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Abstract

Understanding the mechanistic basis of transcriptional regulation has been a central focus of molecular biology since its
inception. New high-throughput chromatin immunoprecipitation experiments have revealed that most regulatory proteins
bind thousands of sites in mammalian genomes. However, the functional significance of these binding sites remains
unclear. We present a quantitative model of transcriptional regulation that suggests the contribution of each binding site to
tissue-specific gene expression depends strongly on its position relative to the transcription start site. For three cell types,
we show that, by considering binding position, it is possible to predict relative expression levels between cell types with an
accuracy approaching the level of agreement between different experimental platforms. Our model suggests that, for the
transcription factors profiled in these cell types, a regulatory site’s influence on expression falls off almost linearly with
distance from the transcription start site in a 10 kilobase range. Binding to both evolutionarily conserved and non-
conserved sequences contributes significantly to transcriptional regulation. Our approach also reveals the quantitative,
tissue-specific role of individual proteins in activating or repressing transcription. These results suggest that regulator
binding position plays a previously unappreciated role in influencing expression and blurs the classical distinction between
proximal promoter and distal binding events.
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Introduction

Control of gene expression programs across diverse tissues and

developmental stages is achieved through networks of proteins

interacting with specific regulatory sites in the genome. Pioneering

work on several individual promoters, including those of beta-

interferon [1] and endo16 [2] have revealed that the relationship

between binding events and transcriptional outcomes can be quite

complex. The advent of chromatin immunoprecipitation (ChIP)

coupled with high throughput microarray (ChIP-chip) or sequenc-

ing (ChIP-seq) technology has highlighted the challenges of

understanding transcriptional regulation. These technologies

have been used to map binding sites on a genome-wide scale

[3,4,5,6,7,8,9,10], and have shown that regulatory proteins

typically bind thousands of genes. As might be expected, given

the importance of combinatorial control in well-studied promoters,

only a subset of the detected regulator binding sites are functional,

while many binding events play no direct role in determining

transcription levels [11]. A further complication arises from the

observation that distal enhancers, which can be located many

kilobases from transcription start sites, can be important drivers of

expression [12,13] thereby vastly increasing the number of binding

events that must be considered potentially functional for each

gene. Moreover, it is usually unclear which binding events regulate

which genes. In this study, we present a new model of

transcriptional regulation that addresses these key challenges.

We identify sites of combinatorial control by performing high

throughput ChIP experiments on p300, CREB-binding protein

(CBP), the deacetylase SIRT1 and on multiple DNA-binding

transcription factors in three different tissues. We then develop a

simple framework that predicts the quantitative effect of binding

on gene expression and reveals the relative contributions of each

protein to the combinatorial control of transcription. Remarkably,

we find that the effect a regulatory site has on a gene’s expression

is, to a large extent, dependent on its proximity to the gene’s

transcription start site.The model predicts that both conserved and

non-conserved sites have important roles in determining tran-

scription outcomes. Further, we find that the data better support a

model where individual regulatory sites affect the expression of

multiple nearby genes than a model where these sites regulate only

the most proximal gene.

Results

Identification of regulatory regions
We identified sites of combinatorial control by performing ChIP

on samples from mouse liver and 3T3-L1 cells using an antibody

specific to p300, which has been used similarly in previous studies

[8,9], as well as antibodies for several proteins with transcriptional

activation function in these cell types (Table 1) and by analyzing

previously published data for PPARc and RXR in 3T3-L1 cells

[14]. Immunoprecipitated DNA was sequenced, the 35bp reads
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were aligned to the reference mouse genome, and regions

with significant levels of binding relative to a set of control reads

were identified. We also performed ChIP-chip experiments in liver

and cerebellum using an antibody specific to CBP, a transcrip-

tional coregulator closely related to p300, using promoter

microarrays.

The ChIP-seq analysis identified 22,191 and 7,821 sites bound

by p300 or at least two other regulators (which we will refer to as

putative regulatory regions) in liver and 3T3-L1 cells respectively

(see Methods). The vast majority of these sites occur within 100kb

of known genes but most are located outside of the proximal

promoter (Figures 1 and 2 in Text S1): 92% of regulatory sites in

liver and 93% in 3T3-L1 cells occur outside the 500bp window

centered on each transcript’s transcription start site (TSS). The

ChIP-chip promoter array experiments revealed 3,326 and 3,187

CBP-bound regions in liver and cerebellum; 70% of these sites in

liver and 51% in cerebellum occur outside the proximal promoter.

Several sites directly overlap previously characterized transcrip-

tional enhancers [15,16,17,18,19,20,21] (Figure 3 in Text S1).

Binding proximity predicts transcription
Understanding the relationship between regulator binding and

transcription is a complicated task. We find that binding within 5

kilobases (kb) of a gene’s transcription start site (TSS) is associated

with higher transcript levels (Figure 1A), however it provides

limited information about the magnitude of tissue-specific

transcription levels. Bound genes display a wide range of

expression values (Figure 1B). This variation may be explained,

in part, by the action of distal regulatory sites located further than

5kb from the gene. However, as we begin to consider binding

events further from the TSS the situation becomes increasingly

complicated as more, potentially non-functional, binding sites

become associated with each gene. It is also difficult to associate

binding events with the genes they regulate. For example,

approximately 41% of regulatory sites identified in liver and

45% in 3T3-L1 cells are located within 50 kb of the TSS of two or

more genes.

The problem of identifying functional regulatory regions has

been addressed using sequence conservation [22,23]. We found

that bound regions vary significantly in their degree of sequence

conservation (Figure 1C) and wished to explore whether more

highly conserved sites were more likely to be functional. When we

examined the mean expression level of genes in each tissue as a

function of the conservation level of nearby binding events, we

found a weak or non-existent relationship (Figure 2A).

Previous computational models of transcriptional regulation

have frequently ignored the effect of distance between a binding

site and a gene [24,25,26] or have considered location only for the

purposes of detecting positional binding preferences of proteins in

the proximal promoter [27,28]. Previous approaches have also not

accounted for the effect of very distal binding sites on expression.

Interestingly, we find that transcription levels are correlated with

the proximity between a gene’s TSS and the closest bound region

(Figure 2A), and that this statistical relationship persists over tens

of kilobases (Figure 2B). Surprisingly, this relationship is even

observed at a distance resolution of hundreds of nucleotides within

the proximal promoter (Figure 4 in Text S1). To further

understand the relationship between expression and regulator

binding location we developed a simple quantitative model that

predicts transcription level as a function of transcription factor

binding position. We assume that the mean expression level of a

gene is determined by contributions from all individual regulatory

sites in the vicinity of that gene, and that each regulatory site may

regulate the expression of multiple genes. The functional relevance

of a region depends on its position relative to the TSS; this

relationship takes the form of an influence function that is fit to the

data during model training. This approach allows proximal sites

to be treated differently than distal sites, or upstream and

downstream sites to be treated differently. We first used our

model to predict the absolute expression levels of genes in liver and

3T3-L1 cells from the location of p300 and clustered transcription

factor binding sites. We considered all binding events located

within 100kb of each gene’s TSS. The correlation between

predicted and observed transcript abundance in held-out test data

is highly statistically significant (Table 1 in Text S1). Notably, the

predicted relationship between position and expression influence is

nearly identical in both cell types (Figure 2B). The influence of an

enhancer falls off approximately linearly as the position moves

further away from the TSS. Sites located within approximately

10kb of the TSS are statistically associated with the highest

transcription levels, and regulatory regions located upstream of

the TSS are predicted to have a somewhat greater effect on

transcription than downstream events. Although proximal sites

have the greatest influence, binding sites located up to 50kb away

Table 1. Anti-sera used in ChIP experiments.

Protein Antibody Source Cell types

CBP sc-369X Santa Cruz liver, cerebellum

C/EBPa sc-9314X Santa Cruz liver, 3T3-L1

E2F4 sc-1082X Santa Cruz liver, 3T3-L1

FOXA1 ab5089 Abcam liver

FOXA2 sc-6554 Santa Cruz liver

p300 sc-585 Santa Cruz liver, 3T3-L1

pCREB sc-7978X Santa Cruz liver

Sirt1 sc-19857 Santa Cruz cerebellum

doi:10.1371/journal.pcbi.1000773.t001

Author Summary

Gene expression is controlled, in large part, by regulatory
proteins called transcription factors that bind specific sites
in the genome. A major focus of molecular biology has
been understanding how these transcription factors
interact with the cell’s transcriptional machinery, the
genome, and with each other to turn genes’ expression
on and off in various physiological contexts. Previous
approaches for modeling transcriptional regulation have
focused on the complex combinatorial interactions be-
tween groups of transcription factors at regulatory sites, or
on the specific activating or repressive functions of
individual proteins. In this work, we present a new
modeling framework and demonstrate that an equally
important, and previously overlooked, consideration in
predicting the effect that a regulatory site has on gene
expression is simply its location relative to the transcrip-
tion start site of nearby genes. Our results show that, in
general, the closer a binding event is to a gene’s
transcription start site, the more it influences expression.
We also show that considering the particular proteins
bound at a regulatory site helps predict the expression of
nearby genes. However, considering the sequence con-
servation level of these sites does not lead to more
accurate predictions.

Regulator Binding Position Predicts Expression
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Figure 1. Characteristics of bound genes and bound regions. Putative regulatory regions in liver and 3T3-L1 cells were identified from ChIP-
seq experiments and are defined as sites bound by p300 and/or at least two other transcription factors. We performed a similar analysis in liver and
cerebellum using ChIP-chip with promoter microarrays, where a regulatory region is defined as any site bound by CBP. (A) Genes with a regulatory
region within 5kb of their transcription start site have a higher mean expression level than genes with no binding event. Error bars indicate +/2 s.e.m.
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from the TSS are predicted to have a significant effect on

transcription, consistent with previous observations that enhancers

may act at very long distances to affect expression [12,13].

Predicting differential expression level
If the location of a regulatory site does, in fact, have a large

effect on gene expression, then changes in gene expression between

cell types should be associated with changes in the location of

binding sites. To examine this question, we used all the liver and

3T3-L1 binding events identified in ChIP-seq experiments to

predict relative expression of differentially expressed genes in these

cell types. We find that regulatory sites located within 10kb of

differentially expressed genes are more likely to be unique to a

single tissue than those in the vicinity of non-differentially

expressed genes (Table 2 in Text S1). Genes that exhibit no

difference in expression are also much less likely to be bound than

differentially expressed genes: 7,628 of 15,568 non-changing genes

had no putative regulatory site within 10kb of their TSS,

compared to only 417 of 2,124 differentially expressed genes. In

order to evaluate the importance of binding site position in

predicting the functional relevance, we compared our model’s

performance to two competing models: one that weighted binding

events equally regardless of position (as was done in all previously

published studies), and a second that weighted the contributions of

bound regions by sequence conservation, allowing highly con-

served regulatory regions to be weighted differently than regions

with low conservation. We fit each model using two-thirds of the

bound, differentially expressed genes, and evaluated their ability to

predict the magnitude of expression differences for the remaining

third of the genes, repeating this process 100 times using randomly

sampled test and training data.

The position-based model of transcription produces significant-

ly more accurate predictions than the uniform weighting and

the conservation-based approaches (Figure 3). To evaluate the

importance of distal binding events in predicting expression, we

identified bound genes using several distance cutoffs, ranging from

the 1kb proximal promoter to a distance of 100kb from the gene’s

TSS. The position-based model out-performs the other models

across a wide range of distance windows. At the 100kb cutoff,

2,205 of the 2,309 differentially expressed genes identified are

bound in at least one tissue (Figure 3). Even when including these

very distal sites in the analysis, many of which are presumably

non-functional, our predictions have a median correlation of 0.69

with observed expression levels of held-out test genes compared to

0.58 for the conservation-based model and 0.57 for the model that

weights binding events uniformly. This value approaches the

correlation level observed for relative expression measurements

made using different experimental platforms [29,30] and indicates

that regulatory site position has a substantial effect on transcrip-

tion levels in these. As a further control, we performed an

additional 100 bootstrap trials with randomly permuted expres-

sion values across differentially expressed genes. In these trials, our

model’s prediction accuracy was statistically no better than a

strategy of predicting the mean expression value in the training

set.

Including binding events up to 50kb away from the TSS

improves expression predictions, demonstrating the importance of

these distal sites. However, weighting the influence of each

regulatory region appropriately is crucial; the models that do not

consider position both show a drastic deterioration in prediction

accuracy as the distance cutoff increases. Interestingly, the simple

uniform weighting model performs about as well as the model that

weights sites by sequence conservation, indicating that conserva-

tion is of limited use in identifying functional binding events from

ChIP data.

To address whether these data support the hypothesis that

individual regulatory sites regulate multiple genes, we compared

the prediction accuracy of our model to one where regulatory

sites are assumed to regulate expression of only the closest

transcript. We first associated binding events in liver and 3T3-L1

cells to transcripts, assuming they regulate only the nearest gene.

We then trained our position-based transcriptional model and

predicted the expression of held-out genes. These predictions

were compared to those obtained, for the same set of genes,

without the constraint that a site regulates a single gene. The

difference in prediction accuracy is dramatic. The mean-squared

prediction error over 100 bootstrapped trials was 0.73+/0.03 s.d.

when we assume that binding events regulate only the closest

gene. This improved by approximately 8 standard deviations to

0.48+/20.02 s.d. for a model where binding events may regulate

many genes.

Binding at regions with low sequence conservation is
functional

To further explore the role of non-conserved regulatory sites we

identified bound regions in each tissue that showed low sequence

conservation levels, using the conservation threshold that best

distinguished bound regulatory regions from randomly selected

DNA sequences (Figure 5 in Text S1). At this threshold,

approximately 59% of sites from ChIP-seq experiments in liver

and 47% in 3T3-L1 cells are non-conserved. Similarly, 44% of

CBP sites in liver and 28% of sites in cerebellum are non-

conserved. Genes located within 5kb of these sites in our

experiments were associated with high levels of gene expression

(Figure 6 in Text S1). Next we identified 261 differentially

expressed genes in liver and 3T3-L1 cells bound (within 50kb) at

only non-conserved regions. In a similar fashion, we identified 884

differentially expressed genes bound only at non-conserved regions

by CBP in liver and cerebellum. We performed the training and

test procedure described above and determined whether the

locations of these non-conserved sites predicted gene expression

(Figure 4A). In both liver/3T3-L1 cells and in liver/cerebellum the

position of non-conserved binding is a strong predictor of relative

expression level. Our predictions have a mean correlation of 0.56

with observed expression values in liver/3T3-L1, significant at

p,2.6e-9 by a right-tailed t-test. In liver/cerebellum the mean

correlation is 0.57, significant at p,5.4e-26. We then repeated the

analysis using an even more stringent conservation threshold (see

Methods) and found that non-conserved sites were still highly

predictive of expression (Figure 4A). We also examined genes

bound at both conserved and non-conserved sites within 100kb of

their TSS and asked whether the conserved sites alone were

adequate to predict expression. We first predicted expression using

only conserved sites and then repeated the analysis using all bound

regions. Underlining the importance of non-conserved regulatory

regions, we find that considering both the conserved and non-

conserved sites results in significantly more accurate predictions

(Figure 4B).

(B) Bound genes display large variation in levels of absolute gene expression. (C) Putative regulatory regions show great variation in their sequence
conservation levels. Conservation level was calculated as the maximum 100bp moving average of Phastcons scores from alignments of placental
mammal genomes.
doi:10.1371/journal.pcbi.1000773.g001
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Revealing the role of specific regulators
Although binding site position is very important in determining

expression influence, the function of a regulatory region is also

determined by the particular transcription factors that bind to it.

We therefore extended our transcriptional model so that the

relevance of any particular regulatory site was determined by

both its location and the particular regulators that were bound.

Each protein’s effect on transcription was estimated by including

a protein-specific weight that modulated the expression influence

of the site. We tested this approach on ChIP-seq and expression

data in liver and 3T3-L1 cells, including binding data for an

additional regulator, E2F4, in each tissue. We estimated the

influence of p300, C/EBPa, FOXA1/A2, and E2F4 in liver, and

p300, C/EBPa, PPARc/RXR, and E2F4 in 3T3-L1 cells. In

total, 2,038 differentially expressed genes were analyzed. Our

predictions have a median correlation of 0.74 with observed

expression differences on held out test data, ranging between 0.72

and 0.76 in 11 separate trials (Figure 5). Our simple predictive

framework remarkably accounts for over 50% of the variance in

observed relative expression levels, and gives better predictions

than a model that considers only binding site position. The

influence learned for each protein provides evidence of its

function in these cell types. For example, C/EBPa is associated

with the strongest activation in both cell types, in agreement with

its well-characterized role in these cell types [31]. In contrast

E2F4 is associated with the lowest levels of activation in both cell

types; its influence weight of 0.52 in liver indicates that it actually

attenuates an enhancer’s effect on expression in this tissue,

Figure 2. Binding site position, but not sequence conservation, is strongly associated with gene expression level. (A) The mean log
expression of bound genes is shown in each tissue as a function of both the distance between the transcription start site and the nearest regulatory
region identified by ChIP, and the maximum conservation score of any regulatory region within 5kb of that gene’s TSS. Error bars indicate +/2 s.e.m.
Also shown is the Spearman correlation, and associated p-value from a right-tailed t-test, between log expression and the distance and conservation
measures. (B) In the upper plot the mean log expression of genes in liver and 3T3-L1 cells is shown as a function of the location of the nearest binding
site over a 200kb window. Error bars indicate +/2 s.e.m. In the lower plot we show the influence function, which measures a binding event’s
predicted effect on expression as a function of position, obtained by fitting our predictive model to 1,000 bootstrapped samples of ChIP and
expression data in each tissue. Shaded regions show the empirical 99% confidence intervals obtained from the bootstrap iterations.
doi:10.1371/journal.pcbi.1000773.g002
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consistent with its previously described transcriptional repressor

activity [32]. We performed a similar analysis in liver and

cerebellum by collecting ChIP-seq data for the histone deacety-

lase Sirt1 in cerebellum, and ChIP-chip data for the transcription

factor pCREB in liver. Modeling the different transcriptional

influences of CBP sites that are also bound by pCREB or Sirt1

resulted in more accurate expression predictions. The median

correlation between observed and predicted expression difference

in liver and cerebellum was 0.65, ranging between 0.62 and 0.68

over 11 separate trials. Sirt1 has the opposite enzymatic activity

to CBP/p300, and is known to repress p300 activation of

transcription in certain contexts [33]. As expected, sites in

cerebellum that are bound by Sirt1 have only about half as much

influence on expression levels as CBP sites that do not recruit

Sirt1. In a separate analysis, we modeled the effect of CBP

binding affinity on expression influence, up weighting sites with

higher ChIP enrichment ratios (Text S2). Accounting for the

effect of binding affinity results in a very significant 15.5+/21.3%

mean improvement in prediction accuracy over ten separate

trials.
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improved performance in both tissue pairs. Error bars indicate +/2 s.e.m.
doi:10.1371/journal.pcbi.1000773.g004
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Discussion

In this study, we address a central problem in the study of

transcriptional regulation by developing a model that reveals the

function of transcription factor binding sites in terms of their

genomic position and the particular regulators they bind.

Experimental approaches combining ChIP with microarray

and sequencing technologies have led to tremendous progress in

mapping transcriptional regulatory sites across the genome.

However, progress in determining the function of these sites has

been slower. In part this is because static maps of regulator binding

give an incomplete picture of the complexity that arises from

dynamic signaling and binding events, but progress has also been

slowed by the absence of a simple framework that links regulatory

network architecture (as defined by the location of regulatory

regions in the genome) to transcription.

To understand the functional role of these regulatory sites, we

developed a simple model that accurately predicts the expression

difference between cell types based only on binding site posit-

ions. The correlation of the predictions with measured values

approaches the correlation observed between different experimen-

tal platforms and can remarkably explain over half the variance

in the relative transcription levels of differentially expressed

genes.

Previous work has suggested that functional transcription factor

binding sites tend to cluster near the transcription start site (TSS)

of the genes they regulate [34,35,36]. Our results agree with these

observations; binding events that are very close to the transcription

start site are predicted to have a disproportionately large effect on

expression. However, many genes show large differences in tissue-

specific expression that are apparently driven by much more

remote events as evidenced by our ability to predict these
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Figure 5. Transcriptional regulators have distinct influences on expression. (A) Shown are representative scatter plots of predicted vs.
observed expression differences for held out test genes in liver/cerebellum and liver/3T3-L1 cells. Predictions were made using a transcriptional
model that takes into account the influence of both the genomic position and the particular proteins bound by a site. The median correlation from 11
separate trials was 0.65 and 0.74 for liver/cerebellum and liver/3T3-L1 respectively. (B) The prediction error of the full model that includes individual
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transcriptional model. Sites bound by proteins with known repressive activity (E2F4 and Sirt1) are predicted to have the smallest influence.
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differences even when no binding event is detected within 1kb of

the TSS (Figure 7 in Text S1). For the proteins and tissues

analyzed in this study, a regulatory site’s position relative to a

gene’s transcription start site appears to be an extremely important

determinant of its effect on that gene’s expression. Although we

are aware of an in vitro study where a falloff in transcription rate

was observed as a regulatory site’s location was moved further

from the TATA box over a range of approximately 100bp in a

series of reporter constructs [37], to our knowledge the intriguing

effect of position has not been previously reported as a general

feature of transcriptional regulation in an in vivo system.

Interestingly, our analysis supports a model where binding

events frequently regulate the expression of multiple genes over

one where bound regulators affect the expression of only the

most proximal gene. Based on our observation that binding

sites located within 50kb of a gene significantly influence its

expression level, we estimate that approximately 40–45% of

regulatory sites may affect the expression of more than one

transcript.

In contrast to the strong relationship between the location of

binding and transcription, there is little relationship between

sequence conservation and expression. Including binding to non-

conserved sequences in our models improves their accuracy

significantly over models built using only binding to conserved

sequences. Previously we, and others, have shown that the sites

targeted by individual DNA-binding proteins can vary across

species even when tissue-specific gene expression is conserved

[38,39]. Taken together, these findings suggest that organisms

can achieve similar gene expression patterns through diverse

mechanisms. Because transcription integrates binding events that

are distributed over great distances, there is a reasonable prob-

ability that the evolutionary gain or loss of regulatory regions at

one locus can be compensated for by mutations at other sites.

More work is needed to determine whether the quantitative

relationship between binding and expression is similar across

mammals.

Regulatory sites have been classically divided into promoter-

proximal elements, which are within approximately 200 base

pairs of the start site, and enhancer elements [40]. Surprisingly,

we find an almost linear decrease in the effect of a regulatory site

over a region of many kilobases, encompassing both proximal

promoters and distal enhancers. Our results suggest that a more

critical distinction may be between those binding events within or

beyond 50 kilobases and that the net transcription level of a gene

is the result of integrating a potentially large number of binding

events.

The results presented here represent a significant step towards

a quantitative framework for understanding gene expression.

The statistical relationship between enhancer position and

transcription level is clear, and this observation should lead to

more accurate models of transcriptional regulation. However,

many other factors have a profound effect on enhancer function

including which coregulators are recruited, the nuclear concen-

trations of transcription factors, binding of small molecules that

modulate enzymatic activities and interaction surfaces, and

any signaling events leading to post-translational modification of

regulators. In addition, it is possible that different types of

enhancers exist that vary in the relationship between enhancer

position and transcription level. Enriching the modeling

framework presented here by incorporating additional types of

data that address these questions (e.g. CTCF enhancer binding

sites) may lead to a greater understanding of regulatory

networks and their relationship to developmental and disease

processes.

Methods

Chromatin immunoprecipitations
Male C57BL/6J mice were purchased from Taconic. Animals

were provided with water and chow without restriction. Hepato-

cytes were harvested by direct perfusion of the liver in

anaesthetized animals using PBS, followed by crosslinking with a

1% formaldehyde solution. The liver was then removed and

crosslinked for another 10 minutes followed by neutralization with

glycine. This cellular material was homogenized, washed and

passed through a sucrose gradient to enrich for hepatocytes. These

were rinsed with 16 PBS, pelleted, and either used directly in

ChIP experiments, or frozen in liquid nitrogen for later use.

Mouse cerebella were harvested from male C57BL/6J mice and

crosslinked, homogenized, and neutralized in a similar manner.

Murine preadipocyte 3T3-L1 cells were induced to differentiate to

mature adipocytes using a standard protocol [41] cross linked for

ten minutes and then quenched with glycine. ChIP experiments

were performed as previously described [6,42] using antisera listed

in Table 1.

Processing of ChIP data
ChIP-seq analysis of immunoprecipitated DNA was carried

out using the standard Illumina protocols and analysis pipeline.

The enrichment of genomic regions for protein binding was

assessed relative to a set of control reads obtained by sequencing

unenriched whole-genome DNA. Bound regions were identified

using the MACS algorithm [43] with a calculated alignable genome

size of 2.107 Gbp [9] and an enrichment p-value cutoff of 1e-6.

After scanning, ChIP-chip data from Agilent proximal promoter

arrays were analyzed using the Redwing algorithm. Redwing

extends a previously presented analysis framework [44] and is

detailed in Text S2. Binding scores were obtained by convolving

Redwing’s binding estimates with a 400bp rectangular window.

These smoothed binding scores were compared to scores obtained

by analyzing randomly permuted probe intensity data for each

experiment. Scores with an estimated FDR of , = 0.05 based on

these randomizations were used to identify bound regions.

Microarray expression data
RNA from mouse liver and cerebella was hybridized to

Affymetrix Mouse Genome 430 2.0 arrays and analyzed as per

the manufacturer’s recommendations. Expression data was

normalized using GCRMA [45]. Differential expression was

assessed using Limma [46]. An adjusted p-value of 1e-3 was used

to identify differentially expressed genes. Expression data for

untreated, differentiated mouse 3T3-L1 cells was obtained from a

previously published study [47]. Each probe set on the array is

treated independently as a separate gene, and the array

manufacturer’s annotation data was used to obtain the TSS of

the transcript targeted by the probe set. We note that the majority

of the differentially expressed genes analyzed in this work mapped

to a single probe set. In the liver/3T3-L1 analysis 1,818 genes

were represented by a single probe set, while 120 were represented

by more than one probe set. In the liver/cerebellum analysis 2,515

genes were represented by a single probe set and 384 were

represented by multiple probe sets.

Identification of nonconserved bound regions
We measured conservation levels in each bound region using

Phastcons scores for 14-way alignments of placental mammals

obtained from the UCSC Genome Browser. For each sequence we

calculated a 100bp moving average of Phastcons scores and took

the maximum observed value as the conservation score for that
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sequence. We then scored 20,000 sequences randomly selected

from the mouse genome in an identical fashion. The conservation

threshold of 0.35 was selected by determining the conservation

level that best distinguished random sequences from bound sites in

each dataset (Figure 6 in Text S1). Approximately 70% of random

sequences fell below this threshold. We then identified a more

stringent threshold, of 0.13, passed by only 35% of random

sequences.

Predictive model of expression from enhancer location
A transcript’s expression rate is assumed to be a function of

contributions from enhancers in the vicinity of the transcript’s start

site. The magnitude of an enhancer’s effect on expression depends

on its distance to the TSS. This is described by an influence

function that we learn from the data. We also tested a similar

model where, instead of fitting the influence function using binding

position, we fit a curve using the conservation levels of binding

events, allowing us to differentially weight regulatory regions with

varying levels of sequence conservation. The model was further

extended by allowing an enhancer’s effect on expression to be

modulated by the specific regulators bound through an influence

weight, or by the affinity of a protein for the site (as measured by a

ChIP enrichment ratio). These extensions are fully described in

Text S2.

Modeling absolute expression levels
Our goal is to predict log absolute expression level, as measured

by a microarray experiment, using predicted enhancer locations.

The rate of expression of a transcript, k1, is assumed to be a

function of its basal expression rate, k0, and the action of nearby

enhancers:

k1~elk0

l~
X

enhancers

aif dið Þ
ð1Þ

Each enhancer is assumed to contribute additively to the

expression rate modifier, l. The effect that enhancer i has on

this modifier is a function of its distance to the TSS, di. It may also

depend on other considerations, for example, the particular

regulators bound at the enhancer. Such effects are subsumed into

the parameter ai, which unless otherwise specified, is taken to be 1.

We assume 0th order kinetics of mRNA production with rate

constant k1, and 1st order mRNA degradation kinetics with rate

constant k2. We further assume that, measured across the

population of cells, these processes are in equilibrium. The log

transcript abundance is then given by:

k2 A½ �~elk0, log A½ �~lzlog k0=k2

� �
ð2Þ

The log intensity levels, y, from the Affymetrix arrays are noisy

measurements of these transcript abundances. The mean squared

error between the N observations and model predictions is given by:

MSE~
X

i

yi{l{log kb=k2

� �� �2=N ð3Þ

We now express the enhancer influence function f(d) using a basis

set of P 3rd order B-splines [48]:

f dð Þ~
XP

k~1

ckBk dð Þ ð4Þ

Assuming that the term incorporating a transcript’s basal expression

rate and degradation rate, log(k0/k2), can be ignored leads to the

following expression for MSE:

MSE~
X

i

yi{
X

k

ck

X
j

Bk di,j

� � ! !2

=N ð5Þ

The innermost sum over values of the B-spline basis functions for

each enhancer position can be pre-computed. We introduce a

penalty on an approximation to the integrated square of the 2nd

derivative of the fitted function to control complexity. The objective

function we wish to minimize, F, then becomes:

F~
X

i

yi{
X

k

ckbi,k

 !2

zsL ð6Þ

Here bi,k are the pre-computed B-spline value sums over enhancers

for basis function k and transcript i, s is a regularization parameter

that controls complexity, and L is the penalty term. The parameters

defining the shape of the influence function, ck, can now be

estimated by solving the system of equations:

BT y~ BT BzsDT D
� �

c ð7Þ

where D is a matrix representation of the penalty term [48].

Modeling relative expression levels
To predict relative expression levels between cell types a and b,

we assume that basal expression rate and degradation rate for each

transcript is identical in both cell types. The log fold change in

expression, y, is then given by:

k2 A½ �a~ela k0, k2 A½ �b~elb k0

log
A½ �a
A½ �b

~la{lb

ð8Þ

and the mean-squared error is given by:

MSE~
X

i

yi{ la{lbð Þð Þ2=N

~
X

i

yi{
X

k

ck

X
j

Bk da
i,j

� �
{
X

n

Bk db
i,n

� � ! !2

=N

ð9Þ

Here enhancers present in tissue a are indexed by j, while those in

tissue b are indexed by n. The influence function parameters are

then solved as described above.

Training and testing
For training, all genes with an enhancer within 100kb of the

TSS were assembled. In each round of cross-validation, two thirds

of these genes were randomly assigned to the training set, while

one third were used for testing. Log expression values were mean-
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centered and normalized by the standard deviation. When

training and validating models of differential expression between

cell types, we limited our analysis to genes that were identified as

being differentially expressed. The analysis of cerebellum and liver

using ChIP-chip data used only enhancers located within the

-5.5kb to 2.5kb region of promoters.
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