pellets, and of the
physical processes that are involved. We are examining the transport of particles and
energy across the low-temperature, high-density balloon region which separates the
solid pellet from the thermonuclear plasma in order to derive criteria for the existence
of this shielding balloon and to determine the optimum size and velocity for the pellet.
In this study we want to optimize the distribution of ablated material in the reactor
plasma. We are also constructing an experiment that will allow us to observe the first
stages of the formation of the balloon in a hot dense plasma.
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F. Experimental Studies - Waves, Turbulence, and Radiation

RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

1. Plasma Diagnostics

U. S. Atomic Energy Commission (Contract AT(l1-1)-3070)

George Bekefi, Robert J. Taylor

Our present objectives are focused on the diagnostics of a small toroidal device
called Versator. During the coming year we are planning to carry out three experiments.

a. Electromagnetic Mode Studies on Versator

Experiments with Versator have shown that MHD fluctuations (10-20 kHz) are pres-
ent and can easily be observed with magnetic probes placed on the outside of the wind-
ings. By placing pick-up coils at various [ , 0] coordinates, it has been determined
that the most prominent mode is an n = 1/2 and m = 3 mode. Correlation exists between
the magnetic signals and the electrostatic fluctuations as measured by a Langmuir-type
electrostatic probe inside a plasma column. The correlation shows a peak at r - a/2.
This measurement will be used to identify the location of rational surfaces.

We propose to expand the investigation by inserting small magnetic probes into the
plasma to make correlation measurements of the externally seen fluctuations. We shall
study local magnetic and electric perturbations, and measure the level of typical elec-
tric fields by a double-probe technique.

b. Wall Effects on Tokamak Equilibrium

We shall investigate how wall stabilization depends on various Tokamak parameters,
such as size of the plasma, wall proximity, error fields, toroidal field, density, elec-
tron temperature, and ion mass.

c. Spectroscopic Studies

Ultraviolet and visible light emission studies in Versator show that during a negative
voltage spike the O(V) and O(VI) line emissions decrease markedly and the O(IV) and
O(II) line emissions increase. The temperature decrease takes place in less than 20 [s,
and we believe that this cooling is not due to heat loss to the walls or to the influx of
neutrals.

Using visible and ultraviolet spectroscopy, we shall investigate how the spatial evo-
lution of the reduction of the temperature takes place in Versator and what impurities
and impurity levels are responsible for the onset and the limiting of negative voltage
spikes seen in Tokamaks.
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2. Coherent Scattering Experiment: Scattering of 10. 6 im Radiation

U. S. Atomic Energy Commission (Contract AT(11-1)-3070)

Lawrence M. Lidsky

An experiment is in progress to resolve and measure the "ion" portion of the spec-
trum of radiation scattered from a plasma. In a quiescent plasma this measurement
permits determination of the temperature of the ions, and in a turbulent system it yields
the spectral characteristics of the low-frequency waves. An extremely stable 10. 6 1m
CO2 laser oscillator and amplifier system has been constructed for this experiment.

An optical system based on a liquid nitrogen-cooled electrically scanned Fabry-Perot
interferometer and a liquid helium-cooled bandpass filter has been built and tested.

3. Linear Quadrupole Experiment: Plasma Equilibrium and

Stability in Inhomogeneous Magnetic Fields

U. S. Atomic Energy Commission (Contract AT(11-1)-3070)

Peter A. Politzer, David O. Overskei, Michael D. Stiefel

We plan to use the SLIM steady-state linear quadrupole device to pursue three areas
of investigation. The results of preliminary studies of plasma stability behavior in the
vicinity of the neutral line under the influence of applied dc electric fields have been
promising. The observations of changes in the equilibrium configuration agree well
with theoretical models. We shall continue the equilibrium study and undertake a quan-
titative identification of the instabilities that occur in the neighborhood of the neutral
line. Furthermore, we shall attempt to relate the instability spectrum to the observed
increases in plasma temperature. In addition to this study, we are engaged in an exper-
iment to demonstrate the existence of a trapped electron echo phenomenon in this device
and to show that this effect can provide a useful diagnostic for determination of the dis-
tribution function of trapped electrons and of the scattering processes that affect them.
Finally, we plan an investigation of trapped electron-driven instabilities, both because
of the interest in experimental verification of trapped-particle instability theory for large
devices and the effect that trapped-particle phenomena may have on the plasma behavior
near the neutral line.

4. Strong Nonlinear Wave-Particle Effects

National Science Foundation (Grant GK-37979X1)

Peter A. Politzer, Ady Hershcovitch

We are investigating, both theoretically and experimentally, the nonlinear effects
resulting from the presence of large amplitude electric field fluctuations in a counter-
streaming electron beam system. The field fluctuations arise either from the growth
to saturation of a spontaneous cyclotron instability or from externally applied fields, or
from the superposition of these two. We have determined that as the spontaneous insta-
bility evolves in time, it shows a frequency shift that can be explained in terms of scat-
tering and heating of the electrons by the wave. In this system we are able to determine
the electron distribution function as a function of time. This permits direct observation
of the velocity-space diffusion of the particles. We plan to use this technique to
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determine the velocity-space diffusion coefficient for a superposition of the saturated
instability field and several different spectra of applied turbulent fields. These results
will then be compared with the predictions of strong turbulence theory to serve as an
experimental test of various aspects of the theory.

5. Parametric Instabilities in Beam-Plasma Interaction

National Science Foundation (Grant GK-37979X1)

Ronald R. Parker, Alan E. Throop

Our study of parametrically induced instabilities generated by the linearly unstable
interaction of beam-plasma systems continues. Details of our progress are reported
in the article on the following page.

6. Nonlinear Saturation Experiment

National Science Foundation (Grant GK-37979X1)

Lawrence M. Lidsky

We are attempting to determine experimentally the effect of broadband ion cyclotron
frequency turbulence on the propagation of various driven ion acoustic waves. The exper-
imental conditions allow for the domination of various nonlinear coupling effects over
collisional mapping. We plan to apply the results of these measurements to the predic-
tion of the nonlinear limit of related plasma instabilities.

7. Trapped-Particle Experiment

National Science Foundation (Grant GK-37979X1)

Lawrence M. Lidsky

The theory of the cylindrical-geometry analog of the toroidal trapped-particle modes
has been developed and the results have been used to predict the behavior of a particular
set of trapped-particle modes. These modes have been experimentally detected for the
first time and their linear properties have been measured. We are now measuring their
nonlinear properties and comparing the results with the predictions of various nonlinear
saturation models. Our goal is the prediction of the effect of various trapped-particle
instabilities on particle and thermal transport in toroidal systems.
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1. PARAMETRIC DECAY INSTABILITY AS A POSSIBLE

SATURATION MECHANISM IN A WEAK

BEAM-PLASMA SYSTEM

National Science Foundation (Grant GK-37979X1)

Ronald R. Parker, Alan L. Throop

Introduction

While the linear phase of weak beam-plasma (BP) interactions seems to be well

understood,1 a great deal of effort is being expended to try to understand the nonlinear

evolution of the interaction. 2 In particular, the observed saturation of the linearly

unstable BP waves has been explained in terms of beam trapping, 3 strong turbulence, 4

or other nonlinear processes. Pump depletion caused by the parametric decay insta-

bility has generally been rejected as a saturation mechanism because the interaction

involves a linearly unstable BP wave as a pump, and the resulting nonlinear interaction
is often thought to be explosively unstable, since the uncoupled system involves a

4
negative-energy wave.

Recent experiments 6 have suggested, however, that a resonant transfer of energy

from the unstable BP wave to other plasma modes could be responsible for the observed

saturation. We shall present a coupled-mode theory for the parametric decay instability

in a weak BP system which suggests that under certain experimental conditions the inter-

action can be nonlinearly stabilized by the decay process.

After a brief discussion and summary of the general approach used in this report,

we derive a generalized conservation theorem for the magnetized beam-plasma system

and specialize it to the confined-flow case. We then derive a coupled-mode equation

from this theorem and evaluate the coupling coefficient for the interaction that we are
considering. Some of the properties of this system and the nonlinear evolution predicted

by the set of coupled-mode equations are also discussed.

Outline of the Theory and Summary of Results

The interaction that we are considering is shown in Fig. XIII-7. We have evaluated
the following dispersion relation for a linearly coupled weak electron beam and a
magnetized background plasma column:7

k2 k2kk 2k+ \)W z f

D(w, k) = k 2 s(1)

s Ds vf2 k

2 z f
WDs s
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where wps is the plasma frequency, wDs = 0w- kvos is the Doppler-shifted frequency

because of a zero-order drift v s, Vts is the specie thermal velocity, k i is the geo-
2

ocs 2
metrically determined radial wave number, and f = 1- , with cs the cyclotron

WDs

frequency. The sum is over the plasma species. The electron plasma wave (Trivelpiece-

Gould "T" mode) remains essentially unperturbed by the presence of the beam except

in the resonant region just below wpe where the beam and plasma waves are in syn-

chronism. The fast and slow space-charge beam waves interact strongly, however, in

the presence of the reactive background plasma and couple below Wpe to form conjugate

modes with the same real frequency and wavelengths, but with equal and opposite growth

rates. We denote the decaying BP mode as B and the growing BP mode as B'. Above

0 the two beam waves again become distinct modes. The plasma column also supports
pe

a low-frequency, lightly damped ion-acoustic (A) branch as shown in Fig. XIII-7. The

linearly unstable BP wave grows convectively until it reaches a sufficient amplitude to

decay resonantly into a backward-traveling T (Trivelpiece-Gould) mode and a forward-

traveling A mode with frequencies and wavelengths consistent with the predicted values.

w/wpe

1.0-

(2) 0.9--

f= 1.1 GHz /

0.7- ELECTRON BEAM WAVES

PLASMA
\ 0.6- WAVE \

\ 0.4 /\ bo =10 GAUSS
MEASURED PREDICTED =1 6 3

(GWDR) nb =6X10
6 

cm-
\ 0.3- MOD f k(cm') f k fpe=1.

2 7
GHz

2-- I .IGHz 5.2i 1IGHz 5.3 ne=2xO 10 cm
\\ // 2 -1.GHz 6.2 1.1GHz 5.5 b =I.

4 2 
10 cm

/ s

3 10 Hz 12.516.6x0 S I*.8 Vb =2.75c-

I I ! I I I II,,MH I Cm/S =2.75cm

-7 -6 -5 -4 -3 -2 -1 0 I 2 3 4 5 6 7 8 9 10 II

kll (cm
- 1

)

Fig. XIII-7. Guided-wave dispersion relation for the coupled beam
and plasma waves. (Acoustic branch not to scale.)
The parameters used in the calculation, as well as the
predicted and experimentally measured mode frequen-
cies and wave numbers, are listed.

Before discussing the theory in detail, it may be worthwhile to motivate the formal-

ism by summarizing some of the most relevant results. We assume that the energy that

is transferred between modes as a result of the nonlinear interaction gives rise to
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slowly varying wave amplitudes a(i, t), whose behavior is described by coupled-mode

equations of the form

d aM = KaNap, (2)

where the capitalized subscripts M, N, P denote the three coupled modes, and K is the

coupling coefficient. Equations similar to (2) are written for each mode, and the resulting

set of nonlinear equations is solved to obtain the nonlinear evolution of the system. The
coupled-mode equation is obtained, as usual, from a conservation equation of the form

-t WM + V *M + PdM = Pext, M (3)

which is derived by using the generalized approach of Bers and Penfield. 8 Here, WM
and SM are the small-signal energy and power flow, PdM represents the power dissipa-
tion, and Pext, M represents a source term for a mode M. For the BP system, the

source term arises from the nonlinear coupling and gives rise to the spatial and temporal
changes in mode energy. Initially, we shall neglect the resistive dissipative effects

represented by pd. Since, however, the linear BP interaction is a reactive type of insta-

bility9 and involves two waves at the same real frequency and wavelength, we are forced

to account explicitly for the finite growth and decay rates of the BP waveS. Therefore

we view the parametric interaction as a four-wave coupling involving the modes A, T,

B, and B'. The formalism leads to a coupling coefficient that is complex, instead of to
the usual form which is either pure real or pure imaginary. 1 0 It is found that K contains

resonant terms as a result of the presence of the BP modes, but that the overall contri-
bution of these terms to the interaction is small. The formalism concludes that the

small-signal energy of either BP mode taken independently, WB or WB,, is identically
zero. Instead, to derive the coupled-mode equations, we utilize a quantity defined from
the adjoint system denoted W B , which is a complex quantity composed of parts of bothN 2 89
growing and decaying BP modes. We find that WB can still be written as EoEB- aw
if this quantity is now evaluated at the complex frequency B = Br + j y Furthermore,
the nonlinear stability of the system depends on the parity of the real part of WB' and
results in the physically satisfying condition that the system is nonlinearly stable for
Re (WB) > 0 and explosively unstable for Re (WB) < 0.

Generalized Energy Conservation Equation

To derive an energy theorem like Eq. 3, we shall use a fluid model for the system,
since all waves are lightly damped and kinetic effects may be neglected. We simply
combine the force and continuity equation for each of the three plasma species, together
with Poisson' s equation, to get a form of the conservation equation that is commensurate
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with the form of a coupled-mode equation. For each of the plasma variables (density n

and velocity v), the first-order quantities associated with the plasma electrons are

denoted by subscript e, those associated with the plasma ions by subscript i, and those

associated with the beam electrons by subscript P. Zero-order quantities are denoted

by subscript zero for plasma variables and by b for beam variables. For example, we

assume a form n = no + ne for the plasma electron density and v = vb + vp for the beam

electron velocity. The seven equations in the resulting set are written twice - once as

an uncoupled set of linearized equations, and again as a coupled set of nonlinear equa-

tions whose solutions have a slow time variation as a result of the nonlinear driving

terms. We write the two sets of equations as follows:

an
+ (nv ) = N ,0OZ (4)

e - - - -
mn - +qnvc -qnv XE +meen = F ,0 (5)

eo t eo eoe o ete e el

an.1+ . (n-) = N il 0 (6)at 0 1 11 2

m.n + q.n + v. X B + mivtiVn = Fi 0 (7)
i o 8t io0 1 0 1 t 2

an
- +V' (npVb +nbv~) = Nbl, O2 (8)

av_
menb at + menb(vb V, + qenb - qenb p X Bo mevtbn = Fbl 02 (9)

E V V= -q (ne + n) - qini (10)

where

Nal = - (na lall

(11)ma 2 - V)
F - - v Vn v

al 2 n toi a a ao al alao

2 ykBTa
with vta m = Y - 2 , y 1, and a = e, i,p for each species. Here vta is the

thermal velocity, and y is the ratio of specific heats. For completeness we have left Vtb
and vti nonzero, but later for simplicity we shall set them equal to zero. We have written

the nonlinear terms as source terms on the right-hand side of the equations, and have

denoted the nonlinear and linear sets of equations by subscripts 1 and 2. The right-hand

side is zero for the linear equations.
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We use a normal-mode form for the solutions, which may be written as follows. For

the linear (subscript 2) solutions the modes exist independently and so have the form

nez(r, t )  NNeM( M, kM

ni 2 (r, t) NiM(M, kM)

Sv.(r, t) = eV.J% (w/, k-,) e e

(12)

where AM - Mt + kM " r, and yM > 0 is the linear growth or decay rate for the mode M.

Note that yM : 0 for modes B and B' even in the absence of dissipation. For the non-

linear (subscript 1) equations, the solutions are coupled by the nonlinear interactions,

which give rise to a slowly varying amplitude aM(F, t) that is identical for each variable.

Thus the set of driven solutions may be written

NeM M , kM)

VeM (M , kM)

NiM(wM, kM)

ViM ( , kM) aM(r, t) e

NpM( (M , kM)

VpM( (M kM)

SM(WM, kM)

AM e M t + complex
conjugate

(13)

where the sum is

nant. That is,

over the interacting modes. We assume that the interaction is reso-

B, B' = wA + wT

kB, B' = kA + kT
(14)

and only these resonant combinations of the modes in Eq. 13 are of consequence.

To derive a conservation equation from the thirteen equations (4)-(10), we follow the
generalized approach of Bers and Penfield. 8 The equations are multiplied by the appro-
priate quantities, and either added or combined until all terms reduce to a time-derivative
or divergence of some quantity, as in Eq. 3. The nonlinear terms contribute to Pext"
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By setting the nonlinear terms to zero, the appropriate quantities can be identified as

the small-signal energy and power flow. We outline the derivation here, again using

subscripts 1 and 2 to denote the linear and nonlinear equations and solutions. We take

[Pel* 2 + il '  2+pl I Z] + [ +e2 + 1i20+P2" 1 PZ 1l

to get

2
d Vta

mandt ao al ma n al
a a

V ( mvta(na2 al +nal a))

+ V. (menb b( l v 2))

+ q n o(va2* V + val * V 2 )

SVaZ Fa + m n2aNal (15)

a a ao

where the sum is over the three plasma species.

From Eqs. 4, 6, and 8 we have

V* Jt1 =  qaNal
a (16)

V. Jt = 0,

a -
where the total current J = J - E L V, and the particle current J =  qaoal +ti pl o at pl s a ao al

s

qe bnpl. Thus, using 7b - (b V) v= V b [b(i. ip)] and the beam force equation, we

can rewrite the fourth term indicated by an underbrace in Eq. 15 as

T- J bl 1 b metb - 1

itJ 2 t t2 ~1 e +  q vbnplnp

a-+ at [E0 Vp 1.- VP2 +n PlT 2+n,T 1] - 2 Z q aa 1a

-T2Nbl n vb * Fb vb e(nplpZ2 +npvpl) X Bo

- me nb( pl T2 + vp VT1) (17)
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where T 1 = meipl ",b, and Jbl = e(nlb+nb pl) By noting that Vb is parallel to

B and by making the indicated substitution, Eq. 15 becomes

d mn v vatan + Eo t + n Tz + npzT
t man ao al Va2 al aZ 1 P nPz 1

n Tao aa b

+ 7 maVta(naZ al + nalVa2) + Jt1i2 + Jt2 1 q q e

2
me tb -nn

nb In f 2b

+ menbvb [P 1 XVX VP% + SZX VX vp 1

n np zFbl
V F + m Z n aZ + Z q N. + nb + T2Nb. (18)

2 a al avta nao a I a a b nb b1
a a a

This has the desired form of a conservation theorem except for the third term on

the left-hand side. This term can be neglected if we take the limit of an infinitely

strong magnetic field B , so that a purely longitudinal motion of the particles results.

Such an assumption also simplifies the dispersion relation to an analytically tractable

form and allows us to rewrite Fal in a more symmetric form:

- a ao Vta --
Fal Z n- V(n alna l) + V(va 'v a ) (19)

ao

The linear dispersion relation shown in Fig. XIII-7 is also negligibly modified if it is

evaluated for ce / - oo instead of c / 3. The infinite field limit appears,ce pe ce pe
therefore, to be a valid approximation.

Coupled-Mode Equations

The form of the terms on both sides of Eq. 18 is already suggestive of a coupled-

mode equation. Each term on the left-hand side of Eq. 18 involves the product of a

linear solution times a nonlinear solution, while each term on the right-hand side

involves the product of two nonlinear solutions times a linear solution. When the normal-

mode form of the solutions is substituted in Eq. 18, each term on the left-hand side will

contribute a single slowly varying amplitude, while the right-hand side will contribute a
product of slowly varying amplitudes. The modes associated with each of the solutions
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are chosen to satisfy the resonance conditions (Eq. 14).

To simplify the problem, we consider only coupling in time. If we write any one of the
jAM

system variables x = n, v, or schematically as x = aMXM e , we obtain a coupled-
mode equation for aM(t) by letting

jAM

x I = aMX M e
(20)

-jA Mx2 = XM e

for any well-defined mode M, with only an oscillating dependence (e.g., modes A and T).

With this form assumed for each of the plasma variables and in the absence of any non-

linear terms, Eq. 18 reduces to

d
dt (WM) = 0, (21)

where WM is the small-signal wave energy given by a sum of terms of the form XMXM =

XM [ , as expected. With the nonlinear terms present, however, the resonance con-

ditions (B, B' = A + T) restrict the product of modes which appear on the right-hand side

to those that combine to give a slowly varying amplitude commensurate with the rate of

change of aM(t), as we shall see.

The situation is slightly different for the case of the BP modes, which have both

exponential and oscillating dependence. For example, if we attempt to evaluate the

small-signal energy of the decaying mode B independently by letting

jAB e-yt

xl = aBXB e B e~

(22)

, -J B e-yt,
x 2  XB' e ,

we obtain

d [WB e-ZY = 0. (23)

For the bracketed term to be independent of time the small-signal energy must be iden-

tically zero. We are unable, therefore, to write a conservation equation for aB(t). But

we recognize that if we choose the normal-mode solutions so that a part of both BP

modes at (wB' kB) are combined; that is,
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x = aBX B eB -yt

(24)

x2 = XB' e e,
dZ

then the expression corresponding to (21) becomes - (WB) = 0, where WB is now a

complex quantity given by a sum of terms of the form XBXB. This allows us to obtain

an equation for the (slow) time evolution of aB(t) or aB (t).
Before deriving the coupled-mode equation and coupling coefficient for the four

modes, we must evaluate the normal-mode amplitudes. For any mode M, each ampli-

tude can be obtained from the linearized Eqs. 4 through 10 in terms of a single quantity,

say, the RF electron velocity VeM. Assuming vtb = vti = 0 and B - o, we have

V

ViM MVeM NeM = nSovM

WM nb WMkM
V DM TV N = TV (25)

PM W DM M eM pM WDM M eM
DM

m n

M qe v MVeM N iM vM MeM

where

2
v m nb MTVe =e - V M k

M 2 ' m.' n v ' ' DM M- kzMVb
vM 1 o zM

Here we may arbitrarily choose VeM to be real and take the remaining amplitudes to be

complex. It can also be shown that VeB = VeB .
To derive the coupled-mode equation for the amplitudes of the decaying BP mode,

aB(t), we substitute the solutions given by Eqs. 24 for the BP mode and Eqs. 20 for the

A and T modes in Eq. 18, and use Eqs. 25 to simplify the resulting form of the coupling

coefficient. For example, considering only the contribution of the first nonlinear term

to Eq. 18, we have

a el(A+T) (26)
e2(B' )

where the capitalized mode subscripts remind us of the restrictions imposed by the

resonance conditions. But
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Svte JA+A T )  (AA+AT)
Fel(A+T) =-meo 2 (-jk B)NeANeTaAaT e + (-jkB) VeAVetaAaT e

n

(jkB) menoVeAVeTaAaTe j A B + VVTe (27)

and

,. -jAB eYt.V . = V eB e
eZ( B' "')

The contribution of the first nonlinearity is given by

~ d e t  te
W B dt a B = (jkB) menoV eAVeTVeB e aAa T  + AVT (28)

The other nonlinear contributions are evaluated in a similar manner to give

d yt BKB
dt a = menVeAVTVeB e  aAaT' (29)

B
where

2

+1 + 1 1 (30)
1 1 1 Bb

vb )( b b A- (T-b) ( b
A T vB

Here we have used the fact that w, = B , k kB, and X X where the last

equality will be shown later.

In the expression for KB the first term in brackets in (30) comes from the nonlin-

earities arising from the plasma electrons, the second term arises from plasma ion
WB

nonlinearities, and the last term from the beam nonlinearities. Since vB  k Vb' the
B

beam nonlinearities may cause a considerable enhancement in the magnitude of the

coupling coefficient.

The coupled-mode equation for the growing BP mode (B') is obtained in a similar

manner by letting
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x = aB, XB' e jA eyt

x 2 = X B e et

We then get

d-aB = jmenoVeAVeTVeB'

where KB, has the same form as KB with vB -
The coupled-mode equation for the acoustic

VB, and KB' = K B'
mode is obtained by letting each system

variable assume the usual form:

xl = aAXA e

S-jAA
x = XA e

Since we recall that wA =  B, - wT and kA = kB,B' - kT' the thermal contribution of

the first nonlinearity is given by

d
WA dt aA = VeZ(A) F

2
meno qVte

2 n
0

where the bracketed term becomes

-m no(-jkA )

2

n 0
(aBNeB et + aB, NeB et) aT N j e A (33)

-jAA
and VeZ = VeA e

The thermal contribution therefore becomes

dA = jm n VteA BV eB-t +WA jmenVeA et VAYVT VB
aB' VeB' et I

VBI j

Recalling that
V VeB and comparing Eq. 34 with Eqs. 28, 29

B vBI
and 32 we find

d A e-yt + aeyt a
dT A = 1meno eA et'A BVeBKB B eB B T'
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V(nel(BB')n )
el(T )
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(35)

e-yt BI KB aAa T ,T'
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where we have used the fact that VeM is taken to be real. Because the resonance con-

ditions for the T mode and the A mode are symmetric, the equation for aT(t) is identi-

cal to Eq. 35 if the A and T subscripts are exchanged.

We can therefore summarize the four coupled-mode equations as follows:

d AA vAdt A = JmenoVeAVeTVeB A B  - AB, e A T
d mnV e e-Yt+A e

dt AT jmenoVeAVeTVeABA B e AB eyA3  AA (36)

where

S 1/ 2  1/2

ma M \WAWT W BM WM B WTB

In these equations, we have normalized the wave amplitudes to obtain a symmetrical

form for the equations. We may obtain an alternative form for (36) by the transformation

Q/B = AB e-  and dB' = AB' eyt We then obtain

(dt%+Yd B = j(menoVeAVetVeB) AAAT

dt B' = (menoVeAVetVeB) VAAAT

dd A j(m nV V V ) S4V Q+ / Adt A m e o eA et eB B ' B' T

d AT= (menoeAVetVeB B 'B A (37)

These equations differ from the usual form of the coupled-mode equation for the

decay instabilityll in several ways. First, the interaction involves four equations

instead of the three equations that result when only the growing BP wave is considered.

The formalism still involves only second-order products. The coupling coefficient W'

is now complex, instead of being pure real or pure imaginary as for the usual three-

wave case.10 It is also interesting to note that the BP wave which appears as a source

in the equations for AA and AT is a composite of both the growing and decaying modes.

These equations were derived for the case of a dissipationless medium. We can include

the effect of dissipation by treating it as an additional perturbation of the system in the
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same manner as we have treated the reactive instability.

Properties of the Nonlinear System

a. Evaluation of WB and SB

We have previously discussed the incentive for defining the complex quantity WB in

connection with the BP waves. To evaluate WB, we substitute the assumed form for

the solutions:

x1 =XB e B e-Yt

(38)

x2 = XB' eJ e = X e"B eytz Bt B

in Eq. 18 in the absence of nonlinear coupling.

mode amplitudes are equal; that is, XB, = XB.

described by

A(w,k) XB = 0,

We shall now show that the conjugate

XB is found from the set of equations

(39)

where A(w, k) is in general a real matrix of the complex quantities Zo and k. For

example, for the simple cold beam-cold plasma case, Eq. 39 represents

w -kn
o

0 mnoe o
n'

0

0

U UD

0 0 0

qe 0 qe

0

0

-kn
b

meno wD

0

For electrostatic waves the matrix A(Z,

tions of the complex variables '' and k

as a system variable. Therefore

0

-q n ok

0

-q enb k

2
-k E

o

N e(, k)

V ( , k)

N(, k) = 0.

V (w, k)

#(w, k)

(40)

k) will always have elements that are real func-

as long as the electric potential 4(r, t) is used

(41)

Since X and X are conjugate modes, X is found from the same set of equations,
withw -wo and k - k

A( , k) XB' = 0.
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Taking the complex conjugate of this equation, we obtain

A(w, k) * XB, = 0. (43)

Comparing (39) and (43), we have X , = XB. This relation holds for each of the seven

normal-mode amplitudes.

To evaluate WB, we substitute Eqs. 38 in the time-derivative term of Eq. 18 and

use Eqs. 25 which relate the normal-mode amplitudes to obtain

F 2 2 2 3

W mmnV V T T B B + . (44)
B  e o eB eB' B BI 2 2 2 Bw3

zB wpe vBTB D

In the infinite field limit the dispersion relation given by Eq. 1 becomes

2

(w, k) = -2 + / + A y (45)

kz D/

so that the braced term in Eq. 44 becomes 2 0 Using the relation TMVeM
Z 2

pe
EM qe-J , we can express W B as

Sme B

W E -EE (46)
B oEBEB'  8 oB 8 .

B "1

The minus sign in the second expression appears because VeB was chosen to be real.

Thus WB is given by the usual expression for the mode energy, but the quantity must

now be evaluated at the complex frequency wB. We can show similarly that

' (47)
S2B oEBEB' ak (47)

Z
wB

b. Coupling Coefficient and Threshold

We shall now evaluate the magnitude of the coupling coefficient

e 1/2

= KB

WATB
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Using (46) to evaluate WM for each of the modes in terms of the RF electron velocity,

we have

2

W = 2mn vte
A eo eA 2

c
s

2mnV (48)
T e o et

Z2m n . V2

W e o eBWB 3(1-vb/vB)3

We can simplify the expression for KB given in Eq. 30 by using our general knowledge

of the frequency and the wave number of the interacting modes (see Fig. XIII-7):

vB  Vb TB T T = 1

2 2
vT -vb A -vte/cs

vA = Cs < vte Vb (49)

Using these approximations, we obtain

~ Vte 1 1 Vte k2 B
K _+ _+__ vte k B (50)
B __c + 2 2 2 c k2 2 2 2 '

Cs vb  b/V B - ) s vb  z pe

where the contribution of the beam in the second term is in general small. The cou-

pling coefficient W is therefore given by

2 3 1/2
1 1 te 1 [ATB vb

e2m n o eA VeT eB t e v (Vb/ 1) meno VB
(51)

To obtain some idea of the strength of this interaction, we use this coupling coeffi-

cient to calculate a threshold for the interaction, under the assumption of a strong pump.

The relevant coupled-mode equations are then

dA A

A 'A Act B' TdA 1= j " MAB, AA ,
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where ' is the term in brackets above. Assuming that AA and AT have an eYt vari-

ation, we have

2 2 WB o AT 2 2 2  2 2
Y - KZ A mnV V V 2 (52)B AW e o eA eT eB

At instability threshold y YAYT ' 1 where YA and YT are the linear damping rates of

the A and T modes, respectively. Therefore the threshold for the instability is given by

V2

VB, RF YAYT 12 > 16 ' (53)

Vte ' T 2 1 2
1 J/ Vte

2 2 (Vb/V 1)2
V+ b v - 1)

where VB, RF = 2VeB is the RF induced electron velocity. This threshold, without the

term in brackets, is identical to the result obtained for the parametric decay of a T mode

into a lower frequency T mode and an A mode. 1 1 The correction factor in brackets

results from the fact that a BP wave is being used here as a pump wave instead of a

T wave. This correction is in general small unless vb - vB. While (vb-vB) is a function

of ., it also depends independently on the particular value of WOB/pe that is used.

We can also obtain from Eq. 36 Manley-Rowe type relations that describe the power

flow between the coupled modes. Taking (A' A +A, +A2 d A') and using the first two

equations, we obtain

d = d d (
dt IAA dt AT =- 2 Re BA  , , (54)

so that the energy exchanged by the modes, AW, is related by

AWB B wT oT
_ B T TC (55)

AW ' AWT T A A

Thus energy flows from the BP mode into the A and T modes in the ratio of their fre-

quencies, as expected.

c. Nonlinear Stability

Equations 36 and 37 describe the temporal nonlinear evolution of the coupled system.

The equations closely resemble those obtained for the usual three-wave case, 1 2 but are

complicated by the complex nature of the coupling coefficient and the form taken by the

BP wave when it acts as a pump. In the usual three-wave case, if the high-frequency

pump were a negative-energy wave, the system would be explosively unstable. 1 0 As we
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have stressed, however, the high-frequency pump wave for this interaction is not

necessarily a negative-energy wave, so that there is no a priori reason to expect the

system to be nonlinearily unstable.

A numerical study of the nonlinear evolution of the system indicates that the stability
2 ~

of the system depends upon the sign of the quantity Re (h' ) ~ Re (WB). This is shown

in Fig. XIII-8, where we give three examples of the evolution of the wave amplitude. For

Re (WB) < 0 (Fig. XIII-8a), we see that at first the growing BP mode exhibits exponential

growth, but on a longer time scale the nonlinear behavior quickly dominates to cause the

system to exhibit explosive behavior. For Re (W B) > 0 (Fig. XIII-8b), the usual linear

growth of B' saturates via pump depletion and periodically exchanges energy with the

other modes. The evolution of modes A, B, B' is shown in more detail for the stable sys-

tem in Fig. XIII-8c. The phase angle of the coupling coefficient depends on specific
system parameters, such as nb, vb' etc., so that whether or not a particular experiment

3

2

1

-2

-2

(a) TIME

(b) TIME

Fig. XIII-8. Nonlinear temporal evolution of the BP instability.

(a) Explosive behavior for Re (W B ) < 0.

(b) Stable behavior for Re (WBP) > 0.

(c) Stable case showing the evolution of the three
interacting waves.
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would reveal saturation of the unstable BP wave because of pump depletion or some other
nonlinear mechanism would depend on the specific operating parameters. Since a
threshold exists for the decay instability, if the threshold were sufficiently large, it

seems possible that the BP wave might saturate via some other mechanism, for example,

by trapping, before pump depletion could become important. For our experiment, we

find that Re (W B ) > 0 over the whole operating regime, so that the system can be

stabilized by pump depletion. The field strength required for the onset of trapping is

estimated to be ~50 V/cm, while the decay instability threshold is estimated to be
~3 V/cm. Therefore it seems possible that for our particular experimental conditions

the unstable BP wave might saturate via pump depletion before trapping can become

important.

It is more difficult to demonstrate analytically the dependence of the stability of the

system upon the sign of Re (WB). If we neglect the y terms in Eqs. 37, we can derive

the following conservation theorems.

A Re (W+ A A 12 = constant
2 Re ( B

d IAA2 - 41 AB + WABZ AA 12 + 2 Re (WB) IAA 2 = 0. (56)

The first equation demonstrates that the system must be stable for Re (W B ) > 0, since

the sum of the wave amplitudes is limited. The second equation demonstrates that the

system is unstable for Re (W B ) > 0. While these statements do not allow us to say much

about the stability of the complete system as described by Eqs. 37, they do lend cre-

dence to the numerical results.
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G. General Theory

RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

1. Toroidal Transport Theory

We are interested in collisional and collective transport processes in toroidal
plasmas of the Tokamak type.

a. Inertial Effects on Self-consistent Toroidal Confinement in the

MHD Regime

U. S. Atomic Energy Commission (Contract AT(ll-1)-3070)

James E. McCune, Paul W. Chrisman, Jr.

We are studying plasma fluid dynamics in the Pfirsch-Schliiter regime. An extensive
review of the literature of self-consistent resistive MHD confinement in toroidal geom-
etry, as well as associated loss rates and transport, has been completed. We have
not found a completely satisfactory self-consistent MHD description of a resistive
toroidal equilibrium (especially with inertial effects included). The "equilibria" pre-
dicted thus far are subject to rotational instability. We have formulated an invariant
form for the viscosity that is useful for our purposes, and the investigation of self-
consistent resistive equilibria with viscosity and inertia is under way.

b. Collisional and Anomalous Transport in the

Long Mean-Free-Path Regime

U. S. Atomic Energy Commission (Contract AT(ll-1)-3070)

Dieter J. Sigmar, Steven P. Hirshman, Hark C. Chan, David A. Ehst

Collisional transport theory of multi-ion species plasmas in the long mean-free
path regime has been developed and applied to reactor plasmas. Besides neoclassical
transport effects, anomalous diffusion driven by the impurity mode is being investi-
gated in slab and toroidal geometries. The following papers have been submitted for
publication, or are in preparation:

D. J. Sigmar, J. F. Clarke, R. V. Neidigh, and K. L. Vander Sluis, "Hot-Ion
Distribution Function in the Oak Ridge Tokamak," Phys. Rev. Letters 33,
1376-1379 (1974).

D. J. Sigmar, S. P. Hirshman, J. E. McCune et al., "Alpha Particle Transport
in Tokamak Plasma," a paper presented at the Fifth IAEA Conference on
Plasma Physics and Controlled Nuclear Fusion Research, Tokyo, Novem-
ber 11-15, 1974, Paper CN-33/A15-3.

S. P. Hirshman, D. J. Sigmar, and J. F. Clarke, "Collisional Impurity Diffusion
in the Banana Regime," to be submitted for publication; now available as
ORNL TM-4839, March 1975.

D. J. Sigmar and H. C. Chan, "Anomalous Transport Due to Impurity Mode" (in
preparation).
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c. Effects of Turbulence on Trapped Particles in Toroidal Geometry

U. S. Atomic Energy Commission (Contract AT(ll11-1)-3070)

National Science Foundation (Grant GK-37979X1)

Thomas H. Dupree

Our study of the effects of turbulence on trapped particles in toroidal geometry con-
tinues. When the orbits are understood, we shall be able to predict the effects of
trapped-particle instabilities on toroidal confinement. We are also investigating the
driving and decay mechanisms of plasma vortices and the effect of vortices on plasma
confinement. The doctoral research of David Ehst on anomalous diffusion arising from
the dissipative trapped-particle mode is a part of this investigation.

2. Radio-Frequency Heating of Tokamak Plasmas

U. S. Atomic Energy Commission (Contract AT(11-1)-3070)

Abraham Bers, Charles F. F. Karney, Kim Theilhaber

The availability of large amounts of power at microwave frequencies (2-10 GHz) and
the simplicity of coupling structures at these frequencies makes it attractive to consider
their use for heating a Tokamak plasma. For typical Tokamak plasmas this frequency
regime falls between the electron cyclotron and ion cyclotron frequencies, usually near
and above the lower hybrid frequency. We have shown that an array of properly phased
waveguides at the wall of a Tokamak can excite in the central (nearly homogeneous) part
of the plasma a large-amplitude electrostatic electron plasma wave that can act as a
pump for the parametric excitation of electrostatic ion cyclotron waves suitable for

heating the ions.1, 2

We are now studying the excitation of large-amplitude waves of the whistler type in
the same frequency regime by means of a suitable waveguide array. These waves can
also be downconverted to electrostatic ion cyclotron waves (see Sec. XIII-G. 3). We plan
to address ourselves to the toroidal magnetic field effects on the propagation and
damping of these waves, to explore other possibilities of downconversion to kinetic modes,
and to study the detailed nonlinear aspects of heating by RF fields. In all of our work we
shall make extensive use of symbolic computation, using the MACYSMA System.

3. High-Frequency Microinstabilities in Tokamak Plasmas

U. S. Atomic Energy Commission (Contract AT(ll1-1)-3070)

Abraham Bers, Miloslav S. Tekula

We have previously studied microinstabilities in a homogeneous plasma driven by
an electric field or current. We have focused on the fast-growing modes that occur at
high frequencies (above the ion cyclotron frequency) and short wavelength (of the order
of, or smaller than, the ion cyclotron radius). In these modes the effects of plasma
density and magnetic field inhomogeneity may be ignored. The conditions under which
these modes are growing sufficiently fast seem to occur in the initial stages of plasma
buildup in Tokamaks where n " 1012-13/cm3, and Te >> T i. The study of the turbulence
caused by these modes is important in understanding plasma generation and heating in
Tokamaks.

PR No. 115 161



(XIII. PLASMA DYNAMICS)

We plan to study the detailed effects of trapped-particle orbits on these instabilities,
in order to determine their relevance in the quasi steady-state Tokamak plasma regime.
In this regime trapped-particle effects also make the velocity distribution function
anisotropic and this can lead to new high-frequency microinstabilities.
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1. A GENERAL TREATMENT OF RESONANCE BROADENING

IN PLASMAS

National Science Foundation (Grant GK-37979X1)

Nathaniel J. Fisch, Abraham Bers

Introduction

Resonance broadening corrections to the weak-turbulence equations have been derived
1-7

for some particular interactions with mathematical rigor. These corrections may be

obtained less rigorously but very quickly and to a good approximation by a generalizable

procedure that is based on phenomenological considerations. Such a procedure offers

several advantages. It may lead to greater insight into the underlying physics of per-

turbed orbit and wave theory. Rough corrections can be made to higher order weak-

turbulence equations for which a rigorous perturbed orbit and wave theory has not yet

been derived, and once derived the theory would probably be most useful in a reduced

form such as ours. To illustrate our procedure, we shall derive corrections to the weak-

turbulence equations describing one-dimensional wave-particle, wave-wave, and non-

linear Landau-damping interactions. We shall concentrate especially on the familiar

case, the linear wave-particle interaction, stressing the analogy to the higher order

interactions. We shall indicate the generalization to more complicated and higher order

interactions and discuss the method. Incorporation of these corrections in the weak-

turbulence equations in a manner that conserves energy and momentum will be shown.

Wave-Particle Interaction

In order for the coherent wave-particle interaction (trapping) to take place, the speed

of the particle in the wave frame must roughly satisfy

1 -VI qm-(1)
-v < vtr k (1)

or, in a less usual form,

qEk
w-k I< = m (2)

where Amm is the allowable mismatch frequency between the wave frequency A and the
"particle frequency" kv such that the coherent interaction can still take place. It is no

coincidence that, if trapping takes place, wrmm is also the bounce frequency of the par-

ticle in the wave trough. The reason for this is that a particle starting off in exact reso-
nance with the wave ( o -kv = 0) develops a maximum frequency mismatch on the order
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of Wmm. The exact mismatch at any time is only an indication of the phase of the inter-

action, as long as it is less than wmm. Alternatively, we may say that in one bounce

(or trapping) time, Ttr = I/kvtr, the wave-particle interaction cannot distinguish fre-

quency mismatches of less than I/Ttr. In any case, we have the important relation

1 qEk
mm tr m (3)

When a particle interacts with a single wave, the mismatch frequency cmm is cal-

culated from Eq. 2, where E is the amplitude of the wave (Fig. XIII-9a). When many

very closely spaced waves are present (Fig. XIII-9b) the E that is used must be based

on the energy in all of the waves. In other words, one bounce time is calculated for the

wave packet, rather than separate bounce times for each of the waves. Correspondingly,

one large wmm will be found rather than many smaller wmm for each wave. In order

to be considered essentially as one wave for the purpose of trapping, these waves must

E E E -c -

(a) (b) (c)

Fig. XIII-9. Mismatch frequency for (a) one wave, (b) many very closely
spaced waves, (c) a wide spectrum of waves.

be so closely spaced that they do not get out of phase in a bounce time; that is, 5w, the

width of the "coherently acting" waves, must be no more than 1/Ttr = wmm (Fig. XIII-9c).

Thus we put

6c = crnm (4)mm

In the many-wave case wmm may be identified as a resonance broadening width

because it characterizes the allowable mismatch between wave and particle frequency

so that the wave still interacts "resonantly" with the particle, in the sense that it acts

in concert with other waves in trying to trap the particle.
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From Eqs. 3 and 4 it is possible to estimate w , which we now call the resonancemm
broadening width, in the case of a continuum of waves. Let 9k be the spectral energy

density. Then Eq. 3 becomes

qk 1/2
mm= (167TS Sk)/' (5)

where 5k is the width of coherently acting waves in k space and is related in turn to So
by

5w = 5(w-kv) = 5kI -v + k5v. (6)

Writing 5w/5k = vg, we note that

k (7)

That is, for self-consistency, the width of the "coherent" particle spectrum, bv, must

be equal to the width of the (coherent) wave spectrum,. 5(w/k), because if a wave can

"reach out" a width 5wo to interact with a particle, a particle must be able to reach out the

same width to interact with a wave.

Solving Eqs. 4-7, we write

Sq 2 1 3 )/3

O =- - = ,h (8)

where DR is the quasi-linear diffusion coefficient for the resonant particles. Equation 8

is the reduced Dupree-Weinstock result for wave-particle resonance broadening (to

within a numerical factor of nearly 1).

In deriving resonance broadening corrections for other interactions we make use of

equations analogous to Eqs. 4-7. We find a width of "coherently acting" waves, ow, that

we set equal to rmm (Eq. 4) which is expressed as a function of the "coherently acting"

widths of the individual (wave or particle) modes (Eq. 5). Then it remains to relate

these individual mode widths to each other (Eq. 7) and to ow (Eq. 6).

Wave-Wave Interaction

In order for the wave-wave coherent interaction to take place, we must have (analo-

gous to Eq. 2)

1 W 2-" -W <  m (9)

and also (analogous to Eq. 3)
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1
w (10)mm 7tr

where we define a transfer time Ttr as the period in which the energy sloshes between

the three waves. This is an extension of the idea of the bounce or trapping time for the

wave-particle interaction which indicates the period in which energy is transferred

between the wave and the particle.

In general, we have (analogous to Eq. 5)
-1 105i6 k e 5

m = Ttr kl6k k26k2  k 3 k3 ), (11)

where the exact functional dependence may be put in terms of elliptic integrals. 7 For

the case l > 2 , 3 and kl >> k3 but k2 kl' we write for Eq. 3

Omm = 8<- IV ( k 1 kl+kzk2Z) 1/2, (12)

where V is the usual nonlinear wave-wave coupling coefficient.

From Eq. 9 for 6kj > 6k i 
6 kk , we have

6o = 6k.iv .-v + 6kk -vvgj = W m (13)
1 gi gj kgk gj mm

which is analogous to Eqs. 4 and 6. We can interpret Amm as the maximum frequency

difference between interacting waves that satisfy k 1 - k2 - k3 = 0. We find (analogous

to Eq. 7)

5k1  6k2  6k 3
= (14)

IVg2 g3  I glgg 3  gl g2

which is the self-consistency relation requiring that the 6k are related in such a fashion

that if any two modes (ki., k.) together can reach out a width 5o to regenerate the third

mode (kk), then modes k., kk should also be able to reach out to regenerate mode k., and

so on. Alternatively, Eq. 14 may be obtained by requiring that each mode see the other

two wave packets of coherently acting waves pass through it in the same amount of time.

Using Eqs. 11-14, we can solve for the resonance broadening width in wave-wave

turbulence.

S = 3277 1V 2 k l v g2 - vg3± +k2 Vgl-vg3 (15)

Sgi Vgj I Vgj_ Vgk

where v .>vj > v > 0. If vgj g V , then mm is of the same form as the relax-
gi ll gj gk gj gi gk mm 8

ation rate (and hence is not a true resonance broadening correction). Otherwise, 8mmn
may be put in the form of Eq. 8, i.e., ~ . This will be treated in detail in a future

report.
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Nonlinear Landau-Damping Interaction

For the nonlinear Landau-damping interaction, we imagine a transfer time based on

the trapping time of a particle in the (coherent) beat wave. 9 Hence (analogous to Eq. 3)

we write

-l _ qkEg
m = r - m EB = AE E 2 , (16)

mm tr m B I

where A is the nonlinear coupling coefficient, E 1 and E 2 are the real wave amplitudes,

and the coherent interaction will take place if

l -W2 -kV <W mm. (17)

For the many-wave case we write Eq. 16 (cf. Eq. 5) as

Vmm A (1671 klk) 1/2 (16 k6kZ). (18)

From (10) we find

6w = 6k vgl-v + 6k g2 -v + k6 v = mm, (19)

which is analogous to Eqs. 4 and 6.

As for the linear wave-particle interaction (cf. Eq. 7) the beat wave width determines

the (coherently acting),particle spectrum width

kSv = 5 kl - k2 k1  g l-v ! + 5k 2 1vg 2 -V , (20)

and we have (analogous to Eq. 13)

5k1  6k2
- (21)

v g2 Vl IVgl-VI

Thus a nonlinearly resonant particle sees each packet of coherently acting waves for the

same amount of time.

Solving Eqs. 18-21, we find a true resonance broadening correction (since wmm

d whereas the diffusion rate ~d 2 ) to the nonlinear Landau-damping equations

qk 1/Z 1/2

m 16 - A (21a)qk ( I kgl_ ( k 2I g ' 
(21a)
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Discussion and Generalization

The resonance broadening corrections describe the mathematical transition between

the coherent and turbulent interaction formalisms. In a coherent interaction we examine

the oscillatory sharing or sloshing of energy between a small number of oscillators. In

a turbulent interaction we examine the irreversible approach to an equilibrium sharing

of energy by a very large number of oscillators which is amenable to a Fokker-Planck

type of description. 1 0 The "step" in the Fokker-Planck equation may be pictured as an

instantaneously valid "coherent interaction" that has lost correlation (memory) with all

previous coherent interactions. The origin of all so-called resonance broadening cor-

rections lies in the coherent interaction which has a characteristic frequency mismatch

associated with it that is built into the overall random process.

In the limit of zero-field energy, there are no resonance broadening corrections to

the weak-turbulence equations. Since these equations are derived by an expansion in

field energy, this result is expected. The opposite limit of interest is when the individ-

ual resonance-broadened mode widths 6k i exceed the wave spectrum widths Aki , as in

Fig. XIII-9b. Then all waves associated with mode i act as one wave and a coherent

interaction develops. The test of the ratio (6k/Ak)i , which is crucial in determining

whether the interaction is coherent or turbulent, is equivalent to the more usual consid-

eration in terms of Tac /7tr the ratio of the autocorrelation time of the fields to a

trapping time, for the wave-particle case. Similar characteristic times may be defined

for higher order interactions; in general, there will be many "autocorrelation" times but

only one trapping (transfer) time. In the event that (6k/Ak)i<< 1 for some but not all i, nei-

ther the turbulent nor the coherent formalism is valid, in general, without modification.

The general procedure to obtain resonance broadening corrections is the following.

First, we determine the characteristic frequency mismatch associated with the appro-

priate coherent interaction as a function of the "coherently acting" energy in each of the

interacting modes. This is expressed as

mm -1 (El' E2 ... En) t kl6kl '  k26k2 ... ' kn 6 j. (22)

Note that the amount of energy in each mode that acts coherently is a function of wrm;

it is the energy that does not get out of phase in a time 1/ mm. Therefore we write

W m = 6k vgl + 6k vg 2 + .. + 6 kn v gn. (23)

Finally, we note that in the regeneration of any particular mode the other modes must

participate coherently for the same amount of time, yielding n+l equations for Wmm and

6k.. The resonance broadening correction will be important only if significant mode per-
1

turbations take place. This will occur if two (or more) unperturbed group velocities are

nearly equal or a particle mode is involved. It can be shown that in one dimension there
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are only two classes of true resonance-broadening corrections; m ~ 1 /3 (as in8 mm
Eq. 8) and wmm (as in Eq. 21a).

Incorporation of Corrections

We have argued that modes within the resonance-broadened mode width 8k. act as1

one mode. If 6ki << Ak i , which is the total mode width, then the weak-turbulence descrip-

tion is still valid, but can be improved by replacing the exact (wave or particle) mode

amplitudes by an average or smoothing over 6ki. For example, in the linear wave-

particle interaction, we must replace

k k 1 k+6k , dk (24)
k k k k-6k

and

af af v+6v of f (v+6v) - f (v-6v)0 o fo dv = o (25)av 8v 26v dv 26v

where 6v and 6k are calculated from Eqs. 5-8. The quasi-linear equations,11 corrected

by these driving terms, then become

afo(v, t) a af (v,t)
SD(v) (26)at 8v av

a ek(t)

at k 2ykk(), (27)

where

E.
1

Yk =  r (28)
r

2
p aff

E. = -T - (29)
k kl a v v=o/k

2 af
a oW p dv

E =1+ P -av(30)
r k (-kv

and

2
q-

D(v) = 87r dk. (31)
m
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In fact, it can be shown that these equations do reduce to the quasi-linear equations in

the limit 'k - 0 and, furthermore, they conserve energy and momentum.

Similarly, for the wave-wave and nonlinear Landau-damping interactions, we cor-

rect the conventional weak-turbulence equations by averaging over the driving terms,

replacing

k.+6k.

where 6ki is found from the appropriate equations. The corrected wave-wave equations

then become

1 aNkl 1 8Nk2 1 aNk 3
Sk1 at Skz at Sk 3  at

= 47r dk 2 dk 3 IVI 2 5(k 1 -k -k 3) 6( 12 - 3)

[SklNk 2 Nk 3 - Sk2NklNk 3 - Sk 3NklNk2] (33)

and the corrected nonlinear Landau-damping equations may be written

aNSt k  d. Rk, N 
(34)

o 8 (D R DNR o (35)
at 8v av

afo
Rk, f =k, f av (36)

DR = dkdf NkN(k-f) Ik-k rk,56(wk w -(k-)v), (37)

where we have adopted much of Davidson's notation. 1 1 In Eq. 35 DR is the nonlinearly

resonant diffusion coefficient, whereas DN R governs the nonresonant particle diffusion

that is largely unaffected by the perturbed orbits, as in quasi-linear theory. It can be

shown that Eqs. 33-37 obey the appropriate limits and conserve both energy and momen-

tum.

Note that this approach to introducing corrections differs slightly from that of

Dupree, who modified the quasi-linear equations by replacing the delta-function reso-

nances with finite width resonances. That is,

PR No. 115 170



(XIII. PLASMA PHYSICS)

11 kv < mm (38)

) -m 0 otherwise

A major step in his derivation was to approximate the first term in his series of

operator-type corrections as a function. The operator can be shown to obey the appro-

priate limits and conserve energy and momentum. 1 2 The functional approximation, on

the other hand, obeys the correct limits, conserves momentum, and qualitatively pre-

serves the resonance broadening effect of the operator, but does not strictly conserve

energy. Our "physical derivation" leads to a very similar result that preserves the

resonance broadening character of Dupree's operator and obeys the same limits and con-

servation laws. Although our result lacks the mathematically esthetic nature (a simple

functional correction) and rigorous derivation of Dupree's (reduced) result, it may be

preferred because energy is conserved.

Conclusion

The implications of the resonance-broadening corrections to higher order interac-

tions are similar to those often discussed for linear wave-particle resonance broadening.

These effects may be characterized in two ways. First, a particular mode is driven by

an average over a resonance broadening width of driving modes. If that width becomes

large compared with the width of the driving mode, the driven mode may saturate at an

earlier stage. Second, modes that previously could not be excited may become excited

if they fall within a resonance broadening width of the exactly resonantly driven modes.

These new modes may interact with other modes in the plasma, possibly in a manner in

which the exactly resonantly excited modes could not. This may lead to many important

effects, such as enhanced particle diffusion, quicker wave cascading, or a slowing down

of an instability, because of removal of energy from the originally active region in w-k

space.

References

1. T. H. Dupree, Phys. Fluids 9, 1773 (1966).

2. J. Weinstock, Phys. Fluids 12, 1045 (1969).

3. A. N. Kaufman, Phys. Rev. Letters 27, 376 (1971).

4. L. I. Rudakov and V. N. Tsytovich, Plasma Phys. 113, 213 (1971).

5. S. A. Orzag and R. H. Kraichnan, Phys. Fluids 10, 1720 (1967).

6. T. J. Birmingham and M. Bornitici, Phys. Fluids 15, 1778 (1972).

7. V. N. Tsytovich, Nonlinear Effects in Plasma (Plenum Press, New York, 1970), p. 4 8 .

8. N. J. Fisch, "A General Treatment of Resonance Broadening in Plasmas," S.M.
Thesis, Department of Electrical Engineering, M. I. T., January 1975.

9. E. Ott and C. T. Dum, Phys. Fluids 14, 959 (1971).

PR No. 115 171



(XIII. PLASMA PHYSICS)

10. I. Prigogine, Non-Equilibrium Statistical Mechanics (John Wiley and Sons, Inc.,
New York, 1962), Chap. 2.

11. R. C. Davidson, Methods in Nonlinear Plasma Theory (Academic Press, Inc.,
New York, 1972).

12. T. H. Dupree (Private communication, 1974).

2. THREE-DIMENSIONAL THREE-WAVE AND FOUR-WAVE

COUPLING COEFFICIENTS FOR MAGNETIZED WARM-

FLUID PLASMA WITH DRIFTS

National Science Foundation (Grant GK-37979X1)

Duncan C. Watson, Abraham Bers

Introduction

Coherent wave-wave interactions in a medium caused by the nonlinear conductivity

of the medium may be conveniently described in terms of coupling coefficients. We pre-

sent general expressions for these coupling coefficients which embrace all three-wave

and four-wave interactions in a warm-fluid plasma. The plasma may be permeated by

a steady uniform magnetic field B o , and may contain arbitrarily many particle popula-

tions, each with its own temperature and drift velocity. Each interacting wave may prop-

agate in an arbitrary direction and be polarized in an arbitrary direction.

Motivation for Use of Coupling Coefficients

Consider a homogeneous medium having an electrical conductivity that is the sum

of a linear conductivity, a second-order nonlinear conductivity, a third-order nonlinear

conductivity, and so on. The second-order nonlinear conductivity causes interaction

between triplets of waves with wavevectors and frequencies satisfying the approximate

sum rule

(ka , w a) = (kb , wb ) + (kcwc). (1)

Similarly, the third-order nonlinear conductivity causes inte-raction between quadruplets

of waves with wavevectors satisfying the approximate sum rule

(k a , wa) = (kbwb) + (kc wc) + (kd' wd) ,  (2)

and so on. Suppose that the wave-wave interaction merely modulates each wave by a

slowly varying envelope. Then the total electric field assumes the form

E(x, t) = ZE (x, t) exp(ikx x-iw t). (3)a a a
a

Suppose that the effect of the interaction is small enough that the interacting waves are

still separable in the wavevector-frequency domain. Then the envelope of each inter-

acting wave satisfies a separate equation of the form
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E 8E
L-L L a +aL a

L(ka, Wa) Ea(x, t) -i + a  8ak ax

2 a2  2 E 2 -8 2 E
1 aL a 2 L a 1 a L a

+ +...
2! - 2' 2 2

S8kak 8xx 8kTw 8x8t 8w t

exp[i(-a + kb c) *x-i(-wa + w b +c)t ](-i ) (wb + w c+i )
(b, c)

-NL(2) 8 b

G N (kb,' b,kc, Wc) Eb(x, t) Ec(x,t) - 1 kb c
akb ax

8GNL(2) aEb  . 8GNL(2) aE c  8GNL(2) 8E
+ E i E b  +i E +

8w at Eb aw b at
b 8tak 8x

S exp[i(-a+k bici d) 'x - i (-wa + b + w c +wd)t]( -i ) w b + w c + w d +i)

(b, c, d)

-INL(3))G L()b' Wb , c, dW d) Eb( t) Ec(,t) Ed(' t)+ ..

+ ...... (4a)

Here L is the linear dispersion tensor

2 2 -LIN-
L(k, w) k k - k + 0ow 2 + iw wG (k, w). (4b)

The tensors GLIN, NL(2) , NL(3) ... are linear, second-order nonlinear, third-order

nonlinear, .. . conductivities of the medium in the wavevector frequency domain. The

first summation on the right-hand side of (4) is over pairs of waves (b, c) that satisfy (1).

The phase factor immediately following the summation sign is thus a slowly varying func-

tion in the space-time domain. The second summation on the right-hand side of (4) is

over triplets of waves (b, c, d) satisfying (2), and so on. The set of differential equations

of the form (4), one for each wave envelope Ea belonging to (3), constitutes the set of

coupled-mode equations. The set of wave envelopes occurring in (3) are slowly varying

insofar as their space-time derivatives can be neglected in (4) beyond some small finite

order.

The wave envelopes present in (3), whose space-time variations are described by
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the set of coupled nonlinear differential equations of the form (4), may vary in polariza-

tion, as well as in complex amplitude. Express each electric field wave envelope in

terms of its polarization components referred to a fixed triad of basis vectors:

Ea(x, t) = A EAa(x, t) eAa. (5)
A

Choose the fixed triad in a physically appropriate way; that is, choose it to comprise

eigenvectors of the linear dispersion tensor L(ka , Wa). Then the space-time variation

of each polarization component is described by an equation of the form

(Da)AAEAa A+ -(Da AA x +a

a (2b, c )BC EBb , t) Ec(Xt) + •
B C

+ exp[i-k a + k + kc + d ) x - i(-w a + wb + wc + wd)t]
(b, c, d)

Sa F b, c, B CD EBb (x, t) E Cc (x , t ) E Dd

+ .... (6)

Here some of the higher space-time derivatives have been omitted for clarity. The ele-

ments of the dimensionless dispersion tensor D are defined by

2
(D) = * L(k ,w ) e , (7)
(Da)AA' = fAa 2 a) a A'a

w

where the fixed triad of basis vectors f are chosen to be eigenvectors of the transposed

linear dispersion tensor L(k, w a). The dispersion tensor thus has a diagonal represen-

tation, although its wavevector and frequency derivatives may not have. The quantities

F are the coupling coefficients. They describe interactions between waves which are

specified by wavevector, frequency, and polarization. They are defined as follows:

(FNL( 2 ) _ i f GNL(2) e (8)
ab, c )ABC ifAa G (kb Wb , kc , Wc ) eBbe Cc/EoWa
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f NL( 3 )
SNL(3) ifAa G (kb Wb, k, w, kd, Wd ) e beCceDd

a b,c,d ABCD E w
oa

and so on. These coupling coefficients will be shown to satisfy certain symmetry rela-

tions. Thus the amount of labor involved in setting up equations of type (6) is reduced.

In conclusion, the coupling coefficients are useful because they enable us to fcllow

the behavior of specific polarized components of interacting waves and satisfy certain

symmetry relations which will be displayed later.

Coupling Coefficients from the Warm-Fluid Plasma Model

If we neglect many-body correlations in a one-species plasma, such a plasma may

be described by a smoothed-out distilibution function f(x, v, t) of six-dimensional phase

space and time. By neglecting the discreteness of the plasma particles, and hence

neglecting the evolution of the distribution function caused by collisions, we obtain the

Vlasov equation

af - 8f q af
t + v * -+- (E+vXB) -= 0. (10)

t max av

Multiplying the Vlasov equation by successive powers of the velocity v and integrating

over velocity space, we form a hierarchy of equations relating successive moments of

the velocity. This hierarchy may be truncated in such a way as to contain only a fluid

conservation equation ,

8n a- + - n(v > = 0, (11)8tax

and a momentum conservation equation with a pressure term

Z2
8(v>) 8(v> yvTo n y-2 n q

at + (v + n n ) - (E +(v )X B). (12)
ax o o ax

Using the results of Vlasov theory as a guide, we choose the value of y. Equations 11

and 12 constitute the warm-fluid plasma model. Frequently each particle species in a

plasma is modeled as such a warm fluid. If a single particle species contains beams

or unequal temperature components that warrant treatment as separate populations, each

such population may be modeled by (11) and (12) with the appropriate choice of number

density, thermal velocity, and drift velocity.

To find the response of the warm-fluid model to an electric field, (11) and (12) are

supplemented by a specification of the dc magnetic field Bo: an equation expressing the
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remainder of the magnetic field as a subsidiary quantity

al a
t- -- X E, (13)at

a specification of the dc component of the fluid velocity for each particle population n

(V T)d c = Vor, (14)

and an equation expressing the current in the plasma as a sum of the currents that are

due to each particle population

J (x, t) = q n7 (x, t) (v7 ) (x, t). (15)
7T

The coupling coefficients are defined in terms of conductivities by (8) and (9). These

conductivities describe the constitutive relation for electric current and electric field

in the medium. This allows us to find the conductivities of a warm-fluid plasma by cal-

culating the response of the system defined by (11)-(15) to an arbitrary electric field.

The actual form of the electric field is determined at a later stage, by substituting the

calculated conductivities in the mode-coupling equations (4), or equivalently by sub-

stituting the calculated coupling coefficients in the mode-coupling equations taken in the

form (6).

The second-order conductivity of the system (11)-(15) gives rise to three-wave

coupling coefficients according to (8). These coupling coefficients will be written in

terms of quantities pertaining to the linear response of the system. This linear response

is found by imposing upon the medium an electric field containing a single complex wave

E (x, t) = Ea exp(ik * x - iw at) (16)

whose particle populations have drift velocities

(<v> = v (17)

in the absence of the wave. The wave evokes a linear response at the same wavevector

and frequency (k a , w a ) from each particle population. This response comprises a fluid

velocity of complex amplitude

-T
_7T 7Tiq EaV1 = MI (18)
a a m nWT

T a

and a fluid density of complex amplitude
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N =n a a (19)o On7 7Tm w a7Ta

Here E and w are respectively the electric vector and the frequency of the imposeda a
field as seen by an observer moving with the drift velocity of the particle population in

question:

E E + v X E + v Xa a (20)
a a Vor a a or w a

wa -k *v . (21)a a a Vor (1)

M is the mobility tensor, normalized so that in the absence of the fluid pressure and
a

the steady magnetic field it becomes the identity

- (22)-1
a (w)z m wa

Now find the second-order nonlinear conductivity of the plasma. Impose an electric

field, comprising the superposition of 2 complex waves indexed b and c, upon the

medium defined by (11)-(15):

E(x, t) = Eb exp(ikb x - iwbt) + Ec exp(ikc x -w ct). (23)

This field evokes a second-order nonlinear response at the sum wavevector and sum

frequency

(kb+c' Wb+c) (kb Wb) (kc , c). (24)

This second-order nonlinear response comprises a fluid velocity of complex amplitude

7T 7 kb+c -7 7V = V Vb, c b+c 7w  b c
b+c

yvTo k+ckb+c N N 2 k+c N bN
+ V " b n + + y(y-2)VTo v r 2

wb+07 onT o wb+c nov

+ X  k XB b +V ' X  X X (25)b m c c \ -m b

W c

PRNo. 115 177



(XIII. PLASMA PHYSICS)

and a fluid density of complex amplitude

_ + +N V +N .Vb (26)

7T bc -7T T- 7T + N7T7r\
b, c (n7 r b, c Nb). (26)

Wb+c

Here Vy, N b constitute the linear response to the field Eb at the wavevector and fre-
7T

quency (kb, wb) and satisfy (18)-(21) with a replaced by b; VC, N are defined analo-

gously. The second-order nonlinear current response is given in terms of (25) and (26)

by

i Z q (n 7 +N NN '  cVo (27)
b, c rb, c b c c b b, c o

Now we may calculate the three-wave coupling coefficient defined by (8). That definition

depends on (ka, w a ) only through the vector fAa. For purposes of calculating (8), the

basis polarization vectors fAa e b' ecc are regarded as given and the functional rela-

tionship of the coupling coefficient to these vectors then only involves (kb, wb) and

(k , w c) This functional relationship may be brought into a convenient form by defining

(k , w ) - -(k, wb) - (k , w ), (28)
a a

eAa fAa (29)

Then the three-wave coupling coefficient (8) has a functional dependence on the basis

polarization vectors which may be expressed as

Three-Dimensional Three-Wave Coupling Coefficient for Magnetized
Warm-Fluid Plasma with Drifts

FNL(2) M7 m 7n -r -U

a ib, c )ABC 7 Aa Bb' CcO

7T -Tr -IT 7T -VI -IT
+ nBbvCc , VAa + nCcvA • VBb

2 nAanBbnCc
+ y(Y-2) VT 2

n
oT

T -7T 7Tiq
+ Aa Bb X vCc W I iqW

+n kw m
w aw bwc bJ

(30)
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Here the normalized fluid velocities v and normalized fluid densities n are the linear

responses of the particle populations to the normalized fields e. They are given by (18)
and (19) with E replaced by e and the appropriate wavevectors and frequencies inserted.

Explicitly,

vA- _ 7 (31)
a mw

a

- . .avA

nA = no a (32)

-7 _ eBb

VBb Mb M (33)
m 7w b

7b

nb = n B (34)Bb 71 7
Wb

-7T =7 iq T eCc
vc c M (35)

mw

Cc 0 c Cc

w

Consider the symmetry properties of the expression (30). The coupling coefficient is

certainly symmetric under simultaneous interchanges of the pair of indices B, C and the

pair of indices b, c. This symmetry is obvious by inspection and from the method of
derivation. The expression (30) is also invariant under simultaneous identical permu-
tations of the three indices A, B, C and the three indices 'a, b, c. To show this for the
last term requires the use of vector algebra and the use of the wavevector-frequency

sum relation (28).

The third-order conductivity of the system (11)-(15) gives rise to four-wave coupling
coefficients according to (9). These coupling coefficients will be written in terms of
quantities pertaining to the linear response and the second-order nonlinear response of
the system. The third-order nonlinear conductivity of the plasma is found as follows.
Impose an electric field, comprising the superposition of 3 complex waves indexed b,
c, and d, upon the medium defined by (11)-(15):
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E(x, t)= Eb exp(ikb x -iwbt)

+ E c exp(ikc x - iwct)

+ Ed exp(ikd 'x -iwdt). (37)

This field evokes a third-order nonlinear response at the sum wavevector and sum fre-

quency

(kb+c+d Wb+c+d) (k b wb ) + (k c , w c ) + (kd Wd). (38)

This response comprises a fluid velocity Vb, c, d and a fluid density Nb c, d for

each particle population in the plasma. In terms of these third-order nonlinear

responses, together with the second-order nonlinear responses given by (25)-(26),

and the linear responses given by (18)-(21), the third-order nonlinear current may

be written

Jbc, d ~ n q (nob, c, d
7T

+ NV +N V +N V
b c,d c d, b d b, c

+Nr V+N V' +N' Vb,c d c, db d, b c

+Nc, dV . (39)

Now we may calculate the four-wave coupling coefficient defined by (9). Set

(k, w) -(k b Wb) (kc ) - (kd , d) (40)
a a

eA fAa. (41)

Then the four-wave coupling coefficient has a functional dependence on the basic polar-

ization vectors which may be expressed as
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Three-Dimensional Four-Wave Coupling Coefficient for Magnetized
Warm-Fluid Plasma with Drifts

aF b, c, d/ABCD E
O

(nAEBb+ nBbVA/ VCc, Dd + nCc Dd d+nDdC VA, Bb

+ nAE Cc+nCcvA) VDd, Bb + nDdBb +nBbDd) Ai, Cc

+ 7T - 7 + n77T, Cc n + (n 7' 7 Vw,7T - Cc
+ nADd+nDdA VBb, Cc + nBbCc + nCc Bb A, Dd

(-vT -T -7T -7T -f -7 )
+ no a, Bb Cc, Dd A., Cc Dd, Bb VAa, Dd VBb, Cc

2
YVT7Tr 7 7,
n BbnCc, DdnA, nDd, BbCc Dd+d, Bb+n, DdnBb, Cc)

2
y(y-2)(y- 3 ) VT n n n n

+ 3 nAanBbnCcnDdn07

iq Bo

m Tno7

•o VA, Bb+nAaVBb +nBbvA) X (o0VCc, Dd+n C c v D d + n DdV Cc

Wc+d

+ TvA, Cc +AaCc +n Cc A X (vDd, Bb + n DdVBb+nBbVDd)

Wd+b

- - -, -i I- - -
n OVA-, Dd+nAVDd+nDdVA X (noVBb, Cc+nBbVCc+nCcVBb

b+c

iq B n

m w
a

((c
itC

+ ((
Wd

r b

b d Wb+d

+kc 3 ) ke+b
7T 7 7
c Wb wc+d

kd k kd+c

d dd c S d+c

-+ w 1 rd qc+d

d c c+d

kb kd k d +b

wb  w d  Wd+b

kc b +c
Tf 7 7

c wb Wb+c

SVDdVA X VBb VCc

Bb vAV Cc VDd

C 7 X -Dd Bb/
Cck A-a V Dd ;Bb
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Here the normalized fluid velocities v and normalized fluid densities n are the linear

and second-order nonlinear responses of the particle population to the normalized fields

e. They are given by (18), (19), (25), and (26) with E replaced by e and the appropriate

wavevectors and frequencies inserted.

Consider the symmetry properties of the expression (42). The coupling coefficient

is certainly symmetric under simultaneous identical permutations of the three indices

B, C, D and the three indices b, c, d. This symmetry is obvious by inspection and from

the method of derivation. The expression (42) is also invariant under simultaneous iden-

tical permutations of the four indices A, B, C, D and the four indices a, b, c, d. To show

this for the term involving B requires the use of vector algebra and the use of the

wavevector-frequency sum relation (40). To show the symmetry for the last group of

three terms proved too difficult by hand, and we resorted to MACSYMA - Project

MAC's SYmbolic MAnipulation system.1 This is a highly interactive computer system,

implemented and maintained at M. I. T.'s Project MAC under the direction of Professor

Joel Moses. Details of the symmetry proof, and of the calculations leading to (30) and

(42), will be presented in a forthcoming thesis.

Application of Warm-Fluid Coupling Coefficients and Extension to

Vlasov Plasma

We have already employed the expressions (30) and (42) for wave-wave coupling coef-

ficients. They were used in dealing with the problem of laser-driven instabilities in

unmagnetized plasma, so that B terms did not appear. First, electrostatic instabilities

were considered.2 Then a formalism was set up which systematically yielded all of the

laser-driven instabilities. 3 The coupling coefficients were approximated physically, and

used to derive the three-dimensional dispersion relations 4 for certain of the instabilities.

Continued progress in this work is reported in Section XIII-B. 1.

In the description of laser-driven instabilities in our previous reports 2 - 4 and in Sec-

tion XIII-B. 1 the four-wave coupling coefficients are essential. They describe how

three-wave decay processes are modified at high values of the laser pump intensity. They

also lead to instabilities that are intrinsically four-wave interactions and cannot be con-

structed from decay processes. Among these are the oscillating two-stream, 5 filamen-

tation, 6 and modulation instabilities, which can alter the gross time-average density

distribution in the plasma.

The forms (30) and (42), with the B terms retained, will be used for investigating

laser-driven instabilities in a pellet plasma with self-magnetic fields. 8 They will also

be used in investigating the coupling to warm-fluid modes of injected microwave energy

in Tokamaks. 9 These applications will make use of the three-dimensional nature of the

expressions (30) and (42).

The expressions for the coupling coefficients have the units of energy density. They
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were derived by expanding the equations of motion in terms of all but one of the inter-

acting waves, and then were brought a posteriori to a form that is symmetric in all of

the interacting waves. This symmetrization was accomplished through using somewhat

involved algebra. We hope to rederive the coupling coefficients in a manner that is

a priori symmetric in all interacting waves and less involved algebraically. We hope to
do this by finding a quantity, analogous to energy density, that satisfies a conservation

theorem, and then expanding this quantity in terms of the interacting waves. The second-

order part of this quantity will regenerate the linear dispersion tensor. The third-

order part of the conserved quantity will furnish three-wave coupling coefficients, the
fourth-order part four-wave coupling coefficients, and so on.

If this scheme proves successful, it will be tried on the magnetized Vlasov plasma.

Again, expressions for the coupling coefficients have been derivedl0 by expanding the

equations of motion. These coupling coefficients were limited to three-wave interactions,

and further limited to certain directions of propagation. The proof of their symmetry

is indirect. We hope to generate coupling coefficients as coefficients in the expansion

of some conserved quantity, thereby obtaining them in a straightforward manner and in

an a priori symmetric form. Such a simplified systematic derivation of three-

dimensional coupling coefficients in magnetized Vlasov plasma is needed before a certain
practical possibility can be investigated. This is the possibility of injecting microwave
energy into Tokamaks and heating the plasma by coupling to ion-cyclotron modes, rather
than to the warm-fluid modes envisaged in a previous reoort. 9

The computation of coupling coefficients in unmagnetized Vlasov plasma, and of
coupling coefficients for electrostatic waves propagating parallel to the magnetic field
in magnetized Vlasov plasma, presents no difficulty. The plasma is regarded as a con-
tinuous superposition of cold beams, and the sums in (15), (30), and (42) are replaced
by integrals, evaluated according to the Landau prescription.

References

1. "MACSYMA REFERENCE MANUAL," The Mathlab Group, Project MAC-M.I.T., Version Seven, Sep-
tember 1974.

2. D. C. Watson and A. Bers, Quarterly Progress Report No. 111, Research Laboratory of Electronics,
M.I.T., October 15, 1973, pp. 84-98.

3. D. C. Watson and A. Bers, Quarterly Progress Report No. 113, Research Laboratory of Electronics,
M.I.T., April 15, 1974, rp. 117-126.

4 D. C. Watson and A. Bers, Quarterly Progress Report No. 113, op. cit., pp. 59-74.
5. K. Nishikawa, J. Phys. Soc. Japan 24, 916-922 (1968).
6. J. W. Slearer and J. L. Eddleman, Phys. Fluids 16, 1953 (1973).
7. J. Drake, P. K. Kaw, Y. C. Lee, G. Schmidt, C. S. Liu, ana M. N. Rosenbluth, Phys. Fluids 17,778 (1974).

8. J. A. Stamper, K. Papadopoulos, R. N. Sudan, S. O. Dean, E. A. McLean, and J. M. Dawson, Phys.Rev. Letters 26, 1012 (1971).
9. A. Bers and C. F. F. Karney, Quarterly Progress Report No. 114, Research Laboratory of Electron-ics, M.I.T., July 15, 1974, pp. 123-131.

10. B. Coppi, M. N. Rosenbluth, and R. N. Sudan, Ann. Phys. (N.Y.) 55, 207-270 (1969).

PR No. 115 183



(XIII. PLASMA DYNAMICS)

3. WHISTLER WAVE EXCITATION AND ITS PARAMETRIC

DOWN-CONVERSION TO ELECTROSTATIC ION

CYCLOTRON WAVES

U. S. Atomic Energy Commission (Contract AT(l1-1)-3070)

Abraham Bers, Charles F. F. Karney, Kim Theilhaber

Introduction

This report continues our study of the possibility of supplementary heating of

Tokamak-type plasmas by RF energy applied externally. We have previously described

the excitation of electrostatic electron plasma waves in the plasma above the lower

hybrid frequency by an array of waveguides at the plasma wall, and studied the para-

metric down-conversion of these electrostatic electron plasma waves to electrostatic

ion cyclotron waves in the homogeneous part of the plasma. The efficient excitation of

the electrostatic electron plasma wave is restricted to a narrow range of wave nimbers

parallel to B , limited from below by accessibility restrictions and from above by elec-

tron Landau damping in the density gradient. The latter becomes particularly severe

for high-temperature plasmas (T e > 5 keV). These waves are known to penetrate into the

plasma in narrow resonance cone field structures that introduce a finite pump-extent

threshold on the parametric down-conversion process. Both of these restrictions, the

range of parallel wave numbers and the parametric threshold, require an array of wave-

guides at the plasma walls.

In this report we consider the excitation of the whistler wave in the same frequency

regime, and study its parametric down-conversion to electrostatic ion cyclotron waves.

As we shall show, this wave is much less damped in the density gradient by hot elec-

trons, its propagation is not limited to a resonance cone structure, and its parametric

coupling coefficient to electrostatic ion cyclotron waves is essentially the same as for

the electrostatic electron plasma wave. Its main disadvantage is that it has a larger

cutoff region near the wall than the electrostatic electron plasma wave has. We shall

show that this, coupled with the accessibility condition, also leads to the requirement

of an array of waveguides at the wall but these waveguides have very different charac-

teristics from those for the electrostatic wave.

Linear Dispersion Relation for Homogeneous Plasma

Whistler waves are " cold" in the sense that neither the electron nor the ion pres-

sure terms are important in the two-fluid momentum equations. The dielectric tensor

K may be written
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KI

K = -iK x

0

K 0x

K 0

0 K
II

1-3
The electromagnetic dispersion relation is

An 4 + Bn 2 + C = 0,

where

n = kc/w, with c the velocity of light

A = Ki 2 + K 1 2

C= K2-Kx) K

and 5 = sin 0 and ( = cos 0 are the direction cosines of k.

We consider waves such that

2
z 

i LH

where w LH is the lower hybrid frequency

2 pi '2
o - , min .
LH 2 pi'

pe
1+

e

IQel i)I

S 2  , which is also theThis expression for wLH is valid for pi >> which is also the

be satisfied for some w and ,. When (3) holds

condition that (3) can

2 2
KII -ope/o

2
pe pl

K 1+1 2 2
e
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2
pe

K
x IQew

AC >> B2

and so the solution to (2) is

2 = + J-c7 IKxl/ I

k22
k2 e-

Z e
pe

The region of validity of this dispersion relation is given by (3) and is illustrated in

Fig. XIII-10.

w

WLH
2

,ni

0jLH

Scosl i rr
LH

Fig. XIII-10. Region of validity of approximate whistler wave dispersion
relation (Eq. 8). For simplicity, the region is shown extended
until the inequalities in Eq. 3 become equalities.

Polarizations and Group Velocity for Homogeneous Plasma

The electric polarization of the whistler mode is found by taking the eigenvector of

the dispersion tensor and by making use. of (3) and (7). From E we can then easily

find B, e , and i.. We find
e1

PR No. 115 186



(XIII. PLASMA DYNAMICS)

E Ex l(9)

B = E x k/[-i, , i (10)

ve = Ex/Bo[iW ,-1,-i /W ] (11)

v i = iq E/miW. (12)

Note that Ez/Ex1 = Ow/I e I << / by (3), so E lies much closer to the perpendicular

(x, y) plane than k. Contrast this with electrostatic modes where E and k are parallel.

The group velocity can be obtained by differentiating (8) with respect to k:

v =  =  , 0, . (13)

Power Flow, Dissipation, and Damping Rate for Homogeneous Plasma

In general the power flow in a dielectric medium z is

aK..
1 13 E

S =ReE X H -TE - E"E..2 40ak

For a cold plasma aK ij/ak = 0, so by evaluating Sx, specializing to whistler waves, and
using (3) and (7), we obtain

1 Z
Sx = E EX v gxn ,' (14)

where from (13) v = w/k.gx
The power dissipation is given by

Eo a0 = a
P E*K - E, (15)

where Ka is the anti-Hermitian component of the dielectric tensor. For a collisionless
plasma this anti-Hermitian component is a result of the wave-particle interactions that
lead to Landau and cyclotron damping. Since w >> i2. from (3), we consider the ions unmag-
netized. The Landau-damping terms for the ions then vary as exP - /ka 2, where

aS 2T s/ms . We evaluate these terms in the cold limit I /kasl >> 1 and IQe/kxae > 1.
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With the electrons, Landau-damping terms in Ka vary as exp[-,02/kza ] and the

electron cyclotron damping terms vary as exp[-(W- Qe )2/k2a 2]. Since w << 10el from

(3), the cyclotron damping terms are exponentially small compared with the Landau-

damping terms. This is also true for approximately isothermal plasmas (T i < T e)
m2 e 2

a > - a., and so the electron Landau-damping terms are exponentially larger than
1

the ion terms.

K then becomes

0 0 0

a .a
0 KI iKx (16)

0 -iKa ax K

where

Ka = A2k/z 2

Ka = AF_
x

Ka = A2

2

z= w/k ,  = e

z e

We evaluate p, using (9) and (15),

22

°2 pe 2
p = ,Exj pez e z. (17)

1 el

The largest term contributing to this expression is -o E z Ka. Recall that E is much
2 z 11 z

smaller than it would be if the mode were.electrostatic, and so the dissipation is cor-

respondingly smaller.
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The spatial damping rate kxi is then

p
k .- -T e-

xi 2S x

2 2 2
z

V0el W Vgx

The temporal damping rate for these waves has also been given by Akhiezer et al.
Our results are larger by a factor of two.

Accessibility Conditions for Whistler Waves

We now consider wave propagation into an inhomogeneous density profile. The

Tokamak geometry is modeled as two-dimensional (see Fig. XIII-1 ). The plasma is

homogeneous along a confining field B in the z direction. The density gradient in the-O
x direction is transverse to B . The density profile, where particle density n (x) is
plotted, has 2 parts: a linear portion extending over (0 < x < Ln) and, beyond x = Ln ,

a flat profile of constant density, the "interior" of the plasma. An array of open-ended

waveguides, placed at the boundary of the enclosure, is shown in the diagram. A high-
frequency wave (a whistler for our choice of parameters) propagates from the waveguide

PLASMA
INTERIORt

PLASMA
x

A

j
'C

LINE/
WAVE

CONVE

RANDOMIZATION = ION

AR r, PARAI

:RSION
U WN

TO LI

HEATING

METRIC
CONVERSION
F WAVE

k = ( n+ n,, )

HF WAVE

WALLS OF
/ I j \ ENCLOSURE

WAVEGUIDE ARRAY

Fig. XIII-11. Geometry for the RF heating scheme.
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no(x)

DENSITY
PROFI LE

189



(XIII. PLASMA DYNAMICS)

apertures into the plasma. Inside the plasma the wave transfers energy to the medium

by a parametric down-conversion to ion cyclotron waves, as we shall show. The

'"accessibility" conditions ensure that the wave reaches the plasma interior without

excessive attenuation. Thus ion heating will not be confined to the edges of the density

profile, but will occur over an appreciable part of the plasma.

The fields imposed along the boundary at x = 0 will be involved functions of z. For

simplicity, we consider a single sinusoidal component of these functions, exp(ik 1 ).

Superposition of the fields resulting from the propagation of each component would then

provide a more complete picture. At any given particle density we consider a "local",

dispersion relation corresponding to a homogeneous medium. The local wave depen-

dence is of the form exp[i(k11 z + klx)]. Introducing an index of refraction n, we have k =

- n =-- (nz +nix). For fixed nli, n i is obtained from the cold-plasma dispersion rela-

tion (Eq. 2):

K n4 + (Ki +KL) n -K) -K nZ + K n{( -K±) + K = 0. (19)

The K are elements of the dielectric tensor. 1 In the regime 0~' i < <  el they are given

by Eqs. 4-6.
5 6 Z

Parker and Troyon have described the behavior of the solutions of (19) when n i is

plotted as a function of density and nll is considered a variable parameter. In particular,
2

they have derived accessibility conditions on nll which guarantee that n i remains real

for 0 < x <L and is only negative close to the x = 0 boundary. Let = (Q. )/ denote
n g e 1

the mean of the cyclotron frequencies. Let the normalized variables 0 and 0 .p be

defined by

W pi(Ln )

(A. 9)i W )g g

Then the plasma interior is "accessible" for nll > n Il, where nli is given by

2

2 2 (Ln 2)Case 1. For 22 < 1 and 02 < 2 (I-O2)

2 1
n 1 (20)

p .(L
p n 2 2 2

Case 2. For (1- 2)< < or 0 >1
W,
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- ( 1 2 c2 ij 2 ,21/2
n- 0 . + z I +Q . - Q ./2 (21)

111 p pp pij

2

Figure XIII-12 shows n1 as a function of density, corresponding to these two cases. Both

slow and fast modes are shown. In each case, nll ' n ll. The upper branches of the

dispersion curves correspond to the slow electrostatic wave.

2

,, '
FAST WAVE

o
, ,. no

n0o nmax

(a)

,= Fig. XIII-12.
2 2

Sn I vs density no for three cases. n = no(Ln).
Re (n) In each case n 11 = n ll. For nll > nlli the left-hand

lobes and the cutoffs of the lower branches would
.... be shifted outward. Lower branches correspond

to the fast wave. For cases 1 and Za where w <
2 no W lower hybrid resonance occurs for the elec-

trostatic mode at the line marked " LHR." In
(x =Ln) 2 2
no= nmax regions where nI is complex, Im (n)l is indi-

(b) cated by a dotted line.
2

ni

2

(C)

We shall be concerned with the lower branch, which corresponds to a fast electro-

magnetic wave. This mode is evanescent over 0 < x < x , where the cutoff point x is
z (2

obtained from A (x ) = 0ce  -1 . For the linear density profile of length Ln
pe c e n

x x) Wel n-l L . (22)
Xc (L L n 2 (L n)  n

pe n pe nL
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The width of the cutoff region is critical. If it is too large, the wave launched at the

boundary of the enclosure cannot tunnel across the cutoff region into regions of higher

density, where evanescence ceases completely. Now at x = 0, we have

2(23)jk (0) V , - (23)

The loss in amplitude because of tunneling through the cutoff region is roughly by a

factor of exp(- k1 (0) xc). In fact, since IkIl decreases as we move toward cutoff, this

is an overestimate. For reasonable transmission through the cutoff region the exponent

must be small, say, no larger than one. With Z - c, we write in normalized

form g

kl(0) Xc = 32 i - 1 3/2 g 1.

pl

The inequality sets an upper bound on n 11. Thus

(L 2/3 2/3 4/3 13.6 i2/3

=1+ - mi I + 3.6 pi)
llu (Ln/ w Ln

(24)

where m.i/m e = 1836 and X is the free-space wavelength. This should be compared with
Se m 2

e _ 2
the electrostatic mode cutoff conditions xc = Ln m. Correspondingly, n Iu

(me) (p(Ln))2 ( pLn)

/1 + , which yields a much larger value for nllu than (24)

does.

The accessibility condition can now be stated:

n I('i ) < nl < nlu f 0 pi X

For fixed pi, curves of n and nllu have been plotted as functions of w in Fig. XIII-13.

Six special cases are considered, corresponding to B = 2. 5, 5, 10T and n (L) = 10
14 -3 o

and 10 cm . In each case, nllu is plotted for a series of values of L: L = 5, 10, 25,

50, and 100 cm.

Consider, first, the case of a fixed density with a variable magnetic field. Increasing

B ° will shift downward the region of accessible nll, and decrease the absolute width of the
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(0) 1, ni

0 0.2 0.4O 0.6 0.8 1.0 .2 1.4 1.6

(d)

0 02 0.4 06 0.8 1.0 1.2 1.4 1.6

(b)

nz n,

0 02 0.4 0.6 0.8 1.0 1.2 1.4 1.6

(e)

0 0.2 0.4 0.6 0.68 1.0 1.2 1.4 1.6

(c)

nnapi

4

2 \ L 5

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fig. XIII-13. n i (dashed lines) and nilu (solid lines) vs the normalized frequency

0 = W/ei) 1 / 2 . In each case nilu is plotted for several values of L
(in cm). Given 0 and L, the accessible range of nil is between the

nil- and the corresponding n1lu curves. Below the line marked

"ALFVEN," high-frequency Alfvn waves propagate. With a pump

frequency w > pi, only the region to the right of 0 = 0pi (heavy

vertical line) need be considered.
13 -3

(a) n= 10 1 3 m , B = 2. 5T, = 10.6G-rad/sec
o  13 -3 g

(b) n = 10 cm , B = 5T, w = 21.2G-rad/sec
o 13 -3 o g

(c) n = 10 cm , B = 10T, w = 42.5G-rad/sec
o 14 -3 o g

(d) n = 10 cm , B = 2. 5T, wg = 10.6G-rad/sec

(e) n = 1014 cm 3 , B = 5T, = 21.2G-rad/sec

(f) n = 10 cm , B = 10T, wg = 42.5G-rad/sec
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region somewhat. For instance, let w = 9 X 109 sec 1 , corresponding to W/w = 0. 8 at

B = 2. 5T (Fig. XIII-13a). In this case, density profiles with Ln > 50 cm are not

accessible, since for such lengths nllu <nll. On the" other hand, for Ln = 10 cm the

interior of the plasma is accessible to components with roughly 1. 4 < nll 1. 8. If Bo
is doubled (Fig. XIII-13b), /ow = 0. 4 and the lengths Ln = 50 cm and 100 cm are now

accessible, albeit for small ranges of nll. The accessible range for Ln = 10 cm has been

shifted downward. It is now 1. 1 < nll < 1. 5. At still higher magnetic fields (B = 10T,
w/lw = 0. 2), the width of this range decreases slightly. It is now 1. 05 < nll < 1. 4

(Fig. XIII-13c).

Similarly, for fixed B and w, increasing particle density results in a wider range

of accessible nil which is shifted upward too. Increasing no also makes larger Ln
accessible.

One can determine from the graphs which waves will propagate at the maximum den-

sity. For 1 < nll << (Wp/~)2 large-angle, "high-frequency" Alfven waves will propagate.

The dispersion relation, according to Stringer, is

W = kCA (25)

where

shown

CA is the Alfv*n velocity, CA

at the left of the line marked

0 0.2 0.4 0.6

(0)
0.8 1.0

0 0.2 0.4 0.6 08

(b)

= B /( n om). The range of validity of (25) is

"ALFVEN" in Fig. XIII-13. For w > copi Alfvn
pl

Fig. XIII-14.
a 2
n1 vs relative position in the density profile.

14 -3
In each case B = 10 T and no (L n ) = 10 cm

(a) n11 = 1. 4, for which lengths Ln < 25 cm

are accessible. (b) nll = 1. 9, only profiles

with Ln < 5 cm are accessible. In each case

a plot of the whistler wave approximation (26)
is shown.

Ln
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waves propagate only in a narrow region, hugging the nll curve. But for n > (Wp /W)2

2 k2C 2

and nZ >> 1 whistler waves propagate with the dispersion relation (Eq. 8) W = 2 ee
pe

cos (0). Figure XIII-14 shows a comparison of the approximate and exact dispersion

relations for two values of nil.

Polarization and Propagation of Whistler Waves in the Density Gradient

As the electromagnetic wave propagates from the boundary of the plasma enclosure

it undergoes linear wave conversion; that is, its wavelength and polarization change. In
2

the whistler regime the expression for nl as a function of position in the density profile,
2

under the assumption nll > 1, from Eqs. 3 and 7, is

2 pe 2
nl(x) = n nil, (26)n e

2 2
which yields an approximate expression for the cutoff in n1 , Wpe(xc) n~iwljel

The field polarizations are obtained from the general cold-plasma expressions

E y +iK

S2 2 (27)
x n + n I -K I

E n nz Ilnl
E 2 (28)

x nI -K

In particular, at the edge of the density profile (x 0, n = 0) the fast cold-plasma wave

is linearly polarized in the y direction. From (9) we have

E (i .. n (29)
x  a(x) I

pe

E 2 e( x)

E n2 . (30)
x W pe() e

The magnetic fields can be obtained from Faraday's law:
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B - n E (31)
x c 2 II1 xe (x)

pe

~nll
B - E (32)

y c x

I I j 2 eB e E (33)z c - e(x)J x
pe

Thus at cutoff (x = x c ) the wave is circularly polarized and propagates parallel to Bo. At

larger densities the inequalities Ex >> Ey I >> I Ez hold.

The x component of the power density for the fields of the whistler wave (Eq. 14) is

given by

1 2
Sx cE 0 Ey(x) nl(x)- (34)

1
Since Sx must be conserved with increasing density, it follows that IEy(X) I

L(x)

which is the usual WKB approximation for the propagation of a simple wave in an inhomo-

geneous medium. Near cutoff Eq. 34 is no longer valid. Far from cutoff -(x)/°e >>
2 e

n , and the field intensity (Eqs. 26 and 29) varies as

E2 =Ex2 ~ nl(x) ~ x. (35)

Ray trajectories are useful in predicting how energy propagates in the plasma when

the source is of finite extent. The group velocity for the whistler wave is given by

vg sin 0,1 + cos
g k I cos 

The ray trajectory is parallel to v at each point of its path. Let a denote the angle

between vg and B o . The equation for the ray is then

1
cos +dz= cos 3

= cot (a), (36)dx sin e

where 0 is a function of density, and hence of x. Let Ln denote the width of the density

gradient. Integration of (36) yields

2 . (37)

z(x, nil) = Ln 2 I(sec 0), (37)

pi( n)
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where I(sec 0) is defined by

1
I(sec) = 2 [3 log(sec 0 +tane) +tane sece]

and, from Eq. 7, we have

2

cos =
Wpi(x)

The initial condition chosen for (36) is z(x,) = 0.

(38)

(39)

The wave is assumed to penetrate per-

pendicular to Bo , as long as it remains in the cutoff region. In Fig. XIII-15 Eq. 37 is

nl= 3 2.5 2 1.5 1.25

-J

3

Z wpi2 (Ln) 800

Ln wl i

Fig. XIII-15. Ray pa
Note s

plotted against x for various n l.

2

-1 pn
z(Ln 2 2 LnPR No. 115

PR No. 115

ths for whistler waves according to Eq. 37.
cale distortion by a factor of 20.

2
For ni

2
w2 (L)

pn
(or cos (0) << 1), (37) reduces to

(40)
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Hence components with large nl1 do not propagate as far down the magnetic field.

Nonlinear Coupling to Electrostatic Ion Cyclotron Waves

We now consider coupling from a whistler wave (mode a), whose dispersion relation

is given by (8), to an electron plasma wave (mode b), with an approximate dispersion

relation

2 2 2 2
b + pe cos 0, (41)

pi pe

and an electrostatic ion cyclotron wave W = 0 +k c) satisfying the usual resonance

conditions (see Fig. XIII-16)

W n =Wa + Wb

k =n k +k
n a

(Note that we consider a> I > p .. Hence mode a cannot be an Alfven mode; see

the condition preceding Eq. 25.) This interaction is similar to the nonlinear interaction

of two electron plasma waves and an electrostatic ion cyclotron wave, which has been

Iwbi
w2= Opi2 + Ope

2 COS28

EIC

Fig. XIII-16. (a) o, k and (b) k diagrams for the modes taking part
in the parametric reaction.
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8-10
studied previously. In that case the dominant contribution to the coupling coeffi-

cient arose from the z component of the convective term in the nonlinear driving term

to the electron momentum equation

1
Pz con= - mno[(v ikb) Vbz + (b ika) Va]. (42)

z conv 2 o a b bz a az

The problem is different now in two respects. First, Ea is closer to being perpen-

dicular to Bo than k (see Eq. 9) so v is much smaller than v (b is still an electro-
o a az bz

static mode so Eb//kb), and hence we may neglect the (Vb ika) Vaz term. Second, a is

now an electromagnetic mode and so we must include the z component of the Lorentz

contribution to P:

1-
P z Lor 2 qno(vbX Ba)z (43)

Evaluating the first terms of (42) and (43) by using the polarizations given in Eqs. 9-11,

we obtain

E k
1 ax nz (44)

z 2 qn Eby a (44)
o a

Hence the nonlinear charge fluctuation at (wn , kn ) caused by modes a and b is

2Z E
p(2) 1 pe E Eby(45)
a,b Z E o 2 B w '

vTe o a

and the growth rate yo is given by

(2)

0 n a, b

(I"( n/2 )  4kn(WbWn)1/2

1 knlcs pe val
_ 1 _ _sin __ , (4 6)

n a Te

where va= I Eax /Bo, and i is defined in Fig. XIII-1 6b. Equation 46 is formally identical

to this equation for the growth rate for exciting EIC waves by the electrostatic pump.

Array Design Considerations

The exciting structure that we assume is a waveguide array as shown in Fig. XIII-17.

Note that the waveguides support TE 0 1 with the E field in the y direction. This excites
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/ PLASMA

WALL

z - flw --- - --- --

YL, 
t

xz

IEy(z)l

Eo

z

Fig. XIII-17. Waveguide array and the field pattern at the wall (x= 0).

the electromagnetic modes in preference to the electrostatic mode considered in a pre-

vious report.11 The spectrum for the fields produced by this structure (Fig. XIII-18) is

sin ND (kz - /D)]

E (k ) = E cos( - k (47)
y Zr - k L sin I (kz_,/D]

For a given plasma and operating frequency we can find which range of nll, (nII, -

nllu ) is accessible, by using Eqs. 20, 21, 24 and Fig. XIII-13. Thus for a plasma with
14 -3

n = 10 cm , B = 5T, and a density scale length L = 50 cm, when operating slightly
o o n

above opi we find that nll between approximately nilI = 1. 3 and nllu = 1. 5 are accessible.

This is the plasma that we use as an example here.

For evacuated waveguides we require L > X /2, where X is the free-space wave-

length (2Zwc/w). Since D > L, the separation of peaks in the kz spectrum is Zrr/D < Zw/c L,
which, of course, is a separation of 2 in nll. Since the inaccessible region always

extends at least from nll = -1 to n11 = 1, we would always end up with the largest peak in

the central inaccessible portion, with a resulting drop in efficiency. This situation may

be remedied by loading the waveguides with dielectric, E = E E (in practice, a similar
r o /Z

effect may be realized by using ridged waveguides). In that case L > _, which gives

r

a separation of at most Zf-r in n . In our example, we wish to put the peaks at nll

1 o/Z
+ (nllu + n l ) = +1. 4. This we can do with, say, Er = 4, = , L = 1.2, - 0. 3 X

r
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'- 1

IEy(kz) 2

Zz

ACCESSIBLE PORTION
OF SPECTRUM

Dn,, i

D

37T
L

27r
W

Fig. XIII-18. Spectrum of fields at the wall. N= 14, L= 0.3 Xo, D=0.36 Xo , = r.

and D = 1. 2, L = 0. 36 X.

The final consideration in designing an array is that the width of the peaks in the kz
spectrum be such that their half-power points lie in the accessible region. This puts a

lower bound on N. The separation of the first two zeros in a single peak is 4w/ND, and

the half-power width is ~ 2n/ND. Thus if Anll = nllu - nl, is the accessible range of ni,
cL 2r

Anl1 > w ND' In our example, An 11 = 1. 5 - 1. 3 = 0. 2 and D = 0. 36 o, we find N > 14.

(Note that Fig. XIII-18 is plotted with these parameters.) If we take w . = 1. 3 X
10 -1 p

10 s , the z extent of the array is ND _ 70 cm. It should be noticed that the condi-

tion on the half-power points lying inside the accessible region may be too stringent, if

we consider the variations that may be expected in plasma parameters. It may be more

reasonable to choose a lower value for N to ensure that some power will be coupled for
a range of plasma parameters.

Field Structure inside the Plasma

We have designed an array to produce a relatively narrow band of nll that is acces-
sible to the plasma. As these nll penetrate the plasma, they follow slightly different rays,
and this leads to a dispersion of the pump field. In fact, if we trace rays at nllu and nlli,
starting at the same point at x = 0, then, from (37), at x = L we haven
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pi(A).

I( 2nill -

where I is defined in (38). These rays for L n = 50 cm and nll = 1. 3, n lu = 1. 5 are

shown in Fig. XIII-19. In this case 6z = 100 cm. Since rays can start anywhere, if

there are waveguides the total extent of the pump inside the plasma is roughly Az = 6z +

ND = 170 cm. The x extent is found by multiplying Az by tan a, where a, the angle of
"IeI

the ray path, is given in (36). Since sin 0 = 1, tan a = cos 0 = nl 2 0. 07, and thus

Ax = 12 cm. pe

.- SAz

n

nhl nI 4

Z/10

Fig. XIII-19. Rays with nll = nllk = 1. 3 and nll

starting at z = 0 and z = ND = 70.

nIu =1. 5,

L = 50 cm.n

We also need to know the field strength inside the plasma compared with its value at

the waveguides. We can estimate this field strength by requiring that the total x-directed

power flow is independent of x. Beyond cutoff, from (14), we have

f Sx dz ~ Az(x)Ex(x) z cos O(x). (49)

In order to relate the fields inside the plasma (x= Ln ) to those at cutoff (x= x ), we

remove the singularity at cutoff predicted by WKB theory, by extending the region

of validity of (49) to cutoff. Then
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2
Ex(Ln) Az(xc) cos 6(x )  ND 1

6 -5z +ND cos 0'
Ex (X) Az(L n ) cos (L) ND cos

Here we have neglected the effect of Landau damping because kxi for these modes is
5 -1

10 5m for Te ~ 5 keV and so can be neglected. When operating near the maximum

lower hybrid frequency the field at cutoff is related to the waveguide field.

E (x) H
Sexp- nl-1 --xc ~ exp (- Ln). (51)

o

For our example we get

Ex(Ln ) 2E o  (52)

Threshold for Parametric Interaction

As in a previous report,10 we take the threshold condition to be the requirement that

an unstable pulse e-fold many times during the time when the center of the pulse remains
10 1 -in the pump region. The velocity of the pulse center l 0 is (b n) b , since vb >>

vn . The time T when the pulse remains in the pump region is

-1
ZAz Vazvbx ZAz

T _ . (53)
Vbz vaxvbx Vbz

Now from the dispersion relation for b (41)

2 2 2W cos ,-
pe b b pi

vbz = Te- (54)

since kb k ~ ~i/cs. Therefore the threshold condition is

y _ Az >> 1. 
(55)

o vTe 2 2
V b Wpi

Using our example with E = 10 kV/cm, Te = 5 keV, q = 1. 1 pi and y given by (46),

we find yoT ~ 3.

Conclusion

We have examined the coupling from whistler waves in a large Tokamak, with the
design objective of achieving efficient coupling from the waveguides to the plasma. There
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are, however, other criteria for designing an array. The first is to see what powers

are required to produce measurable ion heating in a present Tokamak (for example, T.
1

from 200 eV to 300 eV for ATC) with only a few phased waveguides, say, 2 or 3. Second,
the design of the array might be optimized so as to produce an efficient coupling of the

waveguide power into the plasma. Again, this should be designed for present Tokamaks,
so that the efficiency of RF heating can be measured. Finally, we need to know the array

design required for a large Tokamak such as the ETR to heat the ions to ignition tem-

perature as we did for heating by electrostatic waves. Detailed comparison of these

designs, when electrostatic and whistler modes are excited, will form the basis of a

future report.
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