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ABSTRACT

The time-mean effects of eddies are studied in a model based on the Parsons–Veronis–Huang–Flierl models

of the wind-driven gyre. Much of the analysis used for the steady solutions carries over if the model is cast in

terms of the thickness-weighted mean velocity, because then mass transport is nondivergent in the absence of

diabatic forcing. The model exemplifies the use of residual mean theory to simplify analysis.

A result of the analysis is a boundary layer width in the case of a rapid upper-layer flow and weak lower-

layer flow. This boundary layer width is comparable to an eddy mixing length when the typical eddy velocity is

taken to be the long Rossby wave phase speed.

Further analysis of the model illustrates important aspects of eddy behavior, model sensitivity to eddy

fluxes, and model sensitivity to frictional parameters.

1. Introduction

The ubiquitous mesoscale eddies in the ocean affect

the transport and structure of tracers: salt, potential

temperature, potential density, and potential vorticity

(PV). The turbulent character of these eddies makes

for few tractable observational, analytical, and numeri-

cal approaches. Formal mathematical treatments of

eddy fluxes have revealed that careful manipulation of

the definition of an eddy may provide advantages in

capturing the eddy–mean flow interaction. The Trans-

formed Eulerian Mean (TEM: e.g., Andrews et al.

1987; Vallis 2006) and Generalized Lagrangian Mean

(GLM; Andrews and McIntyre 1978) frameworks are

two examples.

Here the temporal residual mean formulation (TRM;

McDougall and McIntosh 2001) is used to formulate

a model consistent with the mean density structure of

the ocean while retaining some important effects of

time-dependent eddies. In an isopycnal-coordinate model,

the TRM velocity is simply the thickness-weighted mean

velocity, and the layer mass and tracer transports are

natural. The TRM approach has been used successfully

to study eddy–mean flow interactions in the atmosphere

(Andrews et al. 1987). Here we show that similar advan-

tages arise in the study of gyre circulations in enclosed

domains. In particular we use the TRM formalism to

include eddy feedbacks in models akin to Parsons (1969)

and later extensions by other investigators.

Unlike much of the recent literature, this paper does

not provide detailed maps of eddy diffusivities or vis-

cosities: instead the TRM Parsons model compellingly

illustrates the roles of eddies in a gyre circulation. In the

TRM formulation, eddy effects appear as a force in the

momentum equations—a fact extensively exploited here

and in many atmospheric eddy–mean flow interaction

studies. It is shown that eddies transfer momentum

downward in the ocean interior and buoyancy poleward

in the ocean mixed layer. The TRM Sverdrup relation

is simply modified in the presence of eddies. The next

section introduces the Parsons model and subsequent

sections discuss impacts of eddies on the resulting ocean

circulation.
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2. Eddy–mean flow interaction in layered models

We consider a layered, rigid-lid, shallow-water, Bous-

sinesq flow on a b plane:
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The upper layer is i 5 1, and the ith layer has depth hi,

horizontal velocity ui, and vertical planetary (f 5 f0z 1

byz) and relative ($ 3 ui [ zi) vorticity. The $ operates

within a layer along two dimensions. Wind stress and

frictional forces are combined in F i. The possibility of

cross-isopycnal flow into each layer from above (wi2) or

below (wi1) is retained.
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For a two-layer model the Montgomery potential re-

duces to M1 5 g9h1 1 M2, where g9 is the reduced

gravity [g9 [ g(r2 2 r1)/r0]. The total depth is fixed at

h1 1 h2 5 H.

Steady solutions to (1)–(2) or very similar equations

are common (Parsons 1969; Veronis 1973, 1976, 1978;

Pedlosky 1987; Huang and Flierl 1987; Huang 1987a,b,

1988; Godfrey 1989; Nurser and Williams 1990). Here

we set up and solve the time mean of these equations,

including treatment of eddy fluxes. The time mean of

(1)–(2) is
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Overbars denote averages and primes denote pertur-

bations therefrom.1

The time averaging results in eddy fluxes both in

the momentum and thickness equations. Gent and

McWilliams (1990) suggest that the thickness fluxes are

likely to be downgradient, but momentum fluxes remain

problematic. To address this issue, a rearrangement

simplifies
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If one uses the thickness-weighted mean velocity uyi as

the prognostic variable, the eddy fluxes cluster in the

momentum equation:
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The thickness-weighted mean velocity uyi is the sum of

the Eulerian mean velocity2 and the bolus velocity ui
*:

u
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Equations (5)–(6) are identical to the steady form of

(1)–(2), except the velocity in (5)–(6) is the thickness-

weighted mean velocity3 and the eddy terms collected in

E
i

add to the friction F
i
. The mean flow remains arbi-

trarily inertial and nonlinear ( f ; z, Dh ; h), and

a suitable closure for E
i

makes (5)–(6) useful for nu-

merical simulation (e.g., Wardle and Marshall 2000;

Ferreira and Marshall 2006).

For small perturbations (z9� z, h9� h), Ei is simpli-

fied by noting that Eqs. (1)–(2) materially conserve po-

tential vorticity in the form Pi 5 (f 1 zi)/hi, and that

1 Reynolds averaging is assumed, so 5� [ J and �9 [ 0.

2 This is the Eulerian mean velocity following a fixed location in

density coordinates, not z coordinates (see McDougall and McIntosh

2001 for discussion).
3 Note that the velocity contained in B

i
is Eulerian, however. At

low Rossby number, Bi ’Mi in both cases.
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Thus, the leading-order eddy terms are a gradient of

eddy kinetic energy and an eddy PV flux. The appear-

ance of the PV flux in the momentum budget is a central

result of residual mean theory. Often oceanographic

TRM literature focuses on simplifying the thickness

budget to (6), but providing an interpretation of the eddy

fluxes in the momentum Eq. (5) is equally significant.

A broad eddy closure

We now consider a class of possible closures for Ei.

The largest eddies dominate eddy transport, and they

are typically larger than the deformation radius because

of the inverse energy cascade as seen in models (Arbic

et al. 2007) and observations (Stammer 1998; Scott and

Wang 2005). Under these conditions, the eddy kinetic

energy gradient and relative vorticity flux play a sec-

ondary role, so

E
i
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i
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i
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i
. (11)

The eddy forcing is the flux of PV, a materially con-

served quantity. Mixing length arguments suggest that

the fluxes of tracers tend down their mean gradient.

Hence a plausible closure for Ei is

P9
i
u9

i
’�k

i
A � $P, (12)

with A as a spatially varying symmetric4 tensor with

O(1) eigenvalues so that the magnitude of eddy effects is

carried by ki.

The simplest closure consistent with (12) has ki con-

stant and A as the identity matrix representing isotropic

PV mixing:
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Alternatively, Gent and McWilliams (1990) argue that

the release of available potential energy by eddies sup-

ports downgradient thickness fluxes, resulting in PV

fluxes given by
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Relative vorticity fluxes are neglected in (14), consistent

with the Gent and McWilliams (1990) argument. Clearly,

(14) differs from (13).

Finally, Killworth (1997) proposes a closure based on

linear instability of the time-mean state assuming eddies

larger than the deformation radius and yet smaller than

the mean flow scale. The Killworth (1997) analysis finds

anisotropic mixing as

A
k

[
sin2u �sinu cosu

�sinu cosu cos2u

� �
. (15)

The angle u lies between the most unstable wavenumber

and the mean flow. Both ki and u are functions of x, y, and t.

This diffusivity and angle can be approximated from linear

theory5 or even from eddy-permitting simulations.6

Here the general form (12) will be carried throughout

the analysis, but the solutions plotted use k 5 2000 m2 s21

and A as the identity matrix.

3. A noninertial, adiabatic, reduced gravity
solution

So far, the mean flow remains arbitrarily inertial

and nonlinear ( f ; z, Dh ; h). To proceed analytically

the mean flow is restricted to small Rossby number

( f � z, B ’M). The western boundary current solu-

tion is thus limited, but analytic progress and clarity are

aided. Under these assumptions only the essential eddy

effects are needed. Indeed, all of the specific closures

above—(13), (14), and (15)—result in the same solution.

The traditional configuration used to study gyre cir-

culations in the ocean is one moving layer sitting over

a motionless lower layer (uy2 5 0, M
2

5 0) with no

mass exchange between the layers (wi 5 0). In this limit,

(5)–(6) and closure (12) are
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$ � h
1
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Friction F i has been made explicit as zonal wind forcing

[tx̂/(r0h1)] and interfacial drag (�Cdu1/h1). For simplicity,

4 Rotational flux components result in an antisymmetric contri-

bution, but can be absorbed into the bolus velocity by a judicious

choice of gauge for small amplitude eddies (Plumb 1990).

5 Killworth notes that an ensemble average of Ak over all angles

would result in Ak being one-half the identity tensor.
6 However, the numerical results of Nadiga (2008) indicate that

finding u may be a very challenging task.
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t will be a function of y only. Aside from the eddy con-

tribution and thickness-weighted mean velocity replacing

the steady velocity, (16)–(17) are identical to the equations

studied by Parsons (1969) and Huang and Flierl (1987).

Introducing a mean transport streamfunction, C
y
1, and

nondimensionalizing following Parsons (1969) yields7
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where f is nondimensional [ f 5 f0 /(bL) 1 y], and l 5

LW/g9r0H1
2, �e 5 k1bL/g9H1, and �i 5 Cd/bLH1 are small

numbers, roughly 5 3 1023, 2 3 1023, and 5 3 1026,

with typical ocean values8 based on the parameters of

Holland and Rhines (1980). Holland and Rhines (1980)

and Rhines and Holland (1979) study a quasigeostrophic,

double-gyre simulation and address eddy effects similar

to those described here.

The interfacial drag �i is tiny compared to �e, the ‘‘eddy

form drag.’’9 Lacking �e, Huang (1987a) uses an inflated

value of �i ’ 1023 and suggests that this crudely pa-

rameterizes baroclinic instability. Here, a more careful

treatment of eddies is attempted. While �i � �e allows

neglecting �i altogether, �i will be retained for ready

comparison to earlier studies.

First, we will seek a solution to the equivalent to the

Huang and Flierl (1987) model, which has a fixed vol-

ume of water in the upper layer and a motionless deeper

layer. Toward the end of the section, generalizations of

this model will be made.

a. Interior solution

The solution in the ocean interior (i.e., where layer 1

has finite depth and is away from the western boundary

currents) is given by the combination of geostrophy plus

the wind-driven Ekman (1905) flow,

f$C
y
1 5 $

h
2

1

2
� ltx̂. (19)

A low-order vorticity balance resembling the Sverdrup

(1947) relation results from cross-differentiating (18)

using f 5 f0 /(bL) 1 y:
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The eddy and interfacial drag terms are negligible away

from western boundary currents, l� �e� �i.

The solution to (19)–(20) is

h
2

1,i � h
2

1,e 5 2lf 2(1� x)
›(t/ f )

›y
, (21)

C
y
1i 5 (1� x)l

›t

›y
. (22)

The depth along the eastern boundary h1,e is a constant

to satisfy the absence of normal flow through the bound-

ary. Conservation of upper-layer mass requires h
1,e

to

produce a mean value for h
1

of 1. For the Holland

and Rhines (1980) parameters, h1,e 5 1.003.

b. Western boundary current

The Parsons (1969) model is exceptional among ana-

lytic solutions in that it possesses a western boundary

current that can be attached to the coast (as is the Gulf

Stream) or detached from the coast (as is the North

Atlantic Drift). The solution for (16)–(17) is briefly de-

scribed here; the reader is referred to Parsons (1969),

Huang and Flierl (1987), and Nurser and Williams

(1990) for a detailed presentation.

In the boundary current, streamwise and normal co-

ordinates (s, n) are used. The normal direction is also

stretched, j 5 n/d, by a small number d related to the

ratio of boundary current width to basin width—the

exact expression is given below in (30). Inertial terms

were neglected above for analytic progress, so consistency

requires this width to be larger than the deformation ra-

dius. The momentum Eq. (18) becomes10

7 Lengths are scaled by basin dimension L, times by 1/(bL),

heights by mean upper-layer depth H1, velocities by ju1j 5 g9H1/

L2b, and wind stress by W.
8 Typical ocean values (Holland and Rhines 1980): L 5 1000 km,

H1 5 1000 m, H 5 5000 m, f0 5 9.3 � 1025 s21, b 5 2 3

10211 s21 m21, r0 5 1000 kg m23, W 5 0.1 N m22, g9 5 0.02 m s21,

and basin dimensions are 0 , x , L, 2L , y , L, t 5 W cos(py/L),

Cb 5 H2r, and r 5 1027 s21. Additional parameters used here are

k1 5 2000 m2 s21, Cd ’ n/H1, and n 5 1024 m2 s21.
9 At the risk of being ‘‘obscurantist’’ (Warren et al. 1996), we

refer to this effect as an ‘‘eddy form drag.’’ This term is becoming

traditional (Vallis 2006), and stems from the resemblance of the

correlation of eddy velocity and layer thickness to the correlation

of bottom velocity with bottom topography of true form drag.

However, it is not a true ‘‘form drag,’’ and does not even appear in

the Eulerian mean momentum equation. Only in the thickness-

weighted mean equations does it appear as a force. In this context,

it will be shown to resemble an interfacial drag.

10 The thickness-weighted mean has been used to approximate

the interfacial drag term rather than the Eulerian mean velocity.

This approximation is acceptable on the along-current velocities;

both the Eulerian and thickness-weighted along-current mean ve-

locities are geostrophic to first order.
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The nondimensionalization indicates that variations in

h
1

are O(1), ›f /›s 5 O(1), but ›f /›j 5 O(d).

The streamwise flow in (23) is geostrophic to lowest

order:
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. (25)

Since the eddy terms are negligible in (23), both the

streamwise Eulerian and thickness-weighted mean ve-

locities are geostrophic at this order. However, (25) does

not specify d [an arbitrarily thin d is used by Veronis

(1973) and Godfrey (1989)].

The eddy parameterization determines d. The domi-

nant balance of (24) shows that the cross-streamflow is

affected at leading order by the cross-stream eddy trans-

fer or the alongstream drag if �eAn,n ; d or �i ; d,

respectively:
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In (26) the difference between Eulerian and thickness-

weighted mean is crucial; in the TRM momentum bal-

ance the eddy fluxes play the same role as the frictional

terms do in steady solutions.

Cross-differentiating (25)–(26) forms the boundary

current vorticity equation. With (25) it provides an

equation for h
1

alone:
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If the eddy statistics (An,n and �e) can be approximated as

constant across the boundary current at each location,

then the solution to (27) is

h
1

5 h
1,i

1� Be�(n�n
w

)/d
b

1 1 Be�(n�n
w

)/d
b

, (28)

B 5
h
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� h

1,w

h
1,i

1 h
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, (29)

where h1,w is the depth of the upper layer at the western

boundary (or h1,w 5 0 at an outcrop), nw is the location

of the western boundary or outcrop line, and by semi-

geostrophy we have h
2

1,w 5 h
2

1,i � 2f C
y
1,i. The values of

h
1,i

and C
y
1,i to be used are the westernmost values from

the interior solution (21)–(22).

Importantly, the boundary current width is

d
b

5
�

i
1 �

e
f 2A

n,n

h
1,i

›f

›s

. (30)

This width reduces to the classical forms given by Parsons

(1969) and Stommel (1948), who considered only drag

on a steady flow. The addition of eddies results in an

eddy form drag contribution with a parametric depen-

dence on f.

The dimensional form of db is

d
b

5
f 2k

1
A

n,n

g9h
1,i

›f

›s

. (31)

In terms of the deformation radius (Ld 5
ffiffiffiffiffiffiffiffiffiffiffi
g9h1,i

q
/f ),

long Rossby wave speed (cR 5 bLd
2), and mixing length

approximation (k1 5 LeUe), this boundary layer width is

comparable to the mixing length for eddies with Ue 5 cR,

multiplied by an O(1) geometric factor:

d
b

5
k

1

c
R

A
n,n

ŝ � ŷ . (32)

Chelton et al. (2007) show that relevant eddy velocity

scales are close to the Rossby wave speed. This width is

50 km for the typical ocean values above.11

A uniform solution valid in the interior and in the

western boundary at the same level of approximation is

derived by inserting (21) into (28):

11 This width is close to the deformation radius (40 km) and

depends on the assumed value of k1, which questions the validity of

the scalings here. However, the parameters are chosen here to

reproduce Holland and Rhines’ (1980) values, not a clean scale

separation.
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Figure 1 compares the uniform solution (33) to the

results of Holland and Rhines (1980). Note that the

changes to layer depth are consistent with the numerical

solution, and likewise the potential vorticity perturba-

tions against the western boundary are similar in both

layers. The solution reproduces the simulation results

without the introduction of an unrealistically large in-

terfacial drag. The boundary layer structure results from

lateral eddy PV flux.

The analytic solution misses a number of features.

Obviously, the recirculation gyres are missing, largely

because of the neglect of advection of mean flow mo-

mentum by the mean flow (these gyres form even in

steady solutions; e.g., Cessi and Ierley 1995). Further-

more, Holland and Rhines (1980) note that the eddy

kinetic energy and effective eddy diffusivity are much

larger in the recirculation gyres than elsewhere, imply-

ing that k1 should be larger there. While (27) can be used

with spatially varying eddy statistics, the numerical im-

plementation of this effect is beyond the scope of this

work. PV homogenization (Rhines and Young 1982a)

below the recirculation gyre area is also less effective.

These missing features are expected given the assumed

scale separation between the boundary layer width (31)

and the deformation radius. This separation is not large

for the parameters used here.

The effects of f on widening boundary layer width are

minor in this simulation. The basin is small—the change

in f is only two-fifths of f0—so the error in approximating

�e precludes a close comparison.

Nonetheless, the solution is sufficiently interesting

to consider other flow regimes, including outcropping

boundary layers and simple thermodynamic forcing (see

FIG. 1. Upper-layer thickness in the (a) uniform solution and (b) Holland and Rhines (1980) eddy-producing numerical solution. PV of

the upper layer in the (c) uniform solution and (d) eddy-producing numerical solution. PV of the lower layer in the (e) uniform solution

and (f) eddy-producing numerical solution. Contour intervals are matched.
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Fig. 2). Because the boundary current is narrow and geo-

strophic in the along-current direction, the location of the

outcrop can be estimated without a detailed eddy pa-

rameterization. Thus, all Huang and Flierl (1987) solutions

immediately apply. For example, the transport along the

western boundary and outcrop need not equal the interior

geostrophic and Ekman flows. Huang and Flierl (1987)

propose a solution of this kind, where an isolated western

boundary current running along the western wall (Tiso in

Fig. 2) is added to a western boundary current outcropping

in the basin interior (Tw in Fig. 2). The streamfunction at

the outcrop is different from C
1,e

5 0, and is found from

the net geostrophic and Ekman flow east of the outcrop,

C
1,m

5�
h

2

1,e

2 f
1 l(1� x)

t

f
. (34)

At the zero wind stress line (ZWL) of the subpolar gyre

(see Fig. 2), this transport depends only on h
1,e

. From its

value there all other transports can be determined. The

critical latitude of outcrop separation yc is found at the

point where the outcrop meets the western boundary,

C
1,m

5�
h

2

1,e

2f
c

1 l
t

c

f
c

. (35)

The values of fc and tc are the Coriolis parameter and

wind stress at yc. The outcrop location is given by

x
o

5 1�

h
2

1,e

2
( f

c
� f ) 1 l f t

c

lt f
c

.

The eddy PV flux added here is crucial, however, in

obtaining reasonable solutions. The PV flux allows rea-

sonable boundary current width and velocity under typ-

ical oceanic parameters. The Huang and Flierl (1987)

steady solution with the same parameters (except �e 5 0)

has a boundary current 400 times thinner and velocities

400 times faster.

4. Eddy implications

Now that a solution with realistic eddy effects is com-

plete, the remainder of this paper illustrates some of the

implications.

a. An important condition on eddy fluxes

Many authors emphasize that eddies do not create

momentum during baroclinic instability; they merely

rearrange it. Following Killworth (1997) for the model

used here, the requirement

0 5 �
N

i51
h9

i
u9

i
[ �

N

i51
h

i
u

i
* (36)

guarantees that the effects on depth-integrated mo-

mentum by the PV flux forcing term vanish:12

�
N

i51
h

2

i P9
i
u9

i
5 �

N

i51
h

2

i P
i

P9
i
u9

i

P
i

5 �
N

i51
h

2

i P
i

h9
i
u9

i

h
i

,

5 �
N

i51
f h9

i
u9

i
5 0.

Killworth (1997) demonstrates that linear instabilities

automatically obey this constraint. Marshall (1981) shows

FIG. 2. The transports, sources, and sinks of the Nurser and

Williams (1990) generalization of the Huang and Flierl (1987) and

Veronis (1978) models. Thick double arrows are boundary cur-

rents, curvy arrows are mixed layer flows, and solid bent arrows are

interior geostrophic flows. The ZWL and zero wind stress curl lines

(ZWCL) are indicated.

12 This is assuming that relative vorticity fluxes are neglected,

consistent with eddies being larger than the deformation radius.
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that the constraint persists even at modest Rossby num-

bers in a channel. Similar constraints are studied else-

where (Green 1970; Held 1975; Treguier et al. 1997).

Even in a simple two-layer rigid lid model neglecting

relative vorticity gradients as above, but with a moving

lower layer, (36) is a difficult constraint to satisfy;

k
1

f A � $
h

1

f
5 h

1
u

1
* 5�h

2
u

2
*5 k

2
f A � $

h
2

f
,

h
2

5 H � h
1
, $H 5 0,

gives the constraint (k1 � k2) f A � $(h1/f ) 5 k2A � (0, b).

Thus, even if k1 and A were simple, k2 would have non-

trivial spatial variation.

b. A weakly moving lower layer

Instead of specifying k2 in this simple model, one can

just impose (36) to specify the lower-layer eddy fluxes. A

complete solution of this second-order problem is be-

yond the scope of this paper, but a magnitude estimate

of the lower-layer flow in the Holland and Rhines (1980)

subcritical case (i.e., no outcropping) illustrates the

power of residual mean gyre dynamics. At leading order

u
1
* is nonzero, while u

2
5 u

2
* 5 0. At the next order, the

nonvanishing lower-layer solution will experience upper-

layer forcing via eddy form drag from (36) as well as

bottom drag:

f$C
y
2 5 h

2
$M

2
1 �

b
u

2
� �

2
f f 3 A � $

h
1

f
, (37)

›C
y
2

›x
5 J(h

2
, M

2
) 1 curl �

b
u

2
� �

e
f f 3 A � $

h
1

f

 !
.

(38)

The variable �b 5 Cb/bLH2 is the nondimensional bot-

tom drag coefficient, which is 5 3 1023 in Holland and

Rhines (1980).

Holland and Rhines (1980) discuss a ‘‘turbulent’’

Sverdrup balance in their model, where the �e term acts

as a wind stress and presumably balances advection of

planetary vorticity, ›C
y
2/›x. This balance requires

y
y
2 ;

�
e
›h

1

h
2
›x

, or y
y
2 ;

�
e
f

h
2

›2h
1

›x2
. (39)

In dimensional units, this is

y
y
2 ;

k
1

f

g9H
2

y
y
1 5 2 3 10�3y

y
1, or (40)

y
y
2 ;

k
1

f 2

g9H
2
bL2

›y
y
1

dx
. (41)

The first estimate is orders of magnitude smaller than

the roughly one-fifth velocity ratio found by Holland

and Rhines (1980), and the second is even smaller. Thus,

the vorticity balance in (38) likely involves the baroclinic

forcing term J(h2, M2) that is missing from the usual

Sverdrup balance by integration (see section 4d).

In contrast, if the vorticity Eq. (38) is integrated over a

closed streamline, Rhines and Young (1982b) show that

a balance between bottom drag13 and the interfacial

forcing term—in this case the eddy forcing—results. Over

repeated loops around the closed contour the circulation

is determined. So,

y
y
2 ;

�
e

�
b

y
y
1 ’

2

5
y
y
1, (42)

which agrees roughly with the simulations of Holland

and Rhines (1980) and the idealized midocean gyre of

Rhines and Young (1982b). Furthermore, Holland and

Rhines (1980) found this balance to be the dominant

lower-layer vorticity balance when integrated within

streamlines.

Thus, the amount of vertical shear balances downward

eddy form drag and bottom friction to determine the

equilibrated flow. Recent equilibrated quasigeostrophic

turbulence simulations agree (Arbic and Flierl 2004;

Thompson and Young 2006).

c. Diabatic eddies in the mixed layer

Pedlosky (1987) adds a diabatic transport in a model

similar to the Parsons (1969) model by capping it with an

Ekman flow within an independent surface mixed layer.

The Ekman flow provides pumping to the geostrophic

interior and is allowed to change its density as it moves,

resembling that of the Luyten et al. (1983) model. The

resulting model does not have a separated western

boundary current. By contrast, the adiabatic model above

combines the Ekman and geostrophic flows in the upper

layer to cause separation in (34)–(36).

Nurser and Williams (1990) explore the thermody-

namic implications of allowing the Ekman layer water

to change density classes within the mixed layer (Uc in

Fig. 2). Similarly, Veronis (1978) was successful in per-

turbing the Veronis (1973) adiabatic solution by adding

flow to the western boundary currents with localized

diabatic sinking near the poles (Sn in Fig. 2) and local-

ized diabatic upwelling near the equator (Ss in Fig. 2).

These authors impose heating or cooling in particular

locations and infer the layer transport based on the loss

or gain of fluid.

13 Bottom drag magnitude is again approximated with uy2 ; u2.
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Nurser and Williams (1990) consider all of the dia-

batic forcings in Fig. 2. The essential balance they pro-

pose is that the northward transport of light water east

of the outcrop is Tnorth 5 Te 1 Ti 1 Tw, composed of

the Ekman, interior geostrophic, and western boundary

transport. These flows are schematized in Fig. 2 and are

determined by

T
e
5�(x

e
� x

o
)

t

f r
0

,

T
i
5

g9

2f
[h

2

1,e � h
2

1,i(x
o
)] 5� f

b
(x

e
� x)

›

›y

t

f r
0

,

T
w
5

g9

2f
[h

2

1,i(x
o
)� h

2

1,w].

If the Ekman transport and any additional ‘‘mixed layer’’

flow are allowed to be diabatic, then there must be a

compensating surface buoyancy flux,

U
c
5 � tŷ

f r
0

1 h
m

u
m

� �
� n̂ 5

�aQ
in

C
w

(r
2
� r

1
)/Dl

,

where Qin is buoyancy forcing (scaled as a heat flux in

W m22 into the ocean), a ’ 2.2 3 1024 K21 is the ex-

pansion coefficient, Cw ’ 4000 J kg21 K21 is the heat

capacity of seawater, and Dl is the distance over which

the cooling occurs. Under realistic cooling this thermo-

dynamic forcing increases the separated boundary cur-

rent transport and moves the location of the outcrop

southeastward:

x
o
(y)

diabatic
� x

o
(y)

adiabatic
5

f r
0

t

ðy0

y

U
c

ds.

Here, h1uy1 is the nondivergent time-mean transport.

Generally, layered tracer equations take the form

›

›t
h

i
f

i
1 $ � h

i
f

i
u

i
5 0 (43)

for the tracer concentration f, which could be salinity,

potential temperature, potential density, etc. After av-

eraging, the upper interior layer density equation is14

$ � h
1
r

1
uy1 5�r

1
w

1�. (44)

As in Nurser and Williams (1990), the mass in the upper

layer is diminished by entrainment into the mixed layer

by w
1�. Buoyancy forcing enters through conservation

of mixed layer volume, which is affected by Ekman and

mixed layer flow divergence:

$ � � tŷ

f r
0

1 h
m

u
m

� �
5 w

1�. (45)

What is the physical basis of this mixed layer flow?

Nurser and Williams (1990) do not specify, but it is di-

rected across the mean density gradient at the outcrop so

as to flatten the isopycnal slope, closes the residual circu-

lation transport budget (44)–(45), and responds promptly

to balance surface cooling events. These are characteristic

behaviors of near-surface eddy fluxes, as shown by Ferrari

and Plumb (2003) and Plumb and Ferrari (2005). These

fluxes are cast as an eddy parameterization scheme by

Ferrari et al. (2008).

d. The depth-integrated equations

Rhines and Holland (1979) and Radko and Marshall

(2004) note that in numerical simulations the eddy fluxes

leak away from the boundary into the interior and affect

the vorticity balance there. They analyze an eddy-induced

vortex stretching in addition to the Ekman wind forcing

for the upper-layer vorticity balance. This section shows

that TRM naturally includes this effect.

The Eulerian Sverdrup (1947) constraint is found by

depth integrating and cross-differentiating the momen-

tum equations:

ð0

�H

by dz 5 �
N

i51
by

i
h

i
5 curl

t

r
0

� �
. (46)

An equivalent thickness-weighted version is

�
N

i51
by

i
h

i
5 curl

t

r
0

� �
. (47)

Equations (46) and (47) are equivalent because of the

constraint (36), as

�
N

i51
b(y

i
h

i
� y

i
h

i
) 5 b �

N

i51
h9

i
y9

i
5 0. (48)

However, consider the upper-layer flow over a weakly

moving abyss as in section 4b. At leading order, cross-

differentiation eliminates the Montgomery potential, to

wit,

curl(h
1
$M

1
) 5 curl[$(g9h

�2

1 /2)] 5 0.

14 A term �$ � (ui � uyi )[fi � (hifi/hi)] that might appear in the

mean tracer equation is addressed carefully by Dukowicz and

Greatbatch (1999) and Lee (2002) for the case of general tracers.

Here the tracer (potential density) is constant in each layer and this

term vanishes.
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It is trivial to add the eddy momentum forcing to the

wind forcing in the residual mean formulation, and thus

the upper-layer vorticity equation is

bh
1
y
y
1 5 curl(h

1
F

1
1 h

1
E

1
) 6¼ bh

1
y

1
. (49)

This vorticity balance will hold whether or not strong

eddy forcing is present. The thickness-weighted upper-

layer vorticity equation resembles the thickness-weighted

Sverdrup relation (47).

Approaching the same problem in the Eulerian mean

formulation, cross-differentiation of the Coriolis term

leaves bh
1
y

1
and f$ � h

1
u

1
5�f$ � h9

1
u9

1
. Thus, the

upper-layer Eulerian vorticity equation is unlike the

Eulerian Sverdrup relation (46). The ‘‘leaky thermocline’’

theory of Radko and Marshall (2004) uses a seemingly

diapycnal transport ~w1� to account for this term:

~w
1�5�$ � h9

1
u9

1
. (50)

Careful diagnosis of f ~w1� results in a similar term15 to

curl (h1E1) found trivially in (49). However, the quantity
~w

1� is not an indicator of true diapycnal exchange or

leakiness. For example, it is nonzero in the boundary

current vorticity balance (26) despite the strictly adiabatic

conditions there. In the real ocean some interior dia-

pycnal transformation results from diffusion–mesoscale

interaction, as Radko and Marshall (2004) also suggest.

In TRM this latter physical effect, which produces w1� in

the thickness-weighted mean Eq. (3) and a corresponding

vortex stretching term f w
1� in (49), is distinguished from

the kinematic effect of f ~w
1� that appears only if the

Eulerian mean velocity is used.

Similarly, the depth-integrated momentum equations

here resemble the steady Stommel (1948) model, as

eddy momentum transfers from layer to layer cancel out,

leaving only wind stress and bottom drag (the Antarctic

Circumpolar Current has a similar depth-integrated bal-

ance as shown by Johnson and Bryden 1989). Unlike the

barotropic Stommel model, vertical shear is permitted at

density interfaces with a magnitude consistent with the

Margules relation and controlled by the eddy form drag as

in (42). Only in an eddy-resolving or eddy-parameterizing

model can the shear be quantified.

e. Boundary conditions and global constraints

The treatment of eddies here is more realistic than in

previous models. However, it should be noted that in-

ertial terms are neglected by assuming that eddy and

mean scales exceed the deformation radius. Relaxing

this constraint defies eddy parameterization, because

the neglected terms (e.g., $K
i
) are unlikely to be down-

gradient or local (Holland and Rhines 1980; Berloff

2005). Global constraints on the vorticity are used in

the literature to indicate global inertial behavior, but

O(1) variations in layer depth are usually ignored (e.g.,

Harrison and Holland 1981; Fox-Kemper and Pedlosky

2004).

By integrating (5) around a streamline of C
y
i , the only

remaining nonzero terms are

þ
F

i
� dl 5

þ
h

i
P9

i
u9

i
� n̂ ds. (51)

Thus, as in Fox-Kemper and Pedlosky (2004), an im-

balance in wind and friction torque around the stream-

line (both part ofF ) may be kept in check by an outward

eddy flux of potential vorticity. However, at the stream-

line that coincides with the boundary of the domain

P9
i
u9

i
� n̂ 5 0, so ultimately all of the vorticity input by the

wind must be removed frictionally.

The eddy-resolving models of Berloff (2005) and Fox-

Kemper (2004) reveal a layered structure of eddy fluxes

near the boundary, which one expects to be true with

O(1) depth variations as well. The seaward boundary

layer is the one parameterized here, where potential

vorticity fluxes of thickness tend to flatten the iso-

pycnals. At a deformation radius from the boundary,

thickness PV fluxes are exchanged for relative vorticity

PV fluxes. Finally, in a viscous sublayer, relative vor-

ticity PV fluxes are removed from the basin frictionally.

Interestingly, the outcrop line does not behave as

a rigid boundary in this regard: the eddy flux into the

separated boundary current P9i u9i � n̂ need not be zero.

One layer may exchange PV with the next at the bound-

ary, as PV impermeability (Haynes and McIntyre 1987) is

easily overcome at the boundary. Indeed, the parame-

terization used here predicts a large flux into the outcrop

where $ f /h1 takes a large value. This outcrop PV flux may

be related to the mixed layer flow in section 4c above. Just

as for heat transfer, surface diabatic effects must be in-

volved and thermodynamic constraints must be satisfied

(Marshall and Nurser 1992).

5. Conclusions and summary

A reconciliation of the residual, or thickness-weighted,

mean and the traditional steady wind-driven gyre model

initially studied by Parsons (1969) reveals that most of the

traditional solution methods proceed with little modifi-

cation. The interpretation of the solutions, however, is

unfamiliar as the thickness-weighted mean velocity (not

the Eulerian mean velocity) plays the role of the steady15 This is aside from relative vorticity contributions.
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velocity. The thickness-weighted mean velocity appears

because its transport is nondivergent even in an eddying

flow, unlike the Eulerian mean. It is shown that an ‘‘eddy

form drag’’ results from a realistic parameterization of

along-isopycnal eddy fluxes of potential vorticity and

plays the role of the unrealistically large interfacial

friction typically found in steady models.

The boundary layer width of the upper-layer flow

based on eddy statistics is found to be

d
b

5
k

c
R

1

ŝ � ŷ , (52)

where cR is the long Rossby wave phase speed, and k is

the eddy diffusivity normal to the boundary current.16

This boundary layer width holds if k varies, so long as the

variation across the boundary current at a given location

is small. Formally, this scaling was shown to hold only

when it exceeds the deformation radius. This boundary

layer width is comparable to an eddy mixing length scale

if the typical eddy velocity is taken to be the long Rossby

wave speed.

This model sheds light on the behavior of eddies in the

gyre circulation. An important constraint—that eddies

only rearrange and do not create momentum—is shown

to be crucial to recover the traditional Sverdrup (1947)

relation upon integration over the total ocean depth.

However, eddies do redistribute momentum in the

vertical, as shown by (49). To maintain a Sverdrup-like

upper-layer vorticity equation under the effects of eddies,

the thickness-weighted mean velocity may be used.

Inertia is a crucial aspect of gyre flows missing from

this simple model, which was chosen primarily to illus-

trate, not simulate. Relatedly, the eddy parameteriza-

tion here allows eddy PV fluxes through the boundary,

while resolved eddies must transfer these fluxes to fric-

tional or diffusive ones as in the second case studied by

Fox-Kemper and Pedlosky (2004). Perhaps an extension

including the eddy advection of eddy relative vorticity—

at least for weak eddies—is possible using a similar form

of eddy parameterization to that used here [see (10) and

Plumb 1990]. Even so, the mean advection of mean

relative vorticity usually requires numerical simulations

(e.g., Cessi and Ierley 1995; Speich et al. 1995) or ana-

lytic methods beyond the treatment here (Charney 1955;

Huang 1990).
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