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The central theme of our programs has been to advance the understanding of optical and
quasi-optical communication and radar systems. Broadly speaking, this has entailed: developing
system-analyiic models for important optical channels; using these models to derive the fundamental
limits on system performance; and identifying, and establishing the feasibility of, techniques and
devices which can be used to approach these performance limits.

20.1 Atmospheric Optical Communication Systems for Network
Environments

National Science Foundation (Grant ECS81-20637)
Jeffrey H. Shapiro, Trung T. Nguyen, Albert K. Wong

A local computer network is prototypically a high-bandwidth (1-10 Mb/s) geographically compact
(0.1-10 km diameter) packet-switched network that employs coaxial cable or fiber optics as its
transmission medium. Atmospheric optical communication links are a natural choice for certain
high-bandwidth short-haul terrestrial transmission applications in which cable rights-of-way are
unobtainable, or frequent link and network reconfiguration is necessary. Such links are therefore
attractive candidates for local network applications including bridges between buildings containing
cable subnetworks, and temporary quick-connects for new outlying users for which cable runs are
unavailable. This program addresses the problem of how best to employ atmospheric optical
communication links, which experience occasional outages due to local adverse weather conditions,
in a local computer network, whose high-level protocols are designed to provide 100% end-to-end

message reliability.

The principal task for the past year has been the design and construction of a pair of 10 Mb/s
atmospheric optical communication transceivers to be used, in succeeding years, in local network
experiments on the M..T. campus. Each transceiver will use a 2 mW semiconductor laser collimator
pen module in the transmitter, and an avalanche photodiode/preamplifier module in the receiver. In
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addition to the optical transceiver work, we have begun analysis on how atmospheric optical links can
best be employed in various key network roles.

20.2 Atmospheric Propagation Effects on Infrared Radars

U.S. Army Research Oftice - Durham (Contract DAAG29-80-K-0022)
Jeffrey H. Shapiro, David M. Papurt, Sun T. Lau, Paula L. Mesite

Compact coherent laser radars have the potential for greatly improved angle, range, and velccity
resolution relative to their microwave-radar counterparts. This program is aimed at obtaining a
quantitative understanding of target-reflection and atmospheric-propagation effects on the
performance of compact coherent laser radars through a combination of theory and experiments.
Under a collaboration arrangement with the Optics Division of the M.L.T. Lincoln Laboratory, the
experimental portions of the research are being carried out on the compact COz—Iaser radars under
development there.

During the past year we have completed examination of the combined effects of turbulence and
target speckle/glint on the performance of a 2-D pulsed-imager radar."* The principal conclusions
drawn from this work are as follows. First, the compact radar system model must include beam jitter.
Second, jitter-corrected glint target returns do show turbulence-induced lognormal scintillation.
Third, turbulence-induced beam jitter is the cause for staring-mode speckle target decorrelation.

The focus of our work has now shifted to moving-target indication (MTI) systems. in particular, we
have begun to study many of the same turbulence and speckle issues as they impact the Lincoln
Laboratory continuous-wave 002 laser heterodyne-reception Doppler radar.’
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20.3 Improved Millimeter-Wave Communication Th rough Rain

U.S. Navy - Office of Naval Research (Contract NOO014-81-K-0662)
Jeffrey H. Shapiro, John J. Fratamico, Philip L. Bogler

The increased path loss due to rain has long been recognized as a key factor limiting the extension
of microwave satellite communications into the millimeter-wave spectral band. This program is aimed
at understanding the extent to which millimeter-wave communication performance under severe rain
conditions can be improved through exploitation of multiply-scattered radiation. Toward this end we
have developed efficient numerical procedures for solving the scalar transport equation for the total
transmission, angular spread, multipath spread, and Doppler spread of the multiply-scattered
radiation." Evaluation of these parameters has been performed for propagation at 35, 44, 95, 130,
210, and 300 GHz in various rain rates."

We have combined the preceding propagation work with the appropriate communication
analysisz'3 for the millimeter-wave channel and reached the following conclusions. In a heavy
rainstorm a satellite-to-ground link at 95 GHz or above which has sufficient power for muiti-Mb/s
communication in clear weather may have sufficient power for multi-Kb/s communication if adaptive
angle diversity reception of the scattered radiation is employed. Direct-beam reception will not
function at these data rates, nor will nonadaptive angle diversity reception. The array needed for the
adaptive combiner is far beyond the current state of the art, but may evolve out of the need for phased
arrays to be used in millimeter-wave radars.
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20.4 Two-Photon Coherent State Light

U.S. Navy - Office of Naval Research (Contract N0O0014-81-K-0662)
Jeffrey H. Shapiro, Prem Kumar, Roy S. Bondurant, Mari Maeda, Stuart S. Wagner

Recent theory has shown that the generation of light beams with quantum states of superior
fluctuation behavior may be possible. These states, called two-photon coherent states (TCS), are
minimum uncertainty states of the electromagnetic field processing an asymmetric noise division
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between the quadratures. The purpose of this research is to generate TCS light via degenerate
four-wave mixing in sodium vapor, and to verify some of the predicted TCS fluctuation characteristics

via photon counting measurements.

During the past year we have: set up the mixer and verified conjugate-wave generation; developed
a photon counting scheme for making accurate statistical measurements on nanosecond duration
optical pulses;1 and devised a pulse-conditioning technique to minimize excess noise in the
four-wave mixer output beams.2 Work is now proceeding on quantum-noise measurements.

In addition to the main experimental effort we have begun analysis of the use of TCS light in
phase-sensing interferometers® and of fundamental limits in phase/amplitude heterodyne

measurements.4
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20.5 Fiber-Coupled External-Cavity Semiconductor High-Power
Laser

U.S. Navy - Office of Naval Research (Contract N0O0014-80-C-0941)
Robert H. Rediker, Robert P. Schloss, Farhad Hakimi

During the past year an external cavity to contain five semiconductor gain elements operating in
parallel has been designed and built. A photograph of this cavity is shown in Fig. 19-1. Starting from
left to right the first plate attached to the four Super-Invar rods holds the micromanipulators and
piezo-electric elements which will be used to properly position the gain elements. In back of this
plate are the thermoelectric elements which are used to control individually the temperature of each
element. The thermoelectric elements are connected to the gain elements by a flexible copper strap.
The next plate will contain a lens which focuses all the collimated radiation from the gain elements on
the spatial filter to be held by the third plate frorn the left. The spatial filter which contains thirteen
3 pm slits on 10.5 pm centers is the Fraunhoffer diffraction pattern of the gain elements’ radiation if
these elements are emitting in coherence. Filters have been built for us of blackened Si N, by
integrated circuit techniques. The single pass transmission of the filter for coherent radiation input
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from the five elements is ~3 times that if the radiation is incoherent. The next plate will contain a lens
to recollimate the radiation; the last plate will contain a partially reflecting mirror.

Figure 20-1: Photograph of External Cavity

Thermoelectric control circuits with sensors have also been built to control the temperature of each
semiconductor gain element to 0.5 x g (This temperature control is equivalent to controlling the
820-nm wavelength of the gain element radiation to 3 x 162 nm.) This sophisticated control will
enable us to tune and detune the output wavelength of each element if the element were operating by
itself. We will thus be able to quantify the tolerance for "locking into coherence" to wavelength
variations. The sophisticated positioning controls in the cavity shown in Fig. 20-1 will enable us to
also quantify the mechanical tolerances for "locking into coherence". These tolerances will give an
indication of the ease with which this "high-power-laser" concept can be taken from laboratory to

general use,
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