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Several years ago we discovered2 that while con-
ventional field-effect transistors turn from the off-
state to the on-state only once as electrons are
added to them, a very small transistor turns on and
then off every time one electron is added. The
near-term goal of our research is to understand why
the single electron transistor works the way it does.
Our long-term goal is to make the device character-
istics useful for applications.

A sketch of our first single electron transistor3 is
shown in figure la. We begin with a crystal of
GaAs which has such a high density of impurities
that it is metallic. This plays the role of the gate.
On top of this we grow a layer of AIGaAs, which is
an insulator, and a layer of pure GaAs, where the
electrons reside. If a positive voltage is applied
between the gate and the source or drain, electrons
accumulate at the AIGaAs/GaAs interface.
Because of the strong electric field at this interface,

each electron's energy for motion perpendicular to
the interface is quantized, and at low temperatures
the electrons move only in the two dimensions par-
allel to the interface. The special trick that makes
this a single electron transistor is the creation by
electron beam lithography of a pair of electrodes on
the top surface of the GaAs. When negative
voltage is applied between these and the source or
drain, the electrons are repelled and cannot accu-
mulate underneath the electrodes. Consequently,
the electrons are confined in a narrow channel
between the two electrodes. Constrictions sticking
out into the channel repel the electrons and create
potential barriers at either end of the channel. A
plot of the potential is shown in figure lb. For an
electron to travel from the source to the drain, it
must tunnel through these barriers. A "pool" of
electrons accumulates between the two con-
strictions, separated from the leads by the tunnel
barriers.

Figure 2 shows the current through the device4 as a
function of the voltage Vg between the gate and the
source. A very small amount of voltage is applied
between the two leads, which is just large enough
to measure the tunneling conductance between
source and drain. The results are astounding. The
conductance displays sharp resonances that are
almost periodic in Vg. By calculating the capaci-
tance between the pool of electrons and the gate,
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Figure la.
transistor.

(a) Schematic drawing of the single electron

we can show5 that the period is the voltage neces-
sary to add one electron to the pool.

There is a simple way to explain the periodic con-
ductance resonances; 6 the theory is called the
Coulomb blockade model. When an electron
tunnels from one lead onto the pool of electrons
and then onto the other lead, adding a charge Q to
the pool requires energy Q2/2C, where C is the total
capacitance between the pool and the rest of the
system; since you can add no less than one elec-
tron, the flow of current requires a Coulomb energy
e2/2C. A fancier way to explain this is that because
of charge quantization there is an energy gap in the
spectrum of states for tunneling: For an electron to
tunnel onto the pool its energy must exceed the
Fermi energy of the contact by e2/2C, and for a
hole to tunnel its energy must be below the Fermi
energy by the same amount. Consequently, the
energy gap has width e2/C. If the temperature is
low enough that kT < e2/2C, neither electrons nor
holes can flow from one lead to the other.

With the gate voltage Vg we can alter the energy
required to add charge to the pool. Vg is applied
between the gate and source, but if the drain-
source voltage is very small, the source, drain and
pool are all at almost the same potential. With Vg

Figure lb. (b) Potential similar to the one in the single
electron transistor plotted as a function of position at the
GaAs/AIGaAs interface.

applied the electrostatic energy of charge Q on the
pool is

E = QVg + Q2/2C.

The first term is the attractive interaction between
the positively charged gate electrode and the nega-
tive charge Q, and the second term is the repulsive
interaction among the bits of charge in the pool.
Equation 1 shows that the energy as a function of
Q is a parabola with minimum at Qo= - CV,.

By varying Vg, we can choose any value of Q,, the
charge that would minimize the energy in equation
1 if the charge were not quantized. However,
because the real charge is quantized, only discrete
values of the energy E are possible. For all values
of Qo except Qo= - (N + 1/2)e , there is a non-zero
energy for adding or subtracting an electron. Under
these circumstances, no current can flow at low
temperature. However, if Qo= - (N + 1/2)e, the
state with Q = - Ne and that with Q = - (N +1)e are
degenerate; the charge fluctuates between the two
values even at zero temperature. Consequently,
the energy gap in the tunneling spectrum disap-
pears, and current can flow. The peaks in conduc-
tance are, therefore, periodic, occurring whenever

5 U. Meirav and S.J. Wind, "Single Electron Charging and Periodic Conductance Resonances in GaAs Nanostructures," Phys. Rev.
Lett. 65: 771 (1990); A. Kumar, "Self-consistent Calculations on Confined Electrons in Three-dimensional Geometries," Surf. Sci. 263:
335-340 (1992).

6 G. Grabert and M.H. Devoret, eds. Single Charge Tunneling--Coulomb Blockade Phenomena in Nanostructures, (New York:
Plenum Press, 1992).
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Figure 2. Conductance in units of the quantum of con-
ductance e2/h versus voltage on the n+GaAs substrate.
On the logarithmic plot, it is clear that the transistor has
an on-to-off conductance ratio that exceeds 103 for the
lowest gate voltages.

the average charge on the artificial atom is
Qo= - (N +1/2)e, spaced in gate voltage by e/C.

The Coulomb blockade model accounts for charge
quantization but ignores the quantization of energy
resulting from the small size of the region in which
the electrons are confined. If one thinks of the
region between the potential barriers as a box, the
lowest energy spacings are of the order h2/2ma 2

where a is the size of the box. Because the energy
as well as the charge is quantized, we find it useful
to think of the single electron transistor as an artifi-
cial atom.

The energy level spectrum of the atom can be
measured directly by observing the tunneling
current at fixed Vgas a function of the voltage (Vds)
between drain and source. The Fermi level in the
source rises in proportion to Vds relative to the
drain, so it also rises relative to the energy levels of
the artificial atom (see the inset to figure 3).
Current begins to flow when the Fermi energy of
the source is raised just above the first quantized
energy level of the atom. As the Fermi energy is
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raised further, higher energy levels in the atom fall
below the Fermi energy, and more current flows
because there are additional channels for the elec-
tron to use for tunneling onto the artificial atom.
We measure the energies by measuring the voltage
at which the current increases, or, equivalently, the
voltage at which there is a peak in the derivative of
the current dl/dVds. We show results of such a
measurement7 in the upper part of figure 3.

Increasing the gate voltage lowers all the energy
levels in the atom by - eVg, so that the entire tun-
neling spectrum shifts with Vg. This effect can be
observed by plotting the values of Vds at which
peaks appear in dl/dVds, as is done in the lower
part of figure 3. You can see the gap in the tun-
neling spectrum shift lower with increasing Vg and
then disappear at the charge-degeneracy point, just
as predicted by the Coulomb blockade model. You
can also see the discrete energy levels of the artifi-
cial atom. The charge-degeneracy points are the
values of V,, for which one of the energy levels of
the artificial atom is degenerate with the Fermi
energy in the leads when Vds = 0, because only
then can the charge of the atom fluctuate.

During the past year, we have developed a thor-
ough understanding of the energy spectrum of
single electron transistors. In addition, we now
know what limits their operating temperature. As
shown in figure 3, the devices we have made so far
have a Coulomb-blockade gap that is about 1 meV
wide and energy level spacings that are about one-
fifth to one-tenth of that. As the temperature is
raised, the conductance resonances acquire a width
of - 4 kT. Since kT = 1 meV is equivalent to T = 12
K, the peak-to-valley ratio becomes small above a
few degrees K. Making the single electron tran-
sistor useful will require making its operating tem-
perature much higher. This requires decreasing the
size because both the Coulomb energy, which
varies inversely with the capacitance, and the
energy level spacings will get larger for smaller
structures. This is the direction of our next
research effort.
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Figure 3. Discrete energy levels of a single electron
transistor can be detected by varying the drain-source
voltage. When a large enough Vd, is applied, electrons
overcome the energy gap and tunnel from the source to
the pool of electrons (see inset of upper panel). Upper
panel: Every time a new discrete state is accessible, the
tunneling current increases, giving a peak in dl/dVds. The
Coulomb blockade gap is the region between about -
0.5mV and + 0.3mV where there are no peaks. Lower
panel: Plotting the positions of these peaks at various
gate voltages gives the level spectrum. Note how the
levels and the gap move downward as Vg increases.
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