Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis

Courtesy of Design Simulation Technologies, Inc. Used with permission.

Dan Frey

Today's Agenda

- Collect assignment #2
- Begin mechanisms
 - Mobility / degrees of freedom
 - Some basic mechanisms
 - Some basic synthesis and analysis techniques
 - MathCad preliminaries
 - Homogeneous Transformation Matrices
 - Solving systems of equations
 - Kinematic analysis
 - Mechanism synthesis
- Distribute & discuss assignment #3
- Distribute graded assignment #1

2D Mechanisms

- Where are they found?
- What do they do?

Courtesy of Design Simulation Technologies, Inc. Used with permission.

http://workingmodel.design-simulation.com/

2D Mechanisms

- Where are they found?
- What do they do?

2D Mechanisms

- Where are they found?
- What do they do?

Courtesy of Design Simulation Technologies, Inc. Used with permission. http://workingmodel.design-simulation.com/

Two Goals in our Study of 2D Mechanisms

- Analysis
 - given a mechanism, predict its behavior
 - DOF, position, velocity, acceleration
- Synthesis
 - given a desired behavior, develop a mechanism

Degrees of Freedom

- DOF = the number of independent parameters required to completely define the entity's positioning
- If a body is constrained to a plane, how many DOF does it possess?
- If a pin joint is added?
- If a sliding joint is added?
- If it rolls without slipping?

Mobility Criteria

• Kutzbach criterion (to find the DOF)

• Grübler criterion (to have a single DOF)

Concept Question

How many degrees of freedom does this mechanism possess?

Concept Question

How many degrees of freedom does this mechanism possess?

1)1 DOF 2)2 DOF 3)3 DOF 4)0 DOF

Degrees of Freedom

How many degrees of freedom does this mechanism possess?

We'll cover 3D mechanisms later

Figure removed for copyright reasons.

Rear suspension of a Honda Accord

The 4 Bar Mechanism

- Use working Model to arrange a mechanism in which neither link can rotate a full turn
- Use working Model to arrange a mechanism in which rotating the input link a full turn causes the output link to:
 - Oscillate
 - Rotate a full turn
 - Same direction
 - Opposite direction

Parallelogram Linkage

- This object is connected to links that are parallel and of equal length
- What can we say (qualitatively) about the motion of the body (bce)?

3 Position Synthesis

- Say we want a mechanism to guide a body in a prescribed way
- Pick 3 positions
- Pick two attachment points
- The 4 bar mechanism can be constructed graphically

Concept Question

 If you do not specify the attachment point, how many positions can you specify and still generally retain the capability to synthesize a mechanism?

Slider-Crank Mechanism

• Kinematically the same (in the limit) as a 4 bar mechanism with a very long output crank

Courtesy of Design Simulation Technologies, Inc. Used with permission.

Inversion

- Take a mechanism
- Change which link is "ground"
- A new mechanism results

Velocity Analysis

- This object is translating and is NOT rotating
- The velocity if point "b" is indicated by a green arrow
- What do we know about the velocity of point "e"?

Velocity Analysis

- This object is translating and ALSO rotating about "b" at rate $\boldsymbol{\omega}$
- The velocity if point "b" is indicated by a green arrow
- Can we construct the velocity of vector of point "e"?

Velocity Analysis

- This object is a rigid body
- The velocity if point "b" is indicated by a green arrow
- The velocity of point "e" is indicated by a blue arrow
- Can the vector "e" take any value, or are there some restrictions on values it might have?

Homogeneous Transformation Matrices

- How can we mathematically express the motions of a rigid body?
 - Translations
 - Rotations
 - Both
- Matrix multiplication will do the trick

$$body' := \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 & \delta_x \\ \sin(\theta) & \cos(\theta) & 0 & \delta_y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot body$$

MathCad: Preliminaries

- Assigning a value to a scalar variable
- Assigning a value to a vector or matrix
- Defining a function
- Displaying results
 - Numerically
 - Graphically

MathCad: Useful Capabilities

- Taking Derivatives
- Integration
- Symbolic manipulation
- Solving non-linear equations
- Solving blocks of non-linear equations including constraints
- Minimizing / maximizing under constraints
- Making animations
- Processing images

HTM MathCad Demonstrator

See HTM_DEMO_2D v2.xmcd

A Challenge

- Can you modify the HTM Demonstrator to simulate the operation of a 4 Bar mechanism?
 - Specify input and output crank geometry
 - Specify an input crank angle
 - Solve for an HTM that satisfies the physical constraints created by the cranks

Assignment #3

- Do some problems from the handout
- Analyze the kinematics of a robot's leg mechanism
- Take some measurements of
 - Motion
 - Force
- Synthesize a mechanism (your choice)

Next Steps

- Start Assignment #3
- Lab tomorrow, Friday 24 FEB
- Next Class Tues 28 FEB