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Spherical probes at ion saturation in E ∧B fields

Leonardo Patacchini and Ian H. Hutchinson

Plasma Science and Fusion Center, MIT

Abstract

The ion saturation current to a spherical probe in the entire range of ion magnetization
is computed with SCEPTIC3D, new three-dimensional version of the kinetic code SCEPTIC
designed to study transverse plasma flows. Results are compared with prior two-dimensional
calculations valid in the magnetic-free regime [I.H. Hutchinson PPCF 44:1953 (2002)], and
with recent semi-analytic solutions to the strongly magnetized transverse Mach probe problem
[L. Patacchini and I.H. Hutchinson PRE ???]. At intermediate magnetization (ion Larmor radius
close to the probe radius) the plasma density profiles show a complex three-dimensional structure
that SCEPTIC3D can fully resolve, and contrary to intuition the ion current peaks provided
the ion temperature is low enough. Our results are conveniently condensed in a single factor
Mc, function of ion temperature and magnetic field only, providing the theoretical calibration
for a transverse Mach probe with four electrodes placed at 45o to the magnetic field in a plane
of flow and magnetic field.

1 Introduction

Despite the continuous development of novel plasma diagnostic techniques seen in the past decades [1],
achieving a fine monitoring of rotation profiles in magnetic fusion devices is still an area of active
investigation. The effort is in particular motivated by the need to understand edge sheared flows,
thought to reduce turbulence in tokamaks and facilitate the transition from L to H confinement
mode [2, 3].

Transverse Mach probes are part of the toolbox for measuring plasma fluid velocities close to
the separatrix and in the Scrape Off Layer (SOL) [4, 5], where ions drift towards the diverter plates
at a substantial fraction of the sound speed. Their operation is simple in concept: by comparing the
ion saturation flux-density Γi at different angles in the plane of flow and magnetic field, one seeks
to measure the external, or unperturbed (intended as in the absence of probe) plasma drift velocity
vd. The most promising probe design is perhaps the so-called Gundestrup [6], characterized by
a set of (at least 3) different electrodes spanning the tip of a single insulating head. Because it
can also operate as an array of Langmuir probes [1, 7, 8] and measure basic quantities such as
temperature, density and potential, the transverse Mach probe became a polyvalent, quasi-routine
diagnostic, now starting to be installed in hardly accessible regions such as the high-field side of
Alcator C-mod [9].

Electrodes inserted in a plasma impart a localized perturbation to the ion and electron popu-
lations, and most of the challenge yet to overcome lies in developing a model of current collection
relating measurements to the plasma properties at infinity. This is a long-standing problem of
considerable complexity, relevant not only to probe physics but also to the charging of dust [10]
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and spacecraft [11], as well as to the physics of magnetospheric flows around moons [12]. In typical
conditions relevant to probe experiments, the electron Debye length ΛDe is much shorter than any
other relevant scale length, in particular the probe size Rp and the average ion Larmor radius RL.
Provided the bias voltage is negative enough, an infinitesimal Debye sheath forms at the probe
surface and the ion current saturates; the plasma region requiring treatment is then quasineu-
tral. Furthermore, integration of the electron momentum balance along the magnetic field lines
directly relates the density to the local electrostatic potential though a Boltzmann law, effectively
transforming the electrostatic force acting on the ions into an additional pressure gradient.

In the strong magnetization limit, when the average ion Larmor radius is much smaller than
the probe dimensions but larger than the Debye length: ΛDe ≪ RL ≪ Rp, the dynamic is one-
dimensional outside the so called magnetic presheath, layer a few RLs thick in the cross-field di-
rection where the Larmor motion is broken and the ions are accelerated towards the Debye sheath.
Collisionless one-dimensional isothermal fluid calculations [13] then yield convenient analytic ex-
pressions for the ion saturation flux-density; in the downstream region for instance (η ∈ [0 : π])

Γi‖(η) = N∞csI exp [−1 − (M∞ −M⊥ cot η)] when M∞ −M⊥ cot η ≥ −1

Γi‖(η) = −N∞csI (M∞ −M⊥ cot η) when M∞ −M⊥ cot η < −1,
(1)

where M∞ = v∞/csI and M⊥ = v⊥/csI are the parallel and transverse external Mach numbers,
csI the unperturbed isothermal ion sound speed (Eq. (5)) and η the angle between the magnetic
field and the probe tangent in the plane of field and drift. The ion saturation flux-density Γi‖ is
intended as charge per unit time per unit surface perpendicular to the magnetic field, hence needs
to be multiplied by the projection of the local probe normal on the magnetic field |er · B/B| to
obtain the ion saturation flux per unit probe surface, Γi. The upstream equivalent of Eq. (1) is
readily obtained upon replacing η by π− η and M∞ by −M∞. Extension of the theory accounting
for the full parallel ion distribution function [14] provides “exact” semi-analytic solutions to the
Mach probe problem in the strong magnetization limit. The geometry is illustrated in Fig. (1) for
a spherical probe.

In the regime of intermediate magnetization, the dynamics can not be treated as one-dimensional
and the ion saturation current a priori depends on the full probe shape rather than only the
angle η at the point of measurement. This paper reports three-dimensional Particle In Cell (PIC)
simulations of collisionless ion collection by a non emitting spherical probe at saturation, in uniform
background magnetic and convective electric fields B and Econv enforcing a plasma “E ∧ B”
drift. The unperturbed plasma is taken as uniform, thus excluding diamagnetic drifts arising
from transverse pressure gradients. The probe radius Rp is much larger than ΛDe, justifying a
quasineutral treatment, but can take any value with respect to RL. For this purpose we use the
new tool SCEPTIC3D, derived from the 2D3v code SCEPTIC [15, 16] and described in section 2.
We then proceed with the results concerning the plasma profiles (Section 3), the ion saturation
fluxes and a proposed Mach probe calibration methodology (Section 4).

2 Model and computational method

2.1 Problem formulation

We consider a uniform, fully ionized Maxwellian plasma of monoionized ions (charge Z) and elec-
trons, characterized by charge density ZNi = Ne = N∞ and temperatures Ti∞ and Te. The plasma
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Figure 1: (a) Geometry of the spherical Mach probe problem in the ΛDe ≪ RL ≪ Rp scaling, con-
sidering a purely convective drift. (b) A “typical” collected ion starts in the upstream unperturbed
plasma, drifting with cross-field velocity v⊥. It first sees the probe when entering the presheath,
where it is accelerated along B over a length ∼ Rp(csI−v∞)/v⊥ (for subsonic flows) while still drift-
ing in the cross-field direction. This one-dimensional dynamics breaks in the magnetic presheath
as the ion accelerates radially towards the non neutral Debye sheath.

has an external drift vd = v⊥ + v∞, respectively cross-field and parallel velocities to a uniform
background magnetic field B. The ion and electron populations as well as the electrostatic potential
Φ are perturbed by a perfectly absorbing spherical probe of radius Rp located at the origin. The
cross-field drift is driven by an external convective field Econv: v⊥ = (Econv ∧ B) /B2, hence the
total electric field at a given point in space is E = Econv −∇Φ.

The electron Debye length ΛDe =
(

ǫ0Te/e
2N∞

)1/2
is infinitesimal with respect to Rp and the

average ion Larmor radius at infinity

RL =
1

ZeB

(

πmTi∞
2

)1/2

, (2)

hence Poisson’s equation for the potential can be replaced by quasineutrality ZNi = Ne, as long as
the probe bias is negative enough for a Debye sheath to form at its surface. Further approximating
the electrons as massless, their momentum equation can easily be integrated along the magnetic lines
upon neglecting the acceleration term. The procedure yields isothermal electrons with Boltzmann
density, down to a distance of the order the electron Larmor radius from the probe surface: Ne =
N∞ exp (eΦ/Te) [17]. Each ion, of mass m and position x = (x, y, z)T , is governed by Newton’s
equation

m

Ze

d2x

dt2
= Econv −∇Φ +

dx

dt
∧ B. (3)

Sample plasma parameters for the mid-plane SOL of a DD C-Mod tokamak discharge are
Te = 10eV , Ti∞ = 30eV , B = 5T and Ni,e = 1018m−3 [18], yielding ΛDe = 23µm and RL = 200µm,
while typical probes are millimeter sized.
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For convenience, distances are measured in unit of probe radius, potential φ in Te/e, velocity
in the cold-ion sound speed

cs0 =

(

ZTe
m

)1/2

, (4)

time t in Rp/cs0, and charge density in N∞. Dimensionless distances and densities are indicated by
low-case characters. We also define Mach numbers “M” intended as velocity divided by isothermal
ion sound speed

csI =

(

ZTe + Ti∞
m

)1/2

, (5)

the temperature ratio at infinity τ = Ti∞/ZTe, and the magnetic field strength as the ratio of the
probe radius to the mean ion Larmor radius at infinity βi = Rp/RL:

βi = ZeBRp

(

2

πmTi∞

)1/2

. (6)

Charge flux-densities are naturally in units of N∞cs0. However for easy comparison with pre-
vious treatments we will scale them either to the random thermal charge flux-density

Γ0
i = N∞

vti
2
√
π
, (7)

where vti = (2Ti∞/m)1/2 is the ion thermal speed, or to the isothermal sound flux N∞csI . The
random thermal current to the sphere is defined by I0

i = 4πR2
pΓ

0
i .

2.2 Code Operation

We solve the problem using the newly developed hybrid PIC code SCEPTIC3D, whose structure
is mostly derived from SCEPTIC [15].

The probe is embedded in a spherical computational domain of radius rb, subdivided in cells
parameterized by spherical coordinates (r, θ, ψ), and uniformly spaced in r, cos θ and ψ. The first
and last radial centers are located at r = 1 and r = rb, and the first and last polar centers at
cos θ = ±1; the corresponding cells are hence “half cells”. We arbitrarily define ez as the magnetic
axis, and ey such that vd is in the {ey, ez} plane, δ being the angle between B and vd. The
computational domain is sketched in Fig. (2).

At each time-step, charge density is linearly extrapolated to the cell centers from a set of npart

computational ions spanning the domain (Cloud in cell approach). The electrostatic potential,
straightforwardly given by quasineutrality

φ = ln(n), (8)

is then differentiated on the grid and interpolated back to each ion, which can then be advanced
according to Eq. (3). We mention here that a parallelized Poisson solver has also been implemented
in SCEPTIC3D, in order to investigate finite Debye length plasmas where quasineutrality does not
apply. Code operation in this regime is deferred to future work.

The npart particles representing ions are advanced in Cartesian coordinates using the Cyclotronic
integration scheme [19], in the frame moving with velocity v⊥ where Econv vanishes. This enables
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Figure 2: (a) Three-dimensional view of the computational domain. (b) Cross-section at ψ = π/2,
half plane containing the drift velocity vd. Computational cell centers for cos θ ≤ 0 are indicated
by “x”-symbols.

us to use longer time-steps as the strong convective acceleration need not be resolved. In order
to increase the accuracy at which orbit-probe intersections are computed, integration is subcycled
in the probe vicinity. This procedure breaks symplecticity, but because no orbit is periodic or
quasi-periodic we shall not be concerned about this minor effect.

2.3 Boundary Conditions

The total number of computational ions in the domain is fixed, therefore when an ion leaves the
domain (by colliding with the probe or by crossing the outer boundary) it is randomly reinjected
at the outer boundary. The probability distribution of position and velocity is chosen consistent
with the ions being Maxwellian with temperature Ti∞ and drift velocity vd.

Of course the downstream region is perturbed by the probe, and the ion distribution function
there is far from Maxwellian. Unless we run the code with an excessively large computational
domain, plasma profiles close to the downstream outer boundary are therefore biased by our rein-
jection scheme. Because information can not propagate against the cross-field drift (at least on
a scale longer than the average ion Larmor radius), a moderate uncertainty on the downstream
potential distribution will however not affect the upstream dynamics. The saturation current will
therefore be correct provided each ion collected by the probe entered the computational domain
from an unperturbed plasma region. This condition is met for large enough computational domains,
qualitatively:

rb >∼
2

M⊥
. (9)

In the simulation, each computational ion is given equal weight such that the upstream normalized
charge density is unity.

The inner boundary in our quasineutral formulation is really the Debye sheath entrance rather
than the probe surface, although geometrically the two are degenerate. The potential at r = 1 is
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therefore still given by quasineutrality and the probe bias voltage is irrelevant. Because the potential
gradient at the sheath edge has a square root singularity, it is not possible to correctly extrapolate
the density there from the grid, and in Ref. [15] the sheath entrance potential was self-consistently
adjusted so as to enforce Bohm condition. In SCEPTIC3D we adopt a different approach, where
the sheath entrance density (hence potential) is calculated by dividing the dimensional probe flux-
density by the average radial velocity of the ions crossing the inner boundary.

A further consequence of the square root singularity is that the potential gradient can not
properly be linearly interpolated in r from the grid to the ions, at least in the sheath neighborhood.
For this reason we follow Ref. [15], where the interpolation is performed in an alternative radial
coordinate proportional to the square root of the distance from the sheath edge ζ =

√

2(r − 1);
the radial gradient is then ∂φ/∂r = (∂φ/∂ζ) /ζ. This is one of the major advantages of using a
mesh isomorphic to the probe, and it is unlikely that a code with unstructured mesh or immersed-
boundary probe treatment can achieve the same order accuracy.

2.4 Accuracy

The code is “embarrassingly” parallelized by assigning a subset of npart to each of nproc processors,
typically nproc = 128 and npart/nproc = 400k. The simulation starts with uniform ion density, and
runs past convergence. Code outputs such as density or current densities are then averaged over
the last 25% of the steps, yielding smooth solutions suitable to further postprocessing and analysis.

Regardless of the number of time-steps over which the averaging is performed, we must ensure
that the “raw” outputs are unaffected by the discretization of phase-space. In our quasineutral
simulations, the Debye length is much smaller than any computational cell. Charge fluctuations
due to the usage of a finite number of particles are therefore Q ∝ 1/

√
ncell, where ncell is the typical

number of particles per cell; at radius r, ncell ≃ npartr
2/(4/3πr2bnrnθnψ). Inner cells being the

smallest, noise will first affect the region close to the probe where ions mostly have a radial motion.
We can therefore assume that potential fluctuations deflect the ions similarly to Coulomb collisions
with cross-section σ ∝ Q2/(nθnψ), yielding an effective dimensionless computational mean-free-
path scaling as

l =
npart

nθnψn2
rrb

. (10)

Fig. (3) shows the total ion saturation current Ii to the probe as a function of 1/l (varied by
changing the number of particles and modifying the grid), for the plasma parameters τ = 0.1,
vd = 0.5cs0, δ = π/4, and βi = 1. It can be seen that if we aim at noise levels of the order 1%, we
need to operate with l >∼ 1; this is a rather general observation, holding not only for the selected
case but for most plasma parameters. In fact the higher the ion temperature, the lower the effect
of potential fluctuations.

The impression that the output does not depend on the grid coarseness when l >∼ 1 is however
misleading. First we are looking at Ii, an integral quantity, hence not requiring an accurate radial
resolution of the potential. Obtaining the correct angular current distribution typically requires
rb/nr <∼ 0.1. Second the chosen example is at moderate magnetization; when βi >∼ 2 the presheath
tends to elongate along the magnetic axis, hence accurate angular resolution is essential. Usually
nθ = nψ = 30 proves satisfactory.

For production runs, we therefore set nθ = nψ = 30 and nr ≃ 10rb, the domain radius rb
being chosen according to the plasma drift velocity to oversatisfy Eq. (9). The minimal number of
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Figure 3: Ion saturation current as a function of 1/l. Each point corresponds to a different SCEP-
TIC3D run, where l is varied by changing the number of operating processors nproc (400k particles
per processor) and the grid. (12): nproc = 512, rb = 8, nr = 120, nθ,ψ = 30. (2◦): nproc = 512,
rb = 8, nr = 120, nθ,ψ ≤ 30. (3△): nproc = 128, rb = 8, nr ≥ 80, nθ,ψ ≥ 30. (4⋄): nproc = 128,
rb = 8, nr ≥ 80, nθ,ψ ≤ 30. (5∇): nproc = 128, rb = 12, nr ≥ 80, nθ,ψ ≥ 30. (6⋆): nproc = 128,
rb = 8, nr = 40, nθ,ψ ≤ 15. (7×): nproc = 32, rb = 8, nr = 80, nθ,ψ = 30.

particles such that noise levels be of no concern is then npart ∼ nθnψn
2
rrb at τ = 0.1 (l ∼ 1), and

we allow without further optimization npart ∼ 0.5nθnψn
2
rrb at higher ion temperature.

2.5 Axisymmetry resolution

SCEPTIC3D has the particularity of being built on a non isotropic grid with uniform cos θ spacing.
This choice was motivated by the convenience to have, at a given radial position, a computational
cell volume independent of θ. The drawback of course is that extrapolating the particle positions
to the grid, as well as interpolating the potential gradient back to the particles, requires special
care to ensure second order accuracy. In fact only first order accuracy is reached on axis because
when nθ is doubled, ∆θ is only divided by

√
2.

A stringent test of the grid implementation consists in checking that an axisymmetric case
yields the same solution regardless of the physical axis orientation. Fig. (4) shows the average ion
saturation flux-density Γi, as well as the average sheath entrance potential φs, for the case τ = 0.1,
vd = cs0, βi = 0. The solution is plotted as a function of the position projected on the drift axis
(cosχ), which is here the physical symmetry axis. It can be seen that the solutions at different
drift angles are almost indistinguishable, except perhaps around cosχ >∼ 0.7 on the φs plot, which
gives us strong confidence that the code performs properly.

Fig. (4a) also shows the ion flux calculated by the two-dimensional code SCEPTIC(2D), from
the appendix in Ref. [15]. The excellent agreement between the 2D and 3D calculations, despite
drastic evolutions between the two code versions, is a further benchmark of SCEPTIC3D. More
important, it suggests that there is no spontaneous breaking of symmetry in axisymmetric cases,
which could jeopardize the validity of prior 2D treatments.

The example shown here has been selected as one of the most computationally challenging, due
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Figure 4: (a) Average ion saturation flux and (b) average sheath entrance potential as a function
of the position projected on the drift axis (cosχ), for the case τ = 0.1, vd = cs0, βi = 0 and a
selection of δ. The points labeled “SCEPTIC(2D)” correspond to the solution from the appendix
in Ref. [15]. SCEPTIC3D runs have been performed with rb = 8, nr = 120, nθ = nψ = 30, and
npart = 51.2M .

to the collection “bump” in the downstream region arising from ion focussing. More details on this
feature will be given in paragraph 4.2.

3 Plasma profiles

3.1 Infinite ion magnetization

3.1.1 Density

Because flow and magnetic field are not aligned, plasma profiles are inherently three-dimensional
unless βi is large enough for the flow to be constrained in planes perpendicular to the convective
electric field, as illustrated in Fig. (1).

Fig. (5) shows a selection of density contour plots computed by SCEPTIC3D in the plane
{0, ey, ez} for βi = 20, in other words an average ion Larmor radius equal to a twentieth of probe
radius. In each case the upstream region is clearly unperturbed, and the fluid stream lines indicate
that the collection flow tube originates from the unperturbed region. Of course kinetic effects cause
individual ions to move across the stream lines, but intuitively the computational domain is large
enough for the saturation current to be accurately computed. The simulation with δ = π/2 shown
in Fig. (5b) allows easy comparison with the magnetic-free case, which has rotational symmetry
around the drift axis. Because magnetized ion motion is constrained along the field lines, the
downstream depleted region can only be replenished one-dimensionally and therefore extends much
further than in the magnetic-free regime.

The density contours can directly be compared with independent one-dimensional calcula-
tions [13, 14], valid in the probe magnetic shadow defined by x2 + y2 ≤ 1 when βi ≫ 1. Those
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Figure 5: Selection of charge density contour plots in the plane {0, ey, ez}, with strongly magnetized
ions βi = 20 (except in (b) where a comparison with the magnetic-free regime is provided). (a)
τ = 1, vd = 0.5cs0, δ = π/4, (b) τ = 1, vd = 1.5cs0, δ = π/2, (c) τ = 0.1, vd = 0.5cs0, δ = π/4 and
(d) τ = 0.1, vd = 0.5cs0, δ = π/8. Iso-density contours for n = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 are full
black, while fluid stream lines are dashed blue. The external velocity is indicated by a blue arrow
on the figures’ lower left corners.
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treatments show that the plasma density only depends on the angle η, defined in Fig. (1) as the
angle between magnetic field and probe tangent in the plane of field and drift.

When τ <∼ 0.1, the isothermal fluid treatment of Ref. [13] according to which

n = min {1, exp [−1 − (M∞ −M⊥ cot η)]} (11)

rigorously applies. A semi-analytic kinetic treatment such as Ref. [14] is required when the ion
temperature is higher, although Eq. (11) remains a good approximation; recall that Mach numbers
are normalized to csI (Eq. (5)). Fig. (6) compares SCEPTIC3D profiles with those one-dimensional
calculations when βi = 20 and δ = π/2, for (a) τ = 0.1, vd = 0.5cs0 and (b) τ = 1, vd = cs0. It
can be seen that the profiles agree extremely well (Less than 1% error on the isodensity lines
angles), thus providing a successful second benchmark of SCEPTIC3D. Contour lines close behind
the probe, but this effect is not captured by Refs [13, 14].
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Figure 6: Comparison of density contour lines computed by SCEPTIC3D in the {0, ey, ez} plane
(dashed black) with independent one-dimensional calculations (solid coloured) valid in the probe
magnetic shadow when βi ≫ 1. Contours are for n = 0.8, 0.6, 0.5, 0.4, 0.3. SCEPTIC3D runs
are performed with βi = 20, δ = π/2, and (a) τ = 0.1, vd = 0.5cs0 and (b) τ = 1, vd = cs0.
One-dimensional calculations refer to (a) the isothermal formulation [13] and (b) the kinetic for-
mulation [14].

Careful examination of Fig. (6) shows that there is a residual region on the probe leading
edge where the one-dimensional calculations [13, 14] overestimate the density. This is due to an
essential difference between the two approaches. SCEPTIC3D assumes the Debye sheath to be
infinitesimally thin, but fully resolves the magnetic presheath where the ion Larmor motion is
broken. Refs [13, 14] on the contrary assume the magnetic presheath to be infinitesimal as well,
hence the density difference between SCEPTIC3D and those analytic theories is effectively the
change across the magnetic presheath.
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3.1.2 Ion temperature

SCEPTIC3D calculates the ion temperature symmetric tensor ¯̄Ti in spherical coordinates, which
upon rotation yields the Cartesian components Ti,ab = m (〈vavb〉 − 〈va〉〈vb〉). The magnetic moment
of gyrating particles is an adiabatic invariant in the strong magnetization limit, at least outside
the magnetic presheath. In the bulk plasma therefore, ¯̄Ti expressed in the coordinates (x, y, z) is
diagonal, and only Ti,zz can depart from the external temperature Ti∞.

Fig. (7) shows contour plots of Ti,zz normalized to Ti∞ for the physical parameters of Fig. (5a,b),
in the plane {0, ey, ez}. Ti,zz drops in the magnetic shadow as the ions are accelerated along the
field, with straight isolines tangent to the probe surface [14]. The temperature drop exactly follows
the law Ti,zz/Ti∞ = (N/N∞)2 in the limit τ ≪ 1, and approximately otherwise [14]. In other
words, the temperature perturbation extends along the magnetic shadow much further than the
density perturbation, as can be seen in Fig. (7a) where the tube Ti,zz ≤ 0.9Ti∞ is almost parallel
to the magnetic axis.

Ti,zz sharply increases where the two counterstreaming ion populations present in the right and
left magnetic shadows merge (in theory Ti,zz → ∞ at y = 1+ and z = 0). Because our simulation
is collisionless, the ion distribution function can decay back to the drifting Maxwellian only by
convection, hence Ti,zz contours at y > 1 are wing-shaped. Fig. (7b) shows, as first noticed in
Fig. (5b), that the perturbation is much more localized in the absence of magnetic field.
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Figure 7: Contour plots of Ti,zz/Ti∞ in the plane {0, ey, ez}, with strongly magnetized ions βi = 20
(except in (b) where a comparison with the magnetic-free regime is provided). (a) τ = 1, vd = 0.5cs0,
δ = π/4 and (b) τ = 1, vd = 1.5cs0, δ = π/2.

3.2 Intermediate ion magnetization

In our quasineutral treatment, radial density gradients in the infinitesimal Debye sheath are infinite
on the presheath length scale. Therefore regardless of the ion magnetization, density contour
surfaces are tangent to the sheath entrance. Those surfaces need however not be straight lines in
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{ey, ez} cross-sections, and show in fact a fully three-dimensional structure.
Fig. (8) shows charge density contour plots in (a) the {0, ey, ez} and (b) the {0, ex, ey} planes

for a run with intermediate ion magnetization βi = 0.5. Fig. (8a) is qualitatively different from, say,
Fig. (5c), because the magnetic presheath is thicker hence the upstream density does not seem to
sharply drop at the probe surface. More interesting is Fig. (8b), reporting a significant anisotropy
of density and fluid streamlines in the major cross-field cross-section {0, ex, ey} arising from two
combined finite Larmor radius effects.

The first effect is the so-called magnetic presheath displacement, most noticeable where the
probe surface is parallel to the convective electric field. For our sphere the corresponding region is
x ∼ 0, but for an infinite cylinder (regardless of the cross-section shape) whose axis is parallel to
Econv the entire probe would be affected. The magnetic presheath displacement corresponds to the
ion flow being diverted in the direction of the convective electric field by an “E ∧ B” drift arising
from the radial sheath-edge potential gradient. A schematic view of the phenomenon is proposed
in Fig. (7) from Ref. [20], for a semi-infinite cylindrical probe with quadrilateral cross-section (note
that the axis are oriented differently in Ref. [20]: Econv ‖ ez and B ‖ ex).

The second effect is strongest where the probe surface is normal to the convective electric field,
corresponding for our sphere to x ∼ ±1. At y ∼ 0 and positive x, the probe induced field adds
to Econv and increases the “E ∧ B” drift in the ey direction, while at negative x the fields tend
to cancel out, reducing vy. This vy modulation in turns affects the relative weight of the probe-
induced polarization drift, creating an anisotropy in ion collection (Increased collection at x < 0
and decreased collection at x > 0).
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Figure 8: Charge density contour plots in the (a) {0, ey, ez} plane and (b) {0, ex, ey} plane, with
plasma parameters τ = 0.1, vd = 0.2cs0, δ = π/4, βi = 0.5. The asymmetry in (b) is due to finite
Larmor radius effects. Iso-density contours are full black, while fluid stream lines are dashed blue.
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4 Ion saturation current

4.1 Free-flight current

While numerically computed plasma profiles are an important tool to understand the physics of
plasma-object interaction, the most useful quantity to be compared with experimental measure-
ments is the total ion saturation current, and possibly its angular distribution. We start the
discussion in the free-flight regime, corresponding to the neglect of probe-induced electric fields on
the ions while still accounting for Econv. This treatment is appropriate in the limit τ ≫ 1, because
the electron pressure is then strongly outweighed by the ion pressure.

When the ions are strongly magnetized, the total saturation current can be obtained by summing
the flux density to “slices” in the plane of flow and magnetic field such as shown in Fig. (1a):

I
|βi=∞
i = R2

p

∫ 1

−1

∫ 2π

0

Γ
|βi=∞
i‖ (η)

(

1 − x2
)1/2 | sin η|dηdx =

π

2
R2
p

∫ 2π

0

Γ
|βi=∞
i‖ (η)dη, (12)

where Rp
(

1 − x2
)1/2

is the cross-section radius at position x along ex. I
|βi=∞
i can then be calcu-

lated, although not in closed form, with the free-flight strongly magnetized ion flux distribution [14]

Γ
|βi=∞
i‖ (η) = Γ0

i

{

exp
(

−µ2
ti

)

+
√
πµti [±1 + erf (µti)]

}

, (13)

where

µti =
v⊥ cot η − v∞

vti
, (14)

and “±” stands for “+” downstream, and “−” upstream. To first order in 1/βi, the effect of finite
ion magnetization on the total ion current can be accounted for by changing R2

p to R2
p(1 + 2/βi) in

Eq. (12). Such substitution is equivalent to saying that to first order in 1/βi, the ions see a probe
with effective radius Rp +RL; recall that βi = Rp/RL, where RL is the average ion Larmor radius.
The ion current is then

Ii(βi) = I
|βi=∞
i

(

1 +
2

βi

)

+O

(

1

βi

)2

. (15)

In the particular case δ = 0, or v⊥ = 0, the problem is rotationally symmetric around the probe
magnetic axis, and semi-analytic calculations can be performed (See Ref. [16] for an overview, and
Ref. [21] for detailed calculations). To first order in βi:

Ii(βi) = I0
i

{[

1

2
exp

(

−µ2
ti

)

+

√
π

2

(

µti +
1

2µti

)

erf (µti)

]

− exp
(

−µ2
ti

) βi
3π

}

+O(βi)
2, (16)

with µti = −v∞/vti.
Fig. (9) shows the free-flight current dependence on βi for different drift angles δ, when (a)

vd = 0.25vti and (b) vd = vti. It can be seen that Ii is a decreasing function of βi regardless of δ,
and an increasing function of δ (for δ ∈ [0 : π/2]) regardless of βi. The solution exactly matches the
independent semi-analytic calculation of Refs [16, 21] at δ = 0, as well as the expansion (15) at large
βi, which is a good benchmark of the magnetized particle mover implementation in SCEPTIC3D.
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Figure 9: Total ion saturation current normalized to I0
i = 4πR2

pvti/2
√
π as a function of ion

magnetization βi in the free-flight regime (i.e. disregarding probe-induced electric field effects on
the ions), computed by SCEPTIC3D for different angles of flow and magnetic field δ. “An. δ = 0”
refers to the semi-analytic treatment of Refs [16, 21] for which the weak field limit is given by
Eq. (16). “An. βi → ∞” refers to the high field expansion (15). (a) vd = 0.25vti and (b) vd = vti.

4.2 Self-consistent ion current

When the ion temperature is finite and the self-consistent potential distribution around the probe

needs to be accounted for, Eq. (12) should be used with Γ
|βi=∞
i‖ from the semi-analytic kinetic

solution of Ref. [14]. The high field expansion (15) is then incorrect, but we can argue, at least
heuristically by physical continuity, that Ii(βi) still has a 1/βi term at high βi. This property is
essential because it allows us to connect the current computed by SCEPTIC3D at reasonably high
βi, typically βi <∼ 50, to Eq. (12) at βi = ∞.

Fig. (10) shows the ion saturation current as a function of βi for different plasma conditions.
(a) τ = 0.1, vd = 0.25cs0, (b) τ = 1, vd = 0.5cs0 and (d) τ = 1, vd = 1.5cs0 are qualitatively similar,
although the latter corresponds to a supersonic flow. The current slope at βi = 0 seems to be zero,
but there is always a linear term be it smaller than what the code can resolve. The dashed portions

of curves at high βi connect the last point from SCEPTIC3D calculations to I
|βi=∞
i (Eq. (12) with

Γ
|βi=∞
i‖ from Ref. [14]); because there is no slope discontinuity at the connection, we can a posteriori

confirm that the ion current has indeed a 1/βi dependence at high βi.
When the ion temperature is small and the drift velocity approximately sonic, the ion current has

the unexpected property of peaking at intermediate magnetization. An example of such behaviour
is shown in Fig. (10c), for the case τ = 0.1 and vd = cs0. The peak is maximum for δ = π/2, and
decreases with δ. We have not run self-consistent cases with δ = 0, as a rigorous treatment would
involve modeling anomalous cross-field transport in the elongated presheath [23, 24]. However
approximate collisionless solutions for βi ≤ 1 [16] suggest that the current does not peak when the
flow is field aligned.

Fig. (11) shows the ion flux-density to the probe major cross-section in the plane of flow and
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Figure 10: Total ion saturation current normalized to I0
i = 4πR2

pvti/2
√
π as a function of ion

magnetization βi, self-consistently calculated with SCEPTIC3D. (a) τ = 0.1, vd = 0.25cs0. (b)
τ = 1, vd = 0.5cs0. (c) τ = 0.1, vd = cs0. (d) τ = 1, vd = 1.5cs0. The dashed portions of curves

at high βi connect our simulations at finite magnetization to I
|βi=∞
i (Eq. (12) with Γ

|βi=∞
i‖ from

Ref. [14]).
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magnetic field {0, ey, ez}, as a function of cos θ; the curves are therefore closed on themselves, the
upper portions corresponding to sin θ ≤ 0 and the lower portions to sin θ ≥ 0. As expected, both
solutions (a) τ = 1, vd = cs0, δ = π/4 and (b) τ = 0.1, vd = cs0, δ = 3π/8 tend to the prediction of
Ref. [14] when βi → ∞. If it were plotted as a function of cos(θ− δ), the curve βi = 0 in Fig. (11b)
would perfectly match the curves in Fig. (4a). Both figures indeed correspond to the same plasma
conditions, and χ = θ − δ on the probe major cross-section. The difference is that Fig. (4a) has
been created with current data from the entire probe surface, while Fig. (11b) with current data
from the probe major cross-section only.
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Figure 11: Angular ion flux-density distribution to the probe major cross-section in the plane of flow
and magnetic field {0, ey, ez} normalized to N∞csI , self-consistently calculated with SCEPTIC3D
for different ion magnetizations βi. “1D Kinetic” refers to the semi-analytic solution of Ref. [14].
(a) τ = 1, vd = cs0 and δ = π/4. (b) τ = 0.1, vd = cs0 and δ = 3π/8.

Fig. (11b) also helps understand the ion saturation current peak at βi ∼ 1. When βi = 0, the
probe focusses the ions downstream, creating the “bump” first seen in Fig. (4a). As βi increases,
part of the ions that would miss the probe in the absence of magnetic field are collected downstream
while the upstream current is unaffected. Eventually when βi increases further, the dynamics
becomes one-dimensional and focussing is suppressed.

4.3 Transverse Mach probe calibration

Transverse Mach probes seek to measure the external plasma drift velocity by comparing the ion
saturation flux-density Γi at different angles in a given plane of flow and magnetic field. The two
main competing designs are rotating planar probes, and Gundestrup probes, operating simultaneous
measurements at different angles with a set of electrodes spanning a single probe head [22]. It is
here convenient to think in terms of M∞ and M⊥ rather than vd and δ.

It was argued in Ref. [14] that the only transverse spherical Mach probe calibration method valid
at moderate drift for infinite and negligible ion magnetization, yet involving a single calibration
factor Mc, consists in measuring the two flux ratios R3π/4 = Γi(η = −π/4)/Γi(η = 3π/4) and
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Rπ/4 = Γi(η = −3π/4)/Γi(η = π/4), and relating them to the external flow by

M⊥ =
Mc

2

(

lnR3π/4 − lnRπ/4
)

(17)

M∞ =
Mc

2

(

lnR3π/4 + lnRπ/4
)

. (18)

Measures can in theory be made in any plane of flow and magnetic field, although it is best
to avoid grazing planes located at x ∼ ±1. Fig. (12) shows a three-dimensional view of the probe
surface, color-plotted according to the local ion flux density for the example τ = 0.3, vd = 0.5cs0,
δ = π/4 and βi = 2. The most obvious possible plane of measurement is indicated by a dotted circle
corresponding to the major cross-section (x = 0), best mocking an infinite cylindrical probe. Two
more options are a solid and dashed circles, corresponding to quarter cross-sections at x = ±1/

√
3,

whose particularity is to cut the sphere at points with x = ±y = ±z exactly where Mach probe
measurements are to be made (i.e. tan η = ±1). Those configurations therefore best mock the
pyramidal probe of Smick and Labombard [9], where measures are taken on planar electrodes at
45o angle with the three coordinate planes.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

 

x

B
v

d

y
 

z

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Figure 12: Three dimensional view of the probe surface, color-plotted according to the normalized
ion saturation flux Γi/(N∞csI) for the plasma parameters τ = 0.3, vd = 0.5cs0, δ = π/4 and
βi = 2. The dotted, solid and dashed circles respectively correspond to cross sections located at
x = 0, 1/

√
3,−1/

√
3, and the thick dots to the points where Mach probe measurements are to be

made (i.e. tan η = ±1).

In the limit βi = ∞, Mc does not depend on the measurement cross-section and is given by [14]

M |βi=∞
c =

1

2
κ+

1√
2π

(1 − κ) , with κ(τ) ≃ 1

2
erfc (0.12 + 0.40 ln τ) . (19)

In the opposite limit βi = 0, early simulations with SCEPTIC [15] have shown that the ion satu-
ration flux distribution to a spherical probe is approximately given by Γi ∝ exp (−K(cosχ)vd/2),
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where again cosχ is the position projected on the drift axis, and K ≃ 1.34/cs0 for τ <∼ 3. The
flux ratio at angle η+ π over η is therefore R = exp (K| cos(χ)|vd), yielding for measurements with
tan η = ±1 at poloidal position ψ:

M |βi=0
c =

2

KcsI

| sinψ|
√

1 + (sinψ)2
. (20)

On the major cross-section, | sinψ| = 1, hence M
|βi=0
c =

√
2/(KcsI). In particular at τ = 1 where

K = 1.34/cs0: M
|βi=0
c ≃ 0.75 (and M

|βi=∞
c ≃ 0.44). ψ is not constant on the quarter cross-sections

since on the sphere surface x = sin θ cosψ. However at the points where tan η = ±1, tanψ = ±1

as well, therefore at τ = 1 on the quarter cross-sections: M
|βi=0
c = 0.91 (and still M

|βi=∞
c ≃ 0.44).

At intermediate magnetization, there is no a priori reason to believe that Eqs. (17,18) still
hold. Perhaps the most important result of this publication is that they actually do, to well
within experimental uncertainty. This can easily be seen on Fig. (13), where R3π/4 and 1/Rπ/4 on
the major cross section {0, ey, ez} from SCEPTIC3D simulations are plotted in log-space against
M⊥ +M∞ and M⊥ −M∞, for the particular case τ = 1. The points with vd <∼ csI can be fitted to
a line with slope 1/Mc, identical for R3π/4 and R−π/4, and function of βi only.
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Figure 13: Upstream to downstream flux ratio on the probe major cross-section at (a) η = 3π/4
and (b) η = π/4, versus respectively M⊥ +M∞ and M⊥ −M∞, from a large set of SCEPTIC3D
runs spanning vd ∈ [0 : 1.5]cs0 and δ ∈ [π/8 : π/2]. Also shown are the corresponding fitting lines,
whose slopes 1/Mc are taken from Fig. (14a).

The calibration factors Mc in the entire range of ion magnetization and for τ ∈ [0.1 : 10],
computed by fitting SCEPTIC3D’s solutions with vd <∼ csI and δ ∈ [π/8 : π/2], are plotted in
Fig. (14) on (a) on the major cross-section and (b) the quarter cross-sections. The fitting error bars,
shown in Fig. (14a), are thinner at low and large βi, where the error mostly arises from numerical
noise, and thicker at βi ≃ 0 where part of the error is due to Eqs (17,18) being approximate.
Because there never seems to be more than ∼ 10% uncertainty, Eqs (17,18) can be assumed to be
“correct” for experimental purposes.
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Figure 14: Tranverse Mach probe calibration factor Mc as a function of magnetization βi and tem-
perature ratio τ computed with SCEPTIC3D for measurements made (a) on the major cross-section
and (b) the quarter cross-sections. (a) also shows the fitting error bars, arising from numerical
noise and from Eqs (17,18) being only approximate. On (b), solid lines refer to measurements at
x = 1/

√
3, and dashed lines to measurements at x = −1/

√
3. The points at βi = ∞ are given by

Eq. (19).

Error bars have not been plotted on Fig. (14b) to increase readability, but are qualitatively
similar to those in Fig. (14a). The noticeable result is here that at intermediate magnetization,
Mach probes with electrodes whose normal is not on the plane of flow and magnetic field are sensible
to the magnetic field orientation. This is a consequence of the finite Larmor radius effects observed
in Fig. (8); in particular the flow deflection towards the region x <∼ 0 seen in Fig. (8b) causes the
flux ratios to be lower at x = −1/

√
3 than x = 1/

√
3.

5 Summary and conclusions

The hybrid Particle in cell code SCEPTIC3D has been specifically designed to solve the self-
consistent interaction of a negatively biased sphere with a transversely flowing collisionless magne-
toplasma. We report in this publication results in the regime of infinitesimal Debye length, when
the plasma region of interest is quasineutral, for a wide range of temperatures and drift velocities.

In the limit of strong ion magnetization, the problem is two-dimensional and each plane of
flow and magnetic field can be treated independently; the analytic or semi-analytic solutions [13,
14] yielding the magnetic shadow profiles and ion saturation flux then apply. At intermediate
magnetization, when the ion Larmor radius compares to the probe radius, the plasma profiles show
a complex three-dimensional structure. In particular we observe the effect of magnetic presheath
displacement described in Ref. [20], as well as polarization drift modulation where the probe surface
is grazing the magnetic field. An unexpected finding in this regime is that for cold ions and close
to sonic flows, the total saturation current peaks here.

Although the full ion charge flux distribution to the probe depends on the plasma parameters
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in a non-straightforward way, the major result of this study is that flux ratios at ±45o to the
magnetic field in planes of flow and magnetic field can very easily be related to the external Mach
numbers. To within ∼ 10% accuracy (at least for τ ≥ 0.1), there exists a single factor Mc, function
of magnetization βi and temperature ratio τ only, such that M⊥ and M∞ satisfy Eqs (17,18).
Except at infinite magnetization, Mc is probe-shape dependent, and sphere solutions on the major
and quarter cross-sections are given in Fig. (14). This provides the theoretical calibration for
transverse Mach probes with appropriately placed electrodes. Of course probes are rarely spherical
in practice, nevertheless we believe that the provided solutions should reasonably well apply to
respectively infinite cylindrical probes with circular cross-section, and pyramidal probes such as
the Alcator C-mod WASP [9].
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