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X. PLASMA DYNAMICS

A. Basic Plasma Research

1. CHARGE-EXCHANGE ENHANCEMENT

National Science Foundation (Grant ENG75-0 6242-AO1)

Edward W. Maby, Louis D. Smullin

Introduction

In order to produce negative hydrogen or deuterium ion beams, the output of a posi-

tive ion source must undergo charge exchange with neutral atoms such as cesium. The

maximum efficiency of this process is 217 for 800-eV H + interacting with cesium.1 It

has been suggested that by optically exciting the cesium, the efficiency can be improved. 2

The purpose of this report is to explore the feasibility of this suggestion. We shall

review the mathematics that describes the H-Cs charge-exchange process, and then

estimate the degree of efficiency enhancement at 2 keV in order to imply a new maxi-

mum efficiency at a lower energy. We shall also examine the technological issues that

arise as a consequence of the enhancement effort and discuss the direction of future

work.

Charge-Exchange Mathematics

Let F + , Fo, and F- represent the fractional portion of a hydrogen beam that is pos-

itive, neutral, and negative (F +F +F-=1). Let each possible charge-exchange

reaction be described by a cross section ij, where i, j c+, 0, -}. Furthermore, let

this variable 7r represent an effective target "thickness" equal to the actual thickness-3
in cm multiplied by the target density in cm- 3. The charge-exchange process may be

modeled by the following differential equations:

dF -( +c )F + + F +F F ( a)
dxr +0 +- o+ - +

dF a F - (a +U )F + o F (lb)
d7r +0 0- o0+ -0

dr- a F + F - (a +c )F . (1c)
dr +- o- -+ -o

Given a set of initial values, i. e. , F = F 0, the Laplace transform of each compo-
o o

nent can easily be determined.

L (s) = D (s +s(_ + - +0 +o ) + a- o +o -o +a 0+ -+ )  ( 2 a)
+ o0- 0+ 0- + o+- +-+
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L (s) = D- I(s+0 + + 0 +a +0 b+o +- -o - +o +o -o (2b)

-1
L (s) =D (so +o 0- +0 +- 0) (2 c)+- +0 0- + +- - -(2)

where

3 2
D=s + s (a- +o0 + + ++o)

0- +o o+T+- +0 -+ +- o +
-o - + + o+ - o

+o 
+ o +

+
- + o - - + )

The inverse transform of each component takes the form

F = A + B(1- exp(-sl7r)) + C(1 - exp(-s 2w)).

Here sI and s2, in addition to s = 0, are the roots of D. They determine the target

"thickness" at which each component is in equilibrium. We consider principally those

cases for which this condition is true, since F approaches a limiting maximum value

as 7T - c. Each equilibrium value may be determined by evaluating the limit of sL(s)

as s - 0.

S=+o 0- o++ - +- 0o-
!Cc

0- +o o+ +- 0- -+ o+ -o -o +- -o +0 o+ -+ o- +- -+ +o

(5a)
a +- 0 +0 a

+- -o -+ +o +o -o

o- +o + +- o- -+ o+ -o -o +- -o +o + -+ 0- +- -+ +o

(Sb)

F 0-- -+ -+- o+ -o +o -+0 -

As a numerical example, we calculate each

sections for 2-keV hydrogen interacting with

2 keV H - Cs

(5c)

equilibrium value using the known cross

cesium. 3, 4

02 keV H - Cs

-156.8 X 1015

-17
3.7 X 10

-171.2 X10

2
cm

2
cm

2
cm

o-

0

-161.5 X 1016

-18
6.3 X 10 8

-152.0X10
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(X. PLASMA DYNAMICS)

Therefore

F- 1e = . 0 695

Fo = .9288

F m = . 0017.

These values agree well with experiment.

Enhancement Estimation

We make the following observations concerning the expression for F I,:

(i) a_ + is sufficiently small to be neglected. The reaction to which it corresponds,

H + Cs - H + Cs ° + e, is not influenced when the cesium is excited.

(ii) a - may be neglected, since dF JK/da _ is very small.

(iii) dF K,/da+ << dF Ic/da0-

(iv) The reaction corresponding to 0o+, H + Cs - H + Cs , is not influenced when

the cesium is excited.

Observations (i) and (ii) permit simplification of Eq. 5a:

a
O-

0- oF- _ , -o (6)

- + t +1
-o0 +0

Observations (iii) and (iv) imply that enhancement of F- 1 is primarily due to enhance-

ment of ao- and that other a changes are unimportant. In fact, since ao+/a+0 << 1 and

a o_/_ << 1, F is nearly proportional to a-
5

It has been observed by Oparin et al. that the maximum values of +o for hydrogen

interacting with different elements (H +Eo -Ho +E ) are proportional to V.5/ , where

V i is the ionization potential of the element. Assuming that this proportionality also

holds for u (Ho +Cso -H +Cs ), then
O-

-5/2

- 1V i(7)

0- 1

For cesium, V. = 3. 89 eV and V. = 2. 44 eV (first excited state). Therefore
1 1

O-0 3. 2. (8)
o-
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Unfortunately, only half of the cesium atoms can be excited optically at one time. Hence

F o- 6
S(9)

or F- = . 111 at 2 keV. Assuming roughly the same degree of enhancement at all ener-

gies, we conclude that the maximum efficiency previously stated as 21% can be enhanced

to approximately 33%.

Technological Problems

The cesium target "thickness", Tr, required for equilibrium charge exchange is
16 -2

approximately 2 X 10 cm for the example that has been presented. This value can

be made a characteristic of an atomic cesium beam through which the H + source output

must pass at right-angle incidence. The optical excitation is produced by a dye laser,

tuned to the first cesium spectral line. Its beam is perpendicular to both the hydrogen

and cesium beams at their point of intersection. The linewidth of the excited transition

is not Doppler-broadened as a consequence of this geometry, so that the excitation effi-

ciency is not reduced. Unfortunately, the cesium is so strongly absorbent that much

laser power will be lost through scattering. For practical applications, this factor

must not ultimately outweigh the gain in H output power.

A compact radio-frequency H + source has been designed and built, as shown in

Fig. X-1. It can produce up to 10 fLA output current. The first experiments will

14

TO RF

OSCILLATOR
LENS

COLUTRON
EXB 7

I i FILTER

Fig. X-1. Radio-frequency H + source.
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involve sodium rather than cesium because a dye laser tuned to the first sodium transi-

tion is available and will be performed in collaboration with Professors D. Kleppner

and W. Phillips in the Atomic Resonance and Scattering laboratory, where an Na vapor

system and a dye laser of suitable characteristics to excite the Na are available.
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2. SPACE-TIIME SOLUTION OF THREE-WAVE RESONANT

EQUATIONS WITH ONE WAVE HEAVILY DAIMPED

National Science Foundation (Grant ENG75-06242-A01)

Flora Y. F. Chu, Charles F. F. Karney

The resonant interaction between three waves of action amplitudes aj, j= 1, 2, 3,
whose frequencies and wave vectors obey the resonant conditions wl = 2 +w3, kl = k2 +k 3,

can be described by

vIalx + alt + al = -Ka2a3 (la)

v a2x + a 2 t + Y2a2 = K ala 3  (1b)

v3a3x+ a3 + a3t 3 a 3 = K ala Z  (1c)

In (1), v' s are the group velocities of the waves, y' s are damping constants, and K is

the coupling coefficient. Equations 1 occur in a variety of physical examples such as

nonlinear decay of lower hybrid waves in plasmas 1 and laser-plasma interactions. 2

Various approximations of (1) have been studied both numerically and analytically. 3, 4
5

Recently, Kaup et al. solved Eqs. 1 by the inverse-scattering method when y. = 0, j =

1, 2, 3. Here, we solve the equations exactly when yl= 2 = 0 and the third mode is so

heavily damped that (Ic) becomes

Y3 a 3 = K ala 2 . (2)
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If (2) holds, (la, b) can be rewritten as

v1 lx It 1= I 2 v2I12  I2 t = 1 2, (3)

where I = (2/y,3) Kal 2, 12 = (/3) Ka 2 2. Note that (3) can also be derived if mis-
match terms arising from inhomogeneities are included in (1). Equations 3 have been
solved exactly by Chu and Chen.7 Solutions Ii and 12 are given as

I, = -In [Z(@)-T(T)j], 12 = in [Z(a)-T(T)],, (4)

where Z( ) and T(T) are arbitrary functions of the independent variables:

= (x-vzt)/(vl-v 2 ), T = (x-v 1t)/(v2-v 1 ).

We consider (3) to be the model equations for nonlinear decay of lower hybrid waves into
heavily damped electrostatic ion cyclotron waves in a Tokamak plasma. I These equa-
tions also describe Brillouin backscatter in a laser plasma system. 2

Using (4), we show that initial- and boundary-value problems can be reduced to the
solution of ordinary differential equations. We present general forms for the solution
of these equations and plots of the solution in specific cases.

We present, first, the initial-value problem. If the initial values of II and 12 are
11 (x,0) = I 1 0 (x) and I 2 (x,0) = I2 0 (x), then we can solve for Z( (x,0)) = Z(x/V) and T(T(x, 0)) =
T(-x/V)(V E v1 - v 2 ). Equations 4 yield

11 0 Zx(x/V) + 12 0 Tx(-x/V) = 0

Zx(x/V) - Tx(-x/V) = [(I 1 0 +I2 0 )/V] exp Ox dz (I1 0 (z) +I 2 0 (z))/V.

Then

Z(() =+ 1 dy I2 0 (y) exp dz [I1 0 (z) +I 2 0 (z)]/V

1 1- VT y
T(T) = 2 V dy I1O(y) exp Y dz [I 1 0 (z) +I 2 0 (z)]/V. (5)

The analytic solutions for II and 12 are

I = v2  + in x V T(

2 = v + in Z - T( . ( 6)
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As an example, consider the collision of two Gaussian wave packets:

I (x) z h exp + X

10 w1

2
2 0 (x) = h2 expN r7

S- X2

We take V > 0. If xl + x 2 is sufficiently large, 110 and I20 can be considered nonover-

lapping and Eqs. 5 may be evaluated to give

1
z(S) = 1 [ exph2C2 erf

IV

V - x2z
w 2

T(T)= exp erf ( 1 +

An example of this interaction is plotted in Fig. X-2. Note that for wave 2, the leading

edge is amplified more than its trailing edge, since it sees an undepleted wave 1. This

effect is generally true for all initial pulses.

Z2

T

z

"" Z V2
V1 ZI

T, ..

. ZI

------ const

....... I...... - const

Fig. X-2.

Plot of I l (x, t) and IZ(x, t) for initial-value
-3

problem when v 2 = -1. Z vl, h 2 = 10 hl,

w1 = 10 lv/hl, w 2 = w l/2, xl +x 2 = 6 0 vi/h.l

Fig. X-3.

Plot of n and Tn in the x-t plane.n n
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From the general expressions (5) for Z and T, we can also calculate the final areas

of Il and 12 if initially the pulses are nonoverlapping.

Alf + A2f = Ali + A2i (7a)

AZf = V log [exp(A2i/V) +exp(-Ali/V)- 1] + Ali. (7b)

Here AZf and A2i are the final and initial areas of 12. Equation 7a is the equation for

conservation of action. Equation 7b gives the transfer of action from wave 1 to wave 2

and enables us to calculate the energy dissipated in mode 3. Note that the energy dis-

sipated is independent of the initial shapes of the waves.

In the decay of lower hybrid waves in Tokamaks, the boundary-value problem is more

relevant. There are two boundary-value problems that can be solved. If v1 > 0 and

v2 > 0, then (3) with the conditions Ii1(0, t) = j 10(t), 12(0, t) = J 2 0(t), I1(x, 0) = Ii0(x),

12 (x, 0) = Iz 0 (x), 0 < x < k can be solved in the same manner as the initial-value problem

because II and IZ are specified on the same lines in x, t space. Mloreover, if v1 > 0 but

v2 < 0, then the boundary values for (3) become

I(,t) = J 10 (t), (, t) J= 2 0 (t) (8a)

11 (x, 0) = I 1 0 (x), I 2 (x, 0) = I 2 0 (X). (8b)

By using the method described in solving the initial-value problem, (8b) will give the

solution of

Z() = Zo (- 0 <x < , O < v <

T(T) = T ), 0< x <, -< VT < 0.

At the boundary at x = 0, for 0 < t < -k/v, Z = Zo () is known. We can solve for T(T) =

TI(T), for 0 < T< -v k/v 2 V, since from (4a)

TIT = J 1 0 (VT/v 1 )[Zo0 (-T/v 1 ) - T 1 (Tj].

This procedure can be repeated successively at x = 0 and x = k to find Z = Zn(), n-1 <

< 'n' and T = Tn(T), Tn-l < T < Tn' where o = f/V, To = 0, n = (f-v 2 T n - 1 )/v 1  =

-vln-_ / v' 2 . The relationships of Tn and n are illustrated in Fig. X-3. The functions

Z and T obey the recursive equations.
n n

Zn([) = nZH(() - ZH([) 2 { 2 0[(([-V()/v 2] n1((.[-v18)/v 2 )]/ZH(()} d(

PR No. 118
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Tn(T) = nTH(T) + TH(T) fT {[J10(VT/vl) Zn-1(-VzT/Vl)]/TH(T)} dT,

where ZH(T) = exp{f Jz 2 0
[(k-Vg)/v 2 ] d} and TH(T)= exp{fT - f 1 0 (VT/v1) dT}. The con-

stants of integration n and -n are determined by requiring the continuity of T(T) and

-I,

........ 13

0 (a) xh,/v, 20

S .......... .
0 (c) 20

(e) 20 0 (f) 20

Fig. X-4. Plots of Il(x, t), I 2 (x, t), and I3(x, t) - 4 Ka3 Z/hl for boundary-value

problem when v 2 =-l. Z vl, = 20 v 1 /hl, h2 = 10

times t. (a) 0/hl, (b) 15/hl, (c) 30/h i , (d) 50/h
state.

-3 h i , and for various

1, (e) 70/h i , (f) steady

ht 80

Fig. X-5. Plot of Ii(, t) and 12(0, t) for boundary-value problem.
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Z( ). For simple values of the initial and boundary conditions, Z and T and hencen n

I1(x, t) and I (x, t) can be solved analytically. For example, if Jl 0(t) = Il, 2 0 (t) = h2

I1 0 (x) = 0, I2 0 (x) = h 2 (hl,h 2 const.), this boundary-value problem describes the growth

of wave 2 from noise when wave 1 is turned on at t = 0. Figure X-4 illustrates this

example. Note that the amplitude of wave 2 oscillates considerably. In Fig. X-5,

Il(k, t) and 12(0, t) are plotted. Both waves oscillate but decay with time until they reach

the steady state shown in Fig. X-4f.

We have completely solved both the initial- and the boundary-value problems for (3).

In any physical problem, however, it is important to check that the neglect of v3a3x +

a3t in Eq. Ic is justified. The problem in two dimensions and time can be solved in a

similar manner. This will be presented in a later report.
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3. LOWER HYBRID OSCILLATING TWO-STREAM AND MODULATIONAL

INSTABILITIES WITH FINITE WAVELENGTH PUMP

National Science Foundation (Grant ENG75-06242-A01)

George L. Johnston, Abraham Bers

Introduction

In order to extend our understanding of the nonlinear effects of propagation of lower

hybrid waves in plasma, we present an analysis of the lower hybrid oscillating two-

stream and modulational instabilities with finite wavelength pump.

In RLE Progress Report No. 117 (pp. 197-204) we reported a differential equation for

the low-frequency particle density modulation induced by the ponderomotive force density

in a warm-fluid model under the assumptions of quasi neutrality and extremely low fre-

quency. Only the z-component (the component in the direction of the applied magnetic

field) of the sum of the species ponderomotive force density appears in this equation.

We shall give a compact expression for the z-component of the ponderomotive force

density resulting from the interaction of cold-fluid normal mode pump and upper
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and lower sideband waves through the convective nonlinearity in the species equations

of motion under the assumption that the frequency of the externally excited wave satisfies

the conditions . <K << ~ . Combining these results yields a compact expression for

the low-frequency particle density modulation in terms of high-frequency fields and

susceptibility. We also present an equation describing the high-frequency cold-fluid

propagation in the frequency range 2. << e<< , including the nonlinear effect of low-

frequency particle density modulation. Combining the high- and low-frequency dynamics

and introducing appropriate approximations yields a pair of linear homogeneous equations

for upper and lower sideband amplitudes coupled by the pump amplitude. Setting the

determinant of coefficients of the sideband amplitudes to zero gives the dispersion rela-

tion for the oscillating two-stream and modulational instabilities. Introducing the reso-

nant approximation for the linear high-frequency response of the sidebands, we get an

approximate form for the dispersion relation. We examine extreme oscillating two-

stream and modulational instability limits.

Low-Frequency Particle Density Modulation

The particle density modulation in the plasma induced by the ponderomotive force

density is determined from the low-frequency component of the warm-fluid equations.

We make the assumptions of quasi neutrality and that the time-harmonic spectral com-

position of the low-frequency response is very small compared with i., k C s and k Vti.

Under these assumptions, and combining the species continuity and warm-fluid equations

of motion, we previously obtained an equation for the low-frequency particle density

modulation nL as a balance of z-components of ponderomotive force density and pres-

sure gradient

an
(y T +ynT. L F + F . (1)(ee iT i) az = FeLz + FiLz

When the functional forms of F eLz and FiLz are introduced, this equation can be inte-

grated to give an expression for nL.

Ponderomotive Force Density and Resulting Low-Frequency

Particle Density Modulation

We want to extract the low-frequency component of the bilinear combination of linear

fluid velocity perturbations of a normal mode pump wave and upper and lower sidebands

interacting through the convective nonlinearity in the cold-fluid equations of motion,
(ua V)ua . We approximate linear susceptibilities at high frequency by making the

assumption £2i <<H < Qe, and treat the ions as unmagnetized. Making use of (1), we

obtain the component of nL at frequency w and wave vector k.

To implement this program, we consider the interaction of two waves at frequencies

PR No. 118
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W1 and w 2, where wI > W2 . The low frequency is 3  1- 2 . Results of this formula-

tion are applied to the interaction of the pump and the upper sideband, i. e., 0l = o +,
S2a = o , and of the pump and the lower sideband, i. e., wl = W , W2 = W -w.o 0 o

The z-component of the ponderomotive force density of species a is

F =-nm [(u "V)Uz]J. (2)aLz o a a az]L

Here ua is the linear fluid velocity perturbation of species a driven by the high-frequency

electric field. The unperturbed species number density is no, the mass of species a is

ma, and subscript L denotes the low-frequency component of the bilinear combination.

We consider the sum of species fluid velocity perturbations arising from the waves of

frequency clI and w2 ,

u = u +u (3)-a -al -a2

We introduce the complex representation

u = u + c.c. (4)-al, ai, 2

for the species fluid velocity perturbations and other quantities. The complex ampli-

tudes -a 1, Z( r, t) are expressed in terms of the cold-fluid susceptibility by

1, 2 a
ual, 2(r, t) = 47n i 2 E1, 2(r, t). (5)

oa

The complex amplitude of the component of (u a V)uaz at frequency w3 = 2 is given

by

= u + ' u . (6)
-(a )az 3 (-al aI a 2 -al(

We seek an expression for F a 3z in terms of the susceptibility and the complex ampli-

tudes E and E 2 . To achieve this, in combining the various relationships in (Z)-(6) we
a a a a.

assume wlc2=o . Thus X +X , where the high frequency that appears in X i
A a 2 with Heritian; that is,

w . We make use of the fact that z X = -( / ) z with Hermitian; that is,0 v, va 0

a
Xi = X (7)

From these considerations we arrive at

a 1 i - a
a3z (E 2 X E )]. (8)

We substitute (8) in (1) and perform an integration with respect to z, to obtain the
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compact result for the complex amplitude of the particle density modulation at frequency

3 induced by the ponderomotive force density resulting from the interaction of waves

at frequencies cl1 and (2Z:

n 3  1 ~* 

9

SE X E , (9)
n - 47n T -2 1

o o

e i
where T (eT +'iTi) and X =e +

ee I V 

Applying (9) to the interaction of the pump and the upper and lower sidebands finally

yields

E '-E +E *XE (10)
n 4= nn T -o + 0

for the low-frequency particle density modulation. Here subscripts zero, plus, and

minus refer to the pump and to upper and lower sideband fields, respectively.

Nonlinear High-Frequency Dynamics

The dominant nonlinearity in the high-frequency dynamics appears in the species

continuity equations

an

at a-a

Our approximate treatment of the nonlinear high-frequency dynamics is based on approx-

imate replacement in the nonlinear term of na with (no+n L ) and of ua with the sum of

linear species fluid velocity perturbations induced by the pump wave and upper and lower

sidebands. We separate the components of this equation at upper and lower sideband

frequencies, combine them with Poisson' s equation, and express the species fluid veloc-

ity perturbations in terms of the susceptibilities evaluated at wo and the corresponding

complex amplitudes of the pump and sideband fields, to obtain the following pair of

equations:

7 K E + L/no) X E 0 (12)

. o% . -oj

7. K E_+( nL/n E 0(13)

Dispersion Relation

It is convenient to express the electric fields in terms of electrostatic potentials.

Thus, from (10), (12), and the complex conjugate of (13), we obtain the following set

of coupled homogeneous equations for + and $_:
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A ++ B_ = 0

C ++ D = 0.

The quantities A, B, C, and D in (14) and (15) are given by the relations

1A A + 4n [k o( ok +k)][(k +k) o

1 2

4B n [(k -k) *X k (k tk) X k ]
47n T-o --OLO -o0 1

1
C = T

0

[k *  (k +k)]0 V A

1
D = A_ + 4nT

in which A =
±

[(ko-k) -X"-o-vA

(k -k) X k
-o -o

ko]  (k - k)
0

(k ±k) K(w ±c) • (k ±k).
-o w o o

0

k -
Io

Setting the determinant of the coefficients equal to zero gives the dispersion relation

1 +

+

--2
N_ Io2

+ A =0,

where N = (47Tn T)- 1 (_k_)xk

(20)

This dispersion relation may be expressed in

a more convenient form by introducing in (20) the quantities A = k K(o ~ w) k and
N± =I k. k , where k =(k _k)/ k k and k o= k /k k Then we obtain the dis-
persion relation

2 A
E 0 N+

o+16 n T
0 A+

N 
0,+ 7__ 0,

A_
(21)

where Eo is the amplitude of the pump field.

Resonant Approximation for Linear High-Frequency Sideband Response

We introduce the familiar resonant approximation for the linear high-frequency side-
band response functions

A 
-1

A - 2o S ( -S -ai±). (22)

The quantities a and 6 are defined in terms of the lower hybrid frequencies
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corresponding to the wave vectors (k ±k)

= S . +pe cos2
Spi pe O)

where

S± = + (c /2 ) sin2 0

and 0 are the polar angles of (k ok), by
-0--

a=- ( - 6= o-

With the resonant approximation, the

form

/ ,

dispersion relation () assumes the approximate(25)

dispersion relation (21) assumes the approximate

[(-a) 2 - 62] P( -a)- P 6 = 0,

where

E2
o

± 32rn T
o

(26)

(27)
N

N + ± N _
0 S + S_

The solution of the dispersion relation is

1 1/2
o- a =1P 1V 4( 6 2+P 6)+P2

2 L + -J
(28)

We observe that 6 must be negative in order to obtain positive values of Im W.

Approximate Solutions of the Dispersion Relation

In order to find approximate analytic solutions of the dispersion relation (26), we

examine the limits Ik >> ko (extreme oscillating two-stream instability) and k << I k
A - A

(extreme modulational instability). In these limits, N + and N_ differ very slightly from

each other, as do S+ and S_. Accordingly, we neglect P_ in (28). Assuming that P+

varies slowly relative to 6, we find that the maximum growth rate is given by 6 =

1 1
-- P. This occurs when 6 -2 P+

Limiting Values of Coupling Coefficients

^ A ^2
We now examine the values of the coupling coefficients N = k + k  in the lim-

iting cases k >> I k (oscillating two-stream instability) and k << kol (modulational
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Fig. X-6. Unit wave vectors for pump and sideband waves.

A A

instability). We denote the polar coordinates of k and of k± by 0o, = 0, and 0 , c,
respectively (see Fig. X-6). In terms of these parameters we have

N = (sin 0 cos + sin o X + cos 0 cos 0Xi) 2 sin sin sino Xx (29)

We recall that X = 1 + 0 2 2, X 1 - ( o 2, and

pe o e
For Ik >> (oscillating two-steam instability), sin 0 sin 0 and cos 0

cos 0 . Thus the coupling coefficients assume the approximate form
o

A 2 2 2 2 4 2
N = (cos sin 0Bo X + cos o Xl) +sin csin 4o x .I (30)

In this limit, 6 < 0 is achieved when the polar angle of k is somewhat smaller than that

of k
-o
In the case of the lower hybrid wave, cos 0 0 m e/m., the coupling coefficients are

A 2 o 2e
maximized when + 7T/2, 37r/2 and N ( /pe/W ) . The maximum value of the growth

rate is given by

2~
2 @

E pe
= O

m 321'n T w
Yo \oe j

p

2
pe

+

e
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This can be written in the more familiar form 1

0n 1 U
8 cso

pi 1

o /
pe

+ 2

e

where U = cE /B and c = (T/mi)1/2

In the case of the electron wave, i. e., /m i  cos 0 < 1, if cos 0 0(1), the X

term is negligible, and hence N is maximized when , = 0,T. Then, using the linear

dispersion relation, we have N+ 1, and the maximum growth rate is given by

E2

m 3Z7rn T
o

0

2
pe Z 0

1+ 2 sin o
2
e

(33)

For Ik <<I koj (modulational instability), sin 0± sin 0 , cos 0± cos 0 , ando o

cos ±+ = i, sin 4± Z 0.

Using the linear dispersion relation, we have N 1 and the maximum growth rate

is given by (33). The value of 6 is negative when k is in the x direction; it is positive

when k is in the y or z direction. There is a range of directions in which 5 may be

negative.
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4. NUMERICAL SOLUTION OF MULTIWAVE INTERACTIONS IN

THE BEAM-PLASMA INSTABILITY

National Science Foundation (Grant ENG75-06242-A01 )

Alan L. Throop, Ronald R. Parker

Introduction

In RLE Progress Report No. 115 (pp. 141-159) we discussed a formalism for studying

the nonlinear evolution of the beam-plasma (BP) instability under the influence of the

parametric coupling shown in Fig. X-7. The formalism was developed to describe an
1-4

experiment in which a linearly unstable BP wave was observed to grow until its

amplitude became sufficiently large that it was able to decay resonantly into a backward-

traveling Trivelpiece-Gould (TG) mode and a forward-traveling ion acoustic mode (IA)

of the plasma column. The results indicated that when the mode energy of the unstable

BP mode is properly treated, the nonlinear interaction must be viewed as a four-wave,

rather than a three-wave, interaction. This occurred because the BP mode has two

waves, a growing (G) and a decaying (D) wave, which must be carefully distinguished

from the fast and slow space-charge waves of the uncoupled electron beam.

W/Wpe

-6 -4 -2 0 2 4 6 8 10
kl (cm- )

Fig. X-7. Waves involved in the parametric decay instability.
(B) = linearly unstable BP wave. (T) = backward-
traveling TG mode. (A) = forward-traveling ion
acoustic mode.

The interaction is described by the following set of coupled-mode (CM) equations

for a system of guided waves under confined flow (Bo - o):O0
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(d+ y) AD = jKAAAT

dt AG = jK AAAT

d ~ -* ~ : A
dt AA = AT ADK A

dt AT = AA KAD K  A G  
(1)

d a
where - + vgM is the convective derivative with v the group velocity of mode

dt at gl az gm
AI (AM = D, G, A or T), AM(z, t) is the (complex) square root of the action density

(w I/w lI) of mode 1I, w MI is the small-signal time-averaged energy density of mode M,

y is the linear growth rate of the BP instability, and K is the (complex) coupling coef-

ficient for the interaction. The complex nature of the coupling coefficient is determined

primarily by the expression for the time-averaged small-signal energy of the unstable

BP mode, which is given by

B oEDEG a D (2)
B' kzB

where D(w, k) is the dispersion relation and ED is the normal mode amplitude of the

electric field. The stability of the system is determined by the sign Re (r B), or equiv-

alently by the phase angle of the coupling coefficient. For the particular waves of

interest in this experiment the coupling coefficient 4 is given by

W pe kA /.A W3B pe 1
K k C3 (3)

ZvA kzA ZT mino kB B  1/2
wB

where capitalized subscripts denote relevant modes, v M cM/kZML is the phase velocity

of mode I, and Fw3 is a factor arising from wB given by

-2
v- m v

F te +e b
F 1 + - 1 , (4)

SvB/ B

where vb is the dc beam velocity, vte is the electron thermal velocity, and r = nb/no
is the ratio of beam density to plasma density.

In this report we consider the nonlinear solution to the time-independent and

PR No. 118



(X. PLASMA DYNAMICS)

space-independent sets of CM equations that can be obtained from Eqs. i. At first, we

might conclude that an analysis of the time-independent set of CMI equations would be

directly relevant to the experiment, which is operated in steady state in time. But on

the basis of previous work concerning the analogous three-wave backscatter problem,5,6

it seems likely that, in order to determine the exact final state of the system predicted

by this model, a study of the complete set of partial differential equations describing

the evolution of the modes in both time and space should be made. Nevertheless, con-

siderable insight concerning the stability of the nonlinear interaction and the scaling of

mode saturation levels with system parameters can be obtained from the simpler set of

ordinary differential equations where either space or time derivatives are set to zero

in Eqs. 1. We shall consider these questions, and then deal with the relevance of the

results to our experiment and to other experiments in vwhich beam trapping has been

observed to be the dominant saturation mechanism. We only summarize the results of

numerical integration of the CMI equations; a more complete treatment has been given

elsewhere.4

Space-Independent Equations

To simplify the set of Eqs. 1 for numerical integration, we choose to undimension-

alize the equations and assume that AA(t = 0) = AT(t = 0). This assumption is physically

reasonable and implies that the A and T modes are equal for all time, so that the num-

ber of CM equations is reduced from four to three. Normalizing the mode amplitudes

to the initial amplitudes of the A mode, we obtain the following set of space-independent

CM equations from Eqs. 1:

SA jA + e (5)

where

T E K AA(0) t ] = y/ I AA(0)

K = K! e D(- - AD(T)/ AA(T 0) , etc. for G, A.

This form of the CM equations suggests that the nonlinear stability of the equations

depends strongly on the phase angle of the coupling coefficient K', since it determines
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the sign of the nonlinear term.

These equations have been numerically integrated in terms of the amplitudes and

phases of the modes, by using a linear multistep predictor-corrector package. This

package has been modified to operate interactively on the MI. I. T. MULTICS system, with

the output displayed graphically. Conservation equations derived from the CM equations

are evaluated at each time step to insure that the integration proceeds accurately.

Reasonable initial conditions relevant to the experiment are calculated by using a

fluctuation-dissipation theorem.4 We shall show, however, that the more important

results, such as the nonlinear stability of the interaction and the maximum field strength

of the BP mode, are relatively insensitive to the initial values of the mode amplitudes.

Figure X-8 shows typical plots of the evolution of the mode amplitudes obtained by

numerical integration of the equations

for cases in which 0K lies in stable and

6 unstable regions. For 0K < 45', which

corresponds to Re (wB) > 0, the system

I: ; / exhibits stable nonlinear oscillations;

S\ ' for 00 <0 <45", the evolution is such

p A that the amplitude of the G mode always

o 0 -- , remains larger- than its initial value,
\\\ I

S D\,; thereby resulting in a waveform similar
-2 to that predicted by beam-trapping theory.

-4 For 0K > 450, which corresponds to
0 .2 .4 .6 .8 1.0 Re (w ) < 0, the nonlinear coupling of

5 modes results in an explosive growth of

all modes. Note that in both cases the

ao= 0 decaying BP mode reaches amplitudes
10 do= I

go= I fully as large as that of the initially

I / growing BP mode, so that the interaction

G must be viewed in general as a four-wave,

0A - rather than a three-wave, coupling [the0 ...
0 D results shown here are for the special

V' case A(T) = T(T)]. The behavior of these

-50 .05 .10 . .20 numerical results is supported by an
TIME analytical study of a simplified subset
(b) of Eqs. 5.

Fig. X-8. An extensive study of the dependence

Time evolution of D, G, and A (=T) modes of the maximum field strength of the

for (a) stable case ( 0 K = 0') and (b) explo- BP mode on the initial mode ampli-

sive case ( 0 K= 4 5 0 ) . tudes reveals a weak scaling, while the
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dependence on the normalized growth rate of the BP mode indicates a linear scaling. The

dependence on the phase angle of the coupling coefficient, however, revealed the strong

scaling shown in Fig. X-9. While the linear growth of the BP mode is stabilized by its

parametric decay for all values of 0 K < 45', it is clear that the saturated field strength

i0
8

6
x

4 X

/_

2 x Fig. X-9.

r.o0 -xX Maximum amplitude of the BP wave vs the
0.8 phase angle of the coupling coefficient deter-
06 mined by numerical integration of the space-

Do= Go e' independent equations.
0.4 Ao: I

02K

0
o  

100 20' 30 40
°  

500

8
K (deg)

becomes greatly enhanced for values of 0 K greater than approximately 100. This sug-

gests that a situation might exist wherein wave-wave effects could limit the growth of

the BP mode for conditions of 0K  0O, although other mechanisms could dominate for

conditions of larger values of 0 K where the maximum BP wave amplitude caused by

wave-wave effects is large.

Time- Independent Equations

The time-independent set of CM equations where we let 8/at = 0 is considerably more

complicated than the space-independent case because of the negative group velocity of

the TG mode. A conservation relation that allows the T equation to be eliminated cannot

be derived; instead, the direct spatial analog to the time equations predicts

ClT 2 + C2 A I = constant (6)

where C1 and C2 are positive constants. This means not only that the nonlinear wave

coupling cannot destabilize the linear growth of the BP mode but also that it cannot be

used to conclude whether the coupling will stabilize the linear growth and we must resort

to numerical methods to study the stability of the interaction. A solution to the CM equa-

tions that is relevant to the experiment, as well as exhibiting stable behavior, must
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satisfy the required boundary conditions on the TG mode amplitude; that is, that the

TG mode be small at some point downstream from the region of linear growth of the

BP mode:

T() 0 (7)

where x = P is some downstream position in the system.

The set of four time-independent CM equations, when normalized in the form of

Eqs. 5, can be shown to resemble the usual three-wave backscatter problem. For the

four-wave case, we can combine the equations for the D and G modes into an equation

for a single BP mode (denoted B), which initially acts as a pump for the wave coupling.

For the simple case OK = 0, we can compare the equations for the mode amplitudes

a
(where A = a e , etc.) for the two cases:

three-wave: b - rb = -at
(8 a)

four-wave: b - r 2 f b dx = -at

or

** 2 2
three-wave: b + (t -a )b- Pb = 0

(8b)

four-wave: b + (t -a )b - b = 0,

where b denotes the spatial derivative. Note that, although we have added a linear

growth to the pump for the three-wave case, it does not affect the time-asymptotic behav-

ior of the interaction. 5 The similarity of Eqs. 8 for the two cases suggests that if the

F term in the four-wave equation in Eq. 8a could be shown to integrate to zero or other-

wise become negligible, then a stable, unperiodic, time-asymptotic state would be

expected for both cases. Equations 8b illustrate, however, that the three-wave case

can be expected to reach a turning point in the BP mode amplitude before the four-wave

case. The similarity between the three- and four-wave cases can also be seen in a

numerical integration of the four-wave CM equations for r =0.4

In order to introduce a turning point in the four-wave CM equations, we found it nec-

essary to include linear damping of the T mode. At the same time the results gave

well-defined regions of linear and nonlinear behavior for the modes and yielded solutions

that satisfied the required boundary conditions on the T mode. Figure X-9a shows the

result of integrating the four CM equations, where T(x= 0) has been chosen to give a

solution where T(f) = 0. It can be seen that the linear growth of the total BP mode has

been significantly reduced by the effects of the wave coupling. Clearly defined regions

of linear and nonlinear behavior also exist. This behavior represents a typical stable

solution which can be found for the time-independent CM equations for any given set of
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Fig. X-10. Numerical solution of the time-independent equations,
evaluated for experimental parameters, showing
(a) reduced growth rate of the BP mode and (b) behav-
ior for longer distances.
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Fig. X-11.

Dependence of the maximum amplitude
M 2 Of the BP wave on the phase angle of the

coupling coefficient for the time-dependent
r=106 4 o= I equations.
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input conditions. Figure X-10b shows that for the region of space outside that of inter-

est in this problem the BP mode resumes its linear growth while the A and T modes

oscillate at a rate proportional to the amplitude of the B mode. It seems likely, in anal-

ogy with the three-wave results, that an evaluation of the time-asymptotic spatial state

would show the region of rapid oscillations reduced to monotonic decay of the mode

amplitudes.

As in the time case, a study of the scaling laws of the spatial equations can be made

by taking as a measure of the maximum wave amplitude the value of the BP mode ampli-

tude where B = 0. The results for the time and space equations are similar, as illus-

trated in Fig. X-ll where the same strong dependence of the maximum field strength on

OK is indicated for the spatial case. For OK > 45', no conditions were found where the

linear growth of the BP mode was reduced by the wave coupling.

Application of Time- and Space-Independent Results to Experiments

Our results have suggested that wave-coupling effects can stabilize the linear growth

of the unstable BP wave, provided the proper conditions on the coupling coefficient exist.

We shall now discuss the manner in which the coupling coefficient varies with several

experimental parameters for the experiment that we have discussed and for typical

beam-trapping experiments.

Figure X-12Z shows the dependence of the magnitude and phase of the coupling coef-

ficient, as well as the linear growth rate of the BP mode, on operating frequency for

several values of plasma density. For high-density cases, we find 0 K z 0 near the max-

imum growth rate, while low-density cases never have a region where 0K is small.

Therefore, for the higher density case we expect that wave-coupling effects could domi-

nate the evolution of the BP mode at frequencies near the maximum growth rate, while

other mechanisms might dominate at other frequencies. This is similar to the obser-

vations of Jones, Carr and Seidl, who observed that the decay instability saturated the

growth of the BP mode at frequencies near the maximum growth of the linear instability,

while beam trapping appeared to dominate at off-resonance frequencies. 8

Figure X-12 also suggests the sensitivity of the coupling coefficient to such experi-

mental operating conditions as beam energy, beam current, plasma density, and plasma

radius. For a fixed operating frequency, the value of 0 K is sensitive to variation of all

of these parameters except beam current. The variation of 0 K with beam energy is

shown specifically in Fig. X-13, for conditions relevant to the experiment in which the

parametric decay instability was observed. 0K remains small for the higher range of

beam energy, but approaches -45" for small beam energies. The small level of satu-

rated field strength which is therefore indicated for higher beam energies relative to

that at lower beam energies is consistent with the experimental observations. 5

In the past, several experiments were performed which determined conclusively
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Table X-1. Experimental parameters of several beam-trapping experiments.

Author n (cm - 3 ) Ub (N) f (MIIz) f Ifpe

Gentle 9  1 x10 9 300 140 0.50

Nyacki 0  3 X 10 100 96 0.62

DeNeef11 5 108 150 131 0. 67

Ialmberg 1 2  5 X 108 100 145 0.73

that beam-trapping is the dominant mechanism in the stabilization of the growth of the

BP mode. We must question how to reconcile the lack of observation of the decay insta-

bility in these experiments with the present case. Table X-1 summarizes the operating

conditions of several experiments. It is interesting to note that conditions of low plasma

density, slow electron beams, and a ratio of operating frequency (corresponding to the

maximum growth rate) to plasma frequency that is significantly less than unity are com-

mon features that seem to be typical of most trapping experiments involving the BP

instability of the lower plasma branch. A numerical evaluation of the linear dispersion

characteristics for several of these experiments confirms that the low plasma density

used in these experiments consistently results in the low-density behavior seen in

Fig. X-11. This suggests that the lack of stabilizing wave-wave effects is due to the

large nonzero value of @K'
Figure X-14 illustrates how a transition in saturation mechanisms with beam energy,

which was suggested in the present experiment,
4 might be observed. We have used the

numerically derived scaling laws for the spatial equations and the expression for the

threshold for beam trapping,

v B22
Et = 2kBn vb 1 ,_

to plot the relative wave amplitudes that are expected for the two mechanisms. For

higher beam energies, the numerical results suggest a saturation level of approximately

1 V/cmi because of the decay instability, while the saturation level for beam trapping

is approximately 50 V/cm. In this range, therefore, we expect that wave-wave effects

will dominate over trapping; for lower beam energies, beam-trapping effects should

begin to appear as the trapping threshold decreases simultaneously with the increase

in the saturation level because of the decay instability.

These results suggest that early in the development of the BP instability
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1.0

0.8 DECAY INSTABILITY

-0.6 /
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Fig. X-14. Saturated field levels of the BP wave caused by decay instability
and beam trapping as a function of beam energy.

10 -3Etrap (X 100 V/cm) ---- I = mA n = 3 X 10 cm
trap B o o -1

EPDI (relative) o/wpe =. 9 k i 
= 210 m

wave-coupling effects may be important and dominate over beam trapping as a saturation

mechanism for a broad range of interesting experimental conditions. The results pre-

dicted on the basis of the four-wave model for the parametric interaction seem con-

sistent with experiments, and suggest that the mode energy of an unstable wave

participating in such nonlinear interactions must be carefully defined. Further analysis

of the space-time behavior of the solutions to Eqs. 1 is needed, however, before these

results may be considered conclusive.
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5. GIANT MICROWAVE BURSTS EMITTED FROM A FIELD-EMISSION,
RELATIVISTIC e-BEAM MAGNETRON

National Science Foundation (Grant ENG75-06242-A01)
U. S. Energy Research and Development Administration (Contract E(11-1)-2766)

George Bekefi, Thaddeus J. Orzechowski

Advances in high-voltage pulse technology permit the generation of intense relativ-
istic beams of electrons ranging in power from gigawatts to terawatts. Efficient con-
version of this energy into electromagnetic radiation is a challenging task that is being
pursued at several laboratories. In these studies an attempt is made to excite one of
several known collective modes of oscillation on the beam and promote wave growth at
the expense of the beam kinetic or potential energy. The techniques that have been
employed fall roughly into three categories. In the first, strong axial bunching 1 -3 is
induced on the relativistic beam. In the second, the beam electrons are made to bunch
transversely4- 7 to a guiding axial magnetic field. In the third,8,9 modes of oscillation
are used that are typical of "crossed-beam" devices 1 0 - 1 2 of which the magnetron is the
best known example. Here the electron beam moves under the simultaneous action of
a dc electric field and an orthogonal dc magnetic field. The well-known efficiencyll of
crossed-beam devices operating with convectional thermionic cathodes of relatively low
current densities has stimulated us to apply these ideas to the regime of high currents
and high voltages that are characteristic of field-emission diodes. Indeed, the magne-
tron described in this report has surpassed all expectations, yielding an unprecedented 1 3

power of ~1.7 GW; the efficiency of converting beam to microwave energy was close
to 35%.

ALUMINUM
ANODE
BLOCK

ANNULAR

RESONATORS SECTION OF TAPERED
S-BAND WAVEGUIDE

POLYSTYRENE
WINDOW

COUPLING
IRIS

3cm

Fig. X-15. Schematic of the cylindrical diode. The scale gives
only the correct diode dimensions. The size of the
transmitting horn is given in the text.
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The cylindrical vacuum diode is illustrated in Fig. X-15. The aluminum anode block

has an inner radius of 2. 1 cm; it is 9.4 cm long. Cut within the block are six vane-type

(sectoral) resonators10 designed to oscillate at a frequency of 3. O0 GHz. Each resonator

is 7. 2 cm long; one of the resonators is provided with a long slot through which the

radiant energy is coupled into a microwave horn, via a section of flared, S-band wave-

guide. The horn is 43 cm long and has a rectangular aperture that is 17 cm wide in the

E-plane and 23 cm wide in the H-plane. The inner coaxial cathode cylinder, 4. 8 cm long

and 1. 58 cm in radius, is machined from dense, fine-grained graphite. Cathodes with

radii up to 1.76 cm have also been tried, but their use led to less microwave emission.

The cathode is connected via a stainless-steel shank to the inner conductor of the water-

filled coaxial capacitor that serves as the transmission line of the 4 2 Nereus high-

voltage facility (maximum voltage z 600 kV). The anode is connected to the grounded

wall of the capacitor. The entire system, including the transmitting horn, is contin-
-4

uously pumped to pressures better than 10-4 Torr.

The axial magnetic field Bz acting on the diode is generated by two solenoids,

mounted in an approximate Helmholtz-pair configuration. The magnetic field is nearly

uniform over the entire length of the cathode cylinder. Provision is made, however,

for a slight rise in the magnetic field at the two ends of the cathode. The resulting

"magnetic mirror" arrangement is probably beneficial in stabilizing the axially rotating

electron space-charge cloud of the magnetron. The solenoids are energized by a capac-

itor bank whose rise time is ~6 ms. The discharging of this bank is timed in such a way

that B reaches its peak value when Nereus fires. Thus the magnetic field is virtually
z

constant in time over the duration of the ~35 ns voltage pulse applied across the diode.

The aluminum anode block is not solid but, as well as the six resonators, is pierced

with several large vacuum holes whose purpose is to reduce the amount of metal through

which the magnetic field has to diffuse. The ensuing "thin-walled" construction of the

anode block ensures good penetration of the pulsed magnetic field into the diode interior.

A magnetic field as high as 12 kG can be generated; its strength is controlled by the

charging voltage on the capacitor bank. The solenoid current is monitored by means

of a precision current probe which, after calibration, yields values of Bz with an accu-

racy of ~5 %.

The diode current is measured with a rapidly responding Ragowski coil wound around

the steel shank that connects with the cathode and its output is displayed on a fast oscil-

loscope. The diode voltage is obtained from the signal delivered by a calibrated copper

sulphate voltage divider network and is likewise displayed on an oscilloscope. There

is an unwanted inductive contribution to this voltage that is subtracted out by a technique

that has been described elsewhere.8, 9

Typical time histories of the voltage and the current are shown in the top two oscil-

loscope traces of Fig. X-16 for the case of a 7.5 kG axial magnetic field. At this
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magnetic field the diode is magnetically insulated, an azimuthally rotating space-charge

field is established, and microwave emission is expected. The lower trace in Fig. X-16
shows the microwave signal output from the crystal detector. To bring the emitted

260 kV

OO

20 ns

,266kA Fig. X-16.

Du Oscilloscope traces of the diode voltage
-- (corrected for inductive effects), of the

diode current, and of the voltage output
from the microwave crystal detector.
B =7500 G.

z

S I 126.5 mV
(J)Q

20ns

power (~1. 7 GW) to reasonably low levels to be measurable by the crystal detector, we

employed the following microwave arrangement. A receiving antenna (a section of open

S-band waveguide) was placed facing the transmitter and 4. 0 m from it (a distance that

places both antennas in each other's radiation field). A total of 80 dB of precision

attenuators further reduced the radiation to levels typically in the milliwatt range.

This power was allowed to impinge on a previously calibrated broadband crystal detector.

Knowledge of the antenna gains and of their separation allows computationl 4 of the

desired Pt/Px ratio where Pt is the power transmitted by the horn and Px the power

measured by the crystal. As a check on this procedure, we injected a known 10-cm

wavelength signal into the horn transmitter from a conventional cw klystron and, using

the same receiving antenna placed at the identical distance of 4 m, we measured P atx
the crystal detector. In this way an independent determination of the Pt/Px ratio was

obtained which did not require knowledge of the antenna gains (quantities that often are

not easy to measure with precision). The agreement between the two methods was better

than 10%. On the basis of this and other such tests we can assert that Pt is known with

an accuracy of 20%0 or better. At the typical power levels of these measurements

(~1.7 GW), air breakdown in front of the transmitting horn becomes a worrisome problem.

On occasion, fairly erratic voltage signals from the crystal detector (not accompanied

by similar erratic current traces) suggested to us that air breakdown may indeed have
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taken place. We were not generally beset by this difficulty, however, primarily because

of the rather short pulse lengthl5 (30-35 ns) of the microwave radiation.

In Fig. X-17 the peak currents and voltages, obtained from traces like those shown

in Fig. X-16, are plotted as a function of the externally applied magnetic field B . When

I < Fig. X- 17.
0 - 40
So zoo Peak diode voltage and current as a function

CURRENT - of magnetic field, as measured in the cutoff

30 -100

I Iregime B >- B ~.
Z L"

2 4 6 8 10 12

AXIAL MAGNETIC FIELD B
z 
( kG)

B is zero, I is typically 35 kA and V z 260 kV, thereby giving a diode impedance equal
z

to 7. 4 Q. As B increases from zero, a critical magnetic field B e B is reached at
z z

which point the diode is said to be magnetically insulated, ' 9 and ideally no current

should flow across the diode. For our voltages, geometry, and gap spacing (d = 5. 2 mm),

B = 4800 G. That substantial current does flow in the forbidden regime, B > B , is
8,9,111 z

one of the classical properties of all magnetrons. It signifies, in fact, that "non-

conservative" oscillatory processes must occur. Thus strong onset of microwave emis-

sion is expected at this critical magnetic field. Figure X-17 also shows that as B isz

increased beyond B; the diode current keeps falling, and the diode voltage increases

slightly. These trends are manifestations of the fact that with increasing magnetic field,

the diode impedance increases, and becomes more and more mismatched relative to

the 4 8 nominal impedance of the Nereus generator.

In the cutoff regime (B > B ), an equilibrium, azimuthally rotating cloud charac-z

terized by a radially dependent drift vd(r) = E(r) X B/B 2 is established. The six equally

spaced microwave cavities cut in the anode block act as a slow-wave structure permitting

the establishment of a wave whose phase velocity vp approximately equals the drift veloc-

ity vd(r ) of a "resonant" electron layer. Under these conditions, efficient transfer of

energy from the beam to the wave can occur. It is clear that for a fixed diode geometry

and for a fixed diode voltae V, the magnetron can only oscillate over a limited regime

of magnetic fields. The minimum field is Bmin = B 4800 G. The maximum field

Bmax is determined by the drift velocity v d of the fastest (outermost) electron layer.

Using the theory developed by Ott and Lovelace, we find that for our situation B
max

1.75 B = 8400 G. The lower trace in Fig. X-18 shows that significant microwave emis-

sion is indeed limited to a rather narrow range of magnetic fields, whose magnitudes

are in good accord with theory.16 The peak emission reaches a value of -1. 7 GW. The
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upper curve in Fig. X-18 (broken line) represents the power in the electron beam as

derived from the results of Fig. X-17. The peak conversion efficiency is nearly 35o%.

The frequency spectrum of the short microwave burst has not yet been measured

because a suitable S-band dispersive line is not available at this time. But we have made

07

rr 6 e-BEAM(VxD 3

5 Fig. X-18.
a- 4 2

3  ./ > Microwave power output and e-beam power
S2 MICROWAVES as a function of magnetic field.

0 2 4 6 8 10 2
0

AXIAL MAGNETIC FIELD B, (kG)

an indirect determination of the resonant frequency as follows: with the magnetron in

place, we removed the transmitting horn and injected a low-power cw microwave signal

of variable frequency into the diode structure. A strong absorption resonance at the

design frequency of 3. 0 GHz was observed. Since no other neighboring resonances were

seen, we are impelled to conclude that the emission frequency likewise was close to

3 GHz. The width of the resonance at the half-power point was "80 MHz, which suggests

that under normal operating conditions the microwave bursts were emitted within a

3000 MlHz ± 40 MHz frequency band.

The frequency response of the magnetron has been corroborated by using an instru-

ment designed and built by Professor Louis D. Smullin. This instrument is a low-

pressure discharge tube filled with argon to a pressure of approximately 1 Torr placed

between 2 Alnico bar magnets positioned in such a way that it produces a magnetic field

oriented perpendicular to the discharge tube axis. The spacing between the two bar mag-

nets increases with axial distance along the discharge tube. Thus the discharge tube is

acted upon by a nonuniform transversed magnetic field varying from 900 gauss at one

end of the tube to 1400 gauss at the other end. This instrument was placed in the micro-

wave beam with the RF field oriented along the discharge tube axis. The gas broke

down at the axial position where the electron cyclotron frequency was equal to the fre-

quency of the electromagnetic wave incident on the instrument. By taking an open-shutter

photograph of the discharge tube, a bright spot was observed corresponding to electron

cyclotron breakdown. Since the magnetic field was known at every point along the dis-

charge tube, the wave frequency was determined by setting w = we = eB/m.

In conclusion, we have reported the successful operation of an efficient, relativistic

e-beam magnetron employing a field emission cathode capable of supplying currents with

densities (prior to cutoff) as high as ~1 kA/cm2. We plan to investigate the scaling laws
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and operating parameters of this and similar crossed-beam devices at even higher cur-

rents and voltages, where relativistic effects are expected to be more prominent. It is

conceivable that powers in the terawatt range could be generated by such devices. We

wish to point out that crossed-beam, field-emission systems may well be amenable to

long pulse operation, typically of the order of 1 ps. This is a result of the built-in mag-

netic field oriented parallel to the cathode and anode surfaces. The strong field

inhibits8 motion of cathode and anode plasmas that, if left to themselves, eventually

lead to diode closure, that is, to the electrical shorting of the system. Devices like

those previously described1 - 7 do not have this built-in feature and long pulse operation

may be impossible.
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B. Plasma Research Related to Fusion

Research - Theoretical

1. RF HEATING BY ELECTRON LANDAU DAMPING OF LOWER

HYBRID WAVES

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

Abraham Bers, Frank W. Chambers, Nathaniel J. Fisch

Introduction

In this report we consider in detail supplementary heating of a Tokamak plasma by

electron Landau damping (ELD) of lower hybrid (LH) waves.1 In this heating scheme the

RF power is deposited on the electrons and then the ions are heated by collisions in an

electron-ion energy exchange time. Electron heating is also important in providing a

means for controlling the current profile in a Tokamak.

In our analysis we shall consider the spatial damping of lower hybrid modes as they

propagate into the plasma. The coordinate system is illustrated in Fig. X-19. For

R F R Fig. X-19.
INPUT

Schematic representation of the three-
dimensional Tokamak and of the two-

Y' dimensional slab model for studying the
RF heating. The plasma is assumed

N=4 A A

.fx uniform in the y and z directions and

the excitation uniform in y. The array
is composed of N waveguides, width w,

z separation d, and, for power calcula-
tions, height h.

d-

E o  
Eo

e id  
Eo

e i2
0 Eoei(N-1)0

JEL

purposes of calculation we model the plasma as a slab, uniform in the y and z directions
A

with a uniform magnetic field B in the z direction. The plasma density n (x) ando e
A

electron temperature Te (x) vary in the x direction; the wave launching structure, a

waveguide array of finite extent, ' 2 lies in the y-z plane. We Fourier-transform the
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electric field in the z direction and consider the propagation and dissipation of the

individual Fourier components in n z = ckz/w. The power flow and power dissipated per n
zAz z

component in the x direction are calculated in the WKB approximation. We then sum over

all nz components of the spectrum launched by the array to obtain the total power flow

and power dissipated as a function of x. Thus we obtain the fraction of the total incident

RF power dissipated in the plasma, which we define as the heating efficiency E, and we

determine the location in the plasma profile where this power is deposited. At the high

powers required for significant supplementary RF heating, nonlinear effects on Landau

damping are important. We must also consider the effect of the large perpendicular

electric fields on perpendicular spatial diffusion and parallel velocity diffusion.

Linear Propagation and Electron Landau Damping of a Lower

Hybrid Wave for Fixed n

The local linear spatial Landau damping in the x direction of a lower hybrid wave

of wave number k with component k parallel to B is given approximately by
z o

k xi.(x)= Tr k(x) 3 (x) e (1)
Xi

where

c

v Te(x)

[,JI- kz v Te(x) ]  n z

The electron temperature T e and the electron density ne are both functions of x, and

k(x) is the local wave number in a WKB approximation. We assume an excitation fre-

quency w, and a fixed wave number k z in the direction parallel to B o , and profiles for

the x-dependence of T e and n e. From these k xi(x) and subsequently the power flow and

power dissipation in the x direction can be calculated. The temperature of (x) is given

in Eq. 1; the density dependence of k(x) is determined from the cold electrostatic dis-

persion relation for lower hybrid waves.

D z Ix

where

2 2
c (x) a .(x)pe pi

K (x) = 1 2 2 (3)

and
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2 2
(x) i .(x)

pe Pi
K2 2 (4)

e

for £. << << P.
S e

Table X-2 gives a typical parameter set that is used for the calculations in this

report. For this plasma the maximum wI H is 3. 4 X 10 . \We consider an excitation at
9S- 1. 5 WLtI = 5. 0 X 109 In Fig. XN-20 the plasma profiles, Re (k ), and Im (kx) are

plotte.d against x for the parameters given in Table X-2. In Fig. X-20b we plot

Re [ckx(x)/nz] because this ratio is independent of nz in the electrostatic approximation.

m ax
Since w > LH, there is no resonance (Re (k ) -) and the enhancement k/kz ~ 55 ~

LHx x zx 0
pe(x= 0)/) ~ (mi/me )) This enhancement is determined solely by the density profile,pe 1 e

since the dispersion relation (Eq. 2) is independent of temperature. A typical perpen-

dicular wavelength for nz = 6. 0 at x = 0 is , = . 11 cm. In Fig. X-20c, Im (k (x)) =

k xi(x, n ) is plotted for several n . Here the main x-dependence is introduced through

the c-dependent term within the exponential. For a given nz the x-dependence because

of the electron temperature profile is the dominant effect. It can also be seen in

Fig. X- 2 0c that k i(x, n ) is quite sensitive to n . Waves with n 4. 0 are virtually

undamped. With our parameters a normalized damping rate of Ck ./ = 1.0 corresponds

to an e-folding distance of ~6 cm. The damping is weakly density-dependent through the

k(x) in Eq. 1.

The effect of finite electron and ion temperatures on the real part of the dispersion

relation has been studied, The dispersion relation, including leading order temperature

effects, is

24 2 2
-a k + K k + K + = 0, (5)x z Ix

where

2  wpi (vTi 1 Pe vTe

with

KT 1/2
B e, I

T e, Ti m, (6)

4
The k term in Eq. 5 introduces a second mode for a given k . For some densit thisx z
mode will merge with the cold electrostatic mode and a reflection or wave conversion

will occur. Energy propagating in on a cold-plasma mode can turn around and propagate
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1.0 ne(X) -I-x 2
/a 2

Te(x) =(l-x 2
/, 2)2

Te

x/ac

60.0
Re ckx(x)/w

nz

-1.0 0.0 1.0
-I.O o.o i.o

Im {ckx(x)/w }

Table X-2. Current state-of-the-art
Tokamak plasma example
for computations.

lachine Parameters

R = 100 cm

a = 20 cm

B = 20 kG

Plasma Parameters and Profiles

D + Plasma

Density n e(x) = ne(l-x /a )

n = X 10 13/cm
3

e

Temperature T (x) = T (1-x /a )

T = 1000 eV
e

T. = 200 e V1V

-1.0

(c)

Fig. X-20.

Plasma profiles and variation of
Re (kx(x)) and Im (kx(x)) vs x.

(a) Normalized temperature and
density profiles.

(b) Re {ck (X)/w /n = k /k =

nx/n z . (Normalized to nz.)
(c) Im {ckx(x)/w} for several

values of n
z
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back out on the warm-mode branch. The nz for "turnaround" at a fixed density and
2temperature is determined from Eq. 5 by looking for a double root in k 2 to yieldx

2
K

4 (22 (-K )
c

The modes predicted by this dispersion relation for varying density for several nz are

illustrated in Fig. X-21. For this plot the electron temperature was fixed at 1000 eV,

the ion temperature at 200 eV, and the density ranges from 0 through 1. 12 X 1014/cm 3

at which the lower hybrid resonance occurs for our chosen w and B . The higher the
O

70 1.0

x 106

2
nx

n = 10. 10.0 70

//

4.0 1.0
/

I/

LHR

Ix O14

Fig. X-21.
2

n vs density for several n to illustrate the thermal
x z

effects introducing a second mode that merges with the
lower hybrid mode at a turnaround density. Broken lines
indicate the appearance of each mode in the absence of
temperature effects. Lower hybrid resonance occurs

14 3at n = 1. 12 X 10 /cm
e

n , the more important the thermal effects will be. Since we consider a maximum den-
z 13 3

zsity of 2 X 10 7cm and n z 10. 0, thermal corrections are not important in our
parameter range.

A A
The power flow in the x direction per unit height in the y direction per unit Ak for

z
a mode at some nz , Sx(x,nz ), is related to the power dissipated per unit distance Ax,
PD(x, nz), through kxi(x, nz):
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k (xn P D(x, n) (8)
xi Z (x , n) ZS (x, n z )xz

Since the power dissipated is just the negative spatial rate of change of the power flow,

-dS (x , n )
PID(x, nz) dx

We can integrate Eq. 9 to get an expression for the power flow for a given nz mode,

S (x, n) S (-a, n ) exp 2k .(x, n ) dx , (10)
x z x z -a xii z

where Sx(-a, nz) is the incident power x = -a. Knowing kxi(x, n ), for a given nz we can

determine the power flow, the total power dissipated, and the x location in the profile

where the power is deposited. Figure X-22 gives calculations of the power flow and

power dissipated either for varying nz with T = 1000 eV held constant or for varying T

with n = 5. 0, as indicated in Table X-3, and calculations of the x locations for
z

damping and reflection as a function of n . The dissipation is always greater on the

left side (x < 0), since the power is assumed incident from the left at x = -a. Consider

the n variation with T fixed at 1000 eV, then the more weakly damped modes, n ~
z e z

4.0-5.0, deposit their energy near the center of the plasma where the damping is stron-

gest because of the peaking of Te (x). As nz is increased the modes damp out over

smaller ranges in x and much nearer the left-hand edge. Ideally, we would like to

have 100% of the mode energy deposited near the plasma center; however, these two

requirements are satisfied at opposite ends of the nz spectrum. Therefore we must

seek a compromise design for the array to concentrate the wave energy near an nz for

which a sizable fraction of the power is deposited near the center of the plasma; for

this example nz 5. O0 appears best. Consider the temperature variation with nz fixed

at 5. 0, then as the temperature increases the damping increases and the power is

deposited nearer the plasma edge. To continue heating the core, it may also be neces-

sary to launch low nz modes that would be undamped initially but later would heat the

core or, through the use of time-variant phased arrays, to vary the spectral composi-

tion of the launched spectrum as the plasma heats.

In Fig. X-22c we see for a given penetration x the nz modes that will be turned

around by the thermal effects (Eq. 7), and the nz modes that are Landau damped. For

Landau damping we require vz = c/nz ~ 5vTe(x). The broken line indicates in x where

a given nz component will damp, the solid line indicates where it will reflect. Since the

broken line, in our example, lies below the solid line, a mode propagating in from the

edge will damp out before reaching the reflection region. Hence we are justified in

using the cold-plasma dispersion relation.
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1.0 Sx(x)/Sx(-a)

0.0 1.0

x/a

(a)

.2 PD(x)/, X-) )

Table X- 3. Values for the calculations in
Fig. X-22a, b.

Curve T = 1000 eV n =5. 0 Efficiencye z

n = T = E=z e

4. 0 640 eV . 006

4. 5 810 .144

5. 0 1000 .794

5. 5 1210 1. 0

6. O0 1440 1.0

O 6.5 1690 1.0

LANDAU
\ DAMPING
\I

20.0

TURNAROUND
7/

Fig. X-22.

(a) Power flux Sx(x) vs x/a.

(b) Power dissipated PD(x) vs x/a.

The curves show nz varying with

T fixed or T varying with n
e e z

fixed. Heating efficiency E and
location of dissipated power are
determined for each parameter
set.

(c) Locations in x where a given n z

mode damps for Te = 1000 eV

(broken line) as calculated in (b)
or turns around (solid line) as
calculated in Fig. X-21.
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Power Flow and Power Dissipation vs x for a Spectrum of nz

Any finite waveguide array will launch a spectrum of nz components into the plasma.

The exciting structure that we consider has N waveguide ports, each of width w, sepa-

rated from the adjacent port by distance d. The waveguides are assumed to operate in
A

the TE10 mode with the electric field in the z direction and with the relative phase, p,
between the waveguides fixed. The electric field spectrum Fourier-transformed in the

z direction for such an array is given by

sin k -N

(k~w 
2z 

2

E (k ) = F N w sinc 
N i k

zz Z 02 

z

N sin k -

-idk
z(e ei (N-1)/2

where E is the maximum electric field and is related to the total power
0

guides (waveguide height h) by

2 1/2

2 k2h2cE Ehw o
P = N o = 6. 64 X 10 - 4 Nw (cm) h (cm) (E o (V.2

(11)

in the wave-

2 X/cm))
g

(12)

where k = w/c. We can also view the power flow aso
components. Thus

P = dz dy Sx(z, y) = z dy Sx(kz, y)

Sx(k z

where the equality of the integrals

depends on IE(z, y) . Hence, from

being divided among the Fourier

(13)

follows from Parseval' s theorem, since S (z, y)

Eqs. 12 and 13,

dk cc h
z oZ z

2 1/2

1/k2h

2
E (k ) 2 (14)

Here Ez(kz) is determined by Eq. 11, and thus we identify the power flux per unit spec-

tral width as
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2 1/2
1T

k2h 2
cE h o

Sx(k ) 2 (k) 2 (15)

We can now relate this power flux in the waveguides to the input power flow Sx(-a,nz)
at the boundary of the two-dimensional plasma model. We assume that Sx(-a,nz) = Sx(kz)
(Eq. 15) for all kZ that are above the accessibility condition. Thus we ignore any reflec-

tion in this part of the spectrum, and do not concern ourselves with the fate of the

spectral energy below accessibility. It should be noted that a properly designed array

will have most of the power flow above accessibility, since electron Landau damping

occurs for n >> 1.z
For the plasma and Tokamak described in Table X-2 we want to concentrate the lower

hybrid wave energy around n =5.5. With = 5. OX10 0, n = 5. 5 corresponds to a

spatial wavelength kz = 27/kz = 27c/wn Z 6. 5 cm. To produce a spectrum concentrating

the energy at this wavelength, we set d = w = 3. O0 cm with = 1800. We consider an

array of four waveguides, N = 4. Fewer waveguides lead to a broader spectrum exciting

n components which will not heat efficiently. An upper limit on the number of wave-

guides is set by the available space at the wall port and concern for not having a spec-

trum that is too narrow.

The electron Landau-damping calculation for this array with the plasma and machine

parameters listed in Table X-2 is presented in Fig. X-23. Figure X-23a gives the array

spectrum I Ez(kz)I from Eq. 11. The spectrum is peaked at nz ~ 6. O0 to maximize the

damping and there is little energy at low nz where the spectrum is not accessible. In

Fig. X-23b, through Eq. 15, the spectrum has been converted to a power flux and the

inaccessible portions of the spectrum have been eliminated. The outermost trace then

represents the power flux Sx(kz) at the edge of the plasma at x = -a. Then, using Eq. 10

for each nz component, we follow this spectrum into the plasma. We give the spectrum

in n for several x positions in the plasma. Between x/a = -1. 0 and x/a = -0. 6 only
z

the very highest (nz ~ 8 . 0-10. 0) modes damp, because of the low electron temperature

in this region. Between x/a = -0. 6 and x/a = -0. 2 the modes with 6 < nz < 9 damp out

and deposit most of the energy. Between -0. 2 < x/a < +0. 2 the modes with 5 < n < 6

deposit their energy. When x/a > +0. 2 we are again in the decreasing temperature range

and, since the modes that could damp at these lower Te did so on the way into the plasma,

the spectrum changes very little at x/a = . 2, . 6, 1. 0. Integrating the power flow over

kz, and similarly integrating the power dissipated, we determine their x-dependency

which is plotted in Fig. X-23c. Again the power propagates from left to right. The

power flow is normalized to the total incident power, Sx(0) = . 80; 3. 4% of the incident

power is in the inaccessible region of the spectrum, and the remaining 17% of the power
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-100 0.
n

(a

Ez( kz)I

.7 NwE o

0 10.0

Sx(x,n,)

cEo(NwEo ) 2

Sx(x)
Sx(-a)

I OxPD(x)

SX(-a)
E -. 652

.0, -.6

.2

2,.6, 1.0

0.0-10.0

Fig. X-23. Full calculation of power dissipated, PD(x), and efficiency of

heating, E, for plasma, machine, and excitation parameters
from Table X-2.
(a) Initial spectrum in Ez(k z ) vs n z excited by the launching

array.
(b) Spectral power flux S x(n , x) vs n at various positions

in the plasma.
(c) Power flux Sx(x) and power dissipated PD(x) vs x/a.

lies at nz > 10. O0 and will be deposited near the plasma edge. On the right-hand side,

15% of the power emerges, so 65% of the power is absorbed, E = . 65. The solid line

in Fig. X-23c shows where in the profile the power is dissipated. Most of the power

is deposited between x/a = -. 6 and x/a = 0. 2. The sharp rising edge occurs when the

high nz modes damp in the region of the sharp temperature rise. The trailing edge

passing through the center of the plasma at x = 0 is due to the lower n modes. Thus forz
these parameters in the linear approximation electron Landau damping is an effective

heating mechanism for depositing a sizable fraction of the RF energy into a reasonably

large cross section of the plasma.

Figure X-24 illustrates the variation of the power dissipated with varying maximum

electron temperature and waveguide array phasing. Figure X-24a shows power dissi-

pated vs x for the data set of Table X-2 and the array previously described with the
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.20 ,Sx(-a)
PD cm~

-Te =
2 0 0 0 eV; E=.760

.10

-Te= 1500 eV; E=.746

-Te= 1000 eV; E=. 6 52

-1.0 0.0 1.0
x/a

(a)

Sx(-a)
.10 PD cm

z=I180; E=.650
0=135 -, E=.493

90' E-=.186

-1.0 0.0 1.0

x/a

(b)

Fig. X-24. Power dissipated and heating efficiency.
(a) With plasma temperature varied.
(b) With relative phasings, p, of the wave-

guides varied.

maximum electron temperature varied from 1000 eV to 2000 eV. With increased tem-

perature the heating efficiency c increases because the lower n modes will damp but

the power becomes dissipated nearer the plasma edge and in a more peaked spatial pat-

tern. In Fig. X-24b the relative phase between adjacent waveguides is changed to c =

135' and 90' and the two lobes of E (kz ) (Fig. X-23a) are shifted to differing values of
z zn . One lobe is shifted to higher n and hence damps more strongly and farther out

toward the plasma edge, while the other lobe is shifted to lower n and tends to be trans-z
mitted rather than absorbed. The symmetric pattern in nz produced with q = 1800 is

optimal for heating in our chosen example. Phase shifting does allow us to move one

lobe to the optimal nz for damping during the discharge to maintain optimal heating as

the plasma parameters change with time. This may be useful for current profile con-

trol, as well as for heating.
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Thus far we have considered only x-direction propagation and damping of a super-

position of various nZ components. We have not considered the localization of the wave

electric fields in resonance cones or the three-dimensional effects of the curved

Tokamak. By taking advantage of known solutions for the ray trajectories for undamped

lower hybrid waves in slab geometries3 and toroidal geometries,4 we can determine
A A

where the energy is deposited in both x and z directions. In Fig. X-25 we give the ray

trajectories for lower hybrid waves in a slab and a torus. The power is deposited in the
A

resonance cone regions contained by the rays in the z direction at the penetration depths

1.0

RESONANCE
CONES

\Te

SPOWER 
PD(x) 

0.0 x/a

DISSIPATED
Bo

POWER 1.0
IN

,ENCOUNTERS
WALL

REGION OF
MAXIMUM POWER
DISSIPATED

REGION OF MAXIMUM
-POWER DISSIPATED

i HEATED
ANNULUS

Fig. X-25. Energy deposition in two and three dimensions. In two dimensions (a),
the power is deposited in x as determined by the calculations and in
A
z within the two resonance cones. In three dimensions (b) and (c),
the ray trajectory becomes more complex (one cone is shown) and
power is deposited around the Tokamak.

in x which have been calculated. Viewing the three-dimensional ray plots (Fig. X-25b,c),

we can see that the calculated energy deposition occurs on an extended region in the

major (Fig. X-25b) and minor (Fig. X-25c) cross sections. The circulating electrons tra-

versing these regions will lead to an effectively uniform heating of a toroidal annulus,

as indicated in Fig. X-25c.
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Nonlinear Effects in Electron Landau Damping

In calculating the steady-state linear damping rate of the field we must take into

account the balance between the quasi-linear tendency of the resonant particle distri-
bution to form a velocity plateau as it absorbs wave energy and the effect of Coulomb

collisions that tend to destroy the plateau and restore the plasma to a Maxwellian dis-
tribution. Furthermore, in the presence of large fields the particles execute highly
nonlinear bouncing in the wave troughs which renders invalid assumptions made in the
linear theory. Both nonlinear effects lead to a damping rate less than that of zero-

amplitude waves, as we shall show in Eq. 30. To find the modified growth rate
accounting for large fields and collisional plateau destruction, we must examine the dif-

fusion coefficient. We employ here a phenomenological approach that will enable us

to find the correct scaling of the modifications in the presence of finite fields and will

give numerical agreement in various well-known limits.

The diffusion coefficient may be written phenomenologically (for example, in a
Fokker-Planck description) as

D = (Av z )2 /2At, (16)

where Av is the typical velocity step size arising from a collision between the particle

and the field, and At is the length of time between collisions. We consider two limiting

cases for D depending upon the ratio -T / tr, where c E 2Tr[Ak z v -v l] - ' is theac tr acz gz z
correlation time of the field in the frame of a resonant particle, and T-tr

2Tr/m/qkzErm s is the bounce or trapping time of a particle in a typical wave trough.

In the limit 7ac/Ttr <<1 (where quasi-linear theory is valid), we write Av= (qErms/m)Tac'
since the particle undergoes free acceleration for a time -rac . The length of time

between collisions (or the periods of free acceleration) is At = Tr /a, where a is the

ratio of the volume of the plasma occupied by the electric field to the total plasma vol-
ume. Thus, in the limit -r ac/tr << 1, from Eq. 16 we have

(q 
2 E2

rms 

TT

Ak 

(17)

z I gz z

We may express D in more conventional form in terms of the spectral energy density

6 k' By definition,

- E 2  kz dk 2 Ak (18)
2 rs kz z kz z2 -- o
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so that Eq. 17 becomes

D = aD o, (19)

where D is the usual one-dimensional quasi-linear diffusion coefficient
o

4T u kz
D kz (20)

O EO V gz-Vz
gz z

The factor a in Eq. 19 occurs because diffusion only takes place in a region of limited

spatial extent in the plasma (within the resonance cones).

In the opposite limit, acr tr >> 1, particles do not undergo free acceleration while

in the resonance cones. Instead, they bounce in the wave troughs and acquire a typical

velocity change Avz = 2z/kz tr q Erms/ mkz Vtr" The time between collisions,

At = r ac/a, remains the same. Thus, by using Eq. 16 in the limit rac/7tr > 1, the dif-

fusion coefficient is written as

2 2
q E T aD

D Erms 7T tr 1 aDo

z v 2v 22) (21T- /T )
gz z ac ac tr

We may combine the results (21) and (19) to write

aD
D = o aDo/M I ,  (22)

max [1, (2TrT-ac! tr2 o

which agrees with the previous results in the limits -ac/tr >> 1 or Tac /Ttr << 1. When

using Eq. 22, care must be taken to determine the particles that are, in fact, subject

to diffusion. In the limit ac/7tr << 1, the velocity width of the resonant particles is

only A(w/k) = Ak v gz-Vz /k , whereas in the limit Tac/7tr >> 1 the velocity width

is 2vtr. This is related to the resonance broadening effect.

In order to calculate the damping rate of the spectrum, we use the equation of con-

servation of energy,

dV K kz dkz + mny fo(v) = 0 (23)

where for the first term d/dt a 8/at + v V. For the problem of steady-state spatial
g

damping in the x direction across the magnetic field, d/dt - v k .. In dealing with

the second term in Eq. 23 we note that (d/dt) fo = (8/v z) D(a/avz) fo. Since f is sub-

ject only to parallel diffusion, we may integrate Eq. 23 by parts over parallel veloc-

ities to obtain
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j dV dk 2 gxkxi kz = dV dv mnvzD(vz) dv f(24)
Z

The factor 1/2 arises because the change in the resonant-particle kinetic energy is

twice the change in the field energy. In the presence of collisions, the steady state

af o /av z will differ from 8fm /vz, a iMaxwellian distribution, ' 7by

af af
o m 1

av - rv (25)
z z 1 + D(v z)/Dc

where Dc is the diffusion attributable to collisional scattering which, in general, is a
function of v1 . Note that in the limit De - 0, a velocity plateau is formed in the steady
state that, from Eq. 24, implies v gxk. - 0. If we approximate

f dkz 2Akz (26)

and

z z tr k gz L -

- k gz-V M (27)k gz z 2'

then we may write Eq. 24 as

i afo(v ) Ak
2vgk (2Ak ) a 1 mnD(vz) av k v - MH (28)

z z z

where

2 2-v /2VT

= D (29)
c 0 1 + D

D
c

The various coefficients D(v z = /kz), kz, Vgz etc. are taken to be typical coefficients
within the resonant region. Using Eqs. 22 in Eq. 28, we write

Vgxkxi = (Vgxk x i) (M 2 /M 1 ) H(aDo/M 1 Dc) (30)

where (vgxkxi )o is the usual linear damping rate based on the unperturbed Maxwellian

distribution. That is,
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2

(v k ) = m (31)
gx xxi o k2 k v z =/k

For v > vTe H can be approximated 7 as

H(y) = 1 + y exp(l/2 + y) Ei(-1/2-y) (32)

where

3
aD v 3

y z c (33)
Y= 5

4M1 Te

3
87TneVTe

c 4 e Te (34)
co log A

pe

Ei(-x) = - dt e t (35)
t

In the limit (- /tr ) << 1, we find

k. 1, y<<1
xi ~ H(y) ~ y<< (36)

(k xi) 3D/2aD , y >> 1

and k . can be calculated for each mode of the k spectrum. On the other hand, for
X1 z

( ac / tr) >> 1,

k . H(y) tr/27r2 ac '  y << 1
xi (37)

(kxi 2 7Tac T tr 3a Dc/atrD o , y >> 1

and since the whole kz spectrum behaves essentially as one wave, it is only meaningful
to calculate an average (over vtr in the corresponding velocity space) damping rate

(kxi) for the whole spectrum.

In order to use Eq. 30 in calculating the nonlinear effect of trapping and plateau

formation, we must first find the electric fields within the plasma. The power flux

for a given nz mode at x, Sx(x, nz), is determined by Eq. 15. This power flux can be

related to the electric field magnitude through the plasma impedance for the lower

hybrid mode 2
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Sx( , n) I0 E(nz x) o22 2K x
(38)

To estimate the actual electric field magnitude from the known amplitudes of the spec-

tral components, we must postulate a spatial profile in z for the field. Consider the
field excited by the waveguide array with 1800 phase shift between adjacent waveguides
If we assume that the field magnitude is constant in z at some level E(x) and that the
z extent of the field is approximately 2(Nw), then we can write Parseval's theorem:

Sdk onc
2c d E(nz, x) =2 c dz jE(z, X) 2 2(Nw) E(x) 2 . (

Combining Eqs. 38 and 39 yields an expression for the electric field within the reso-
nance cone

E(x) 2  I yc
2Noco

Sx(x, n ) dkx z z

ow k

Since for the cold electrostatic lower hybrid modes the k for all modes are collinear,

we can express the parallel electric field as

E(x +K 
1/2

E z(x) = -KT Ex(x) ()-K

The electric fields E(x) and Ez(x) are plotted in Fig. X-26 for the data set of

Table X-2. The electric fields have been normalized to E , the electric field in the

waveguide related to the power through Eq. 12. The total field (solid line) grows as

the lower hybrid modes propagate into the plasma; this is the WKB enhancement.

6.0 Eo

--------Ox
E z

EO

-1.0 0.0
x/a

Fig. X-26. Total electric field, E, and electric field parallel to the magnetic
field, E z , vs x for the parameters of Fig. X-23 from Table X-2.
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If there were no damping the enhancement at x = 0 would be ~10. In Fig. X-26 the

parallel field E (x) decreases as x increases even where E(x) is increasing because

the waves turn their k toward the perpendicular direction as they propagate inward,

and hence the parallel component of E decreases even while the magnitude of E

increases. After x = -. 6 the field amplitudes decrease because of the damping of the

modes. (We have neglected the change in spectrum width caused by damping that would

affect Eqs. 39 and 40.) As an example, with 50 kW per waveguide Eo = 1400 V/cm and

typical values for E are -200-300 V/cm in the regions in x where the damping occurs.
Z 3

For these numbers T ac/Ttr 1/4, whereas aD /Dc 10 . Thus the major nonlinear effect

is due to the velocity plateauing of the distribution, and the steady-state damping rate

can be estimated from Eq. 36 to be <1%o of the linear (no plateauing) damping rate. In

Fig. X-27 we plot the power dissipated with 150-kW incident power for both the array

of Fig. X-23 and Table X-2 and a more narrow array with d = w = 1.75 cm. For the

usual array (Fig. X-27a) the plateauing has nearly eliminated the dissipation; only 7%

of the energy is deposited in the plasma. With the redesigned array (Fig. X-27b) the

.10 Sx(a)
PD /  cm

E =.066

0.0

x/a

(a)

.10
Sx(-a)

D cm

E=.75

-1.0

Fig. X-27.

0.0

x/a

(b)

Power dissipated vs x including the effects of quasi-linear plateauing
with 150 kW of incident power.
(a) Plasma and array used for the linear calculation in Fig. X-23

where the spectrum peaked at nz " 6. 0.

(b) New array with d = w = 1.75 cm so that the spectrum peaks near
n = 10.0.

z
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higher nz modes damp and deposit ~75 % of their energy. The modes with the higher

n have lower phase velocities, and hence the Landau damping is stronger and the col-

lisional diffusion is larger. Once the modes begin to damp, the electric fields in the

plasma are reduced and the nonlinear diminution of the damping is lessened which leads

to increased absorption.

Diffusion Caused by RF Fields

In the preceding analysis we have neglected the influence of the large perpendicular

electric field. In the limit rac /tr << 1, the perpendicular field could, perhaps, lead to

spatial diffusion across the magnetic field, but it is hardly expected to affect the rate of

parallel diffusion in velocity space. The reason for this is that the parallel and perpen-

dicular motions are uncoupled in this limit, and hence only very strong spatial diffusion

or deflection of the particles out of the resonant region could affect the parallel diffusion.

The situation, however, is not as clear intuitively in the regime of more interest in our

problem, i. e., when T ac/ tr > 1. The motions perpendicular and parallel to the field

are now strongly coupled and an approach starting from first principles is necessary in

recomputing the parallel velocity diffusion coefficient.

Consider the idealized problem of motion of a trapped (resonant) particle in an elec-

trostatic potential in rectangular coordinates of the form

o = -6o cos kyy cos (k x +kz - wt). (42)

Such a potential may be unavoidable in our problem, since standing waves are naturally

set up in the poloidal direction. Also, it leads to very interesting trapped-particle

motion. We assume that the magnetic field is large (klae << 1) so the the guiding-center

equations of motion are valid

=z X V /B (43)

z= (q/m) V z (44)

In order to analyze (43) and (44) we transform to the reference frame of the resonant

particles z = z - (u/kz)t. We now consider only well-trapped particles, i. e.,

k x + k z <<1 (45)
x z

k y << . (46)

Under these assumptions, it follows that

2-, 2 k
z + B z - B - x (47)

z

PR No. 118 121



(X. PLASMA DYNAMICS)

k
2 2 kz

X + w D = -D k z,
x

where

2

B

q 2- k z
m z 0

2 22 2
D = k2k2 2/B.
D xyo o

Equations 47 and 48 represent the coupling between harmonic oscillation in the parallel

wave troughs and circular motion in the perpendicular plane. The solution may be

expressed in terms of the four initial conditions xo , 0 o, vo , and v o, e. g.,
zo

2

B
v = -z

z s

B kx
sin w t- x sin w t +

s o k ss z

2
k 2
kxoB

Sk 2 (cos t-l)

z s

cos t +
s 2

5

c t-l) +x
s o

2
D cos cw t +
2 s
s

2
mD

+ v D
xo 2

22S5

sin o t

s

2 2 2
where os D +wB. The

(2m+2)r

2mrr

2
WB+--

2 t + v
zo

k 2
kz D

k c2x s

sin s t

s
(52)

solution in the x-z plane appears as a bouncing at frequency os

Fig. X-28.

Guiding-center motion in the x-z plane.

2mr
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between lines of constant phase superposed on a drift between the lines (see Fig. X-28).

The implication of this picture is a change of the typical step sizes in the calculation

of diffusion coefficients. As we can see from Eqs. 51 and 52, typical step sizes are

z ac ac s
= qE -r /m, ac s < 27T

z = ( 53)z -trB/ s ac s > 27

o DTac/kx ,  T ac < 27Tac x ac s

Ax = 2 2 kx 7 > 27 and 7 /T < 1 (54)
D sac sac tr

D 2 BTa/os2k x ,  7acs > 27r and T ac/T > 1DB ac sx ac s ac tr

Note that the definition of T7ac - 27/Akz Vgz - v z I remains unchanged because Ak I never

enters into the problem. Equations 53 and 54 may be used to estimate the relative

importance of spatial-to-velocity diffusion. For example, in the regime T ac/T tr > 1

the relative importance is indicated by the ratio

x. 1 x 2 (55)

I-1\ D /6v xs

(TD I vz z
v

z

where 6vz/6x are the typical scale lengths vTe and r (the minor radius). Equation 55

indicates that the time scale for spatial diffusion is much longer than that for velocity

diffusion.

Spatial diffusion per se may be unimportant, but the perpendicular fields might play

a large role in reducing the parallel diffusion and hence the damping rate. For example,

if WD >> oB' then by using Eq. 53 in Eqs. 16 and 28, it can be seen that the diffusion

coefficient will be reduced by a factor (wB/ D)2 and possibly kxi will be reduced. Also,

note that the criterion for quasi-linear theory to be valid becomes TacD << 27, rather

than 7acWB << 2r.

In conclusion, let us note that there may be important nonlinear effects that we

have not yet considered. One of these effects of particular interest is the trapped-

particle or sideband instability. We expect that this instability will modify the dis-

tribution of spectral energy so as to ensure Tac/ tr 1 and we are looking into this

possibility.

PR No. 118 123



(X. PLASMA DYNAMICS)

References

1. A. Bers, "Ion Heating in Tokamaks by Wave Penetration and Parametric Downcon-
version of RF Power," in R. C. Cross (Ed.), Proceedings of the U. S.-Australian
Workshop on Plasma Waves, University of Sydney, Sydney, Australia, Febru-

ary 13-18, 1975, Sec. 5. 1.

2. A. Bers and C. F. F. Karney, Quarterly Progress Report No. 114, Research Lab-
oratory of Electronics, M.I. T., July 15, 1974, pp. 123-131.

3. R. J. Briggs and R. R. Parker, "Transport of rf Energy to the Lower Hybrid Reso-

nance in an Inhomogeneous Plasma," Phys. Rev. Letters 29, 852-855 (1972).

4. J. L. Kulp, G. L. Johnston, and A. Bers, RLE Progress Report No. 117, Research
Laboratory of Electronics, M. I. T., January 1976, pp. 223-241.

5. N. J. Fisch and A. Bers, Phys. Rev. Letters 35, 373 (1975).

6. A. A. Vedenov, "Theory of a Weakly Turbulent Plasma, " in Reviews of Plasma

Physics, Vol. 3 (Consultants Bureau, New York, 1967).

7. J. Rowlands, V. L. Sizonenko, and K. N. Stepanov, Sov. Phys. - JETP 23, 661
(1966).

2. STOCHASTIC ION HEATING BY A PERPENDICULARLY

PROPAGATING ELECTROSTATIC WAVE

U.S. Energy Research and Development Administration (Contract E(11-1)-3070)

Charles F. F. Karney, Abraham Bers

Introduction

In RLE Progress Report No. 117 (pp. 193-197) we considered the nonlinear motion

of an ion in a perpendicularly propagating electrostatic wave. We found the condition

under which the ion becomes momentarily trapped by the wave and so exchanges signif-

icant energy with the wave. In this report we examine the subsequent behavior of the

ions and the conditions under which the ions are stochastically heated.

Hamiltonian Formulation

To study the long-term behavior of an ion, it is convenient to work with its Hamil-

tonian. The applied electric field is E cos (ky-wt-4). The equations of motion (dis-

cussed in our previous report) are

y + y = a cos (y-vt-); x = y (1)

where lengths are normalized to 1/k and times to 1/2, a = qkE/Q2 m, and v = 0/n.

By evaluating the Hamiltonian equations, it can be verified that the Hamiltonian is

1/2 p +y 2) - a sin (y-vt- ). In order to work with a conservative system, we recast

the Hamiltonian into
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H = J1 +vJ 2 - a sin ( sinin w W (2)1 1  29)

where J 1, wl, and J 2, w 2 are conjugate action angle variables, and p = 2J 1 cos w 1,

y = 1#T sin w 1 . The Hamiltonian equation 2 = aH/aJ2 may be integrated directly to

give w 2 = vt + b. Thus w2 is the wave phase and J2 its conjugate action. Equation 2

may be viewed as describing two harmonic oscillators (the ion with frequency 1 described

by J1' I and the wave with frequency v described by J2' w2 ) coupled by the last term of

the equation.

Phase Plane Trajectories

We begin our study of an ion with the Hamiltonian given by Eq. 2 by solving numer-

ically for its trajectory in phase space. To picture the trajectory most easily, we plot

only the cross section defined by w 1 = 7r (the ion traveling in the -y direction). We plot

r(=\,2J 1 ) against w2 for each crossing of the w 1 = 7r plane where r is the normalized

velocity of the ion. Figure X-29 shows such plots for v = 30. 11 and 30. 23, and a = 1,

2, and 3. The trajectories of 15 particles are followed in each case. In these plots

the condition that the ions travel at the wave phase velocity is given by r = v. If

r < v - Nfa, we expect negligible interaction with the wave. With a = 1 the trajectories

all lie on smooth curves. The existence of such continuous curves indicates that with

small but finite a there is a new conserved quantity. (With a = 0 the trajectories would

all lie on horizontal straight lines, since J1 is then a conserved quantity.) At a = 2 we

see the formation of "islands." The islands are first order for v = 30. 11 but fourth

order for v = 30. 23 (in the latter case the particle takes four crossings of the w 1 = 7T

plane to return to the island on which it started). Outside the islands we see the

beginning of stochastic behavior, but the stochastic regions are separated from one

another by coherent regions, which prevents the movement of particles from one sto-

chastic region to another. Finally, at a = 3, the stochastic regions have begun to

merge, although island formations are still evident.

Conditions for Island Formation

Following Walker and Ford,1 we transform our Hamiltonian into one that is cyclic

in the angle variables and so obtain conserved actions. (The technique is valid only for

small a.) We begin by expanding the last term of Eq. 2 in a Fourier series.

H = J 1 
+ J 2 - a Z Jm( F2J) sin (mwl-w 2 ). (3)

m= -o

Here J is a Bessel function of the first kind. Using the generating function 2
m

S2m ) cos (mw -w 2F 2 1= 1w + / 2 w 2 - m - v (4)

m
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Fig. X-29. w1 = r cross section of phase space. Crosses (X) indi-

cate initial conditions, dots (*) subsequent crossings.

In (d) numbers indicate positions of fourth-order island

formations and the order in which they are visited.

(a) v = 30. 11, a = 1 (b) v = 30.2 3 , a = 1

(c) v = 30.11, a = 2 (d) v = 30.23, a = 2

(e) v = 30. 11, a = 3 (f) v = 3 0.2 3 , a = 3
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we obtain the following canonical transformation into action-angle variables /l' 1 and

/2' '2*

8F 21  ' mJm(\z[ l ) sin (mwl-w2)
J == + a a (5 )1 8wl 1m- v

m

J w2 = 2 - a- (6)2 aw2 2 m v
m

The transformed Hamiltonian

JC = H = 1/ + V 2 + a [Jm(-F)- Jm( I )] sin (mwl-w 2 ). (7)
m

Under the assumption that the transformation is nearly an identity transformation, i. e.,

S= J + O(a),

R = fl + v,/ + O(a 2  (8)

so that f1 and /2 are approximate constants of the motion. From (5)

mJ (Kf ) sin (mw -w 2 )
JM - V (9)

m

In order to compare this with the numerical solutions of Fig. X-29, we take w 1 =

Equation 9 then reduces to

/ J + a m sin w .  (10)I I M- v 2

m=-oo

In Fig. X-30 we use Eq. 10 to plot curves of constant fl for the parameters in

Fig. X-29. We see that the general features of the primary island formation for v =

30. 11 are well predicted by Eq. 10. The higher order islands formed with v = 30. 23

and a = 2 are not predicted by Eq. 10, although for a = 3 we see the same first-order

island that was observed in Fig. X-29.

From Eq. 10 we can derive the condition for primary island formation by setting

8/aw 2 = a /l/aJ 1 = 0. We find that islands occur where

r
a > (11)

m(-1)m J' (r)
m

m
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(e) (f)

Contour plots of the approximate constant of the motion f1 (see

Eq. 9). Parameters for a-f are the same as in Fig. X-29.
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If v n (an integer), then Eq. 11 can be simplified to give 3

a nJ' (r) '
n

where 6 = v - n.

Conditions for Stochasticity

(12)

Although we see from Eq. 12 that the field for primary island formation has a strong

dependence on 6, the numerical results in Fig. X-29 indicate that the condition for the

merging of stochastic regions is insensitive to 6. This stochasticity criterion is most

important from the point of view of heating, since it gives the conditions under which an

ion can be heated appreciably.

In Fig. X-31 we plot the extent of the connected stochastic regions as a function of

a for v = 30. 11 and 30. 23. Since the boundaries of the stochastic region are not neces-

sarily lines of constant r, we plot the intersection of the boundaries with the line w 2 = 0.

300

200 r

SEE EQ 3

DISCONNECTED STOCHAST

CONNECTED STOCHASTIC

COHERENT

$1 *

CONNECTED STOCHASTIC
30

COHERENT

(a) Extent of connected stochastic regions as a
function of a.

(b) Lower portion of (a) on an expanded scale.
Plus (+) indicates v= 3 0.11, cross (X) v= 3 0. 2 3 .
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We observe only coherent motion for r below the lower curves, and disconnected

stochastic regions above the upper curves. We may derive an approximate equation

for the upper data points by assuming that Eq. 12 gives the correct scaling of the sto-

chasticity condition with r, although not its scaling with 6. We expand asymptotically

the Bessel function in Eq. 12, solve for r, and replace 8 with A to serve as an adjust-

able parameter, to obtain

2/3 1/3
r=( (T) (13)

Equation 13 with n = 30 and A = 0. 28 is shown as a solid curve in Fig. X-31. The close

fit suggests that Eq. 13 gives correctly the upper limit to the heating.

Since linear theory shows such a pronounced dependence on 6 it is somewhat sur-

prising that Eq. 13 should not depend at all on 6. To understand this, we go back to

the linear theory. Consider a particle that at t = 0 has y = -r and y = 0. If the par-

ticle equation of motion (1) is integrated along its unperturbed orbit for a time 27r, we

find that the change in the particle Larmor radius is

Ar = 27T a cos (vw+) J (r). (14)
r v

(We have approximated the Anger's function arising from this integration by the cor-

responding Bessel function, since v is assumed large.) Observe that Eq. 14 does not

exhibit a strong 6-dependence (that dependence comes into linear theory when we

sum Eq. 14 over many cyclotron periods) and the cos (vw7T+ ) term constructively or

destructively interferes, depending on whether or not v is integral. Substituting

Eq. 13 in Eq. 14, we find that at the upper limit of the stochasticity region we have

Ar = 2irA cos (v7r + ) cos (r-vr/2 - r/4). Thus in order for the motion to be stochastic,

we require that the jump in the Larmor radius which the particle makes in one cyclo-

tron orbit be some fraction of the period of the Bessel function appearing in Eq. 14.

50
x6

v= 30.23 Fig. X-32.
= 20

40 w 1 = T cross section of phase space showing

LOWER LIMIT OF TRAPPING REGION the effect of trapping. Dots (*) indicate the
(EQa15) particle orbit in the coherent region, crosses

30 (X) the particle orbit just inside the stochas-
tic region. Numbers refer to successive

4 crossings of the w = 7T plane.

20 12

0 2-
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This explanation does not satisfactorily explain the lower set of data in Fig. X-31.
Presumably, the reason is that whereas the upper limit of the stochastic region is gen-
erally quite far removed from r = v, the lower limit is not, and we expect the strongly
nonlinear effect of trapping to be important. In RLE Progress Report No. 117 (pp. 193-

197) we gave r > v - as the condition for trapping; however, it is evident from

Fig. X-31b that the stochastic region extends somewhat below the trapping region.
Figure X-32 illustrates nicely the distinction between stochastic and trapping regions.

The dotted line gives the phase space trajectory of a particle just outside the stochastic

region. The solid line above which particles are trapped is

r = v - \/ a(1 +sin (w 2 + Vr)). (15)

Crosses show the position of a particle starting within the stochastic region but below
the trapping region. Note that the ion gains energy slowly and after the fifth cyclotron

orbit it is just inside the trapping region. The sixth cyclotron orbit where the particle

velocity is roughly doubled has the same characteristics of the trapped orbits discussed

in our previous report. In this case, trapping is clearly the most important mechanism

by which the ion becomes heated initially. The importance of the initial slow ion heating

is that it allows particles closer to the bulk of the ion distribution to become trapped.

Long-Term Effects and Asymptotic State

In order to understand the long-term behavior of the ions, we integrate the equa-

tions for 40 particles with velocities just above the lower limit of the stochastic region

and with evenly distributed phases. (This is a model for the heating of the tail of the

ion distribution.) In Fig. X-33 we plot rms, maximum, and minimum speeds of the

160 100
40 particles
v=53023 MAXIMUM VELOCITY
a=20

100 rms VELOCITY

MINIMUM VELOCITY

0 0,
0 1000 0 50

NUMBER OF CYCLOTRON ORBITS NUMBER OF CYCLOTRON ORBITS

(a) (b)

Fig. X-33. (a) Heating of a group of 40 particles with initial
velocity r = 23 and evenly distributed phases.

(b) Same. as (a) on an expanded scale.
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particles as a function of cyclotron orbit number (which is nearly proportional to time)

for a = 20 and v = 30. 23. We note that for two or three cyclotron orbits the ions are

4xIC
-
5

200

Fig. X-34. Asymptotic distribution function for the particles in
Fig. X-33 averaged over cyclotron orbits 900-1200.

Normalization is such that 0 27rrf dr = 1. Also

shown is the position of the initial 6-function dis-
tribution.

heated quite slowly. This is followed by a rapid energy gain as the particles become

trapped by the wave, and then by slower heating to an asymptotic rms velocity of approxi-

mately 90. The distribution function (Fig. X-34) at this asymptotic state is obtained

by averaging over the last 300 cyclotron orbits in Fig. X-33. Note that the effect of the

wave is to cause the perpendicular distribution to form a plateau within the stochastic

region.
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3. COMMENT ON "The Nonlinear Filamentation of Lower-Hybrid Cones"

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

George L. Johnston, Flora Y. F. Chu, Charles F. F. Karney, Abraham Bers

In a recent letter, Morales and Lee investigated the nonlinear distortion of lower
hybrid resonance cones in a uniform plasma. Treating nonlinear and dispersive (thermal)
effects as small perturbations to the steady-state linearized cold-plasma propagation

along a single resonance cone, and assuming that the amplitude of the potential at fre-
quency w is real, they obtained a modified Korteweg-de Vries (mKdV) equation for the
amplitude of the electric field, in the resonance cone. From the existence of soliton
solutions of the mKdV equation, they inferred that an external excitation of large-
amplitude lower hybrid fields should result in the generation of multiple filaments along
which intense electric fields of the soliton shape are formed.

We shall show, however, that in the case of linearized cold-plasma propagation, the
condition that power flow into the plasma requires that the amplitude of the potential be
complex. Extending this requirement to the case of weakly nonlinear and dispersive

propagation, we shall show that the resulting complex form of the mKdV equation has

solutions very different from the real form of the equation treated by Morales and Lee.

Consider the case of linearized two-dimensional cold-plasma propagation of lower

hybrid waves in a uniform plasma. The potential is (x, z, t) = (x, z) exp(-iwt) + c. c.
The partial differential equation satisfied by the complex amplitude 6(x, z) is

2 2
K a aI 2 - 2 = (1)ax az

The general solution of (1) is

(x, z) = +(z-x/d) + (z+x/d), (2)

where d = (Kl/ K 1 )1/2 . We determine + and $_ from the boundary condition 6(0, z) =

o(z), together with the "radiation condition" that the time-averaged power flows away

from the boundary x = 0 for arbitrary boundary conditions, o(z). We represent the

resonance cone amplitudes d (z:Fx/d) and the boundary-value amplitude Wo(z) as Fourier

integrals:

P(z d x) -2_ exp(ik(z + d x)) ±(k) dk (3)

and

1 ikzo(z) - e 90 (k) dk. (4)
(b,~z) 200
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Note that o(k)= (k) + M(k). Making use of the Maxwell equation curl H(x, z)

-1iE K(w) E(x, z) and the relation E = -grad 0, we obtain H (k) and E (k) in terms of
0 y z

4+(k), and through the use of Parseval' s theorem,

?_ 1 - 2Sx(X,z) dz = -- EoK d- k L +(k) - )(k) I dk. (5)

From the requirement that the power-flow integral be positive for arbitrary boundary

conditions, o(z), we conclude that + (k) vanishes for negative values of k and 4_(k)

vanishes for positive values of k. This conclusion permits us to represent the resonance-

cone functions in terms of o(z) by

S 1 o (s)
±(z) = - o(z) ) 2i s - ds (6)

which shows that 4+(z) are necessarily complex functions of z.

The same requirement must be extended to the case of weakly nonlinear and disper-

sive propagation. Instead of the mKdV equation

v + (v ) + V =0, (7)

in which the field amplitude v is real, we then, by means similar to (1), obtain

v + (Iv v) + v = 0, (8)

in which the field amplitude v is complex. We shall henceforth refer to (7) as RmKdV

and to (8) as CmKdV.

We have found traveling-wave solutions v( -ur) of CmKdV. Let v( ) = A(C) eie( )

(A and 0 are real variables). Then upon integration CmKdV becomes

A - A + A 3 - uA = 0 (9)

ZA + AO = 0 (10)

where we have set the integration constants equal to zero. Equation 10 may be integrated

to give

C
1(11)

A

Substitution of (11) in (9) yields
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1 dA
, (12)

6-C 2 2~1/2

where C 2 is a second constant of integration. There are two cases to be considered.

If C 1 is zero, then taking C 2 = 0 we find the only solitary wave solution to Eq. 12:

v = eiJu sech [-uu ( -uT)] (13)

and 0 is constant. This is a trivial extension of the RmKdV soliton but it cannot be a

solution of the physical system, since it has both positive and negative k components.

If C 1 is nonzero, then the requirement that A be real gives the envelope of v as an

elliptic function. One special solution in this class is

v(g, T) = A eiK( - u
T) (14)

where the amplitude, A, is a constant. A, K, and u satisfy the nonlinear dispersion

equation

2 2u= A - K . (15)

This is just the linear dispersion relation for a uniform plane wave, except that the

presence of the finite-amplitude wave has reduced the plasma density everywhere. Note

that (14) can satisfy the requirement that only positive k components exist.

We have conducted a preliminary investigation of the stability of the solution given

in (14). We find that it is unstable when IA 2 < 6K 2 .

Professor Chu' s research is supported by funds from the Dugald C. Jackson Profes-

sorship of the Department of Electrical Engineering and Computer Science.
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4. ELECTROMNAGNETIC CORRECTIONS TO THE LOWER HYBRID

WAVE AND ITS GROUP VELOCITY RAY

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

Kim S. Theilhaber, Abraham Bers

In this report we consider rather qualitatively the penetration of lower hybrid waves

into a magnetized plasma with a density gradient. Several authors, using an electro-

static approximation for the dispersion relation of the lower hybrid waves, have treated
1-3

this problem. We shall show here that electromagnetic corrections to the dispersion

relation can be important and may modify considerably the field structure predicted by

the relatively simple electrostatic approximation.

PLASMA

E

S77777 77
DENSITY PROFILE EXCITING STRUCTURE

Fig. X-35. Geometry for wave penetration into the plasma.

We consider a two-dimensional geometry (Fig. X-35) in which the density profile,
given by N op(x), is taken as arbitrary, with the maximum density occurring at x = Ln

For an infinite sinusoidal excitation along the x = 0 boundary

C Z

the "local" cold-plasma dispersion relation for nx is

Kin + (K+K) n2-K) +K n + K (n2-KI -K2 = 0, (2)

where in the frequency range Q. << <<0 (2. denote the cyclotron frequencies)1 e i, e

2 2
p(x) pi(x)

K= 1 +

e

2
c (x)

pe
x 0Q2e
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2
e (X)

pe
K 11- (3)

In the bulk of the density profile, K and K 2 > 1. The "slow-wave" (lower hybrid)

solution of Eq. 2 is then

2 K n'z_ 2 \ 2 2 71
nx2- K Ka + n -Kl-a) - 4aKI , (4)

2 2 2 4 2where a - (x)/ 2. The accessibility condition, n > n guarantees that n is
pe e Iz z ,

real in the entire length of the density profile, or equivalently that

[2 22> 2n -K (x)-a = 4a(x) K(X), (5)
nL z I ( x ) -a Z( X ) ,

< <
over 0 = x = L . If for a given x we haven

(n2-K -a2) >> 4aZK1 , (6)

then by a Taylor' s expansion the radical in Eq. 4 yields

n K nz-K -a (7)

Furthermore, if

2 2
nz >> K + a , (8)z i

then the slow-wave dispersion relation yields

Z K 11 2
n - n, (9)
x K± z

A A

which is simply the electrostatic dispersion relation found from k K k = 0. Since in
2 2 2general KI and a2  O(1), Eq. 8 requires that n >> 1 for Eq. 9 to be valid. VWhen n ~

0(1), electromagnetic "corrections" become important and Eq. 4 or Eq. 7 must be used.

Since nz ~ 0(1), in most cases there will be a range of values of nz near accessibility

where the electromagnetic corrections are important.

We shall now consider the effect of the corrections on the ray trajectories in the

plasma. The rays z = zR(x, n z ) are given by

dzR _ nx

dx an
z
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From Eq. 4 we get

dz n (-K -a )dz n K 11 z 1
R _ +1 . (10)

dx n\2K 2

For large nz this expression is independent of n :

dz K

dx Ki (n 1). (11)

Linear and parabolic density profiles are shown in Fig. X-36, and plots of ray trajecto-

ries are shown in Fig. X-37. Note that for values of n >> 1, the ray trajectories differ

x x
-L n  0 Ln -L n  0 Ln

Ix'N : 0-LXL
N p= N p (Ln) (1- Ln) No p = Nop(Ln)(l_ ( x)

(a) (b)

Fig. X-36. (a) Linear and (b) parabolic density profiles.

very little, as predicted by Eq. 11. On the other hand, when n z - nz£, the rays are

strongly divergent. With nz = nzf, the radical in Eq. 10 is zero at some x = xo inside

the density profile and the ray trajectory is asymptotic to the line x = xo. More spreading

is also obtained with a parabolic density profile, since higher densities where dzR/dx

is larger are encountered earlier along the ray trajectory (compare Fig. X-37a and

X-37b). Finally, the effect of the lower hybrid resonance is illustrated in Fig. X-37c.

The rays travel a finite distance in z before encountering the lower hybrid resonance

layer.

A source of finite extent in z at x = 0 imposes an excitation spectrum composed of

many nz components. Now the field structure inside the plasma is determined in part

by the structure of the ray trajectories of Eq. 10, which give the direction of energy

flow in the plasma. Thus, unless the source is designed to exclude n z components near

accessibility, the extent of the fields inside the plasma may be many times larger than
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04/

03 / z

012

0. 1z=nz = l08

O 10 20 30 40 50 60 70 6
z /Ln

Fig. X-37. (a)

(b)
(c)

Ray trajectories in a linear density profile. Parameters:
14 -3

Bo = 5T, Nop (L n ) = 10 cm , = 1. 2 w LH (WLH refers to

the resonance frequency at the maximum density). For this
case nz£ = 1. 310.

Same parameters as in (a) with a parabolic density profile.
Ray trajectories with lower hybrid resonance layer: B =

14 -3 o
5T, Nop(Ln)= 10 cm , c 0.8 wLH. For this case nz =

1. 108.

that predicted by the electrostatic approximation alone (Eq. 11). In the latter case, the

fields are limited to a region between the two "resonance cone" lines, and the extent of

the field in z remains essentially that of the source. With electromagnetic corrections

the rays diverge and the field extent is greatly increased.
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We should not conclude on the basis of Fig. X-37, where the nz = nz ray is infinite,

that the field extent will also be infinite. The ray trajectory concept is a WKB approxi-

mation that breaks down when n is close to n . Theilhaber has found 5 that this break-

down occurs when nz - nzf < 0(0.1). Inspection of Fig. X-37 shows that considerable

spreading of the rays still occurs in the range where WKB is valid. When n is close to
z

accessibility, we presume that the slow wave is linearly converted(in part or completely)

into the fast wave of the cold-plasma dispersion relation. In particular, waves in the
< <

range 1 = n = n will be completely reflected back to the walls. The "return trajec-

tories" of these waves are shown in Fig. X-37a.

We have shown that electromagnetic corrections are important in predicting the

lower hybrid field structure in a plasma. A more rigorous treatment of this problem

will be offered in a future report.
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5. WHISTLER WAVE FIELD STRUCTURE INSIDE A LINEAR

DENSITY PROFILE

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

Kim S. Theilhaber, Abraham Bers

Introduction

In previous reports 2 we examined the feasibility of using whistler waves to heat

a Tokamak plasma. We present here a more rigorous treatment of the problem of field

penetration into the density of a Tokamak. As before, we consider the two-dimensional

geometry illustrated in Fig. X-38. A waveguide array radiates into the plasma, whistler

waves are excited and carry energy into the plasma interior. We shall review some

results obtained by Theilhaber3 pertaining to the field structure inside the plasma.
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DENSITY PROFILE

Fig. X-38.

PLASMA "INTERIOR"

V nop(x)

EXCITING STRUCTURE

Geometry for wave penetration into the linear density
profile with input field polarizations.

Infinite Excitation

We consider first the effect of a simple sinusoidal excitation along the plasma bound-

ary. The imposed field is given by

E(x=0, z) = yEy exp iinz) (1)

and we assume that n z satisfies the accessibility conditions1 for penetration into the

plasma interior, i. e., nz > nzf. For simplicity, we assume that the density profile

is linear, with particle density given by

x

op L op n
n

Written in component form, the wave equation for the electric field is

dE
-in -z + (K -n')E - iK E = 0z d z x x y

+ iK E + K -n Ey 0

dZE dE
+ in + KIE = 0
d~Z

(2)

(3a)

(3b)

(3c)

where for simplicity we define = x = k x. The factors K, K , and K
c o I 1 x

nents of the cold-plasma dielectric tensor. With Eq. 2 we have

are compo-
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K =px

K = 1 - a
II 0

K =I

where

2

S n
02 .k L

1 o n

e
a p0 co

1 - -Y

The "fast" (whistler) wave and " slow" (lower hybrid) wave cutoffs occur, respectively,

at

1
= -- <<1

Cs a

n -1
cf ~ 0(1).
cf p

By eliminating two components of the electric field, we can obtain from Eqs.

fourth-order equation for E .

AE () = 0.
J d y

j=e bulk of the plasma

In the bulk of the plasma (5 >>(cf >cs) we have

A (4) = Ki S0(1)

A 2 (4) -KI n(z 1-a ) O0 -

A 3 (4) =- (I ) ~O(1)

Al 2. ~ o(1)

Ao(i) -i i ~ o

where E is an ordering parameter, E << 1. In the bulk of the plasma we can solve

Eq. 6 by WKB. We write

E y exp[So() +S( ) + S ( ) +...]
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where So O~-) S ~ 0(1) and S2 ~ O(E). We obtain, for the first two terms of the

expansion,

So( ) = +i nxf(') d' (9a)

f

d1  3A(n) + A 3(n') - A 2 (log nx)

2 (9b)
d 4A 4 n - 2A 2

where nx = nxf is given by the fast branch of the homogeneous cold-plasma dispersion

relation. We shall assume only outgoing waves and hence choose the minus sign in

Eq. 9a. The "physical optics" WKB solution that we use is obtained by retaining only

S and S 1 in the expansion of Eq. 8.

Equation 6 has two turning points occurring near the fast- and slow-wave cutoffs.

Near the fast-wave cutoff, the solution that connects to the fast-wave WKB solution

(Eq. 8) satisfies approximately

2 @22
d f ( f -1/3

E + n E f = 0, >> a (10)
2 z

Near the slow-wave cutoff Eq. 6 cannot be approximated by a second-order equation.

Tang and Wong4 have treated the problem of propagation near the slow-wave cutoff and

in his Master' s thesis Theilhaber 3 has used their results to show that the effect on E (x)
Y

of "tunneling" near the slow-wave cutoff is small. We can take E (x= 0) = E as the
y yo

approximate boundary condition to Eq. 10. We then complete the solution of the problem

by matching the solutions of Eq. 10 (which are parabolic cylinder functions) with the WKB
2

n
solution (8). In the bulk of the plasma E = -i x E is the dominant component of thex K y y

x y
electric field. The complete WKB solution, which includes tunneling through the cut-

offs, is

E (x, n ) = B(x, n) exp(-i(x, n)) E (n ), (11)x z z z yo z

where

#(x, n ) = k nxf(x') dx' (12)
xcf
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5/4
(n z-1

z / -iK
2

B(x, nZ )z

n3/2
x

x
K

* exp
cf (-2ZK 

)

K2 4 (lo S
(1+a

a

1/2
a = cf(n z

( 2  )2 4a /2K

/ n 2 -K,- a 2 - 4a Kj

A' - n (2A -A 32 x 4 )

n2 - Kl- a2 4az K

- 0.4) - tan- (K)

K = (1 +ea) 1/2 - exp a)

and W refers to a parabolic cylinder function

W (, 0) = 1
f 23/2

The amplification

shown in Fig. X-39.

(16)( +a.), +

B(x, nz) plotted as a function of x for several values of n z is

18- B0  =5T z
S 4 3 132 1.35

Nop l cm-

14 = 1.2 WLH

Ln 
= 

50 cm

N 0 nz j 1.
3

1
cx 0

m_

Fig. X-39.

0 .1I .2 .3 .4 .5 .6 .7 .8 .9 1.0

x/Ln

WKB amplification of the electric field.
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Comparison of Power Coupled into Slow and Fast Waves

The field (1) imposed at x = 0 also excites slow (lower hybrid) waves in the plasma.

The ratio of power densities coupled into fast and slow waves is given by

2 7/2
S (n - 1) -2

Ss 2nz (2a) (1 +e ) W  , 0
x

(17)

This ratio is plotted against nz in Fig. X-40 for the case of

the power coupled into the slow wave can be considerable.

the fast wave becomes relatively inefficient for very abrupt

4.6

4.0 - nz1 = 1.3

2.4
1.3

Fig. X-39. In some cases

In particular, coupling to

density gradients.

Fig. X-40. Ratio of powers coupled into fast and slow waves.
Plasma parameters same as in Fig. X-39.

Validity of the WKB Approximation

The WKB solution of Eq. 11 is valid as long as the contribution from S2( ) in Eq. 8

is small. The results of Theilhaber 3 indicate that typically S 2 is small for n z - nzk >

0(0.1). When nz is close to nzk WKB breaks down, and there is strong coupling between

fast and slow waves in the bulk of the plasma. Presumably, the fast wave is linearly

converted to the slow branch of the dispersion relation and its transmitted amplitude

decreases. For instance, in the example (Fig. X-39), where nzk = 1.3, WKB breaks

down when n z < 1.4. Since we have not solved the wave penetration problem in the range

1.3 < nz < 1.4, we shall assume in this case, as in others, that the transmitted wave

amplitude for nz % 1.4 is small and hence negligible.
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Field Structure

We shall now find the field structure corresponding to a source of finite extent at

the boundary. The contribution of the n z > 0 components in the excitation spectrum is

E(R)(x, z) =
nzL

B(x, n) E yo(nz) e
z yo z

-i (x, z, n )
z d(konz).

Here nzL is the " effective" lower bound for accessibility below which WKB breaks down.

In Fig. X-39, nzL ! 1.4. The total phase function y = c + konzz is plotted in Fig. X-41.

ay
For a given z, the point of stationary phase, for whichn = 0, occurs at an n - nan ' z o

z
given by

ZR(x, n o ) = Z, (19)

where Z R defines the ray trajectory of an nz component in the medium.

is obtained by integrating the equation

ZR = ZR(x,n z )

dZ anR x
dx an z

nz
nx

(n
zK1

K

- K - a 2 )

(n 2 - K - a 2 2 - 4a K±

A plot of ray trajectories for several values of nz for the case of Fig. X-39 is shown in

Fig. X-42. Note that for nz close to nzL the ray trajectories penetrate at a very shallow

1.4 1.5 1.6
nz

-0.5 0.5

1.7 1.8 1.9 2.0

53 2

S/  nz=1.5/ 4
1.4 -n z

0 5 10 1.35 20 25/
z (meters)

III I/ // / ..- 1.32

I / / / "n

///I/I

I/i
I/I

0 5 I0 15 20 25

z ( meters)

Fig. X-41.

Phase function for the superposition
integral. Parameters same as in
Fig. X-39.

Fig. X-42.

Ray trajectories for several values of n z .
Parameters same as in Fig. X-39.
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angle to the magnetic field.

To evaluate the integral of Eq. 18 we consider two kinds of excitation: a "broadband"

excitation with a spectrum wide compared with the accessible regime in n , and a

"narrow-band" excitation with a spectrum narrow in nz.

In the first case we use stationary phase to evaluate the integral and obtain

7 r 1/2-i 27k
E (R) B(x, n) Eyo(no ) e ) exp[i(konoZ + (x, no))], (21)

x 0 o 0 ZIR(x, no000

where Z' 8ZR/an z and, for a given z, n is found from Eq. 19. In this expressionII RI Z (R).
the fast modulation of E is given by the phase factor

f = k Zn (Z) + €(no(Z)), (22)

which has the derivative

dfdZ - kon (Z), (23)

so that the local wavelength at a given z is simply that of the n = n (Z) component in

the spectrum. Figure X-43 is a graph of E() for an impulse excitation in z, E yo(n) = 1.
Note that as the value of z is increased, the value of the stationary phase point no,

defined by Eq. 19, decreases. For large z, no is close to nzk (see Fig. X-42). Since

for no close to nzk WKB breaks down, the value of B(x, no(z)) is unknown for large z.

In Fig. X-43 we assume that B(x, nz) - 0 as nz - nzQ, and hence that the field ampli-

tude decreases (broken line) for large z. For the second kind of excitation we consider

a Gaussian:

E (Z) = exp 6- 6 (koZ) - cos (k N Z), (24)
yo 16 0/ 00

which corresponds to a spectrum with peaks of width 26 in nz space

( )4 n 2 (25)E (n ) = 1 exp - (n z-N ) + exp- - (n +N ) . (Z5)
yo z k p buk in z G a z o

Again, using stationary phase but keeping the Gaussian exponential inside the integral,
we obtain

2
(R) 1 1 4 z _ (Z6)E(R)(Z) = B(N o) exp[-i(konoZ + (xn)) ]  1 exp (no-No )  (26)

x 2(l+p 2) 1/4 6 1 + p

k 6 Z
o Rwhere p 8 is a measure of the divergence of ray trajectories near n = n .8z o
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The field structure for the case of Fig. X-39 and 6 = 0. 1, N = 1. 5, is shown in

Fig. X-44 for several values of x. Note that while the amplification of the field ampli-

tude is not very large(at most 1.5 for X/Ln= 1), the total extent in Z is sizably increased

2 5 10 15

z (meters)

Fig. X-43. Response to a "broadband" excitation, Eyo(n z ) = 1.

Fig. X-44.

-- = 0.5
Ln

0 4 8 12 16 20

- = I
8 n

1.0

0 4 8 12 16 20

Response to a "narrow-band" excitation. Parameters

same as in Fig. X-39. E(R) vs z (in meters) for sev-x
eral values of x. The excitation has 6 = 0.1 and N = 1.5.

o

by penetration into the plasma (by a factor of 3 for x/Ln = 1). In Figs. X-43 and X-44

we assumed a linear density profile L n = 50 cm long. If we increase the value of Ln'

the field structure is modified in two ways. First, the field extent, which is determined

by the spread of the ray trajectories, increases in proportion to Ln . Second, the field

amplitude decreases because Zk = 8ZR/anz increases (Eq. 21) and also because the

a-dependent "tunneling" factor in Eq. 13 decreases on account of the greater width of

the cutoff region. Similarly, we can predict the effect of changing the shape of the

PR No. 118
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density profile, for instance, to a parabolic profile where higher densities occur for
smaller values of x; the spread of the ray trajectories will be greater while the "tun-

neling" effect will be smaller. Thus, in this case, both field extent and field amplitude

may increase.

Numerous approximations were made in this report. In particular, we ignored the

contribution of nz components near accessibility because the wave-penetration problem

for this parameter range has not yet been solved.
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6. AC FLUCTUATIONS IN A MIULTIFILAMENT ARC SOURCE

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

Leslie Bromberg, Louis D. Smullin

We have reported previously1 on a model that describes quantitatively published

results of the Berkeley source.2 We shall now show that the same model can be used

to explain the current fluctuations created by the magnetic field of the alternating

heating current in the filaments. First, we solve for the effect of the magnetic field on

the primary orbits. Then we estimate the effect of this change on the average length of

the particles' path in the system. Finally, we include this change in the model for the

source and obtain parametric curves.

To solve for the effect of the magnetic field arising from the filament current, we

need to calculate the angle by which the primary particle orbit is deflected. Consider

the geometry of Fig. X-45. The electric field is perpendicular to the wire. The mag-

netic field close to the wire is given by

I r= (1)

Because of the presence of the other wires, it will deviate from the 1/r dependence far

from the wire. We take this effect into account by introducing a cutoff distance rc, and

supposing the field is 1/r up to r e. As the result will depend on re logarithmically, this

choice will not be critical. We set rc equal to one-half the filament interspacing dis-

tance.

I

PARTICLE 50
ORBIT 40

(9
z
< 30
z
2 20

B U

L

10 20 30 40 50
VOLTAGE

Fig. X-45. Fig. X-46.

Orbit of a primary electron. Deflection angle vs sheath voltage
drop for filament current = 25 A.
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Solving the z-component of the equation of motion, for the deflection angle o

(Fig. X-46) we get

-1e o/ Me rc= sin n(2)m 2 \2eV (2)

where a is the filament wire radius, and Vo the sheath voltage drop. Solutions for (

as a function of V are shown in Fig. X-46.

In the Berkeley source, as the current changes direction, the angle ( oscillates.

Thus the electrons from a filament would have a distribution in angles between p and

- given by Eq. 2. When the current is zero (which happens twice during a period of

oscillation of the heating current), then ( = 0. This variation in angle can produce sub-

stantial variation in the mean path length of the multiple-bounce primary electrons.

Monte Carlo Simulation

Because of the nature of the problem, we used a Monte Carlo simulation in order to

find the primary path-length distribution. This simulation was done in two dimensions.

In our previous calculations, 1 the agreement between the experimental data and the two-

dimensional computation was very good. The source geometry is modeled as shown in

Fig. X-47. The walls that are not at anode potential reflect the primary electrons.

FLOATING WALL
a 10 cm

ANODE
ANODE WALL
WALL------

EMITTING
FILAMENT 5 cm

FLOATI NOG
WALLS

cm

Fig. X-47. Geometry for the Monte Carlo simulation. Particles
are started randomly along the filament with random
inertial velocity and are followed until they reach the
anode wall.

The model is incomplete in that the floating walls do not actually reflect all of the

electrons (some have enough energy perpendicular to the wall to surmount the potential

barrier), and the simulation is two-dimensional. The results, however, are indicative

of what may be happening in the real source.

The electron trajectories are followed in time, and a random-number generator is

used to simulate collisions. The mean free path between collisions is set equal to the
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value calculated for the Berkeley source.

In the simulation particles traveling more than 60 cm are stopped. The reason for

this is that approximately 90% of those particles have lost energy because of excitation

or ionizing collisions, and following them further will not change the results. Also, in

the real three-dimensional source, particles are not expected to have such large paths.

'U

-30 , 0

,

0 25 50

PATH LENGTH (cm)

Fig. X-48.

Path-length distribution. Vertical axis is the
percentage of particles with path lengths
smaller than the number indicated on the
ordinate. Parameter is the deflection angle
of the primaries (in degrees).

/
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30- .' ,35

, .; o
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Fig. X-49. Pat
(a)
(b)
(c)
(d)

h length of the multiple-bounce electrons = 25, 30, 35, 40 cm.
Arc current vs voltage. Pressure = 7 [im.
Ion saturation current vs voltage. Pressure = 7 m.
Arc current vs voltage. Pressure = 15 m.
Ion saturation current vs voltage. Pressure = 15 jim.
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A representative result of the simulation is shown in Fig. X-48. The vertical scale

gives the percentage of particles that have a path less than the value read on the
horizontal axis. Thus we expect the rate of ionization and all of the other dependent

quantities to vary accordingly.

In Fig. X-49, we show the predicted behavior of the source. The parameter that

is varied is the mean path length of the multiple-bounce electrons. The substantial

modulation at twice the heating frequency is obvious.

Appendix

From Fig. X-49 it can be seen that at p = 15 the ion current decreases with the

increasing path length of the multiple-bounce electrons, while the opposite effect occurs

at p = 7. Then there must be a set of conditions for which

d . d 2
ds Jion saturation ds 3 X Jn i ~I 0 (3)

With this set of conditions, the fluctuations created by a variation in path length will be

minimized.

To find the conditions for which (3) is satisfied, we need to take the derivatives of

the equations that provide the solutions for ne Te, and I. First, from (3) we obtain

1 dn 1 1 dTe

n. ds 2 T ds (4)1 e

From Crawford' s relation3

dl d eAn (kTe )1/2 eVk
ds ds k e 2m o kTe

e eVk dT 

(5)eV k kTe T ds
Jo kte  e

From the particle conservation equation 4
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which reduces to

I eds

dl _

ds / /1 1
(6b)

5
Differentiating the energy conservation equation with respect to s and simplifying, we

obtain

dn dT
1 1 dl I e I e 7
_ + + . . . . ( 7 )
s I ds n ds T ds

e e

Combining Eqs. 4, 5, 6b, and 7 yields the condition for which Eq. 3 is valid:

1
s

k

3

J' e

1 11 -r
1-e

Figure X-50 shows contours of constant ion saturation current as a function of the

are voltage and pressure. Also shown is the solution of Eq. 8 for minimizing the

fluctuations. This graph shows that the preferred region of operation is given by

the intersection between the minimum fluctuation curve and the desired current

density.
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30 .1 .2.3
.5" .7amp/cm

2

E

LO

0 60
VOLTAGE

Fig. X-50. Pressure vs voltage for constant ion current density.
Broken line shows conditions for minimum ac fluctua-
tions (Eq. 8).
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7. LOW-PRESSURE, THERMIONIC CATHODE DIODE

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

Leslie Bromberg, Louis D. Smullin

The problem of negative-resistance I-V curves in low-pressure, thermionic cathode

diodes has often been noted but, except for Langmuir' s treatment, the theory has not

been developed. Self 2 worked on the plasma-sheath equation, but his results are only

useful in the case of symmetrical columns. His interest was in the spatial distribution

and he did not solve a self-consistent problem. In this report our main purpose is to

predict the behavior of a low-pressure diode in two regimes, the "space-charge-

dominated" and the "plasma" regimes.

Space-Charge-Dominated Regime

We shall restrict ourselves to plane-parallel geometry. In other geometries the

numerical analysis is more complicated but the results should be similar.

The space charge considered in this regime arises from fast primary electrons and
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secondary ions. Secondary electrons do not contribute significantly to the space charge

because of the absence of an anode sheath. The secondary electron space charge is of

the order of the square root of the mass ratio smaller than the ionic space charge. This

defines the regime clearly.

Poisson' s equation reduces to

d2 .J a J n o-i(V(x')) dx'
+ 1. (1)

d 1 eVo 1/2 (V(x')- V(x))

where V is the potential, Jo the electron current density, a the anode-cathode distance,

n the neutral pressure, ar. the ionization cross section, and V the anode-cathode volt-
o 1 o

age.

After normalization this equation reduces to

d2 1 i 1 a(9(z')V o ) dz'

dz me /z 1/2

where = V/V o , z x/a, K = J a 2 /[E 0 (Ze/me) V3/2], and a = no-i(V). We multiply

by dc/dx and integrate to reduce Eq. 2 to

S4K +/ (mi/me)1/2 a(z)[ (z') - (z') - (z) dz' . (3)

Equation 3 is a nonlinear integro-differential eigenvalue problem because K = K(V ).

We can, however, reduce it to a boundary-value problem.

Consider a solution 4(z) that satisfies the differential equation but not the bound-

ary condition. That is, (1) = 1 i, K = k1 , Vo = P 1. Then +(z) = (z)/4 1 is a solu-

tion of the problem with K - and Vo 1p 1 . This can be checked by plugging back
3/2

into the differential equation (see the appendix).

Similarity rules can be derived for this equation. As long as n a is held fixed, c(z),
O

V , and K do not vary as a or n changes. Note, however, that J (~K/a ) will change.

We conclude, therefore, that all that is needed is a set of curves for one anode-cathode

spacing from which solutions for all parameters no and a can be derived, by using this

similarity rule.

Another approximate similarity rule can be derived. There are two effects if the

gas is changed; both the cross section and the ion mass change. When the second effect
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is the more important (for example, when the masses are very different), an n i.
0 1

similarity rule exists.

The numerical calculations are described in the appendix. Some numerical results
are shown in Figs. X-51 and X-52. These curves are drawn for argon. Normalized

current density is shown in Fig. X-51. It can be seen that as the pressure increases,
the voltage decreases for infinite slope. This theory is valid up to the point where an
anode sheath develops and the secondary electron space charge becomes appreciable.

The curves could have been extended somewhat further but, because of the large slope,
the numerical scheme diverges.

1.4x 103

1.0

0.6

0.2

20 40 60

VOLTAGE

Fig. X-51.

Normalized current density in units of

,E I 7e - vs voltage with variable
a

pressure. Plane diode, argon filling
gas.

80 100

NORMALIZED DISTANCE

Fig. X-52.

Normalized potential distribution vs
normalized distance. Lowest curve
is without the presence of the ions.
(Vo < Vionization). The highest
curve corresponds to the I-V curve
becoming vertical. Argon pressure,
p = 2 m.

In Fig. X-52 the normalized potential distribution is shown for different voltages.

The discharge voltage is being varied up to the point where the I-V curve becomes ver-

tical. Even at this point the secondary electron space charge is negligible.

It is interesting to note that the reason for the break is just space charge and not

the presence of a plasma.

Plasma Regime

After the I-V curves become vertical and the ion space charge has increased enough,
an anode drop begins to appear. Figure X-53 illustrates what must happen as the current
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increases (and the conditions are right). As the anode drop appears, secondary elec-

trons are trapped in a potential well and their space charge becomes important. Since

the electric field concentrates near the cathode and anode regions, the problem can be

solved in another limit, by using boundary-layer theory. Note that as the electric field

recedes toward the electrodes, the Debye length must decrease (the validity of this

theory lies in the assumption XD/a << 1).

In this limit, the potential distribution at the boundary layer near the anode has been
3

solved by Carusso, and at the boundary

layer near the cathode by Crawford.4 The

outer solution (i. e. , the solution away
--
j from the boundaries) has been solved by

3 2
Z Carusso and by Self. Their results forz
L

0 uniform plasma generation are applicable
0_

to our study, but care must be taken to

_,N redefine the ionizing collision frequency,
_j

S INCREASING CURRENT in order to take into account the fact that
Ir

only primaries ionize; the plasma elec-

trons do not. Then we can match bound-
DISTANCE ary conditions to obtain the ion and electron

Fig. X-53. fluxes away from the plasma and the pri-

Normalized potential vs distance for mary current density.
different currents. Lowest curve is To solve the problem self-consistently
in the space-charge-dominated regime;
uppermost curve is in the p la sma (that is, to solve for the variables in terms

regime. of geometry, neutral density, and voltage),

more equations are needed. The equations

that we used are global conservation laws in the plasma. Finally, we are interested in

macroscopic quantities, such as I-V curves, density, and temperature.

We assume that the plasma electrons do not contribute to the ionization process. This

is a plausible assumption, since the high-energy component of the distribution function

is lost through the anode sheath, and we are assuming long mean-free paths. The par-

ticle conservation equation is

S 1- exp(-noaT(v)a))

e /

Production by primaries
where -. is the total ine-

l
lastic cross section.

S345 n. /2) Z= 0.

Loss to anode and cathode

An equation describing the cathode emission was derived by Crawford and Cannara.
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It can be expressed as

1 kTe 1/2

J 27 1/2a/ en kT /2 (5)
o e 27m

where V /T , and a = r secondaries is given in Eq. 3 as a function of co.

We note that n.i = ne + n p, and Eq. 5 reduces to

12 a /21 - exp(-no Ta) me

27 K - ( T = .69(I (6)

This is an equation for the temperature. It is valid, of course, only when the tempera-

tures obtained are low enough; otherwise, the assumption of negligible ionization because

of the secondaries breaks down.

The equation of conservation of energy should read

energy lost by primary energy carried away by ions and secondary electrons,
slowing down energy lost by secondary ionizing and exciting

Then, using Coulomb friction as the left-hand term, we obtain

- wa = kT (7)
e dx 6kT e  T/i

where it is assumed that there is negligible excitation and ionization by secondary elec-

trons, and 6 is a constant = 1. 5. The average energy carried out by the exiting ion or

electron as it crosses the plasma sheath is 6kT .

Equation 7 can be rewritten

2 2 2
4u 26kT E m  47u26 8kT E m

p eo e F - exp(-no Ta) p e o e
n = - -T 4 noi' (8)
e 3 In (A)e4  aT/i 3 In Ae4

where u is the speed of the primaries. Equation 8 completes the set. It can be seen

from Eqs. 5, 6, and 8 that n a is a similarity rule for T e, ne a, and J a. A similarity

rule for T e , n N-{, and JNJM. in the long mean-free-path limit is n N i, which is
e e 1 1 O 1

subject to the same constraints as in the spece-charge-dominated region.

Two approximations limit the validity of the theory. As in the space-charge-limited

regime, at very low ionization rates the current is given by the Child-Langmuir equa-

tion and not by Crawford's relation. What really breaks down is the XD/a <<1 assump-

tion. It can be shown that a lower limit for the validity of the theory is
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-3
7i(V) > 4. 2 X 10 /n a.

The results are shown in Fig. X-54. The region of low current is invalid.
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Microscopic parameters vs voltage in argon with variable
pressure. Plasma regime curves drawn for 1-cm anode-
cathode distance.

It should be noted, in agreement with results from the space-charge regime, that a

plasma does not appear until the pressure is above a minimum. Also, for a given pres-

sure, the voltage at which a plasma appears is approximately the voltage at which the

slope of the I-V curve becomes infinite.

Experimental Results

For comparison with the theoretical predictions, we used data from a cylindrical

discharge. The experiment was conducted by Barry N. Breen, an undergraduate mem-

ber of RLE. Basically, the cathode is a BaO-coated cylinder of 5/1 6" diameter. The

anode is a concentric cylinder of 1" diameter, and the gas is argon, 1" long.

The experimental data are shown in Fig. X-55. Figure X-55a shows the space-

charge-dominated regime, while Fig. X-55b shows more of the plasma regime.

The pressures where the I-V curves break for a given voltage agree with the
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calculated pressures within a factor of 3. For the plasma-dominated regime, however,

the difference is larger. The reason is that in Eq. 6 the area of the cathode is equal to

the area of the anode. In the experiment, the areas are different by a factor of 4, and

therefore the right-hand side of Eq. 6 has to be multiplied by 2.1 = A cathode + A anode).

The results of Fig. X-54 are still valid if the pressure is multiplied by this factor.

(Note that in Eq. 6 in the long mean-free-path limit the pressure appears linearly and

can absorb this factor!) Taking this into consideration, we find that the agreement with

the experiment is similar to that in the space-charge-dominated regime.

The reasons for the disagreement could be: (a) influence of geometry (cylindrical

vs plasma), (b) bias in the measuring pressure gauge (although some care was taken

to calibrate the gauges), and (c) end losses, which were neglected in this calculation.

Appendix

Consider the equation

dz 
)2

1/2

4k 1/2
(_jie)

d¢
with 4(0) = dz

Now make

(0) = 0, (1) = 1

t(z)
the substitution ¢(z)- cK

Sa(V (z'))[ - (z') - (z) dz
z

Then

4k 1/2

3/2
€1

12/

e
1a(V 0 (z) T

z
- 9Y(z')-(z)] dz

If we define k'

Sdz

k/ 1 /2 and V' = Vol' then this equation reduces to
1 o01

1/2

e I
= 4k' I 1 / 2 + a a(Vo (zi))[ \yz)- yT(z') - y(z)] dz'Yz1 -

de
with 4(0) =~ (0) = 0, y(1) = 1. Hence y satisfies the boundary conditions and the dif-

ferential equation. This trick has been used to reduce the problem from an eigenvalue

problem to an initial-value problem. The numerical method for solving this equation

is as follows.

A shape of the potential is assumed. It could be the potential distribution for close

but different conditions, or the low-pressure result obtained in the "no ionization" case.

Values of k and v are chosen. Then Picard' s iterative method 5 is used to obtain a
0
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new potential distribution. This iteration involves plugging the approximate potential

distribution into the right-hand side and integrating the equation numerically to obtain

a new approximation. The iteration is repeated until the solution converges. The

potential that is obtained satisfies the differential equation and the boundary conditions

at z = 0, but not at z = 1. The transformation mentioned before is then used to find a

solution that satisfies both the differential equation and the boundary conditions. This

produces one point in the k vs V curve. The process can be repeated to generate an

entire curve.
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Research - Experimental

8. PARAMETER SPACE AVAILABLE TO VERSATOR I

U. S. Energy Research and Development Administration (Contract E(1-I)-3070)

Burton Richards, David S. Stone

Adjustable Parameters: Loop Voltage, Magnetic Field, and Limits of

Stable Operation

The Versator I electrical systems were described in detail in RLE Progress Report

No. 117 (pp. 242-249). One adjustable parameter that determines the behavior of the

discharge is the initial loop-voltage pulse, applied around the plasma loop by an air-

core transformer. This initial voltage may be varied to produce vacuum (unloaded)

toroidal electric fields of up to . 49 V/cm. As shown in Fig. X-56, the initial toroidal

electric field must lie above a minimum value that causes an ionization rate (the gas is

preionized to . 1% fractional ionization with an RF toroidal electric field) sufficient to

avoid runaway electron production. The initial plasma current is also proportional to

L,

J .17

0
17

0 MAXIMUM
S .15 AVAILABLE

T D MAGNETIC
14 - o 'FIELD: 5.7 kG

STABLE

Z .3 TOKAMAK

S 12 REGIME.

< INSUFFICIENT, iONIZATION: RATE AND RUNAWAY PRODUCTION

- 35 40 45 50 55 60

TOROIDAL MAGNETIC FIELD B
t 
(kG)

Fig. X-56. Regions of operation in parameter space accessible to Ver-
sator I. Variables are the initial vacuum (unloaded) toroidal
electric field (Et) and the toroidal magnetic field (Bt).

the initial loop voltage and the latter must not exceed a value that drives the current

above the upper limit set by the Kruskal-Shafranov criterion 1 for MHD stability of the

plasma loop,

max = 5a 2 Bt

p qR
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with I in amperes, a and R minor and major plasma radii in centimeters, q the MHD
safety factor, and B t in gauss. The plasma current I is proportional to the loop voltage
Vloop, and therefore Vloop is proportional to the toroidal magnetic field Bt. These
constraints define the region of stable Tokamak operation in parameter space that is
accessible to Versator I. The electric field must lie between . 11 and . 16 V/cm while
a toroidal field of less than 3. 6 kG does not satisfy the requirement for stable Tokamak
performance. The upper limit on the toroidal magnetic field is set for Versator I at
5.7 kG.

Variation of Parameters within Limits

The initial loop voltage and magnetic field may be varied within the limits that we
have described (. 11 V/cm < E t < . 16 V/cm and 3. 6 kG < B t < 5.7 kG). Under these con-
ditions, the amplitude of the second portion of the loop-voltage pulse that is capable of
delivering a vacuum toroidal electric field of up to 46 mV/cm for ~10 ms and whose pur-

pose is to heat the plasma ohmically, may be varied up to a maximum value that is

determined by Eq. 1. The amplitude of this second portion of the loop-voltage pulse

may be adjusted to maximize the duration of the discharge and enhance the peak electron
temperature. Discharge durations up to 10 ms and electron temperatures up to 180 eV

(determined by the Spitzer conductivity 2 ) have been achieved. Various parameters

related to or determined by the initial loop voltage and the toroidal magnetic field are

as follows.

beta poloidal electron . 1 -. 8

Vdrift/Vthermal .07-. 24

Te (electrons) up to 180 eV

T. (ions) roughly 40 eV

T
E (energy confinement time) .08-. 25 ms

I 2-6 kA
p

Measurement of T. by Doppler Broadening of He II Line 4685. 68 A

For a typical hot stable discharge (Te ~ 160-180 eV) the ions are cold with tempera-

tures of approximately 30-40 eV. The ion temperature T. has been measured by

seeding the neutral fill gas H 2 with a small amount (0. 5%) of He and measuring the

Doppler broadening of the HeII line at 4685. 68 A. We have assumed that this measure-

ment provides a lower limit on the hydrogen ion temperature and that the presence of
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function of time. (c) Plasma current as a function of time.
(d) Electron temperature T as a function of time. The elec-

tron temperature is determined from the Spitzer conductivity
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helium does not alter the character of the discharge. The results are shown in
Fig. X-57. The Doppler effect broadens this spectral line ~1. 2 A, the full width at
half maximum (FWHM), thereby indicating an ion temperature of ~31 eV. These data
were obtained with the use of a 0. 5 m Jarrel-Ash visible spectrometer [instrument

broadening . 50 A (FWHM)] and an RCA Type 1P28 photomultiplier tube.

Time Evolution of Versator I Plasma Parameters

The time evolution of the Versator I plasma parameters particle density n, loop

voltage Vl , plasma current I , and electron temperature T determined from the
loop p e

Spitzer conductivity is shown in Fig. X-58.

a. Versator I Scaling Laws

The empirical scaling laws governing the Versator I plasma are summarized below

and illustrated in Figs. X-59, X-60, and X-61.

I pcr Bt

T ccI
e D

13 cmn roughly constant at 2-3 X 10 cm

a decreases with I
p

Relation 2 is expected from previous arguments leading up to Eq. 1. The temperature

Te is proportional to I p, according to Eq. 3.

/

2.5
40 

4
.5 50

B t
(kG)

5.5 .0
5.5 6 O

Fig. X-59. Plasma current as a function of toroidal magnetic field.
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b. Constant Density

The peak density (determined by the Langmuir probe and microwave interferometer)
13-3in the Versator I device is roughly constant (Eq. 4) and equal to 2-3 X 10 c-3 for all

accessible values of toroidal magnetic field, plasma current, loop voltage, and fill pres-

sure. We believe this to be a consequence of the high impurity levels in the Versator I

plasma.

The density is measured with an 8-mm (34. 5 GHz, 1 watt) double-pass microwave

interferometer. In Fig. X-62 the double-pass configuration is compared with the con-

ventional single-pass configuration.3 A concave metal surface (the wall of the vacuum

chamber) reflects the microwave beam back on itself creating twice the phase shift of

the single-pass technique. The returned signal is combined in a magic T in the inter-

ferometer arm with a portion of the original signal and the line-integrated plasma den-

sity is then determined by counting the resulting interference fringes.

Shrinking of Plasma Minor Radius with Increasing Current

We have observed that the plasma minor radius a shrinks with increasing current,

an effect mentioned briefly in RLE Progress Report No. 117. The minor radius of the

torus is 14 cm and the plasma minor radius would be expected to be independent of the

plasma current and, since Versator I has no limiter, to be equal to "10-12 cm. The

shrinking of the plasma column can be explained by assuming that cold impurity species

cool the outer edge of the plasma and force the current to flow in a narrow central chan-

nel.4 At higher currents and temperatures this effect becomes more pronounced and

causes further constriction of the plasma column.

The plasma minor radius is measured with an 8-mm microwave interferometer (f o
34. 5 GHz) which is cut off as the plasma density exceeds the critical density (nitia

13 -3
1.5 X 1013 cm ) within the first millisecond of the discharge (see Figs. X-58 and

X-62.) As the plasma density drops below the critical density near the end of the dis-

charge, the number of fringes N counted on the interferometer determines the plasma

minor radius:

a (6)2f

where c is the speed of light in vacuum and a parabolic density profile has been

assumed. This method of determining a has the advantage that it is independent of the

plasma density.
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9. CYCLOTRON RADIATION FROM VERSATOR I - PRELIMINARY

RESULTS

U.S. Energy Research and Development Administration (Contract E(11-1)-3070)

David S. Stone

Preliminary measurements of cyclotron radiation emission from the Versator I

plasma have been completed. The detection apparatus is a low-gain 8 mm horn (14.6 dB)

which couples Ka-band radiation (26-40 GHz) from the plasma into one arm of a balanced

crystal mixer (Fig. X-63). The signal is mixed with a local oscillator (10 mW at 35 GHz)

and any difference-frequency signal at 30 MHz is detected by the balanced crystals and

differentially amplified by an intermediate-frequency (IF) amplifier (gain 100 dB, band-

width 10 MHz). The IF amplifier output is then read out on a storage oscilloscope and

is proportional to the cyclotron power radiated into the horn by the plasma at 35 GHz.

The data presented in Fig. X-64 were taken with a 5. 5 kG toroidal magnetic field

and a corresponding cyclotron frequency fe = 15. 4/y GIHz, where y is the ratio of total

electron energy to electron rest mass energy. Therefore the radiation detected at

35 GHz has a frequency that lies between twice the fundamental (Zf = 30. 8/y GHz) and

three times the fundamental (3f = 46. 2/y GHz) for nonrelativistic electrons (y = 1). The
ce

inhomogeneity of the magnetic field causes ~10% broadening of the fundamental frequency

and its harmonics. The flux of hard x rays, plasma current, and 35-GHz plasma radia-

tion power are shown for a typical shot with and without large runaway electron popula-

tions.

Correlation of Cyclotron Radiation with Presence of Runaways

The data collected thus far suggest that the cyclotron radiation at 35 GHz is strongly

correlated with the presence of runaway electrons. In shots with and without large run-

away electron populations, bursts of cyclotron radiation are detected before and during

large hard x-ray bursts. This may be explained by assuming that the cyclotron radia-

tion is emitted by a small fraction of the total electron population, the runaways.
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The runaway particles are mildly relativistic and their energies, ~500 keV (~ 2),

have been determined by measuring the e-fold absorption length of the hard x rays in

lead. Most of their velocity lies parallel to the toroidal field, but a small velocity com-

ponent perpendicular to the magnetic field, Ti ~ 50 keV, is sufficient to enhance greatly
1

the cyclotron power radiated by these electrons. The power radiated by electrons in

a nonrelativistic Maxwellian plasma ' follows the relation

Pcyclotron - nT 1B (2T/moc2) m ,  (7)

where n is the electron density, T is the temperature in energy units, B is the toroidal
2

field, m c is the electron rest mass, and m is the number of the radiation harmonic.
o

(Equation 7 is not strictly correct for the runaway electrons since they are mildly rela-

tivistic and non-Maxwellian but, in the interest of simplicity, we shall assume that Eq. 7

is valid for order-of-magnitude estimates.) We may then estimate the ratio of cyclo-

tron radiation emitted by runaways at the third harmonic (4f for these runaways,ce

-32 GHz) to that emitted by thermal electrons at the second harmonic (-31 GHz):

P runaways (nT(2 T/moc )) )runaways
- (8)

thermal nT(2Tc2 2 )h(8

From the preliminary data we have found that

P
runaways

> 20. (9)
therm al

The value given in relation (9) is an absolute minimum dictated by the signal-to-noise
2

ratio for the detector. Using (2T/moc )runaways = 1, and Tthermal = 180 eV, we find

that

n
runaways -8

> 2 X 10 (10)
nthermal

The frequency spectrum of this cyclotron radiation has not yet been measured. We

plan to replace our fixed-frequency local oscillator with a sweep oscillator. We shall

then be able to measure cyclotron radiation spectra as a function of time during the dis-

charge.
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10. PRELIMINARY STUDIES OF SOFT X-RAY EMISSION

FROM VERSATOR I

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

Burton Richards, Geoffrey Garner, Robert Sand

A proportional counter has been installed on Versator to measure the spectrum of
soft x rays (100-500 eV) emitted during the plasma pulse. The counter has a 1-mil

beryllium window and is filled with 97% neon and 3% carbon dioxide at 1 atm pressure.1,' 2

Figure X-65 shows typical data obtained on the counter. We have seven spectra, taken
at 1-ms intervals for approximately 150 shots, which give the energy of photons vs
number of photons of that energy. The data show, qualitatively, the plasma column

,
z
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Fig. X-65. (a) Soft x-ray spectra, taken 1 ms apart (log scale).
(b) Typical current and voltage traces showing timing

of soft x-ray spectra.
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heating up with time, as can be seen by the progressively flatter spectra, until about

the fifth millisecond of 'he plasma pulse. Then there is a rapid cooling as the plasma

current dies. Difficulties discovered during the calibration of the detector and incon-

sistencies with the Spitzer temperature and spectroscopic data prevent a quantitative

analysis at this time.
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11. VACUUM ULTRAVIOLET STUDY OF THE DISRUPTIVE

INSTABILITY IN THE VERSATOR I TOKAMAK

U.S. Energy Research and Development Administration (Contract E(ll-1)-3070)

James L. Terry, Burton Richards, Barukh Ya'akobi, H. Warren Moos,

George Bekefi

[J. L. Terry and H. W. Moos are at Johns Hopkins University. B. Ya'akobi is at
the University of Rochester.]

The evolution of the oxygen impurity in the Tokamak Versator I has been investi-

gated in stable and unstable discharges. The unstable discharge was characterized by a

disruptive instability occurring approximately 1 ms into the pulse. In the study we uti-

lized the vacuum ultraviolet resonance line radiation from oxygen ions and measured

absolute levels of that radiation. We used an absolutely calibrated, 225 mm focal length

normal-incidence monochrometer, sighting across a diameter of the plasma current

cross section. A comparison of intensity time histories of lines from the ions OII

through OVI in the stable and unstable modes showed that the ion evolution was signif-

icantly affected by the occurrence of the disruptive instability. In order to explain the

differences in the two discharges, and to find the ion densities as a function of time and

position, a one-dimensional computer code modeling the oxygen impurity evolution was

developed. With this code we reconstructed electron temperature and density profiles

in the column along the line of sight of the monochrometer and solved the rate equations

in each small volume making up this column. By varying the particle influx and the ion

confinement time (free parameters in the rate equations), we matched the code-predicted

line intensities with those measured. The agreement is shown in Fig. X-66 for the

unstable discharge. The effects of the instability have been modeled by a sudden drop

in confinement time concurrent with a sharp increase in the number of oxygen atoms

entering each unit volume along the column. Since the code could only model a fixed-

radius plasma, we concluded that the physical interpretation of these particle influx
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Fig. X-66. Comparison of model-predicted line-intensity time histories with
those measured for the unstable discharge. Arrows mark the
occurrence of the disruptive instability found from the plasma
current-loop voltage signals. Note that for the OV and OVI lines
there is a marked decrease in line intensity, whereas the OII and
O III lines show a significant increase. These results cannot be
explained entirely by a drop in temperature, since the character-
istic recombination times are much longer than the times in which
the second peaks in the OII and OIII line-intensity time histories
occur.

and confinement time functions is a sudden expansion of the plasma cross section into

regions of "cold" oxygen atoms. The atoms in the region into which the plasma expands

are quickly ionized to OII and OIII, which accounts for the increase in their line radia-

tion (see Fig. X-66). The number of OV or OVI atoms across a fixed line of sight is

decreased, however, so that the line radiation from these ionization states is effectively

decreased. Hence this explanation accounts for measured time histories and is consis-

tent with the code results. Expansion of the current cross section in Versator is quite

possible, since it has no limiter and the plasma does not fill the torus.
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12. CRYOGENIC VACUUM ISOLATION OF PLASMA DIAGNOSTICS

U.S. Energy Research and Development Administration (Contract E(11-1)-3070)

James L. Terry, Burton Richards, H. Warren Moos, George Bekefi

[J. L. Terry and H. W. Moos are at Johns Hopkins University.]

A difficulty encountered during Versator ultraviolet spectrometry measurements was

the contamination of the Tokamak plasma by the impurity influx from the spectrometer

itself. The spectrometer vacuum chamber is pumped on by the main torus pumps

through a pipe, 10 cm long and 4 cm in diameter (see Fig. X-67). The housing for the

spectrometer equipment cannot be baked out or discharge-cleaned (typical cleaning pro-

cedures for Tokamaks) because this device contains electronics and optics that are

intolerant of bakeout temperatures. But by cooling down the pipe connecting the spec-

trometer with the torus to liquid nitrogen temperature (77°K), the impurity influx from

this diagnostic equipment can be reduced to acceptable levels for at least 10 hours.
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Fig. X-67. Fig. X-68

Arrangement of torus, spectrometer, and Level of oxygen impurity, showing the
connecting pipe, showing LN 2 cooling. effect of cryogenic cooling.

A controlled test of this procedure was performed by adding a controlled influx

(1. 3 X 10 - 4 Torr-l/s) of CO2 into the spectrometer chamber and looking at the OI

(7774 A) light with a visible spectrometer. Figure X-68 shows the OI signal during two

runs, one with and one without liquid nitrogen cooling. A dramatic reduction in the

impurity influx is seen during the cooled run.

We conclude that this technique provides good protection of high-purity plasma

environments from contamination by peripheral plasma diagnostics.
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13. EXPERIMENTAL DATA FROM AN ION SOURCE

U. S. Energy Research and Development Administration (Contract E(l11-1)-3070)

Peter T. Kenyon, Louis D. Smullin

We have been able to extract up to 4 amperes of ion current from our ion source

with an extraction efficiency y (input power/extracted ion current) of 600 W/A. Opti-

mum source performance occurs for neutral pressure of approximately 2 Jm, H 2.
The extractor system is composed of two electrodes: a plasma electrode and an

accelerator electrode. The extractor is illustrated in Fig. X-69. The plasma electrode

transparency is approximately 50% and the open area is 20 cm. Since beam extraction

is important and focusing is not, no particular attention was given at this time to the

details of the slot geometry. The first set of measurements of ion extraction was made

with a 3-mm interelectrode distance. The extraction voltage was derived from a pulse

modulator capable of furnishing 1-7.5 kV pulses. The pulsewidth was 2. 5 Is and it

could be located arbitrarily within the 400 [is arc pulse. We then increased the pulse-

width threefold and no apparent depletion was seen. Our measurements of extracted ion

current were made with the solenoidal magnetic field B s and input power PK as param-

eters. Graphs of extracted current I + vs extraction voltage V E are shown in Fig. X-70

for various input conditions. Figure X-71 shows extracted current vs input power for

B s = 600 G and extraction voltage V E = 5000 volts.

Secondary-emission electrons are not trapped by our accelerator; therefore, they

contribute an error to the measured current. If we correct for secondary emission by

using the data of A. I. Kislyakov et al.,, then the measured currents are reduced

approximately 50%. In order to eliminate this source of error, future tests will be

made with a Faraday cup collector.

As previously reported in RLE Progress Report No. 117 (pp. 256-260), we suspected

a particle drift in our ion source because of the influence of the diverging solenoidal

field. We were able to confirm this with a dual-probe system. These probes are illus-

trated in Fig. X-72. The difference in current between aft and forward probes indicates

the drift. These probe currents are shown in Fig. X-73. At this time it is not clear

whether the drift can be modeled as a symmetric distribution shifted along the velocity

axis, or as an asymmetric distribution. Either model can give drift speeds defined by

f d 3 v vf(v)
v=

f d3v f(v)

Clearly, the drift energy of either species of ions or electrons cannot exceed the

input cathode voltage VK. If the species drift by ambipolar diffusion, then
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i .
1 W

i m e
e

where '/ is the drift energy of either species. Using these facts allows us to place

an upper bound on v:

S 2qVK
v <

For example, if VK = 400 V (an experimental operating condition), then

v < 2. 8 X 105 meters/second.

A more complete analysis of the drift data will be given in a future report.
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14. ION ACOUSTIC PROPAGATION IN A TWO-TEMPERATURE PLASMA

U. S. Energy Research and Development Administration (Contract E(I1-1)-3070)

Peter T. Kenyon, Louis D. Smullin

Introduction

Using Langmuir probe current curves, we have observed a two-temperature plasma.

This plasma can be modeled as a two-IMaxwellian distribution. It was expected that the

ion sound speed C s would be influenced by the presence of the other electron species;

that is, the sound speed should be a function of both electron temperatures. This func-

tional dependence is given by

C =

where Te < T2 . Our Langmuir curves show that 5 < Tle < 6 eV and 40 2 Te < 60 eV. In

a separate measurement of the time delay, Ato , between cathode current Ik and the

plasma current I (see Fig. X-74) at a distance do from the cathode, we were able to

calculate an estimate of C
s

d (kBTo)1/2

This gives a temperature of approximately 5-10 eV, which, contrary to our initial
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Fig. X-74.

Cathode current I K and probe current Ip
vs time for d = 10 cm and At = 4 [is.

o o

TIME

expectations, shows that the higher temperature component is less influential than the

lower in the propagation of linear ion acoustic waves.

Analysis

We assume that a one-dimensional analysis is sufficient to explain the previously

stated phenomenon. The fluid equations necessary to derive the dispersion relation for

a three-species plasma are

(i) continuity equations given by

8n.
+  n.v. = 0Ot Ox 11

n1  a
8t +8x nv = 0

8nz 8
+t n+ = 0at + x nzv z  g

(ii) momentum equations given by

LVi

men Z Lt +

a v 1i ax

v1 - xv2 ax 2

0
Ox Pi + q.n.E

S
ax Pi + qen Eel1

0
= - p + q n E82 e Z

(iii) Poisson's equation given by

8E
Eo x = qini + qn + qn 2 .

To do a linear analysis we introduce the following expansions:

n. = n + n.

E=E +E
o
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v. = + v.
j o j

Pj : P j + P..

We assume that v and E = 0, and T. = 0 with an ./ax =T ./ax = 0. Since ion acous-
0] o s o o1

tic waves are inherently low-frequency disturbances, we assume (as is customary ) that

the electron inertial effects are negligible and can be disregarded. This implies that the

electron density obeys a Boltzmann's distribution given by

pn kBe n k+,e +
1, 2 0n1,2 k 1, k T ,2 1kB eZ

where E = -(8/8x) (since Eo = 0) = -jko, and it is assumed that all perturbation quan-

tities go as exp[j(kx-wt)]. The equation of state for the ions is

p = v.Tk T n.
ax i 1 B o. x 1i

1

Since the ions undergo one-dimensional compression in the assumed plane wave

exp[j(kx-t)], we want eventually to set v 3. [vi = (Ni +2)/N i ; N number of degrees

of freedom of ions. ]
The linearized (and transformed) continuity equations are

-jwi = -jknoi v (la)

-Jnl = -jkno0 1v 1  
(I b)

-jn2 = -jkno 2 2 . ( c)

Note that (ib) and (ic) are not needed in the rest of this analysis. The momentum

equations yield the following set of linearized transformed equations.

-jmrnin oi i = -qinoijkg - vik Tijkni  (2a)

q e

n = n k T (2b)
S  B ol

qe
n = n T (2c)

2  oZ kBTo2

Using Eq. la, we get v = n. and using Eq. 2a we derive
01
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= q.noi
k2

101
ni i2 (3)W m. - v.k T.k

Use of Eqs. 3, 2b, and 2c in the linearized Poisson's equations yields

2 2 2 2 -
2 qi noik qeno0l en o2

Eok 2 T 2  k T k T
m. - v.Tk Bol kB 02

which, letting qi = e, we can rewrite as

2

2 kBTivi + pi
m. + 2 2 (4)

1 2 pl  p2

k+ +-
kB Tol kB To2

m m
e e

2 2
Assuming that k X << 1 for both species of electrons allows us to approximate Eq. 4 by

2 v.k T + (nol+n 2 )no2T

1 1 0 0

where noi = no + n 2 is the quasi-neutrality condition. Assuming Toi << T o, we have

w2 kB (nol+no2)T 1 To2

k mi n olT 2 
+ no Tol

Application to Our Experiment

In our experiment, the Langmuir curve indicated that ToZ 10 Tol and we estimate

that (no2/nol) 0. 1. Therefore

nC
2 2

s n 1 (10 Tol)
s m 1+

no2
ol 10n

SB ool

, kBTol
m.

1

This is verified by the measurement of the current time delays. Therefore the linear

PR No. 118 183



(X. PLASMA DYNAMICS)

acoustic wave is "independent" of the hotter electron species.

Conclusion

By equating the ratio do0 /At with the sound speed, we assume that T o is independent

of space. In our theoretical analysis we also assume homogeneity in the zeroth-order

temperature. Experimentally, however, we find spatially varying temperature for both

cold and hot electron species. This is a source of error that must be included in the

theoretical analysis. Also, the presence of the magnetic field has not been taken into

account. We suspect that the assumption of three degrees of freedom for the electron

is invalid, since this introduces a source of anisotropy in the theory.
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15. INSTABILITIES IN MINIMUM-B MIRROR SYSTEMS

U. S. Energy Research and Development Administration (Contract E(11-1)-3070)

Robert Klinkowstein, Louis D. Smullin

Introduction

The successful control of flute, drift, and negative mass instabilities in mirror

machines has resulted from the effective use of minimum-B stabilizing fields and con-

duction through cold plasma to conducting walls, known as "line-tying." The other in-

stabilities now being observed in minimum-B stabilized mirrors are microinstabilities

resulting from velocity-space, loss-cone interactions. These instabilities drive par-

ticles into the loss cone and hence are lost. Velocity-space instabilities have been

predicted theoretically and observed experimentally to some extent. There are many

uncertainties, however, about the proper choice of theoretical models and boundary

conditions in the study of these instabilities.

The drift-cyclotron instability, or drift-cone mode, is being observed at present

in stabilized mirror experiments. This instability is driven by the coupling of ion

cyclotron waves to drift waves associated with electron density gradients. It is an

absolute instability that propagates across the field lines in the direction of the dia-

magnetic ion drift and is recognizable through a resonance condition that requires

S= f2., = 1, 2, 3 ... , where 2. is the ion cyclotron frequency. The conditions for

onset of this instability establish a critical radial density gradient that may be related

to a critical plasma radius for many experiments. 1-4

Other microinstabilities arising from the existence of a loss-cone limited
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distribution do not appear to be a problem in present experiments. The drift-cone mode

remains as the primary instability observed in the 2X11 B mirror experiment at Law-

rence Livermore Laboratory. Therefore, there is strong motivation for studying and

controlling this instability.

This is the initial report of an experimental study to examine microinstabilities

associated with loss-cone distributions of magnetic mirror experiments. The initial

construction phase of the project was completed early in May 1976 and the data pre-

sented in this report are preliminary. The plasma sources are constructed of tungsten

spiral cathodes mounted coaxially with stainless-steel anodes in a magnetron configu-

ration.

Experiment

The investigation is based on a minimum-B mirror system using an array of

ceramic permanent magnets to make a high-order, 0-periodic, cusp field superposed

on a conventional mirror field. The plasma is formed by applying power to two plasma

sources located at the mirror peaks (Fig. X-75). The magnetic field is produced by 10

coils each having 30 cm bore, 53 cm OD, and 7 cm length. By separately driving the

center coils with a reverse current, it is possible to adjust the axial mirror ratio over

a 2 < R < co range. Mirror peaks of -2000 G are achievable. The 6-cusp field is pro-

duced by 12 ceramic magnets placed alternately around the interior of the vacuum

chamber to produce a field of 1500 G at the magnet faces that decays radically inward
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Fig. X-75. Schematic illustration of experiment.
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[B c .08r5 (r in cm)]. The experimental system will be capable of operating in
cusp

pulsed or de modes. At present, it is operating in a dc mode.

The buildup of plasma in the proposed system was expected to proceed as follows.

Streaming plasma from the magnetron sources expands into the central region of the

chamber where interchange instabilities occur, since 8B2 /r < 0 near the axis of the

machine. The plasma expands radially and experiences 8B2/8r > 0 as it encounters

the rapidly increasing 6-cusp field and thus becomes stable against interchange insta-

bilities. The density builds up to a profile that is constant across the plasma radius

and has a sharp gradient near the edge.
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Initial data for dc operation of the machine are shown in Fig. X-76. The data shown
-4

were for a pressure of ~2 X 10 Torr H 2 . The plasma sources are capable of operation
-5

for pressures 10 Torr. For the data shown each source was operated with a power

input of 40 W. Interchange instabilities were detected with a probe (f ; 12 kHz) for axial

mirror ratios R < 3. For larger mirror ratios interchange instabilities were absent

and the density profile developed a region of constant density. Langmuir probes were

used to obtain density measurements, as indicated in Fig. X-76. Assumption of an elec-

tron temperature z 10 eV indicates that these dc data points represent densities

1011 < n< 1012
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