MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.012 ELECTRONIC DEVICES AND CIRCUITS

Problem Set No. 3

Issued: September 19, 2001

Due: September 26, 2001

Reading Assignments:

Lecture 6 (9/23/01)	-	Chap. 7 (7.1,7.2)
Lecture 7 (9/25/01)	-	Chap. 7 (7.3, 7.4.1a)
Lecture 8 (9/30/01)	-	Chap. 8 (8.1)
Lecture 9 $(10/2/01)$	-	Chap. 8 (8.2.1a)
Lecture 10 (10/7/01)	-	Chap. 7 (7.5 to end [good quiz review])

The first hour exam is scheduled for Wednesday night, October 8, from 7:30 to 9:30 pm in Room 34-101. Please let me know as soon as possible (by e-mail) if you have a conflict so we can resolve it as painlessly as possible. The exam is closed book and will cover the material through 9/26/01 and Problem Set #4 (through p-n diodes).

<u>Problem 1</u> - This problem concerns a bar of p-type silicon, $N_A = 10^{17}$ cm⁻³, irradiated on its left end with a uniform electron beam having an electron flux of 10^{19} cm⁻²s⁻¹ as illustrated below.^{*}

As shown, the sample is 100 μ m long and has an ohmic contact on its right end; this contact is connected to the electron source to complete the circuit as indicated. In this sample the hole mobility, $\mu_{\rm h'}$ is 600 cm²/V-s; the electron mobility, $\mu_{\rm e'}$ is 1600 cm²/V-s; the electron diffusion length, L_{e'} is 10 μ m; and the intrinsic carrier concentration at room temperature, $n_{\rm i'}$ is 10¹⁰ cm⁻³.

^{*} In case you are concerned: The electron beam hitting the left end of the bar behaves like an injecting contact. The injected electrons do not have sufficient energy to generate more hole-electron pairs; also, no holes can leave the left end of the bar.

- (a) What is the electron current density just inside the bar at the left end, i.e. what is $J_e(0^+)$? Show your work and/or explain your answer.
- (b) Write a formula for n'(x) in terms of n'(0) and then determine the value of n'(0).
- (c) Write an expression for the electron current density, $J_e(x)$, valid for $0 < x < 100 \mu m$.
- (d) Write an expression for the hole current density, $J_h(x)$, valid for $0 < x < 100 \ \mu m$.
- (e) Write an expression for the electric field, $E_x(x)$, valid for $0 < x < 100 \ \mu m$.
- (f) What is the voltage drop from end to end in this sample? Note: this is the same as the change in electrostatic potential between x = 0 and $100 \ \mu$ m.

Problem 2 - Do Problem 6.1, parts a and b only, in the course text.

<u>Problem 3</u> - The n-type silicon sample illustrated below is 10 microns (μ m) long and has metal ohmic contacts, A and B, on either end. The net donor concentration

is 1 x 10¹⁵ cm⁻³; the electron mobility, μ_{e} , is 1600 cm²/V-s; and the hole mobility, μ_{h} , is 600 cm²/V-s. The electrostatic potential of the metal relative to intrinsic silicon is 0.2V, and the intrinsic carrier concentration at room temperature is 10¹⁰ cm⁻³.

- a) What are the thermal equilibrium (i.e., no light, $v_{AB} = 0$ V) hole and electron concentrations and electrostatic potential, $\phi_{n,r}$ in this silicon?
- b) Sketch the electrostatic potential, $\phi(x)$, with $v_{AB} = 0$ V, going from the metal on the left, through the silicon, and into the metal on the right. Dimension your sketch; label any significant features.
- c) Assume now that $v_{AB} = 0.5$ V. Sketch the electrostatic potential, $\phi(x)$, with $v_{AB} = 0.5$ V, going from the metal on the left, through the silicon, and into the metal on the right (where you should assume the value of ϕ is unchanged, i.e. 0.2 V). Dimension your sketch and label any significant features, including $\phi(0)$.
- e) When $v_{AB} = 0.5$ V, what are the electron and hole <u>drift</u> current densities, J_e^{dr} and J_h^{dr} , respectively, at $x = 0 \ \mu m$

Next consider a sample similar to our original sample, except that it is doped p-type with a net acceptor concentration of 1×10^{15} cm⁻³ in the region from $x = 0 \ \mu$ m to $x = +5 \ \mu$ m as shown below. Note: This is a diode with the p-side to the right.

- f) Sketch the electrostatic potential, $\phi(x)$, going from the metal on the left, through the silicon, and into the metal on the right, with $v_{AB} = 0$ V. Dimension your sketch and label any significant features, including the value of $\phi(0)$.
- g) The diode is now <u>reverse biased</u> by $v_{AB} = 0.5$ V. Sketch the electrostatic potential, $\phi(x)$, now, going from the metal on the left, through the silicon, and into the metal on the right. Keep ϕ in the metal to the right of $x = 5 \mu m$ at the value it had in Part f. Dimension your sketch and label any significant features, including the value of $\phi(0)$.
- <u>Problem 4</u> Do Problem 7.1 in the course text.
- <u>Problem 5</u> Do Problem 7.5 in the course text.