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Abstract

Many sequential decision-making problems related to multi-agent robotic systems can
be naturally posed as Markov Decision Processes (MDPs). An important advantage of
the MDP framework is the ability to utilize stochastic system models, thereby allowing
the system to make sound decisions even if there is randomness in the system evolution
over time. Unfortunately, the curse of dimensionality prevents most MDPs of practical
size from being solved exactly. One main focus of the thesis is on the development of
a new family of algorithms for computing approximate solutions to large-scale MDPs.
Our algorithms are similar in spirit to Bellman residual methods, which attempt to
minimize the error incurred in solving Bellman’s equation at a set of sample states.
However, by exploiting kernel-based regression techniques (such as support vector
regression and Gaussian process regression) with nondegenerate kernel functions as
the underlying cost-to-go function approximation architecture, our algorithms are
able to construct cost-to-go solutions for which the Bellman residuals are explicitly
forced to zero at the sample states. For this reason, we have named our approach
Bellman residual elimination (BRE). In addition to developing the basic ideas behind
BRE, we present multi-stage and model-free extensions to the approach. The multi-
stage extension allows for automatic selection of an appropriate kernel for the MDP
at hand, while the model-free extension can use simulated or real state trajectory
data to learn an approximate policy when a system model is unavailable. We present
theoretical analysis of all BRE algorithms proving convergence to the optimal policy
in the limit of sampling the entire state space, and show computational results on
several benchmark problems.

Another challenge in implementing control policies based on MDPs is that there
may be parameters of the system model that are poorly known and/or vary with
time as the system operates. System performance can suffer if the model used to
compute the policy differs from the true model. To address this challenge, we develop
an adaptive architecture that allows for online MDP model learning and simultaneous
re-computation of the policy. As a result, the adaptive architecture allows the system
to continuously re-tune its control policy to account for better model information
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obtained through observations of the actual system in operation, and react to changes
in the model as they occur.

Planning in complex, large-scale multi-agent robotic systems is another focus of
the thesis. In particular, we investigate the persistent surveillance problem, in which
one or more unmanned aerial vehicles (UAVs) and/or unmanned ground vehicles
(UGVs) must provide sensor coverage over a designated location on a continuous ba-
sis. This continuous coverage must be maintained even in the event that agents suffer
failures over the course of the mission. The persistent surveillance problem is perti-
nent to a number of applications, including search and rescue, natural disaster relief
operations, urban traffic monitoring, etc. Using both simulations and actual flight
experiments conducted in the MIT RAVEN indoor flight facility, we demonstrate the
successful application of the BRE algorithms and the adaptive MDP architecture in
achieving high mission performance despite the random occurrence of failures. Fur-
thermore, we demonstrate performance benefits of our approach over a deterministic
planning approach that does not account for these failures.

Thesis Supervisor: Jonathan P. How
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Problems in which decisions are made in stages are ubiquitous in the world: they arise

in engineering, science, business, and more generally, in life. In these problems, the

ability to make good decisions relies critically on balancing the needs of the present

with those of the future. To present a few examples: the farmer, when choosing how

many seeds to plant, must weigh the short-term profits of a larger harvest against the

long-term risk of depleting the soil if too many plants are grown. The chess player,

when considering a particular move, must weigh the short-term material gain of that

move (tactical advantage) with its long-term consequences (strategic advantage). The

student must weigh the short-term opportunity cost of obtaining an education against

the long-term prospects of more desirable career opportunities.

Most such sequential decision-making problems are characterized by a high degree

of complexity. This complexity arises from two main sources. First, the long-term

nature of these problems means that the tree of all possible decision sequences and

outcomes is typically extraordinarily large (for example, the number of possible games

of chess has been estimated at 101050
[73]). Second, some degree of uncertainty is often

present in these problems, which makes prediction of the future difficult.

In the face of these formidable challenges, humans are often remarkably good at

solving many sequential decision-making problems. That humans are able to play

chess, make sound business decisions, and navigate through life’s sometimes daunting

complexities is a testament to our critical-thinking and problem-solving skills. Moti-

17



vated by our own success at dealing with these challenges, it is natural to ask whether

it is possible to build a machine that can perform as well or perhaps even better than

a human in these complex situations. This difficult question, which is central to the

field of Artificial Intelligence [133], offers the tantalizing possibilities of not only being

able to create “intelligent” machines, but also of better understanding the ways that

humans think and solve problems.

1.1 Motivation: Multi-agent Robotic Systems

Building machines that make good decisions in real-world, sequential decision-making

problems is the topic of this thesis. The motivating application, which will be devel-

oped and used in much of the thesis work, is drawn from the rapidly evolving field of

multi-agent robotics.

Robotic systems are becoming increasingly sophisticated in terms of hardware

capabilities. Advances in sensor systems, onboard computational platforms, energy

storage, and other enabling technologies have made it possible to build a huge variety

of air-, ground-, and sea-based robotic vehicles for a range of different mission scenar-

ios [6, 116]. Many of the mission scenarios of interest, such as persistent surveillance,

search and rescue, weather pattern monitoring, etc., are inherently long-duration and

require sustained coordination of multiple, cooperating robots in order to achieve the

mission objectives. In these types of missions, a high level of autonomy is desired

due to the logistical complexity and expense of direct human control of each indi-

vidual vehicle. Currently, autonomous mission planning and control for multi-agent

systems is an active area of research [69, 77, 92, 113, 119]. Some of the issues in

this area are similar to questions arising in manufacturing systems [22, 74] and air

transportation [7, 14, 25, 48, 72, 76, 131]. While these efforts have made signifi-

cant progress in understanding how to handle some of the complexity inherent in

multi-agent problems, there remain a number of open questions in this area.

One important question is referred to as the health management problem for multi-

agent systems [98, 99]. Designs of current and future robotic platforms increasingly
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incorporate a large number of sensors for monitoring the health of the robot’s own

subsystems. For example, sensors may be installed to measure the temperature and

current of electric motors, the effectiveness of the robots’ control actuators, or the fuel

consumption rates in the engine. On a typical robot, sensors may provide a wealth

of data about a large number of vehicle subsystems. By making appropriate use of

this data, a health-aware autonomous system may be able to achieve a higher level of

overall mission performance, as compared to a non-health-aware system, by making

decisions that account for the current capabilities of each agent. For example, in a

search and track mission, utilization of sensor health data may allow an autonomous

system to assign the robots with the best-performing sensors to the search areas with

the highest probability of finding the target.

Utilization of the current status of each robot is an important aspect of the health

management problem. Another important aspect is the ability not only to react

to the current status, but to consider the implications of future changes in health

status or failures on the successful outcome of the mission. This predictive capability

is of paramount importance, since it may allow an autonomous system to avoid an

undesirable future outcome. For example, if a robot tracking a high value target is

known to have a high probability of failure in the future, the autonomous system may

be able to assign a backup robot to track the target, ensuring that the tracking can

continue even if one of the robots fails.

Part of the work of this thesis addresses these health management issues and devel-

ops a general framework for thinking about the health management problem. It then

specializes the discussion to the persistent surveillance problem, where uncertainties

in fuel usage and sensor failures, coupled with communication constraints, create a

complex and challenging planning problem. This work builds on previous health man-

agement techniques developed for the persistent surveillance problem [98]. While the

previous work focused on embedding health-aware heuristics into an already-existing

mission management algorithm, this thesis develops a new formulation of the problem

in which health-aware behaviors emerge automatically.
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1.2 Problem Formulation and Solution Approach

Dynamic programming is a natural mathematical framework for addressing the se-

quential decision-making problems that are the subject of this thesis [22]. First pro-

posed by Bellman [18], the basic dynamic programming framework incorporates two

main elements. The first of these elements is a discrete-time, dynamic model of the

system in question. The dynamic model captures the evolution of the state of the sys-

tem over time, under the influence of a given sequence of actions. Depending on the

nature of the system, this model may incorporate either deterministic or stochastic

state transitions. The second element is a cost function that depends on the system

state and possibly the decision made in that state. In order to solve a dynamic pro-

gram, we seek to find a state-dependent rule for choosing which action to take (a

policy) that minimizes the expected, discounted sum of the costs incurred over time

(see the discussion of Eq. (1.1) below).

If the state space associated with a particular dynamic programming problem is

discrete, either because the state space is naturally described in a discrete setting

or because it results from the discretization of an underlying continuous space, the

resulting problem formulation is referred to as a Markov Decision Process (MDP).

This thesis considers the general class of infinite horizon, discounted MDPs, where

the goal is to minimize the so-called cost-to-go function Jµ : S → R over the set of

policies Π:

min
µ∈Π

Jµ(i0) = min
µ∈Π

E

[
∞∑
k=0

αkg(ik, µ(ik))

]
. (1.1)

Here, i0 ∈ S is an initial state and the expectation E is taken over the possible

future states {i1, i2, . . . }, given i0 and the policy µ. In order to ensure that the sum

in Eq. (1.1) is finite, the discount factor 0 < α < 1 is included, and we require in

addition that the individual costs g(i, u) are bounded by a constant for all values of

i and u. Further terminology and notation for MDPs will be explained in detail in

Chapter 2, which establishes necessary background material.
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Approximate Methods

While MDPs are a powerful and general framework, there are two significant chal-

lenges, known as the “twin curses” of dynamic programming [19], that must be over-

come in order to successfully apply them to real-world problems:

The curse of dimensionality refers to the fact that as the problem size, as mea-

sured by the dimensionality of the state space, increases, the number of possible

states in the state space |S|, and therefore the amount of computation neces-

sary to solve (1.1) using standard techniques such as value iteration [22], grows

exponentially rapidly. For typical problems, this exponential growth quickly

overwhelms the available computational resources, making it difficult or impos-

sible to solve the problem exactly in reasonable time.

The curse of modeling refers to the potential difficulty of accurately modeling the

dynamics of the system in question. Many systems exhibit parametric uncer-

tainty. In this scenario, the basic character of the governing dynamic equations

is known, but the exact values of one or more parameters are not. For exam-

ple, in a spacecraft control problem, the basic equations of motion (rigid-body

dynamics) are well-understood, but the various moments of inertia may not

be known exactly. In more extreme cases, even the basic form of the dynamic

equations may not be fully understood. Inaccuracies in the model used to solve

the MDP may lead to poor performance when the resulting control policy is

implemented on the real system.

The question of how to address these challenges has been the subject of a great

deal of research, leading to the development of fields known as approximate dynamic

programming, reinforcement learning, and neuro-dynamic programming [24, 154]. Se-

mantically, these fields are very closely related (having different names due mainly to

the fact that they were originally developed by different communities), and for the

sake of clarity, we shall generally refer to them all as approximate dynamic program-

ming (abbreviated ADP).
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A wide variety of methods for dealing with the twin curses of dynamic program-

ming have been proposed in the ADP literature. Since many of these methods are

significantly different from each other, it is helpful to understand a few general prop-

erties that allow us to categorize and compare different methods. Broadly speaking,

there are four main properties of interest:

Choice of approximation architecture A central idea for addressing the curse

of dimensionality is the use of a function approximation architecture to repre-

sent the (approximate) cost-to-go function J̃µ. Functions that are representable

within the chosen architecture are typically described by a set of parameters,

where the number of parameters Np is much smaller than the size of the state

space |S|. In this way, the problem of finding the cost-to-go function is reduced

from a search in an |S|-dimensional to one in an Np-dimensional space, where

Np � |S|. A large number of approximation architectures are possible and

may involve, for example, neural networks, polynomials, radial basis functions,

wavelets, kernel-based techniques, etc. The type of approximation architecture

employed is a key property of any ADP method.

Model availability The amount of system model information assumed to be avail-

able is another key property of any ADP method. There are two main classes

of methods with regard to model availability. Model-free methods attempt to

address the curse of modeling by assuming no knowledge of the system model

whatsoever. In order to learn the cost-to-go function, model-free methods rely

on observed state transition data, obtained from either the real system or a

simulation thereof. In contrast, model-based methods assume that some form

of system model information is available and exploit this information in order

to learn the cost-to-go function.

Training technique The question of how to select the best cost-to-go function from

the chosen approximation architecture (for example, choosing the weights in

a neural network approximation architecture) is called “training”. Generally,

training is formulated as an optimization problem. The type of optimization
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problem (i.e. linear, quadratic, convex, non-convex, etc) and method of solution

(i.e. gradient descent, analytic, linear programming, etc) are further important

characteristics of an ADP method.

State observability The question of whether or not the full state of the system is

known exactly leads to an important distinction. In particular, if the full state

is not known exactly but must be inferred from noisy observations of the sys-

tem in operation, then in general the problem must be modeled as a Partially

Observable Markov Decision Process (POMDP). POMDPs are a generalization

of the MDP framework to include an observation model, which defines a prob-

ability distribution over observations given the current state of the system. For

further information about POMDPs, see [83, 87, 88, 108]. In this thesis, we

shall assume that the state is fully observable, and will therefore use an MDP

framework.

1.3 Literature Review

Some of the earliest investigations into ADP methods can be traced back to Shannon

and Samuel in the 1950’s. Shannon was perhaps the first to propose the approximation

architecture now known as the linear combination of basis functions in his work

with computer chess [144]. In this work, both important features of the chess game

(such as material advantage, piece mobility, etc) and their corresponding weights were

hand-selected and used to evaluate potential moves. Samuel, working with the game

of checkers, went a step further and devised a automated training method for the

computer to learn the weights [136]. Eventually, Samuel’s checkers program was able

to consistently beat its human creator.

The development of artificial neural networks [34, 75, 79] led to a great deal of

interest in using them as approximation architectures in ADP problems. One of

the most notable successes in this area was Tesauro’s computer backgammon player,

which was able to achieve world-class play [156, 157]. Tesauo’s work utilized the

method of temporal differences (TD) [24, 152–154] as the training mechanism. The
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success of TD methods has since encouraged development of other methods such as

Least Squares Policy Iteration (LSPI) [93], Least Squares Policy Evaluation (LSPE)

[23, 114] and Least Squares Temporal Differences (LSTD) [39, 40, 93]; a summary of

these methods is given in [22, Vol. 2, Chap. 6].

Another group of ADP methods arise from the observation that finding the opti-

mal cost-to-go function can be cast as a linear programming problem [36, 58, 78, 104].

The resulting linear program suffers from the curse of dimensionality; it has as many

decision variables as states in the MDP, and an even larger number of constraints.

De Farias and Van Roy proposed an approach, known as approximate linear pro-

gramming (ALP), that reduces the dimensionality of the linear program by utilizing

a linear combination of basis functions architecture combined with a mechanism to

sample only a small subset of the constraints [52–55]. An extension to the ALP ap-

proach that automatically generates the basis functions in the linear architecture was

developed by Valenti [161].

A further class of ADP methods, known as Bellman residual methods, are moti-

vated by attempting to find cost-to-go solutions J̃µ that minimize the error incurred

in solving Bellman’s equation. In particular, a natural criterion for evaluating the

accuracy of a cost-to-go solution is the Bellman error BE:

BE ≡ ||J̃µ − TµJ̃µ|| =

(∑
i∈S

|J̃µ(i)− TµJ̃µ(i)|2
)1/2

. (1.2)

The individual terms

J̃µ(i)− TµJ̃µ(i)

which appear in the sum are referred to as the Bellman residuals, where Tµ is the

fixed-policy Bellman operator (this operator will be defined precisely in Chapter 2).

Designing an ADP algorithm that attempts to minimize the Bellman error over a set

of candidate cost-to-go solutions is a sensible approach, since achieving an error of zero

immediately implies that the exact solution has been found. However, it is difficult

to carry out this minimization directly, since evaluation of Eq. (1.2) requires that the
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Bellman residuals for every state in the state space be computed. To overcome this

difficulty, a common approach is to generate a smaller set of representative sample

states S̃ (using simulations of the system, prior knowledge about the important states

in the system, or other means) and work with an approximation to the Bellman error

B̃E obtained by summing Bellman residuals over only the sample states: [24, Ch. 6]:

B̃E ≡

∑
i∈ eS
|J̃µ(i)− TµJ̃µ(i)|2

1/2

. (1.3)

It is then practical to minimize B̃E over the set of candidate functions. This approach

has been investigated by several authors, including [9, 13, 112, 143].

Recently, the use of kernel-based architectures for pattern classification and func-

tion approximation has generated excitement in the machine learning community.

Building on results from statistical learning [50, 110, 162, 163] and the theory of re-

producing kernels [10, 21, 71, 135, 139, 167], initial progress in this area focused on

the development of kernel-based classifiers such as Support Vector Machines (SVMs)

[20, 37, 41, 44, 140]. Much research has been done on efficient SVM training, even

when the size of the problem is large [38, 89, 118, 121, 122, 171]. Similar kernel-

based techniques can also be applied to the function approximation (regression) prob-

lem, yielding a family of regression algorithms such as Support Vector Regression

[141, 142, 147], Gaussian Process Regression [43, 128, 148], and Kernel Ridge Regres-

sion [138]. Compared with function approximation architectures such as the neural

networks used in much of the previous ADP work, kernel-based architectures enjoy

a number of advantages, such as being trainable via convex (quadratic) optimization

problems that do not suffer from local minima, and allowing the use of powerful,

infinite-dimensional data representations.

Motivated by these recent advances, some research has been done to apply pow-

erful kernel-based techniques to the ADP problem. Dietterich and Wang investigated

a kernelized form of the linear programming approach to dynamic programming [59].

Ormoniet and Sen presented a model-free approach for doing approximate value it-
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eration using kernel smoothers, under some restrictions on the structure of the state

space [117]. Using Gaussian processes, Rasmussen and Kuss derived analytic expres-

sions for the approximate cost-to-go of a fixed policy, in the case where the system

state variables are restricted to evolve independently according to Gaussian probabil-

ity transition functions [127]. Engel, Mannor, and Meir applied a Gaussian process

approximation architecture to TD learning [65–67], and Reisinger, Stone, and Mi-

ikkulainen subsequently adapted this framework to allow the kernel parameters to

be estimated online [130]. Tobias and Daniel proposed a LSTD approach based on

SVMs [158]. Several researchers have investigated designing specialized kernels that

exploit manifold structure in the state space [16, 17, 102, 103, 146, 150, 151].

1.4 Summary of Contributions

A main focus of this thesis is on the development of a new class of kernel-based ADP

algorithms that are similar in spirit to traditional Bellman residual methods. Similar

to traditional methods, the new algorithms are designed to minimize an approximate

form of the Bellman error as given in Eq. (1.3). The motivation behind this work

is the observation that, given the approximate Bellman error B̃E as the objective

function to be minimized, we should seek to find a solution for which the objective

is identically zero, the smallest possible value. The ability to find such a solution

depends on the richness of the function approximation architecture employed, which

in turn defines the set of candidate solutions. Traditional, parametric approximation

architectures such as neural networks and linear combinations of basis functions are

finite-dimensional, and therefore it may not always be possible to find a solution

satisfying B̃E = 0 (indeed, if a poor network topology or set of basis functions is

chosen, the minimum achievable error may be large). In contrast, in this thesis we

shall show that by exploiting the richness and flexibility of kernel-based approximation

architectures, it is possible to construct algorithms that always produce a solution

for which B̃E = 0. As an immediate consequence, our algorithms have the desirable

property of reducing to exact policy iteration in the limit of sampling the entire state
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space, since in this limit, the Bellman residuals are zero everywhere, and therefore

the obtained cost-to-go function is exact (J̃µ = Jµ). Furthermore, by exploiting

knowledge of the system model (we assume this model is available), the algorithms

eliminate the need to perform trajectory simulations and therefore do not suffer from

simulation noise effects. We refer to our approach as Bellman residual elimination

(BRE), rather than Bellman residual minimization, to emphasize the fact that the

error is explicitly forced to zero.

With regard to the development of these new ADP algorithms, the thesis makes

the following contributions:

• The basic, model-based BRE approach is developed, and its theoretical proper-

ties are studied. In particular, we show how the problem of finding a cost-to-go

solution, for which the Bellman residuals are identically zero at the sample

states, can be cast as a regression problem in an appropriate Reproducing Ker-

nel Hilbert Space (RKHS). We then explain how any kernel-based regression

technique can be used to solve this problem, leading to a family of BRE algo-

rithms. We prove that these algorithms converge to the optimal policy in the

limit of sampling the entire state space. Furthermore, we show that the BRE

algorithm based on Gaussian process regression can provide error bounds on the

cost-to-go solution and can automatically learn free parameters in the kernel.

• A multi-stage extension of the basic BRE approach is developed. In this exten-

sion, Bellman residuals of the form |J̃µ(i)−T nµ J̃µ(i)|, where n ≥ 1 is an integer,

are eliminated at the sample states. We show how, as a result of this extension,

a kernel function arises that automatically captures local structure in the state

space. In effect, this allows the multi-stage BRE algorithms to automatically

discover and use a kernel that is tailored to the problem at hand. Similar to the

basic BRE approach, we prove convergence of multi-stage BRE to the optimal

policy in the limit of sampling the entire state space.

• A model-free variant of BRE is developed. We show how the general, multi-

stage BRE algorithms can be carried out when a system model is unavailable,
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by using simulated or actual state trajectories to approximate the data com-

puted by the BRE algorithms. Again, we prove convergence results for these

model-free algorithms. Furthermore, we present results comparing the perfor-

mance of model-based and model-free BRE against model-based and model-free

LSPI [93], and show that both variants of BRE yield more consistent, higher

performing policies than LSPI in a benchmark problem.

A second focus area of the thesis deals with online adaptation for MDPs. In many

applications, the basic form of the system model is known beforehand, but there may

be a number of parameters of the model whose values are unknown or only known

poorly before the system begins operating. As a result, when the MDP is solved

offline, this poor knowledge of the model may lead to suboptimal performance when

the control policy is implemented on the real system. Furthermore, in some circum-

stances, these parameters may be time-varying, which presents further difficulties if

the MDP can only be solved offline. To address these issues, an online adaptation ar-

chitecture is developed that combines a generic MDP solver with a model parameter

estimator. In particular, this adaptive architecture:

• Allows the unknown model parameters to be estimated online; using these

parameter estimates, a policy for the corresponding MDP model is then re-

computed in real-time. As a result, the adaptive architecture allows the system

to continuously re-tune its control policy to account for better model informa-

tion obtained through observations of the actual system in operation, and react

to changes in the model as they occur.

• Permits any MDP solution technique to be utilized to recompute the policy

online. In particular, the architecture allows BRE-based algorithms to be used

to compute approximate policies for large MDPs quickly.

• Is validated through hardware flight tests carried out in the MIT RAVEN indoor

flight facility [80]. These flight tests demonstrate the successful ability of the

adaptive architecture to quickly adjust the policy as new model information

arrives, resulting in improved overall mission performance.
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A third focus area deals with autonomous planning in multi-agent robotic systems.

In particular, we investigate the persistent surveillance problem, in which one or

more unmanned aerial vehicles (UAVs) and/or unmanned ground vehicles (UGVs)

must be maintained at a designated location on a continuous basis. This problem is

pertinent to a number of applications, including search and rescue, natural disaster

relief operations, urban traffic monitoring, etc. These missions are challenging in

part because their long duration increases the likelihood that one or more agents

will experience failures over the course of the mission. The planning system must

provide a high level of mission performance even in the event of failures. In order to

investigate these issues, this thesis:

• Formulates the basic persistent surveillance problem as an MDP, which cap-

tures the requirement of scheduling assets to periodically move back and forth

between the surveillance location and the base location for refueling and main-

tenance. In addition, we incorporate a number of randomly-occurring failure

scenarios (such as sensor failures, unexpected fuel usage due to adverse weather

conditions, etc) and constraints (such as the requirement to maintain a com-

munications link between the base and agents in the surveillance area) into the

problem formulation. We show that the optimal policy for the persistent surveil-

lance problem formulation not only properly manages asset scheduling, but also

anticipates the adverse effects of failures on the mission and takes actions to

mitigate their impact on mission performance.

• Highlights the difficulties encountered in solving large instances of the persistent

surveillance problem using exact methods, and demonstrates that BRE can

be used to quickly compute near-optimal approximate policies for these large

problems.

• Presents a fully autonomous UxV mission architecture which incorporates the

persistent surveillance planner into a larger framework that handles other neces-

sary aspects including low-level vehicle control; path planning; task generation

and assignment; and online policy adaptation using the adaptive MDP archi-
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tecture.

• Presents flight experiments, conducted in the MIT RAVEN indoor flight facility

[80], that demonstrate the successful application of our problem formulation, so-

lution technique, and mission architecture to controlling a heterogeneous team

of UxVs in a number of complex and realistic mission scenarios. Furthermore,

we demonstrate performance benefits of our approach over a deterministic plan-

ning approach that does not account for randomness in the system dynamics

model.

1.5 Thesis Outline

The organization of the thesis is as follows: Chapter 2 presents background mate-

rial on Markov Decision Processes, kernel-based regression, and reproducing kernel

Hilbert spaces, which will be used in later chapters. Chapter 3 presents the main

ideas behind the Bellman residual elimination approach, while Chapter 4 develops

the multi-stage and model-free extensions. Chapter 5 discusses the general problem

of health management in multi-agent robotic systems, develops the persistent surveil-

lance problem formulation and analyzes its properties. Chapter 6 presents the adap-

tive MDP architecture. Chapter 7 presents a set of simulation and flight experiments

demonstrating the effectiveness of the BRE solution approach and the adaptive MDP

architecture for controlling teams of autonomous UxVs. Finally, Chapter 8 offers

concluding remarks and highlights areas for future research.
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Chapter 2

Background

This chapter provides a background in the mathematical concepts that this thesis

builds upon.

2.1 Markov Decision Processes

An infinite horizon, discounted, finite state MDP is specified by (S,A, P, g, α), where

S is the state space, A is the action space (assumed to be finite), P is the system

dynamics model where Pij(u) gives the transition probability from state i to state

j under action u, and g(i, u) gives the immediate cost of taking action u in state i.

Future costs are discounted by a factor 0 < α < 1. A policy of the MDP is denoted

by µ : S → A. Given the MDP specification, the problem is to minimize the so-called

cost-to-go function Jµ : S → R over the set of admissible policies Π:

min
µ∈Π

Jµ(i0) = min
µ∈Π

E

[
∞∑
k=0

αkg(ik, µ(ik))

]
. (2.1)

Here, i0 ∈ S is an initial state and the expectation E is taken over the possible future

states {i1, i2, . . . }, given i0 and the policy µ.

In solving the MDP, the primary goal is to find a policy µ? which achieves the

minimum in (2.1) (note that this policy need not necessarily be unique). The optimal
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cost associated with µ?, denoted by J? ≡ Jµ? , satisfies the Bellman equation [22]

J?(i) = min
u∈A

(
g(i, u) + α

∑
j∈S

Pij(u)J?(j)

)
∀i ∈ S. (2.2)

It is customary to define the dynamic programming operator T as

(TJ)(i) ≡ min
u∈A

(
g(i, u) + α

∑
j∈S

Pij(u)J(j)

)
,

so that Eq. (2.2) can be written compactly as

J? = TJ?.

If J? can be found by solving Eq. (2.2), then the optimal policy µ? is given by

µ?(i) = arg min
u∈A

(
g(i, u) + α

∑
j∈S

Pij(u)J?(j)

)
. (2.3)

Eq. (2.3) establishes a relationship between the policy and its associated cost function.

We assume that the minimization in Eq. (2.3) can be performed exactly since A is a

finite set. Therefore, the bulk of the work in solving an MDP involves computing the

optimal cost function by solving the nonlinear system of equations given in (2.2).

One approach to computing the optimal cost is to solve Eq. (2.2) in an iterative

fashion using value iteration. An alternative approach arises from the observation

that if a policy µ is fixed, then the nonlinear system Eq. (2.2) reduces to a linear

system which is easier to solve:

Jµ(i) = g(i, µ(i)) + α
∑
j∈S

Pij(µ(i))Jµ(j) ∀i ∈ S. (2.4)

For notational convenience, the fixed-policy cost and state transition functions are
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defined as

gµi ≡ g(i, µ(i)) (2.5)

P µ
ij ≡ Pij(µ(i)). (2.6)

In vector-matrix notation, Eq. (2.4) can also be expressed as

Jµ = (I − αP µ)−1gµ, (2.7)

where gµ is the vector of immediate costs g(i, µ(i)) over the state space S, and simi-

larly, Jµ is the vector of cost-to-go values over S.

We define the fixed-policy dynamic programming operator Tµ as

(TµJ)(i) ≡ gµi + α
∑
j∈S

P µ
ijJ(j), (2.8)

so that Eq. (2.4) can be written compactly as

Jµ = TµJµ.

Solving Eq. (2.4) is known as policy evaluation. The solution Jµ is the cost-to-go of

the fixed policy µ. Once the policy’s cost-to-go function Jµ is known, a new, better

policy µ′ can be constructed by performing a policy improvement step:

µ′(i) = arg min
u∈A

(
g(i, u) + α

∑
j∈S

Pij(u)Jµ(j)

)
.

By iteratively performing policy evaluation followed by policy improvement, a se-

quence of policies that are guaranteed to converge to the optimal policy µ? is obtained

[22]. This procedure is known as policy iteration.
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2.2 Support Vector Regression

This section provides a brief overview of support vector regression (SVR); for more

details, see [147]. The objective of the SVR problem is to learn a function f(x) of

the form

f(x) =
r∑
l=1

θlφl(x) = 〈Θ,Φ(x)〉 (2.9)

that gives a good approximation to a given set of training data

D = {(x1, y1), . . . , (xn, yn)},

where xi ∈ Rm is the input data and yi ∈ R is the observed output. The vector

Φ(x) = (φ1(x) . . . φr(x))T

is referred to as the feature vector of the point x, where each feature (also called a

basis function) φi(x) is a scalar-valued function of x. The vector

Θ = (θ1 . . . θr)
T

is referred to as the weight vector. The notation 〈·, ·〉 is used to denote the standard

inner product.

The training problem is posed as the following quadratic optimization problem:

min
Θ,ξ,ξ?

1

2
||Θ||2 + c

n∑
i=1

(ξi + ξ?i ) (2.10)

subj. to yi − 〈Θ,Φ(xi)〉 ≤ ε+ ξi (2.11)

−yi + 〈Θ,Φ(xi)〉 ≤ ε+ ξ?i (2.12)

ξi, ξ
?
i ≥ 0 ∀i ∈ {1, . . . , n}. (2.13)

Here, the regularization term 1
2
||Θ||2 penalizes model complexity, and the ξi, ξ

?
i are

slack variables which are active whenever a training point yi lies farther than a dis-
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tance ε from the approximating function f(xi), giving rise to the so-called ε-insensitive

loss function. The parameter c trades off model complexity with accuracy of fitting

the observed training data. As c increases, any data points for which the slack vari-

ables are active incur higher cost, so the optimization problem tends to fit the data

more closely (note that fitting too closely may not be desired if the training data is

noisy).

The minimization problem [Eqs. (2.10)-(2.13)] is difficult to solve when the number

of features r is large, for two reasons. First, it is computationally demanding to

compute the values of all r features for each of the data points. Second, the number

of decision variables in the problem is r+ 2n (since there is one weight element θi for

each basis function φi(·) and two slack variables ξi, ξ
?
i for each training point), so the

minimization must be carried out in an (r+ 2n)-dimensional space. To address these

issues, one can solve the primal problem through its dual, which can be formulated

by computing the Lagrangian and minimizing with respect to the primal variables Θ

and ξ, ξ?
i

(again, for more details, see [147]). The dual problem is

max
λ,λ?

−1
2

∑n
i,i′=1(λ?i − λi)(λ?i′ − λi′)〈Φ(xi),Φ(xi′)〉

−ε
∑n

i=1(λ?i + λi) +
∑n

i=1 yi(λ
?
i − λi) (2.14)

subj. to 0 ≤ λi, λ
?
i ≤ c ∀i ∈ {1, . . . , n}. (2.15)

Note that the feature vectors Φ(xi) now enter into the optimization problem only as

inner products. This is important, because it allows a kernel function,

k(xi, xi′) ≡ 〈Φ(xi),Φ(xi′)〉,

to be defined whose evaluation may avoid the need to explicitly calculate the vectors

Φ(xi), resulting in significant computational savings. Also, the dimensionality of

the dual problem is reduced to only 2n decision variables, since there is one λi and

one λ?i for each of the training points. When the number of features is large, this

again results in significant computational savings. Furthermore, it is well known
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that the dual problem can be solved efficiently using special-purpose techniques such

as Sequential Minimal Optimization (SMO) [89, 122]. Once the dual variables are

known, the weight vector is given by

Θ =
n∑
i=1

(λi − λ?i )Φ(xi), (2.16)

and the function f(x) can be computed using the so-called support vector expansion:

f(x) = 〈Θ,Φ(x)〉

=
n∑
i=1

(λi − λ?i )〈Φ(xi),Φ(x)〉

=
n∑
i=1

(λi − λ?i )k(xi, x). (2.17)

2.3 Gaussian Process Regression

In this section, another kernel-based regression technique, Gaussian process regression

[128], is reviewed. Gaussian process regression attempts to solve the same problem as

the support vector regression technique discussed in the previous section: given a set

of training data D, find a function f(x) that provides a good approximation to the

data. Gaussian process regression approaches this problem by defining a probability

distribution over a set of admissible functions and performing Bayesian inference over

this set. A Gaussian process is defined as a (possible infinite) collection of random

variables, any finite set of which is described by a joint Gaussian distribution. The

process is therefore completely specified by a mean function

m(x) = E[f(x)]

and positive semidefinite covariance (kernel) function

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))].
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The Gaussian process is denoted by

f(x) ∼ GP(m(x), k(x, x′)).

For the purposes of regression, the random variables of a Gaussian process given by

GP(m(x), k(x, x′)) are interpreted as the function values f(x) at particular values of

the input x. Note the important fact that given any finite set of input points X =

{x1, . . . , xn}, the distribution over the corresponding output variables {y1, . . . , yn} is

given by a standard Gaussian distribution

(y1, . . . , yn)T ∼ N (µ,Σ),

where the mean µ and covariance Σ of the distribution are obtained by “sampling”

the mean m(x) and covariance k(x, x′) functions of the Gaussian process at the points

X :

µ = (m(x1), . . . ,m(xn))T

Σ = K(X ,X ) =


k(x1, x1) · · · k(x1, xn)

...
. . .

...

k(xn, x1) · · · k(xn, xn)


Here, K(X ,X ) denotes the n×n Gram matrix of the kernel k(x, x′) evaluated for the

points X .

The Gaussian process GP(m(x), k(x, x′)) represents a prior distribution over func-

tions. To perform regression, the training data D must be incorporated into the Gaus-

sian process to form a posterior distribution, such that every function in the support

of the posterior agrees with the observed data. From a probabilistic standpoint, this

amounts to conditioning the prior on the data. Fortunately, since the prior is a Gaus-

sian distribution, the conditioning operation can be computed analytically. To be

precise, assume that we wish to know the value of the function f at a set of points

X? = {x?1, . . . , x?l }, conditioned on the training data. Denote the vector (y1, . . . , yn)T
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by y, (f(x1), . . . , f(xn))T by f(X ), and (f(x?1), . . . , f(x?l ))
T by f(X?). Now, using the

definition of the Gaussian process, the joint prior over the outputs is

 f(X )

f(X?)

 ∼ N
0,

 K(X ,X ) K(X ,X?)

K(X?,X ) K(X?,X?)

 ,

where K(X ,X?) denotes the n × l Gram matrix of covariances between all pairs of

training and test points (the other matrices K(X ,X ), K(X?,X ), and K(X?,X?) are

defined similarly).

Conditioning this joint prior on the data yields [128, Sec. A.2]

f(X?) |
(
X?,X , f(X ) = y

)
∼ N (µ

posterior
,Σposterior), (2.18)

where

µ
posterior

= K(X?,X )K(X ,X )−1y,

Σposterior = K(X?,X?)−K(X?,X )K(X ,X )−1K(X ,X?).

Eq. (2.18) is a general result that predicts the mean and covariance of the function

values at all of the points X?. If we wish to query the function at only a single point

x?, Eq. (2.18) can be simplified. Note that if |X?| = 1, then the matrices K(X ,X?)

and K(X?,X ) reduce to a column vector and a row vector, which are denoted by k?

and kT? , respectively. Similarly, the matrix K(X?,X?) reduces to the scalar k(x?, x?).

With this notation, the mean f̄(x?) and variance V[f(x?)] of the function value at x?

can be expressed as

f̄(x?) = kT? K(X ,X )−1y (2.19)

V[f(x?)] = k(x?, x?)− kT? K(X ,X )−1k?. (2.20)

Defining the vector λ as

λ = K(X ,X )−1y,
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Eq. (2.19) also can be written as

f̄(x?) =
n∑
i=1

λik(xi, x?). (2.21)

Marginal Likelihood and Kernel Parameter Selection

In many cases, the kernel function k(i, i′) depends on a set of parameters Ω. The

notation k(i, i′; Ω) and K(X ,S; Ω) shall be used when we wish to explicitly emphasize

dependence of the kernel and its associated Gram matrix on the parameters. Each

choice of Ω defines a different model of the data, and not all models perform equally

well at explaining the observed data. In Gaussian process regression, there is a simple

way to quantify the performance of a given model. This quantity is called the log

marginal likelihood and is interpreted as the probability of observing the data, given

the model. The log marginal likelihood is given by [128, Sec. 5.4]

log p(y|X ,Ω) =− 1

2
yTK(X ,X ; Ω)−1y − 1

2
log |K(X ,X ; Ω)| − n

2
log 2π. (2.22)

The best choice of the kernel parameters Ω are those which give the highest

probability of the data; or equivalently, those which maximize the log marginal like-

lihood [Eq. (2.22)]. Note that maximizing the log marginal likelihood is equivalent

to performing Bayesian inference given a uniform prior over Ω. The derivative of the

likelihood with respect to the individual parameters Ωj can be calculated analytically

[128, 5.4]:

∂ log p(y|X ,Ω)

∂Ωj

=
1

2
tr

(
(λλT −K(X ,X )−1)

∂K(X ,X )

∂Ωj

)
. (2.23)

Eq. (2.23) allows the use of any gradient-based optimization method to select the

optimal values for the parameters Ω.
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2.4 Reproducing Kernel Hilbert Spaces

This section provides a brief overview of kernel functions and the associated theory of

Reproducing Kernel Hilbert Spaces. The presentation of some of this material follows

the more detailed discussion in [141, Sec. 2.2].

The kernel function k(·, ·) plays an important role in any kernel-based learning

method. The kernel maps any two elements from a space of input patterns X to the

real numbers, k(·, ·) : X × X → R, and can be thought of as a similarity measure

on the input space. We shall take X to be the state space S of the MDP. In the

derivation of kernel methods such as support vector regression, the kernel function

arises naturally as an inner (dot) product in a high-dimensional feature space. As

such, the kernel must satisfy several important properties of an inner product: it

must be symmetric (k(x, y) = k(y, x)) and positive semi-definite. The latter property

is defined as positive semi-definiteness of the associated Gram matrix K, where

Kij ≡ k(xi, xj),

for all subsets {x1, . . . , xm} ⊂ X . A kernel that satisfies these properties is said to

be admissible. In the thesis, we shall deal only with admissible kernels. Further-

more, if the associated Gram matrix K is strictly positive definite for all subsets

{x1, . . . , xm} ⊂ X , the kernel is called nondegenerate. The use of nondegenerate ker-

nels will play an important role in establishing many of the theoretical results in the

thesis.

Given a mapping from inputs to the feature space, the corresponding kernel func-

tion can be constructed. However, in many cases, it is desirable to avoid explicitly

defining the feature mapping and instead specify the kernel function directly. There-

fore, it is useful to consider a construction that proceeds in the opposite direction.

That is: given a kernel, we seek to construct a feature mapping such that the kernel

can be expressed as an inner product in the corresponding feature space.

To begin, assume that X is an arbitrary set of input data. (In later sections,

the set X will be taken as S, the set of states in the MDP). Furthermore, assume
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that k(·, ·) is a symmetric, positive definite kernel which maps two elements in X to

the reals: k(·, ·) : X × X → R. Now, define a mapping Φ from X to the space of

real-valued functions over X as follows:

Φ : X → RX

Φ(x)(·) = k(·, x). (2.24)

Using the set of functions {Φ(x)(·) | x ∈ X} as a basis, a real vector space H can be

constructed by taking linear combinations of the form

f(·) =
m∑
i=1

λiΦ(xi)(·) =
m∑
i=1

λik(·, xi), (2.25)

where m ∈ N, λ1 . . . λm ∈ R, and x1, . . . , xm ∈ X are arbitrary. The vector space H

is then given by the set of all such functions f(·):

H = {f(·) | m ∈ N, λ1 . . . λm ∈ R, x1, . . . , xm ∈ X}

Furthermore, if

g(·) =
m′∑
j=1

βjk(·, x′j)

is another function in the vector space, an inner product 〈f(·), g(·)〉 can be defined as

〈f(·), g(·)〉 =
m∑
i=1

m′∑
j=1

λiβjk(xi, x
′
j). (2.26)

It is straightforward to show that 〈·, ·〉 satisfies the necessary properties of an inner

product [141, 2.2.2].

The inner product as defined in Eq. (2.26) has the following important property,

which follows immediately from the definition:

〈f(·), k(·, x)〉 =
m∑
i=1

λik(x, xi) = f(x). (2.27)
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In particular, letting f(·) = k(·, x′):

〈k(·, x), k(·, x′)〉 = k(x, x′).

Substituting Eq. (2.24),

〈Φ(x)(·),Φ(x′)(·)〉 = k(x, x′). (2.28)

k(·, ·) is therefore said to have the reproducing property in H, and the mapping

Φ is called the reproducing kernel map. Notice that the main objective has now

been accomplished: starting from the kernel function k(·, ·), a feature mapping Φ(x)

[Eq. (2.24)] has been constructed such that the kernel is expressible as an inner prod-

uct in the feature space H [Eq. (2.28)].

An important equivalent characterization of nondegenerate kernels states that a

kernel is nondegenerate if and only if its associated features {Φ(x1)(·), . . . ,Φ(xm)(·)}

are linearly independent for all subsets {x1, . . . , xm} ⊂ X . This property will be

important in a number of proofs later in the thesis.

RKHS Definition

The feature space H constructed in the previous section is an inner product (or pre-

Hilbert) space. H can be turned into a real Hilbert space by endowing it with the

norm ||.|| associated with the inner product 〈·, ·〉: ||f || =
√
〈f, f〉. In light of the

reproducing property of the kernel in H, the resulting space is called a Reproducing

Kernel Hilbert Space. A formal definition of an RKHS is as follows:

Definition: Reproducing Kernel Hilbert Space. Let X be an input set, and H

be a Hilbert space of functions f : X → R. Then H is called a Reproducing

Kernel Hilbert Space endowed with an inner product 〈·, ·〉 and norm || · ||H if

there exists a kernel function k(·, ·) : X ×X → R with the following properties:

1. k has the reproducing property [Eq. (2.27)].
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2. The set of functions {k(·, x) | x ∈ X} spans H.

It can be shown [141, 2.2.3] that the RKHS uniquely defines k. The preceding section

shows that k also uniquely determines the RKHS (by construction), so there is a

one-to-one relationship between the kernel and its corresponding RKHS. As such, we

shall sometimes write Hk to explicitly denote the RKHS corresponding to the kernel

k. Notice that every element f(·) ∈ H, being a linear combination of functions k(·, xi)

[Eq. (2.25)], can be represented by its expansion coefficients {λi | i = 1, . . . ,m} and

input elements {xi | i = 1, . . . ,m}. This representation will be important in our

development of the BRE algorithms.
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Chapter 3

Model-Based Bellman Residual

Elimination

Markov Decision Processes (MDPs) are a powerful framework for addressing problems

involving sequential decision making under uncertainty [22, 124]. Such problems

arise frequently in a number of fields, including engineering, finance, and operations

research. It is well-known that MDPs suffer from the curse of dimensionality, which

states that the size of the state space (and therefore the amount of time necessary to

compute the optimal policy using standard techniques such as value iteration [22]),

increases exponentially rapidly with the dimensionality of the problem. The curse of

dimensionality renders most MDPs of practical interest very difficult to solve exactly

using standard methods such as value iteration or policy iteration. To overcome

this challenge, a wide variety of methods for generating approximate solutions to

large MDPs have been developed, giving rise to the field of approximate dynamic

programming [24, 154].

Approximate policy iteration is a central idea in many approximate dynamic pro-

gramming methods. In this approach, an approximation to the cost-to-go vector

of a fixed policy is computed; this step is known as policy evaluation. Once this

approximate cost-to-go is known, a policy improvement step computes a new, poten-

tially improved policy, and the process is repeated. In many problems, the policy

improvement step involves a straightforward minimization over a finite set of possible
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actions, and therefore can be performed exactly. However, the policy evaluation step

is generally more difficult, since it involves solving the fixed-policy Bellman equation:

TµJµ = Jµ. (3.1)

Here, Jµ represents the cost-to-go vector of the policy µ, and Tµ is the fixed-policy

dynamic programming operator (these objects will be fully explained in the next

section). Eq. (3.1) is a linear system of dimension |S|, where |S| denotes the size

of the state space S. Because |S| is typically very large, solving Eq. (3.1) exactly is

impractical, and an alternative approach must be taken to generate an approximate

solution. Much of the research done in approximate dynamic programming focuses

on how to generate these approximate solutions, which will be denoted in this chapter

by J̃µ.

The accuracy of an approximate solution J̃µ generated by an ADP algorithm is

important to the ultimate performance achieved by the algorithm. A natural criterion

for evaluating solution accuracy in this context is the Bellman error BE:

BE ≡ ||J̃µ − TµJ̃µ|| =

(∑
i∈S

|J̃µ(i)− TµJ̃µ(i)|2
)1/2

. (3.2)

The individual terms

J̃µ(i)− TµJ̃µ(i)

which appear in the sum are referred to as the Bellman residuals. Designing an ADP

algorithm that attempts to minimize the Bellman error over a set of candidate cost-

to-go solutions is a sensible approach, since achieving an error of zero immediately

implies that the exact solution has been found. However, it is difficult to carry out

this minimization directly, since evaluation of Eq. (3.2) requires that the Bellman

residuals for every state in the state space be computed. To overcome this difficulty,

a common approach is to generate a smaller set of representative sample states S̃

(using simulations of the system, prior knowledge about the important states in the

system, or other means) and work with an approximation to the Bellman error B̃E
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obtained by summing Bellman residuals over only the sample states: [24, Ch. 6]:

B̃E ≡

∑
i∈ eS
|J̃µ(i)− TµJ̃µ(i)|2

1/2

. (3.3)

It is then practical to minimize B̃E over the set of candidate functions. This approach

has been investigated by several authors, including [9, 13, 112, 143], resulting in a

class of approximate dynamic programming algorithms known as Bellman residual

methods.

The set of candidate functions is usually referred to as a function approxima-

tion architecture, and the choice of architecture is an important issue in the design

of any approximate dynamic programming algorithm. Numerous approximation ar-

chitectures, such as neural networks [34, 75, 79, 156, 157], linear architectures [22–

24, 54, 93, 145, 161], splines [160], and wavelets [101, 103] have been investigated

for use in approximate dynamic programming. Recently, motivated by the success

of kernel-based methods such as support vector machines [41, 47, 147] and Gaussian

processes [43, 128] for pattern classification and regression, researchers have begun

applying these powerful techniques in the approximate dynamic programming do-

main. Dietterich and Wang investigated a kernelized form of the linear programming

approach to dynamic programming [59]. Ormoniet and Sen presented a model-free

approach for doing approximate value iteration using kernel smoothers, under some

restrictions on the structure of the state space [117]. Using Gaussian processes, Ras-

mussen and Kuss derived analytic expressions for the approximate cost-to-go of a

fixed policy, in the case where the system state variables are restricted to evolve

independently according to Gaussian probability transition functions [127]. Engel,

Mannor, and Meir applied a Gaussian process approximation architecture to TD

learning [65–67], and Reisinger, Stone, and Miikkulainen subsequently adapted this

framework to allow the kernel parameters to be estimated online [130]. Tobias and

Daniel proposed a LSTD approach based on support vector machines [158]. Sev-

eral researchers have investigated designing specialized kernels that exploit manifold
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structure in the state space [16, 17, 102, 103, 146, 150, 151]. Deisenroth, Jan, and

Rasmussen used Gaussian processes in an approximate value iteration algorithm for

computing the cost-to-go function [57]. Similar to the well-studied class of linear

architectures, kernel-based architectures map an input pattern into a set of features;

however, unlike linear architectures, the effective feature vector of a kernel-based ar-

chitecture may be infinite-dimensional. This property gives kernel methods a great

deal of flexibility and makes them particularly appropriate in approximate dynamic

programming, where the structure of the cost-to-go function may not be well under-

stood.

The focus of this chapter is on the development of a new class of kernel-based ap-

proximate dynamic programming algorithms that are similar in spirit to traditional

Bellman residual methods. Similar to traditional methods, the new algorithms are

designed to minimize an approximate form of the Bellman error as given in Eq. (3.3).

The motivation behind our work is the observation that, given the approximate Bell-

man error B̃E as the objective function to be minimized, we should seek to find a

solution for which the objective is identically zero, the smallest possible value. The

ability to find such a solution depends on the richness of the function approximation

architecture employed, which in turn defines the set of candidate solutions. Tra-

ditional, parametric approximation architectures such as neural networks and linear

combinations of basis functions are finite-dimensional, and therefore it may not always

be possible to find a solution satisfying B̃E = 0 (indeed, if a poor network topology

or set of basis functions is chosen, the minimum achievable error may be large). In

contrast, in this chapter we shall show that by exploiting the richness and flexibility of

kernel-based approximation architectures, it is possible to construct algorithms that

always produce a solution for which B̃E = 0. As an immediate consequence, our al-

gorithms have the desirable property of reducing to exact policy iteration in the limit

of sampling the entire state space, since in this limit, the Bellman residuals are zero

everywhere, and therefore the obtained cost-to-go function is exact (J̃µ = Jµ). We

refer to our approach as Bellman residual elimination (BRE), rather than Bellman

residual minimization, to emphasize the fact that the error is explicitly forced to zero.
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In this chapter, we shall assume that the system model (i.e. the state transition

function Pij(u)) is known and show that by exploiting this knowledge, algorithms

can be constructed that eliminate the need to perform trajectory simulations and

therefore do not suffer from simulation noise effects. In Chapter 4, we will extend the

BRE approach to the case when knowledge of the model is not available.

The theoretical basis of our approach relies on the idea of Reproducing Kernel

Hilbert Spaces (RKHSs) [10, 21, 71, 135, 139, 141, 167], which are a specialized

type of function space especially useful in the analysis of kernel methods. Specif-

ically, the chapter presents two related RKHSs, one corresponding to the space of

candidate cost-to-go functions, and one corresponding to the space of Bellman resid-

ual functions. We show how an invertible linear mapping between these spaces can

be constructed, using properties of the Bellman equation and the assumption that

the kernel is non-degenerate. This mapping is useful because the desired property

B̃E = 0 is naturally encoded as a simple regression problem in the Bellman residual

space, allowing the construction of algorithms that find a solution with this prop-

erty in the Bellman residual space. Any kernel-based regression technique, such as

support vector regression or Gaussian process regression, can be used to solve the

regression problem, resulting in a class of related BRE algorithms. Once the solution

is known, the linear mapping is used to find the corresponding cost-to-go function.

The use of a nondegenerate kernel function (that is, one with an infinite-dimensional

feature vector) is key to the success of this approach, since the linear mapping is not

always invertible when using a finite-dimensional architecture such as those used in

[23, 54, 93].

3.1 BRE Using Support Vector Regression

As a starting point for the development of BRE, this section demonstrates how the

basic support vector regression problem can be used to construct a BRE algorithm.

We will refer to the resulting algorithm as BRE(SV) and show that it can efficiently

solve practical approximate dynamic programming problems. Subsequent sections
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will show how the key ideas used in BRE(SV) can be generalized to use any kernel-

based regression technique.

We begin with the following problem statement: assume that an MDP specifica-

tion (S,A, P, g) is given, along with a policy µ of the MDP. Furthermore, assume

that a representative set of sample states S̃ is known. The goal is to construct an

approximate cost-to-go J̃µ of the policy µ, such that the Bellman residuals at the

sample states are identically zero.

Following the standard functional form assumed in the support vector regression

problem [Eq. (2.9)], we express the approximate cost-to-go (at a specified state i ∈ S)

as the inner product between a feature mapping Φ(i) and a set of weights Θ:

J̃µ(i) = 〈Θ,Φ(i)〉 i ∈ S. (3.4)

The kernel k(i, i′) corresponding to the feature mapping Φ(·) is given by

k(i, i′) = 〈Φ(i),Φ(i′)〉, i, i′ ∈ S. (3.5)

Recall that the Bellman residual at i, BR(i), is defined as

BR(i) ≡ J̃µ(i)− TµJ̃µ(i) (3.6)

= J̃µ(i)−

(
gµi + α

∑
j∈S

P µ
ijJ̃µ(j)

)
.

Substituting the functional form of the cost-to-go function, Eq. (3.4), into the expres-

sion for BR(i) yields

BR(i) = 〈Θ,Φ(i)〉 −

(
gµi + α

∑
j∈S

P µ
ij〈Θ,Φ(j)〉

)
.
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Finally, by exploiting linearity of the inner product 〈·, ·〉, we can express BR(i) as

BR(i) = −gµi + 〈Θ,

(
Φ(i)− α

∑
j∈S

P µ
ijΦ(j)

)
〉

= −gµi + 〈Θ,Ψ(i)〉, (3.7)

where Ψ(i) is defined as

Ψ(i) ≡ Φ(i)− α
∑
j∈S

P µ
ijΦ(j). (3.8)

Ψ(i) represents a new feature mapping that accounts for the structure of the MDP

dynamics (in particular, it represents a combination of the features at i and all states

j that can be reached in one step from i). The following lemma states an impor-

tant property of the new feature mapping that will be important in establishing the

theoretical properties of our BRE algorithms.

Lemma 1. Assume the vectors {Φ(i) | i ∈ S} are linearly independent. Then the

vectors {Ψ(i) | i ∈ S}, where Ψ(i) = Φ(i) − α
∑

j∈S P
µ
ijΦ(j), are also linearly inde-

pendent.

This lemma, as well as all of the following lemmas, theorems and corollaries in the

chapter, are proved in the appendex at the end of this chapter. The definition of Ψ(i)

and the corresponding expression for the Bellman residual [Eq. (3.7)] now allow the

basic support vector regression problem to be modified to find a cost-to-go function,

of the form Eq. (3.4), which has small Bellman residuals at the sample states.

3.1.1 Error Function Substitution

Recall that the support vector regression problem seeks to minimize the absolute value

of an ε-insensitive loss function, encoded by the constraints Eqs. (2.11) and (2.12).

In the nominal problem, the error is

yi − 〈Θ,Φ(xi)〉,
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which is just the difference between the observed function value yi and the predicted

value f(xi) = 〈Θ,Φ(xi)〉. In order to perform BRE over the set of sample states S̃,

the Bellman residual is first substituted for the error function in the nominal problem:

min
Θ,ξ,ξ?

1

2
||Θ||2 + c

∑
i∈ eS

(ξi + ξ?i )

subj. to BR(i) ≤ ε+ ξi (3.9)

−BR(i) ≤ ε+ ξ?i (3.10)

ξi, ξ
?
i ≥ 0 ∀i ∈ S̃.

By introducing the Bellman residual as the error function to be minimized, the

optimization process will seek to find a solution such that the residuals are small at

the sample states, as desired. If the optimization problem can be solved, the solution

yields the values of the weights Θ, which in turn uniquely determine the cost-to-go

function J̃µ through Eq. (3.4). However, it is not yet clear if this optimization problem

still fits the general form of the support vector regression problem [Eqs. (2.10)-(2.13)].

To see that it does, the expression for the Bellman residual [Eq. (3.7)] is substituted in

the constraints Eqs. (3.9)-(3.10), and the following optimization problem is obtained:

min
Θ,ξ,ξ?

1

2
||Θ||2 + c

∑
i∈ eS

(ξi + ξ?i ) (3.11)

subj. to − gµi + 〈Θ,Ψ(i)〉 ≤ ε+ ξi (3.12)

gµi − 〈Θ,Ψ(i)〉 ≤ ε+ ξ?i (3.13)

ξi, ξ
?
i ≥ 0 ∀i ∈ S̃. (3.14)

Eqs. (3.11)-(3.14) are referred to as the Bellman residual minimization problem. This

problem is identical to the basic support vector regression problem [Eqs. (2.10)-(2.13)].

The original feature mapping Φ(i) has been replaced by the new feature mapping Ψ(i);

this is only a notational change and does not alter the structure of the basic problem in

any way. Furthermore, the one-stage costs gµi have replaced the generic observations

yi, but again, this is only a notational change. Therefore, the dual problem is given by
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the normal support vector regression dual [Eqs. (2.14)-(2.15)], with the substitutions

Φ(i)→ Ψ(i) and yi → gµi :

max
λ,λ?

−1
2

∑
i,i′∈ eS(λ?i − λi)(λ?i′ − λi′)〈Ψ(i),Ψ(i′)〉

−ε
∑

i∈ eS(λ?i + λi) +
∑

i∈ eS gµi (λ?i − λi) (3.15)

subj. to 0 ≤ λi, λ
?
i ≤ c ∀i ∈ S̃. (3.16)

Notice that the dual of the Bellman residual minimization problem contains a new

kernel function, denoted by K:

K(i, i′) = 〈Ψ(i),Ψ(i′)〉.

This kernel is related to the base kernel k [Eq. (3.5)] through the feature mapping Ψ

[Eq. (3.8)]:

K(i, i′) = 〈Ψ(i),Ψ(i′)〉

= 〈 Φ(i)− α
∑
j∈S

P µ
ijΦ(j) , Φ(i′)− α

∑
j∈S

P µ
i′jΦ(j) 〉

= 〈Φ(i),Φ(i′)〉 − α
∑
j∈S

(
P µ
i′j〈Φ(i),Φ(j)〉+ P µ

ij〈Φ(i′),Φ(j)〉
)

+α2
∑
j,j′∈S

P µ
ijP

µ
i′j′〈Φ(j),Φ(j′)〉

= k(i, i′)− α
∑
j∈S

(
P µ
i′jk(i, j) + P µ

ijk(i′, j)
)

+α2
∑
j,j′∈S

P µ
ijP

µ
i′j′k(j, j′). (3.17)

We shall refer to K as the Bellman kernel associated with k. The following theorem

establishes an important property of this kernel.

Theorem 2. Assume that the kernel k(i, i′) = 〈Φ(i),Φ(i′)〉 is nondegenerate. Then

the associated Bellman kernel defined by K(i, i′) = 〈Ψ(i),Ψ(i′)〉, where Ψ(i) = Φ(i)−

α
∑

j∈S P
µ
ijΦ(j), is also nondegenerate.

In order to specify and solve the dual problem [Eqs. (3.15)-(3.16)], the one-stage
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cost values gµi and the kernel values K(i, i′) must be computed. Since by assump-

tion the MDP model is known, the state transition probabilities P µ
ij [Eq. (2.6)] are

available, and thus Eq. (3.17) allows direct computation of the kernel values K(i, i′).

Furthermore, the gµi values are also available [Eq. (2.5)]. Thus, all information nec-

essary to formulate and solve the dual problem is known.

Once the kernel values K(i, i′) and the cost values gµi are computed, the dual

problem is completely specified and can be solved using, for example, a standard

SVM solving package such as libSVM [44]. The solution yields the dual variables λ, λ?.

Again, in direct analogy with the normal SV regression problem, the primal variables

Θ are given by the support vector expansion [Eq. (2.16)], with the substitution Φ→ Ψ:

Θ =
∑
i∈ eS

(λi − λ?i )Ψ(i).

Finally, in order to find the cost-to-go J̃µ(i), the expressions for Θ and Ψ are substi-

tuted into Eq. (3.4):

J̃µ(i) = 〈Θ,Φ(i)〉

=
∑
i′∈ eS

(λi′ − λ?i′)〈Ψ(i′),Φ(i)〉

=
∑
i′∈ eS

(λi′ − λ?i′)〈

(
Φ(i′)− α

∑
j∈S

P µ
i′jΦ(j)

)
,Φ(i)〉

=
∑
i′∈ eS

(λi′ − λ?i′)

(
〈Φ(i′),Φ(i)〉 − α

∑
j∈S

P µ
i′j〈Φ(j),Φ(i)〉

)

=
∑
i′∈ eS

(λi′ − λ?i′)

(
k(i′, i)− α

∑
j∈S

P µ
i′jk(j, i)

)
. (3.18)

Thus, once the dual variables are solved for, Eq. (3.18) can be used to calculate the

primary object of interest, the cost-to-go function J̃µ(i).

This section has shown how the basic support vector regression problem can be

modified to find a cost-to-go function whose Bellman residuals are small at the sample

states S̃. A summary of the procedure is given in Algorithm 1. While this algorithm is
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Algorithm 1 Support vector policy evaluation, Bellman residuals not explicitly
forced to zero

1: Input: (µ, S̃, k, ε, c)
2: µ: policy to be evaluated
3: S̃: set of sample states
4: k: kernel function defined on S × S
5: ε: width of ε-insensitive loss function
6: c: model complexity parameter
7: Begin
8: ∀i, i′ ∈ S̃, compute K(i, i′) = 〈Ψ(i),Ψ(i′)〉 using Eq. (3.17)

9: ∀i ∈ S̃, compute gµi using Eq. (2.5)
10: Using K(i, i′) and gµi values, solve the dual optimization problem Eqs. (3.15)-

(3.16) for the dual variables λ, λ?

11: Using the dual solution variables λ, λ?, compute the cost-to-go J̃µ(i) using
Eq. (3.18)

12: End

directly related to the basic support vector regression problem, it does not yet achieve

the goal of explicitly forcing all of the Bellman residuals to zero. Intuitively, this is

because the model complexity penalty (controlled by the parameter c) may prevent

the optimal solution from achieving the lowest possible value of the Bellman residuals.

The next section will explain how to modify Algorithm 1 in order to explicitly force

the Bellman residuals to zero.

3.1.2 Forcing the Bellman Residuals to Zero

The basic support vector regression problem is designed to deal with noisy observa-

tions of the true function values. With noisy observations, the problem of overfitting

becomes important, and choosing a regression function that matches the observations

exactly may not be desirable. The use of the ε-insensitive loss function helps to alle-

viate the overfitting problem, allowing observation points to lie within a distance ε of

the regression function without causing the objective function to increase. This loss

function leads to good performance with noisy data sets.

However, in Algorithm 1, the “observations” gµi are exact values dictated by the

structure of the MDP. Therefore, overfitting is not a concern, since we are working

directly with the Bellman residuals, which are exact mathematical relationships be-
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tween the cost-to-go values Jµ(i) for all states i ∈ S. Indeed, in order to force the

Bellman residuals to zero as desired, the regression function 〈Θ,Ψ(i)〉 must match

the “observation” gµi exactly:

BR(i) = −gµi + 〈Θ,Ψ(i)〉 = 0 ⇐⇒ 〈Θ,Ψ(i)〉 = gµi .

Fortunately, the support vector regression problem can be modified to perform

exact regression, where the learned regression function passes exactly through each

of the observation points. This is accomplished by setting ε = 0 and c = ∞; intu-

itively, this causes the objective function to be unbounded whenever the regression

function does not match an observation. Having fixed c and ε, the Bellman resid-

ual minimization problem [Eqs. (3.11)-(3.14)] can be recast in a simpler form. With

c =∞, any feasible solution must have ξi, ξ
?
i = 0 for all i, since otherwise the objec-

tive function will be unbounded. Furthermore, if ε is also zero, then the constraints

[Eqs. (3.12) and (3.13)] become equalities. With these modifications, the primal

problem reduces to

min
Θ

1

2
||Θ||2 (3.19)

subj. to gµi − 〈Θ,Ψ(i)〉 = 0 ∀i ∈ S̃,

where Ψ(i) is given by Eq. (3.8). The Lagrangian dual of this optimization problem

can be calculated as follows. The Lagrangian is

L(Θ, λ) =
1

2
||Θ||2 +

∑
i∈ eS

λi (g
µ
i − 〈Θ,Ψ(i)〉) . (3.20)

Maximizing L(Θ, λ) with respect to Θ is accomplished by setting the corresponding

partial derivative to zero:

∂L
∂Θ

= Θ−
∑
i∈ eS

λiΨ(i) = 0,
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and therefore

Θ =
∑
i∈ eS

λiΨ(i). (3.21)

As a result, the cost-to-go function J̃µ(i) [Eq. (3.4)] is given by

J̃µ(i) = 〈Θ,Φ(i)〉

=
∑
i′∈ eS

λi′〈Ψ(i′),Φ(i) 〉

=
∑
i′∈ eS

λi′

(
k(i′, i)− α

∑
j∈S

P µ
i′jk(j, i)

)
. (3.22)

Finally, substituting Eq. (3.21) into Eq. (3.20) and maximizing with respect to λ gives

the dual problem:

max
λ
−1

2

∑
i,i′∈ eS

λiλi′〈Ψ(i),Ψ(i′)〉+
∑
i∈ eS

λig
µ
i .

This can also be written in vector form as

max
λ
−1

2
λTKλ+ λTgµ, (3.23)

where

Kii′ = 〈Ψ(i),Ψ(i′)〉 = K(i, i′)

is the Gram matrix of the kernel K (this matrix is calculated using Eq. (3.17)). Note

that the problem is just an unconstrained maximization of a quadratic form. Since by

assumption the base kernel k is nondegenerate, Theorem 2 implies that the associated

Bellman kernel K is nondegenerate also. Therefore, the Gram matrix K is full-rank

and strictly positive definite, so the quadratic form has a unique maximum. The

solution is found analytically by setting the derivative of the objective with respect

to λ to zero, which yields

Kλ = gµ. (3.24)
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Algorithm 2 Support vector policy evaluation, Bellman residuals explicitly forced
to zero

1: Input: (µ, S̃, k)
2: µ: policy to be evaluated
3: S̃: set of sample states
4: k: kernel function defined on S × S
5: Begin
6: Construct the Gram matrix K, where Kii′ = K(i, i′) ∀i, i′ ∈ S̃, using Eq. (3.17)

7: ∀i ∈ S̃, compute gµi using Eq. (2.5)
8: Using K(i, i′) and gµi values, solve the linear system Eq. (3.24) for λ

9: Using solution λ, compute the cost-to-go J̃µ(i) using Eq. (3.22)
10: End

Note the important fact that the dimension of this linear system is ns = |S̃|, the

number of sampled states.

The development of the policy evaluation procedure is now complete and is sum-

marized in Algorithm 2. The key computational step in the algorithm is solving the

linear system Eq. (3.24). Recall that the original problem of solving the full, fixed-

policy Bellman equation [Eq. (2.4)] involves solving an N -dimensional linear system,

where N = |S| is the size of the entire state space. After developing a support vec-

tor regression-based method for approximating the cost-to-go and reformulating it to

force Bellman residuals to zero, the approximate policy evaluation problem has been

reduced to the problem of solving another linear system [Eq. (3.24)]. However, the

dimensionality of this system is only ns = |S̃|, where ns � N . Furthermore, since

the designer is in control of S̃, he can select an appropriate number of sample states

based on the computational resources available.

The following theorem establishes the important claim that the Bellman residuals

are exactly zero at the sampled states.

Theorem 3. Assume that the kernel k(i, i′) = 〈Φ(i),Φ(i′)〉 is nondegenerate. Then

the cost-to-go function J̃µ(i) produced by Algorithm 2 satisfies

J̃µ(i) = gµi + α
∑
j∈S

P µ
ijJ̃µ(j) ∀i ∈ S̃.
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That is, the Bellman residuals BR(i) are identically equal to zero at every state i ∈ S̃.

An immediate corollary of Theorem 3 follows:

Corollary 4. Assume that the kernel k(i, i′) = 〈Φ(i),Φ(i′)〉 is nondegenerate, and

that S̃ = S. Then the cost-to-go function J̃µ(i) produced by Algorithm 2 satisfies

J̃µ(i) = Jµ(i) ∀i ∈ S.

That is, the cost-to-go function J̃µ(i) is exact.

Recovering the Bellman equation

Corollary 4 claims that Algorithm 2 yields the exact cost-to-go when the entire state

space is sampled. Recall that the exact cost-to-go can be computed by solving the

Bellman equation

Jµ = (I − αP µ)−1gµ.

Intuitively, therefore, the Bellman equation must be somehow “embedded” into the

algorithm. The following calculation shows that this is indeed the case: the Bellman

equation can be recovered from Algorithm 2 under a suitable choice of kernel. We

begin by taking the kernel function k(i, i′) to be the Kronecker delta function:

k(i, i′) = δii′ .

This kernel is nondegenerate, since its Gram matrix is always the identity matrix,

which is clearly positive definite. Furthermore, we take S̃ = S, so that both conditions

of Corollary 4 are met. Now, notice that with this choice of kernel, the associated

Bellman kernel [Eq. (3.17)] is

K(i, i′) = δii′ − α
∑
j∈S

(
P µ
i′jδij + P µ

ijδi′j
)

+ α2
∑
j,j′∈S

P µ
ijP

µ
i′j′δjj′

= δii′ − α (P µ
i′i + P µ

ii′) + α2
∑
j∈S

P µ
ijP

µ
i′j. (3.25)
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Line 6 in Algorithm 2 computes the Gram matrix K of the associated Bellman kernel.

A straightforward calculation shows that, with the associated Bellman kernel given

by Eq. (3.25), the Gram matrix is

K = (I − αP µ)2.

Line 7 simply constructs the vector gµ, and Line 8 computes λ, which is given by

λ = K−1gµ = (I − αP µ)−2gµ.

Once λ is known, the cost-to-go function J̃µ(i) is computed in Line 9:

J̃µ(i) =
∑
i′∈S

λi′

(
δi′i − α

∑
j∈S

P µ
i′jδji

)
= λi − α

∑
i′∈S

λi′P
µ
i′i.

Expressed as a vector, this cost-to-go function can now be written as

J̃µ = λ− αP µλ

= (I − αP µ)λ

= (I − αP µ)(I − αP µ)−2gµ

= (I − αP µ)−1gµ

= Jµ.

Thus, we see that for the choice of kernel k(i, i′) = δii′ and sample states S̃ = S,

Algorithm 2 effectively reduces to solving the Bellman equation directly. Of course,

if the Bellman equation could be solved directly for a particular problem, it would

make little sense to use an approximation algorithm of any kind. Furthermore, the

Kronecker delta is a poor practical choice for the kernel, since the kernel is zero

everywhere except at i = i′; we use it here only to illustrate the properties of the

algorithm. The real value of the algorithm arises because the main results—namely,
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that the Bellman residuals are identically zero at the sample states—are valid for any

nondegenerate kernel function and any set of sample states S̃ ⊆ S. This permits the

use of “smoothing” kernels that enable the computed cost-to-go function to generalize

to states that were not sampled, which is a major goal of any approximate dynamic

programming algorithm. Thus, in the more realistic case where solving the Bellman

equation directly is not practical, Algorithm 2 (with a smaller set of sample states and

a suitable kernel function) becomes a way of effectively reducing the dimensionality of

the Bellman equation to a tractable size while preserving the character of the original

equation.

The associated Bellman kernel [Eq. (3.17)] plays a central role in the work de-

veloped thus far; it is this kernel and its associated feature mapping Ψ [Eq. (3.8)]

that effectively allow the Bellman equation to be embedded into the algorithms, and

consequently to ensure that the Bellman residuals at the sampled states are zero.

This idea will be developed further in Section 3.2.

3.1.3 BRE(SV), A Full Policy Iteration Algorithm

Algorithm 2 shows how to construct a cost-to-go approximation J̃µ(·) of a fixed policy

µ such that the Bellman residuals are exactly zero at the sample states S̃. This

section now presents BRE(SV) (Algorithm 3), a full policy iteration algorithm that

uses Algorithm 2 in the policy evaluation step.

The following corollary to Theorem 3 establishes that BRE(SV) reduces to exact

policy iteration when the entire state space is sampled:

Corollary 5. Assume that the kernel k(i, i′) = 〈Φ(i),Φ(i′)〉 is nondegenerate, and

that S̃ = S. Then BRE(SV) is equivalent to exact policy iteration.

This result is encouraging, since it is well known that exact policy iteration con-

verges to the optimal policy in a finite number of steps [22].
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Algorithm 3 BRE(SV)

1: Input: (µ0, S̃, k(·, ·))
2: µ0: initial policy
3: S̃: set of sample states
4: k(·, ·): kernel function defined on S × S
5: Begin
6: µ← µ0

7: loop
8: Construct the Gram matrix K, where Kii′ = K(i, i′) ∀i, i′ ∈ S̃, using Eq. (3.17)

9: ∀i ∈ S̃, compute gµi
10: Using Kii′ and gµi values, solve the linear system Kλ = gµ for λ

11: Using solution λ, compute the cost-to-go J̃µ(i) using Eq. (3.18) {Policy evalu-
ation complete}

12: µ(i)← arg minu
∑

j∈S Pij(u)
(
g(i, u) + αJ̃µ(j)

)
{Policy improvement}

13: end loop
14: End

3.1.4 Computational Results - Mountain Car

BRE(SV) was implemented on the well-known “mountain car problem” [127, 154] to

evaluate its performance. In this problem, a unit mass, frictionless car moves along

a hilly landscape whose height H(x) is described by

H(x) =

x
2 + x if x < 0

x√
1+5x2 if x ≥ 0

The system state is given by (x, ẋ) (the horizontal position and velocity of the car).

A horizontal control force −4 ≤ u ≤ 4 can be applied to the car, and the goal is to

drive the car from its starting location x = −0.5 to the “parking area” 0.5 ≤ x ≤ 0.7

as quickly as possible. Since the car is also acted upon by gravitational acceleration

g = 9.8, the total horizontal acceleration of the car, ẍ, is given by

ẍ =
u− gH ′(x)

1 +H ′(x)2
,
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where H ′(x) denotes the derivative dH(x)
dx

. The problem is challenging because the

car is underpowered: it cannot simply drive up the steep slope. Rather, it must use

the features of the landscape to build momentum and eventually escape the steep

valley centered at x = −0.5. The state space of the problem is naturally continuous;

to convert it into a discrete MDP, Kuhn triangulation [111] is used. The system

response under the optimal policy (computed using value iteration) is shown as the

dashed line in Figure 3-2; notice that the car initially moves away from the parking

area before reaching it at time t = 14.

In order to apply the support vector policy iteration algorithm, an evenly spaced

9x9 grid of sample states,

S̃ = {(x, ẋ) | x = −1.0,−0.75, . . . , 0.75, 1.0

ẋ = −2.0,−1.5, . . . , 1.5, 2.0}

was chosen. Furthermore, a radial basis function kernel, with differing length-scales

for the x and ẋ axes in the state space, was used:

k((x1, ẋ1), (x2, ẋ2)) = exp (−(x1 − x2)2/(0.25)2 − (ẋ1 − ẋ2)2/(0.40)2).

The length-scales were chosen by hand through experimentation. BRE(SV) was ex-

ecuted, resulting in a sequence of policies (and associated cost-to-go functions) that

converged after three iterations. The sequence of cost-to-go functions is shown in

Figure 3-1 along with the optimal cost-to-go function for comparison. Of course, the

main objective is to learn a policy that is similar to the optimal one. The solid line

in Figure 3-2 shows the system response under the approximate policy generated by

the algorithm after 3 iterations. Notice that the qualitative behavior is the same as

the optimal policy; that is, the car first accelerates away from the parking area to

gain momentum. The approximate policy arrives at the parking area at t = 17, only

3 time steps slower than the optimal policy.
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Figure 3-1: From left to right: Approximate cost-to-go computed by BRE(SV) for
iterations 1, 2 , and 3; exact cost-to-go computed using value iteration.

Figure 3-2: System response under the optimal policy (dashed line) and the policy
computed by BRE(SV) after 3 iterations (solid line).
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BRE(SV) was derived starting from the viewpoint of the standard support vector

regression framework. The theorems of this section have established several advan-

tageous theoretical properties of the approach, and furthermore, the results from the

mountain car example problem demonstrate that BRE(SV) produces a high-quality

cost-to-go approximation and policy. The example problem highlights two interesting

questions:

1. The scaling parameters (0.25 and 0.40) used in the squared exponential kernel

were found, in this case, by carrying out numerical experiments to see which

values fit the data best. Is it possible to design a BRE algorithm that can learn

these values automatically as it runs?

2. Is it possible to provide error bounds on the learned cost-to-go function for the

non-sampled states?

Fortunately, the answer to both of these questions is yes. In the next section, we

show how the key ideas in BRE(SV) can be extended to a more general framework,

which allows BRE to be performed using any kernel-based regression technique. This

analysis will result in a deeper understanding of the approach and also enable the

development of a BRE algorithm based on Gaussian process regression, BRE(GP),

that preserves all the advantages of BRE(SV) while addressing these two questions.

3.2 A General BRE Framework

Building on the ideas and intuition presented in the development of BRE(SV), we now

seek to understand how that algorithm can be generalized. To begin, it is useful to

view kernel-based regression techniques, such as support vector regression and Gaus-

sian process regression, as algorithms that search over a reproducing kernel Hilbert

space for a regression function solution. In particular, given a kernel k and a set of

training data D = {(x1, y1), . . . , (xn, yn)}, these kernel-based regression techniques
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find a solution of the standard form

f(x) = 〈Θ,Φ(x)〉,

where Φ is the feature mapping of the kernel k. The solution f belongs to the RKHS

Hk of the kernel k:

f(·) ∈ Hk.

Broadly speaking, the various kernel-based regression techniques are differentiated

by how they choose the weighting element Θ, which in turn uniquely specifies the

solution f from the space of functions Hk.

In the BRE(SV) algorithm developed in the previous section, the kernel k and

its associated Bellman kernel K play a central role. Recall the relationship between

these two kernels:

k(i, i′) = 〈Φ(i),Φ(i′)〉 (3.26)

Ψ(i) = Φ(i)− α
∑
j∈S

P µ
ijΦ(j) (3.27)

K(i, i′) = 〈Ψ(i),Ψ(i′)〉. (3.28)

By the uniqueness property of Section 2.4, each of the kernels is associated with

its own, unique RKHS, denoted by Hk and HK, respectively. In this section, we

explore some properties of these RKHSs, and use the properties to develop a general

BRE framework. In particular, it is shown that Hk corresponds to the space of

possible cost-to-go functions, while HK corresponds to the space of Bellman residual

functions. We explain how the problem of performing BRE is equivalent to solving

a simple regression problem in HK in order to find a Bellman residual function with

the desired property of being zero at the sampled states S̃. This regression problem

can be solved using any kernel-based regression technique. Furthermore, an invertible

linear mapping between elements of Hk and HK is constructed. This mapping can be

used to find the corresponding cost-to-go function once the Bellman residual function

is found.
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3.2.1 The Cost-To-Go Space Hk

The goal of any approximate policy iteration algorithm, including our BRE methods,

is to learn an approximation J̃µ(·) to the true cost-to-go function Jµ(·). As discussed,

if a kernel-based regression algorithm, with kernel k(i, i′) = 〈Φ(i),Φ(i′)〉, is used to

find the approximate cost-to-go function J̃µ(·), then this function is an element of Hk

and takes the standard form

J̃µ(i) = 〈Θ,Φ(i)〉.

This form was the starting point for the development of the BRE(SV) algorithm

[Eq. (3.4)]. It is important to note that the weighting element Θ is itself an element

of the RKHS Hk, and therefore can be expressed in terms of the basis functions

{Φ(i) | i ∈ S̃}, which span Hk:

Θ =
∑
i∈ eS

λiΦ(i).

The structure of the kernel k and cost-to-go functions J̃µ(·) ∈ Hk are summarized in

Figure 3-3. Note that there are two equivalent forms for representing J̃µ(·) [Eqs. (3.30)

and (3.31)]. Eq. (3.30) is important from a computational standpoint because the

output of a general kernel-based regression method is explicitly of this compact form

(that is, the input to the regression method is a set of training data D, and the output

are the coefficients λi). Eq. (3.31) is important because it helps establish the mapping

from Hk to HK, as will be shown in the next section.

3.2.2 The Bellman Residual Space HK

The previous section showed that the RKHSHk contains the possible set of cost-to-go

functions J̃µ(·). This section will show that the RKHS HK of the associated Bellman

kernel contains functions which are closely related to the set of Bellman residual

functions BR(·) associated with the cost-to-go functions J̃µ(·). The structure of HK
is summarized in Figure 3-4; in particular, note that every element W̃µ(·) ∈ HK can
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1. Using the reproducing kernel map,

Φ(i)(·) = k(·, i),

the kernel k(·, ·) is represented as

k(i, i′) = 〈Φ(i),Φ(i′)〉 (3.29)

2. An arbitrary element J̃µ(·) ∈ Hk is represented in one of two equivalent
forms:

J̃µ(·) =
∑
i∈ eS

λik(·, i) (3.30)

= 〈Θ,Φ(·)〉, (3.31)

where
Θ =

∑
i∈ eS

λiΦ(i).

In either form, J̃µ(·) is uniquely specified by the expansion coefficients

{λi | i ∈ S̃} and sample states {i | i ∈ S̃}.

Figure 3-3: Structure of the cost-to-go space Hk

be expressed as

W̃µ(·) = 〈Θ,Ψ(·)〉. (3.32)

Recall that, given any cost-to-go function J̃µ(·) ∈ Hk, the associated Bellman

residual function BR(·) is defined by

BR(i) = J̃µ(i)−

(
gµi + α

∑
j∈S

P µ
ijJ̃µ(j)

)
.

The derivation leading to Eq. (3.7) showed that this Bellman residual function can

be expressed as

BR(i) = −gµi + 〈Θ,Ψ(i)〉.

Finally, identifying 〈Θ,Ψ(·)〉 as an element W̃µ(·) of HK allows the Bellman residual

to be written as

BR(i) = −gµi + W̃µ(i). (3.33)
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1. Using the reproducing kernel map,

Ψ(i)(·) = K(·, i),

the kernel K(·, ·) is represented as

K(i, i′) = 〈Ψ(i),Ψ(i′)〉 (3.34)

2. An arbitrary element W̃µ(·) ∈ HK is represented in one of two equiva-
lent forms:

W̃µ(·) =
∑
i∈ eS

βiK(·, i) (3.35)

= 〈Θ,Ψ(·)〉, (3.36)

where
Θ =

∑
i∈ eS

βiΨ(i). (3.37)

In either form, W̃µ(·) is uniquely specified by the expansion coefficients

{βi | i ∈ S̃} and sample states {i | i ∈ S̃}.

Figure 3-4: Structure of the Bellman residual space HK

By the preceding construction, every cost-to-go function J̃µ(·) ∈ Hk has a cor-

responding function W̃µ(·) ∈ HK, and this function W̃µ(·) is equal to the Bellman

residual function up to the known factor −gµi . In other words, a mapping Hk → HK
has been constructed which, given a cost-to-go function J̃µ(·) ∈ Hk, allows us to

find its corresponding residual function W̃µ in HK. However, we are interested in

algorithms which first compute the residual function and then find the corresponding

cost-to-go function. Therefore, the mapping must be shown to be invertible. The

following theorem establishes this important property:

Theorem 6. Assume that the kernel k(i, i′) = 〈Φ(i),Φ(i′)〉 is nondegenerate. Then

there exists a linear, invertible mapping Â from Hk, the RKHS of k, to HK, the RKHS

of the associated Bellman kernel K:

Â : Hk → HK

ÂJ̃µ(·) = W̃µ(·).
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Furthermore, if an element J̃µ(·) ∈ Hk is given by

J̃µ(·) = 〈Θ,Φ(·)〉,

then the corresponding element W̃µ(·) ∈ HK is given by

W̃µ(·) = 〈Θ,Ψ(·)〉,

and vice versa:

J̃µ(·) = 〈Θ,Φ(·)〉

m (3.38)

W̃µ(·) = 〈Θ,Ψ(·)〉.

The mapping Â of Theorem 6 allows us to design BRE algorithms that find the

weight element Θ of the desired residual function W̃µ(·) ∈ HK and then map the result

back to Hk in order to find the associated cost-to-go function J̃µ(·) (using Eq. (3.38)).

The objective of the BRE algorithms is to force the Bellman residuals BR(i) to

zero at the sample states S̃:

BR(i) = 0 ∀i ∈ S̃. (3.39)

Now, using Eq. (3.33), we see that Eq. (3.39) is equivalent to

W̃µ(i) = gµi ∀i ∈ S̃. (3.40)

We have now succeeded in reducing the BRE problem to a straightforward regression

problem in HK: the task is to find a function W̃µ(i) ∈ HK that satisfies Eq. (3.40).

The training data of the regression problem is given by

D = {(i, gµi ) | i ∈ S̃}.
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Algorithm 4 Generalized approximate policy iteration using kernel-based BRE

1: Input: (µ0, S̃, k, R)
2: µ0: initial policy
3: S̃: set of sample states
4: k: kernel function defined on S × S, k(i, i′) = 〈Φ(i),Φ(i′)〉
5: R: generic kernel-based regression method
6: Begin
7: Define K(i, i′) = 〈Ψ(i),Ψ(i′)〉 using Eq. (3.17) {Define the associated Bellman

kernel}
8: µ← µ0

9: loop
10: Set D = {(i, gµi ) | i ∈ S̃}. {Construct the training data set}
11: Compute {λi | i ∈ S̃} = R(D,K). {Solve the regression problem, using the

regression method R and the associated Bellman kernel K}
12: Using the coefficients {λi | i ∈ S̃}, compute the cost-to-go function J̃µ(i) using

Eq. (3.42). {Policy evaluation step complete}
13: µ(i)← arg minu

∑
j∈S Pij(u)

(
g(i, u) + αJ̃µ(j)

)
{Policy improvement}

14: end loop
15: End

Notice that the training data is readily available, since by assumption the sample

states S̃ are given, and the stage costs gµi are obtained directly from the MDP speci-

fication.

3.2.3 A Family of Kernel-Based BRE Algorithms

With the invertible mapping between the RKHSs Hk and HK established, a gen-

eralized family of algorithms for kernel-based BRE can now be presented. The family

is summarized in Algorithm 4. An important input to the algorithms is a generic

kernel-based regression method (denoted by R), which takes the set of training data

D = {(i, gµi ) | i ∈ S̃} and the associated Bellman kernel K(i, i′) = 〈Ψ(i),Ψ(i′)〉,

and outputs the coefficients {λi | i ∈ S̃} such that the regression function solution

W̃µ(·) ∈ HK is given by

W̃µ(i) =
∑
i′∈ eS

λi′K(i, i′).
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The corresponding weight element Θ is given by

Θ =
∑
i′∈ eS

λi′Ψ(i′). (3.41)

For notational convenience, the process of solving the regression problem using the

regression method R to obtain the coefficients {λi | i ∈ S̃} is denoted by

{λi | i ∈ S̃} = R(D,K).

By choosing different kernel-based regression techniques as the input R to Algo-

rithm 4, a family of BRE algorithms is obtained.

After the coefficients {λi | i ∈ S̃} are determined, the cost-to-go function J̃µ(i)

can be computed using Equations (3.38), (3.41), and (3.27):

W̃µ(i) = 〈Θ,Ψ(i)〉

m

J̃µ(i) = 〈Θ,Φ(i)〉

= 〈
∑
i′∈ eS

λi′Ψ(i′) , Φ(i)〉

=
∑
i′∈ eS

λi′〈Ψ(i′),Φ(i)〉

=
∑
i′∈ eS

λi′

(
〈Φ(i′),Φ(i)〉 − α

∑
j∈S

P µ
i′j〈Φ(j),Φ(i)〉

)

=
∑
i′∈ eS

λi′

(
k(i′, i)− α

∑
j∈S

P µ
i′jk(j, i)

)
(3.42)

Once J̃µ(·) is found, policy evaluation is complete.

Note that Eq. (3.42) is identical to the functional form for J̃µ(·) that was found in

deriving BRE(SV) [Eq. (3.22)]. Although that derivation was carried out in a different

way (by computing a dual optimization problem instead of explicitly constructing a

map between Hk and HK), the resulting cost-to-go functions have the same functional
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form. The more general family of BRE algorithms developed in this section provides

a deeper insight into how the BRE(SV) algorithm works.

To summarize, the generalized family of BRE algorithms allows any kernel-based

regression method to be utilized to perform BRE and generate an approximate cost-

to-go function. If the learned regression function W̃µ(·) satisfies W̃µ(i) = gi at some

state i, then the Bellman residual of the corresponding cost-to-go function J̃µ(i),

calculated using Eq. (3.42), is identically zero (as long as a nondegenerate kernel is

used, as shown by Theorem 6).

3.3 BRE Using Gaussian Process Regression

The previous section showed how the problem of eliminating the Bellman residuals

at the set of sample states S̃ is equivalent to a simple regression problem in HK, and

how to compute the corresponding cost-to-go function once the regression problem

is solved. We now present BRE(GP), a BRE algorithm that uses Gaussian process

regression to compute the solution to the regression problem in HK. Like BRE(SV),

BRE(GP) produces a cost-to-go solution whose Bellman residuals are zero at the sam-

ple states, and therefore reduces to exact policy iteration in the limit of sampling the

entire state space (this will be proved later in the section). In addition, BRE(GP) can

automatically select any free kernel parameters and provide natural error bounds on

the cost-to-go solution, and therefore directly addresses the two important questions

posed at the end of Section 3.1. As we will see, these desirable features of BRE(GP)

arise because Gaussian process regression provides a tractable way to compute the

posterior covariance and log marginal likelihood.

Pseudocode for BRE(GP) is shown in Algorithm 5. Similar to BRE(SV), BRE(GP)

takes an initial policy µ0, a set of sample states S̃, and a kernel k as input. However,

it also takes a set of initial kernel parameters Ω ∈ Ω (in BRE(SV), these parameters

were assumed to be fixed). The kernel k, as well as its associated Bellman kernel

K and the Gram matrix K all depend on these parameters, and to emphasize this

dependence they are written as k(i, i′; Ω), K(i, i′; Ω), and K(Ω), respectively.
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Algorithm 5 BRE(GP)

1: Input: (µ0, S̃, k, Ω)
2: µ0: initial policy
3: S̃: set of sample states
4: k: kernel (covariance) function defined on S×S×Ω, k(i, i′; Ω) = 〈Φ(i; Ω),Φ(i′; Ω)〉

5: Ω: initial set of kernel parameters
6: Begin
7: Define K(i, i′; Ω) = 〈Ψ(i; Ω),Ψ(i′; Ω)〉 {Define the associated Bellman kernel}
8: µ← µ0

9: loop
10: Construct gµ, the vector of stage costs gµi ∀i ∈ S̃
11: repeat
12: Construct the Gram matrix K(Ω), where K(Ω)ii′ = K(i, i′; Ω) ∀i, i′ ∈ S̃,

using Eq. (3.17)
13: Solve λ = K(Ω)−1gµ

14: Calculate the gradient of the log marginal likelihood, ∇Ω log p(gµ|S̃,Ω),
where

∂ log p(gµ|S̃,Ω)

∂Ωj

=
1

2
tr

(
(λλT −K(Ω)−1)

∂K(Ω)

∂Ωj

)
.

15: Update the kernel parameters using any gradient-based optimization rule:

Ω← Ω + γ∇Ω log p(gµ|S̃,Ω),

where γ is an appropriately selected step size
16: until stopping condition for gradient-based optimization rule is met
17: Using the coefficients {λi | i ∈ S̃} and kernel parameters Ω, compute the cost-

to-go function

J̃µ(i) =
∑
i′∈ eS

λi′

(
k(i′, i; Ω)− α

∑
j∈S

P µ
i′jk(j, i; Ω)

)

{Policy evaluation step complete}
18: Compute E(i), the 1-σ error bound on the Bellman residual function

E(i) =

√
K(i, i; Ω)− hTK(Ω)−1h

where hj ≡ K(i, j; Ω), j ∈ S̃
19: µ(i)← arg minu

∑
j∈S Pij(u)

(
g(i, u) + αJ̃µ(j)

)
{Policy improvement}

20: end loop
21: End
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The algorithm consists of two nested loops. The inner loop (lines 11–16) is re-

sponsible for repeatedly solving the regression problem in HK (notice that the target

values of the regression problem, the one-stage costs gµ, are computed in line 10) and

adjusting the kernel parameters using gradient-based optimization. This process is

carried out with the policy fixed, so the kernel parameters are tuned to each policy

prior to the policy improvement stage being carried out. Line 13 computes the λ

values necessary to compute the mean function of the posterior process [Eq. (2.21)].

Lines 14 and 15 then compute the gradient of the log likelihood function, using

Eq. (2.23), and use this gradient information to update the kernel parameters. This

process continues until a maximum of the log likelihood function has been found.

Once the kernel parameters are optimally adjusted for the current policy µ, the

main body of the outer loop (lines 17-19) performs three important tasks. First,

it computes the cost-to-go solution J̃µ(i) using Eq. (3.42) (rewritten on line 17 to

emphasize dependence on Ω). Second, on line 18, it computes the posterior standard

deviation E(i) of the Bellman residual function. This quantity is computed using the

standard result from Gaussian process regression for computing the posterior variance

[Eq. (2.20)], and it gives a Bayesian error bound on the magnitude of the Bellman

residual BR(i). This error bound is useful, of course, because the goal is to achieve

small Bellman residuals at as many states as possible. Finally, the algorithm carries

out a policy improvement step in Line 19.

Note that the log likelihood function is not necessarily guaranteed to be convex,

so it may be possible for the gradient optimization carried out in the inner loop (lines

11-16) to converge to a local (but not global) maximum. However, by initializing the

optimization process at several starting points, it may be possible to decrease the

probability of ending up in a local maximum [128, 5.4].

The following theorems establish the same important properties of BRE(GP) that

were proved earlier for BRE(SV):

Theorem 7. Assume that the kernel k(i, i′; Ω) = 〈Φ(i; Ω),Φ(i′; Ω)〉 is nondegenerate.
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Then the cost-to-go functions J̃µ(i) computed by BRE(GP) (on line 17) satisfy

J̃µ(i) = gµi + α
∑
j∈S

P µ
ijJ̃µ(j) ∀i ∈ S̃.

That is, the Bellman residuals BR(i) are identically zero at every state i ∈ S̃.

An immediate corollary of Theorem 7 follows:

Corollary 8. Assume that the kernel k(i, i′; Ω) = 〈Φ(i; Ω),Φ(i′; Ω)〉 is nondegenerate,

and that S̃ = S. Then the cost-to-go function J̃µ(i) produced by BRE(GP) satisfies

J̃µ(i) = Jµ(i) ∀i ∈ S.

That is, the cost-to-go function J̃µ(i) is exact.

Corollary 9. Assume that the kernel k(i, i′; Ω) = 〈Φ(i; Ω),Φ(i′; Ω)〉 is nondegenerate,

and that S̃ = S. Then BRE(GP) is equivalent to exact policy iteration.

3.3.1 Computational Complexity

The computational complexity of running BRE(GP) is dominated by steps 12 (con-

structing the Gram matrix) and 13 (inverting the Gram matrix). To obtain an ex-

pression for the computational complexity of the algorithm, first define ns ≡ |S̃| as

the number of sample states. Furthermore, define the average branching factor of

the MDP, β, as the average number of possible successor states for any state i ∈ S,

or equivalently, as the average number of terms P µ
ij that are nonzero for fixed i and

µ. Finally, recall that since K(i, i′) is nondegenerate (as proved earlier), the Gram

matrix is positive definite and symmetric.

Now, each entry of the Gram matrix K(Ω)ii′ is computed using Eq. (3.17). Using

the average branching factor defined above, computing a single element of the Gram

matrix using Eq. (3.17) therefore requires O(β2) operations. Since the Gram matrix

is symmetric and of dimension ns × ns, there are ns(ns + 1)/2 unique elements that

76



must be computed. Therefore, the total number of operations to compute the full

Gram matrix is O(β2ns(ns + 1)/2).

Once the Gram matrix is constructed, its inverse must be computed in line 13.

Since the Gram matrix is positive definite and symmetric, Cholesky decomposition

can be used, resulting in a total complexity of O(n3
s) for line 13. (The results of the

Cholesky decomposition computed in line 13 can and should be saved to speed up the

calculation of the log marginal likelihood in line 14, which also requires the inverse of

the Gram matrix). As a result, the total complexity of the BRE(GP) algorithm is

O(n3
s + β2ns(ns + 1)/2). (3.43)

This complexity can be compared with the complexity of exact policy iteration.

Recall that exact policy iteration requires inverting the matrix (I −αP µ) in order to

evaluate the policy µ:

Jµ = (I − αP µ)−1gµ.

(I − αP µ) is of dimension N × N , where N = |S| is the size of the state space.

Therefore, the complexity of exact policy iteration is

O(N3). (3.44)

Comparing Eqs. (3.43) and (3.44), notice that both expressions involve cubic terms

in ns and N , respectively. By assumption, the number of sample states is taken to be

much smaller than the total size of the state space (ns � N). Furthermore, the aver-

age branching factor β is typically also much smaller than N (and can certainly be no

larger than N). Therefore, the computational complexity of BRE(GP) is significantly

less than the computational complexity of exact policy iteration.
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3.3.2 Computational Results - Mountain Car

BRE(GP) was implemented on the same mountain car problem examined earlier for

BRE(SV). The kernel function employed for these experiments was

k((x1, ẋ1), (x2, ẋ2); Ω) = exp (−(x1 − x2)2/Ω2
1 − (ẋ1 − ẋ2)2/Ω2

2).

This is the same functional form of the kernel that was used for BRE(SV). However,

the length-scales Ω1 and Ω2 were left as free kernel parameters to be automatically

learned by the BRE(GP) algorithm, in contrast with the BRE(SV) tests, where these

values had to be specified by hand. The parameters were initially set at Ω1 = Ω2 = 10.

These values were deliberately chosen to be far from the empirically chosen values

used in the BRE(SV) tests, which were Ω1 = 0.25 and Ω2 = 0.40. Therefore, the

test reflected a realistic situation in which the parameter values were not initially

well-known.

Initially, the same 9 × 9 grid of sample states as used in the BRE(SV) tests was

employed to compare the performance of the two algorithms:

S̃ = {(x, ẋ) | x = −1.0,−0.75, . . . , 0.75, 1.0

ẋ = −2.0,−1.5, . . . , 1.5, 2.0}.

BRE(GP) was then executed. Like the BRE(SV) test, the algorithm converged after

3 policy updates. The associated cost-to-go functions (after each round of kernel

parameter optimization) are shown in Figure 3-5 along with the true optimal cost-to-

go for comparison. The final parameter values found by BRE(GP) were Ω1 = 0.253

and Ω2 = 0.572. These values are similar to those found empirically in the BRE(SV)

tests but are actually better values, as evidenced by the system response under the

policy found by BRE(GP), which is shown in Figure 3-6. The BRE(GP) policy

arrives in the parking area at time t = 15, 2 time steps faster than the BRE(SV)

policy and only 1 step step slower than the optimal policy. This result demonstrates

that BRE(GP) is not only able to learn appropriate values for initially unknown
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Figure 3-5: From left to right: Approximate cost-to-go computed by BRE(GP) for
iterations 1, 2 , and 3; exact cost-to-go computed using value iteration.

Figure 3-6: System response under the optimal policy (dashed line) and the policy
computed by BRE(GP) after 3 iterations (solid line).
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Figure 3-7: Bellman residuals (solid blue line) as a function of x (ẋ is fixed to zero
in this plot). Sample states are represented by the red dots; notice that the Bellman
residuals at the sample states are exactly zero as expected. 2σ error bounds computed
by BRE(GP) are shown by the dashed green lines.

kernel parameters, but also that the resulting policy can be of higher quality than

could be obtained using time-consuming empirical testing.

As discussed, in addition to automatically learning the kernel parameters, BRE(GP)

also computes error bounds on the cost-to-go solution. Figure 3-7 plots the Bellman

residuals BR(i), as well as the 2σ error bounds 2E(i) computed in line 18 of the

BRE(GP) algorithm. For clarity, the plot is given as a function of x only; ẋ was fixed

to zero. The sampled states

{(x, 0) | x = −1.0,−0.75, . . . , 0.75, 1.0}

are represented by red dots in the figure. Notice that, as expected, the Bellman

residuals at the sampled states are exactly zero. Furthermore, the error bounds
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Figure 3-8: Policy loss vs. number of sampled states for the BRE(GP) algorithm.
The total size of the state space is 13,041 (1.3041× 104). Note that BRE(GP) finds
the optimal policy (i.e. zero policy loss) well before the entire state space is sampled.

computed by BRE(GP), shown as the dashed green lines, do a good job of bounding

the Bellman residuals at non-sampled states. Recall that these bounds represent the

posterior variance of the Bellman residuals. Thus, for the 2σ case shown in the figure,

the bounds represent a 95% confidence interval, so we expect that 95% of the Bellman

residuals should lie within the bounds. There are two cases where the residuals lie

outside the bounds (at x = 0.45 and x = 0.70), and there are a total of 81 points in

the graph. This leads to an empirical confidence interval of

81− 2

81
= 97.53%,

which is in excellent agreement with the bounds computed by BRE(GP).
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A further series of tests were conducted to explore the quality of the policies

produced by BRE(GP) as a function of the number of sample states. In these tests,

a uniform sampling of the two-dimensional state space was used, and tests were

conducted for as few as 8 sample states and as many as 13,041 (which was the total

size of the state space, so the entire space was sampled in this test). For each test, the

cost-to-go of the resulting policy, starting at the initial condition (x = −0.5, ẋ = 0.0),

was compared with the cost-to-go of the optimal policy. Figure 3-8 plots the difference

between these two costs (this value is called the policy loss) as a function of ns, the

number of sample states. Note that for this example problem, Corollary 9 guarantees

that the policy loss must go to zero as ns goes to 13,041, since in this limit the

entire state space is sampled and BRE(GP) reduces to exact policy iteration, which

always converges to the optimal policy. Figure 3-8 confirms this prediction, and in fact

demonstrates a stronger result: the policy loss goes to zero well before the entire space

is sampled. While this is behavior is not guaranteed to always occur, it does suggest

that there may be a “critical number” of sample states, above which BRE(GP) yields

the optimal policy.

3.4 Kernel Selection

The kernel k(i, i′) plays an important role in the BRE algorithms presented in the

preceding chapters. Since the algorithms learn a cost-to-go function J̃µ(i) which is an

element of the RKHS Hk, the kernel k(i, i′) implicitly determines the structure of the

cost-to-go function that is ultimately produced by the algorithms. Intuitively, k(i, i′)

can be interpreted as a similarity measure that encodes our assumptions about how

strongly correlated the cost-to-go values of states i and i′ are.

In order to guarantee that the Bellman residuals are identically zero at the sample

states, it is important that k(i, i′) be nondegenerate. Functional forms for a variety

of nondegenerate kernels are known; Table 3.1 lists several of these. Note that all of

these kernels contain a number of free parameters, such as the positive semidefinite

scaling matrix Σ, that can be automatically optimized by the BRE(GP) algorithm.
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Kernel Name Functional Form
Radial basis function k(i, i′) = exp

(
−(i− i′)TΣ(i− i′)

)
Exponential k(i, i′) = exp

(
−
√

(i− i′)TΣ(i− i′)
)

γ-exponential k(i, i′) = exp
(
−((i− i′)TΣ(i− i′))γ

)
Matérn k(i, i′) = 1

2ν−1Γ(ν)

(√
2ν
l

(i− i′)TΣ(i− i′)
)ν
Kν

(√
2ν
l

(i− i′)TΣ(i− i′)
)

Rational quadratic k(i, i′) =
(
1 + (i− i′)TΣ(i− i′)/(2α)

)−α
Neural network k(i, i′) = sin−1

(
2iTΣi′√

(1+2iTΣi′)(1+2i′TΣi)

)

Table 3.1: Nondegenerate kernel function examples [128, Sec. 4.2.3]

So-called non-stationary kernels, which include features such as characteristic length-

scales that vary over the state space, can also be accomodated [128, Sec. 4.2.3].

Furthermore, it is well-known that new, “composite” kernels can be constructed by

taking linear combinations [128, Sec. 4.2.4]: if k1(i, i′) and k2(i, i′) are kernels, and

Ω1 and Ω2 are positive weights, then

k3(i, i′) = Ω1k1(i, i′) + Ω2k2(i, i′)

is also a valid kernel. Again, BRE(GP) can be used to learn Ω1 and Ω2, automatically

determining an appropriate weighting for the problem at hand.

All of the kernels presented in Table 3.1 can be described as “geometric” in the

sense that they compute a dot product—either of the form (i−i′)TΣ(i−i′) or iTΣi′—in

the state space. This dot product encodes a notion of distance or proximity between

states in the state space. Thus, these geometric kernels are appropriate for many

problems, such as the mountain car problem used as the example in this chapter,

where a natural distance metric can be defined on the state space. For problems that

do not admit a natural distance metric, another approach may be taken. An example

of such a problem is the two-room robot navigation problem shown in Figure 3-9. In

this problem, a robot must navigate to the goal location, shown in green, by moving

between adjacent points on the two-dimensional grid. The robot cannot move through

the vertical wall in the center of the grid. Because of the presence of the wall, a kernel
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Figure 3-9: Two-room robot navigation problem.

based on a normal Euclidean distance metric of the form
√

(i− i′)TΣ(i− i′) (where i

and i′ are two-dimensional position vectors) would work poorly, since it would tend to

predict high correlation in the cost-to-go between two states on opposite sides of the

wall (shown in red). However, since all feasible paths between these two highlighted

states are long, the cost-to-go values of these two states are in reality very weakly

correlated. To solve this problem, a new type of kernel function can be constructed

that relies on exploiting the graph structure of the state space. More precisely, for

a fixed policy, the state transition dynamics of the MDP are described by a Markov

chain, where each state i is represented as a node in the graph and is connected

to states that are reachable from i in one step with positive probability. Instead

of using a distance metric based on the geometry of the problem, one can define a

distance metric based on the graph which measures the number of steps necessary to

move from one state to another. A number of authors have shown that these graph-
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based methods give rise to kernel functions that naturally capture the structure of

the cost-to-go function and have demonstrated good results in applications like the

two-room robot navigation problem [16, 17, 102, 103, 146, 150, 151]. Note, however,

that some of these methods require carrying out dynamic programming on the state

space in order to find the shortest paths between states. In order to be able to do this

efficiently, some of the above methods require specialized structure in the state space

or other assumptions that limit their applicability to general MDPs. This issue will

be discussed further in Chapter 4, where we shall show how the multi-stage extension

of the BRE approach can automatically construct a kernel that captures the local

graph structure of the state space for general MDPs.

To this point in the discussion, we have been assuming that the underlying state

space, upon which the kernel is defined, is a subset of Rn; that is, a normal Euclidean

space. However, it is worth noting that kernels can be defined over more structured

spaces in addition to Euclidean spaces. For example, researchers have investigated

defining kernels over strings (sequences of characters from a well-defined alphabet)

for purposes such as text classification [96, 97] and protein sequence analysis [95,

125, 126]. Kernels defined over tree structures have also been investigated [164, 166].

These kernels could be useful in the ADP setting if one was dealing with an MDP

whose states were naturally represented as structured objects such as strings or trees.

Kernels can also be explicitly constructed from a pre-existing feature mapping

Φ(·), if an appropriate set of features is already known for the application at hand.

This may be the case for a number of well-studied problems such as chess [144],

checkers [136], and tetris [24, 155], where a standard set of features for the problem

has been established; or for problems where intuition or previous experience can

be used to construct a reasonable feature set. In these cases, a kernel based on

the features is constructed simply by computing the inner product between feature

vectors: k(i, i′) = 〈Φ(i),Φ(i′)〉. In applying the BRE algorithms, however, care must

be taken to ensure that the kernel is non-degenerate. Since using a finite set of

features will result in a degenerate kernel (whose rank is equal to the number of

features used, assuming linear independence between features), an additional term
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must be added to the kernel to make it non-degenerate. One possible way to do this

is to add a small Kronecker delta term to the kernel: ηδ(i, i′) + k(i, i′), where η > 0 is

a weighting factor that may be interpreted as a type of regularization. This approach

is equivalent to adding a small multiple of the identity matrix to the Gram matrix

K computed by BRE, and functions to ensure that the Gram matrix is full-rank and

invertible, as required by the BRE algorithm. Initial experiments in applying the BRE

algorithms to the problem of tetris, using a kernel constructed from a standard set of

22 basis functions (see, for example, [24]), have shown the importance of including the

regularization term in order to ensure numerical stability of the algorithm. However,

if a good set of (a finite number of) features is already known, other ADP approaches

that assume a finite-dimensional cost approximation architecture may be a more

appropriate choice than BRE, which assumes an infinite-dimensional architecture.

The BRE algorithms can make use of geometric kernels, graph-based kernels, ker-

nels defined over structured objects, kernels constructed using pre-existing features,

or even linear combinations of many different kernel types, depending which type(s)

are most appropriate for the application.

3.5 Summary

This chapter has demonstrated how kernel-based techniques can be used to design

a new class of approximate dynamic programming (ADP) algorithms that carry out

Bellman residual elimination (BRE). These BRE algorithms learn the structure of

the cost-to-go function by forcing the Bellman residuals to zero at a chosen set of

representative sample states. Essentially, our approach reduces the dimensionality of

the full fixed-policy Bellman equation to a much smaller linear system that is practical

to solve, and uses the solution to the smaller system in order to infer the cost-to-go

everywhere in the state space.

The BRE approach has a number of advantages and desirable features, which we

summarize here:

• The Bellman residuals are exactly zero at the sample states S̃. By exploiting
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knowledge of the underlying MDP model, the BRE algorithms avoid the need

to carry out trajectory simulations and thus do not suffer from simulation noise

effects. Since there is no simulation noise, there is no danger of overfitting by

forcing the Bellman residuals to zero.

• The BRE algorithms converge to the optimal policy in the limit of sampling

the entire state space (S̃ → S). This property is a direct consequence of the

fact that the Bellman residuals at the sample states are exactly zero. Note

that this feature of BRE depends crucially on the use of non-degenerate kernels

that effectively provide an infinite-dimensional feature space; other ADP algo-

rithms based on finite-dimensional function approximation architectures cannot

in general assure convergence to the optimal policy, since in general, the optimal

cost-to-go function cannot be represented exactly in the chosen architecture.

• The BRE algorithm based on Gaussian process regression, denoted BRE(GP),

provides error bounds that can be used for adaptive re-sampling of the state

space. BRE(GP) can also automatically learn any free hyperparameters in the

kernel.

• The computational requirements of carrying out BRE scale with the number of

sample states chosen, which is under the designer’s control.

• The BRE algorithms are naturally distributable, allowing for the running time

of the algorithm to be reduced by running it on a cluster of multiple processors.

A distributed implementation of BRE is described in detail in Section 7.1.3.

• In many other ADP algorithms based on linear cost-to-go approximation archi-

tectures (such as LSPI [93], LSPE [23, 114], LSTD [39, 40], etc), the feature

vectors enter into the algorithm as outer products of the form Φ(i)Φ(i′)T . This

approach works well when the number of features is small, but if it is desirable

to use a large number of features, difficulties are encountered since computing

the outer product becomes computationally expensive. In contrast, by work-

ing in the dual space, the BRE algorithm computes only inner products of the
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feature vectors, which can be computed efficiently using kernels even when the

effective number of features is very large or even infinite. Thus, BRE allows

the use of very high-dimensional feature vectors in a computationally tractable

way.

Application of our BRE algorithms to a classic reinforcement learning problem

indicates that they yield nearly optimal policies while requiring few sample states (and

therefore, can be computed efficiently). The kernel parameter learning mechanism

employed by BRE(GP) was demonstrated to be effective at finding appropriate values

of the kernel parameters. This is an important feature of the BRE(GP) algorithm,

especially in higher-dimensional and more complex problems where suitable values

of the kernel parameters may not be known a priori. In later chapters, we will

demonstrate the application of BRE to larger and more complex problems dealing

with autonomous planning in multi-UAV systems.
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Appendix: Proofs

This appendix gives proofs for the lemmas, theorems, and corollaries presented in

this chapter.

Lemma 1 Assume the vectors {Φ(i) | i ∈ S} are linearly independent. Then the

vectors {Ψ(i) | i ∈ S}, where Ψ(i) = Φ(i) − α
∑

j∈S P
µ
ijΦ(j), are also linearly inde-

pendent.

Proof. Consider the real vector space V spanned by the vectors {Φ(i) | i ∈ S}. It is

clear that Ψ(i) is a linear combination of vectors in V , so a linear operator B̂ that

maps Φ(i) to Ψ(i) can be defined:

Ψ(i) = B̂Φ(i).

Since

Ψ(i) = Φ(i)− α
∑
j∈S

P µ
ijΦ(j),

the matrix of B̂ is

(I − αP µ),

where I is the identity matrix and P µ is the probability transition matrix for the policy

µ. Since P µ is a stochastic matrix, its largest eigenvalue is 1 and all other eigenvalues

have absolute value less than 1; hence all eigenvalues of αP µ have absolute value less

than or equal to α < 1. Since all eigenvalues of I are equal to 1, (I − αP µ) is full

rank and dim(ker(B̂)) = 0. Therefore,

dim({Ψ(i) | i ∈ S}) = dim({Φ(i) | i ∈ S}) = ns

so the vectors {Ψ(i) | i ∈ S} are linearly independent.

Theorem 2 Assume that the kernel k(i, i′) = 〈Φ(i),Φ(i′)〉 is nondegenerate. Then

the associated Bellman kernel defined by K(i, i′) = 〈Ψ(i),Ψ(i′)〉, where Ψ(i) = Φ(i)−

α
∑

j∈S P
µ
ijΦ(j), is also nondegenerate.
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Proof. Since k(i, i′) is nondegenerate, the vectors {Φ(i) | i ∈ S} are linearly inde-

pendent. Therefore, Lemma 1 applies, and the vectors {Ψ(i) | i ∈ S} are linearly

independent, immediately implying that K(i, i′) is nondegenerate.

Theorem 3 Assume that the kernel k(i, i′) = 〈Φ(i),Φ(i′)〉 is nondegenerate. Then

the cost-to-go function J̃µ(i) produced by Algorithm 2 satisfies

J̃µ(i) = gµi + α
∑
j∈S

P µ
ijJ̃µ(j) ∀i ∈ S̃.

That is, the Bellman residuals BR(i) are identically zero at every state i ∈ S̃.

Proof. Since k(i, i′) is nondegenerate, Theorem 2 applies and K(i, i′) is also nonde-

generate. Therefore, the Gram matrix K of K(i, i′) is positive definite and invertible.

It follows that, in Line 8 of Algorithm 2, there is a unique solution for λ. Having

found a feasible solution λ for the dual problem given by [Eq. (3.23)], Slater’s condi-

tion is satisfied and strong duality holds. Therefore, the primal problem [Eq. (3.19)]

is feasible, and its optimal solution is given by Eq. (3.21). Feasibility of this solution

implies

BR(i) = −gµi + 〈Θ,Ψ(i)〉 = 0 ∀i ∈ S̃

as claimed.

Corollary 4 Assume that the kernel k(i, i′) = 〈Φ(i),Φ(i′)〉 is nondegenerate, and that

S̃ = S. Then the cost-to-go function J̃µ(i) produced by Algorithm 2 satisfies

J̃µ(i) = Jµ(i) ∀i ∈ S.

That is, the cost-to-go function J̃µ(i) is exact.

Proof. Applying Theorem 3 with S̃ = S, we have

BR(i) = 0 ∀i ∈ S.
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Using the definition of the Bellman residual,

BR(i) ≡ J̃µ(i)− TµJ̃µ(i),

immediately implies that

J̃µ(i) = TµJ̃µ(i) ∀i ∈ S.

Therefore, J̃µ(i) satisfies the fixed-policy Bellman equation, so

J̃µ(i) = Jµ(i) ∀i ∈ S

as claimed.

Corollary 5 Assume that the kernel k(i, i′) = 〈Φ(i),Φ(i′)〉 is nondegenerate, and that

S̃ = S. Then BRE(SV) (given in Algorithm 3) is equivalent to exact policy iteration.

Proof. By Corollary 4, the cost-to-go function J̃µ(i) produced by BRE(SV) is equal

to the exact cost-to-go Jµ(i), at every state i ∈ S. Since the policy improvement step

(Line 9) is also exact, BRE(SV) carries out exact policy iteration by definition, and

converges in a finite number of steps to the optimal policy.

Theorem 6 Assume that the kernel k(i, i′) = 〈Φ(i),Φ(i′)〉 is nondegenerate. Then

there exists a linear, invertible mapping Â from Hk, the RKHS of k, to HK, the RKHS

of the associated Bellman kernel K:

Â : Hk → HK

ÂJ̃µ(·) = W̃µ(·).

Furthermore, if an element J̃µ(·) ∈ Hk is given by

J̃µ(·) = 〈Θ,Φ(·)〉,
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then the corresponding element W̃µ(·) ∈ HK is given by

W̃µ(·) = 〈Θ,Ψ(·)〉, (3.45)

and vice versa:

J̃µ(·) = 〈Θ,Φ(·)〉

m

W̃µ(·) = 〈Θ,Ψ(·)〉.

Proof. Recall from the proof of Lemma 1 that the relation between Φ(i) and Ψ(i)

[Eq. (3.27)] is defined by the invertible linear operator B̂:

Ψ(i) = B̂Φ(i)

Using the definition of B̂ and linearity of the inner product 〈·, ·〉, Eq. (3.45) can be

rewritten as

W̃µ(·) = 〈Θ, B̂Φ(·)〉

= B̂〈Θ,Φ(·)〉

= B̂J̃µ(·),

which establishes the invertible linear mapping between Hk and HK, as claimed.

Therefore, the linear mapping Â in the statement of the theorem exists and is equal

to the linear mapping B̂ from Lemma 1:

Â = B̂.

Comparing Eqs. (3.31) and (3.36), notice that we can convert between a cost-to-go

function J̃µ(·) and its corresponding function W̃µ(·) by replacing Φ(·) with Ψ(·) in the
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inner product:

J̃µ(·) = 〈Θ,Φ(·)〉

m

W̃µ(·) = 〈Θ,Ψ(·)〉

Theorem 7 Assume that the kernel k(i, i′; Ω) = 〈Φ(i; Ω),Φ(i′; Ω)〉 is nondegenerate.

Then the cost-to-go functions J̃µ(i) computed by BRE(GP) (on line 17) satisfy

J̃µ(i) = gµi + α
∑
j∈S

P µ
ijJ̃µ(j) ∀i ∈ S̃.

That is, the Bellman residuals BR(i) are identically zero at every state i ∈ S̃.

Proof. Note that line 13 of the BRE(GP) algorithm computes the weights λ as

λ = K(Ω)−1gµ.

Aside from the purely notational difference emphasizing the dependence of the Gram

matrix K(Ω) on the kernel parameters Ω, the weights λ and the cost-to-go function

J̃µ(i) computed by BRE(GP) are identical to those computed by BRE(SV). Therefore,

Theorem 3 applies directly, and the Bellman residuals are identically zero at every

state i ∈ S̃.

Corollary 8 Assume that the kernel k(i, i′; Ω) = 〈Φ(i; Ω),Φ(i′; Ω)〉 is nondegenerate,

and that S̃ = S. Then the cost-to-go function J̃µ(i) produced by BRE(GP) satisfies

J̃µ(i) = Jµ(i) ∀i ∈ S.

That is, the cost-to-go function J̃µ(i) is exact.
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Proof. Applying Theorem 7 with S̃ = S, we have

BR(i) = 0 ∀i ∈ S.

Using the definition of the Bellman residual,

BR(i) ≡ J̃µ(i)− TµJ̃µ(i),

immediately implies that

J̃µ(i) = TµJ̃µ(i) ∀i ∈ S.

Therefore, J̃µ(i) satisfies the fixed-policy Bellman equation, so

J̃µ(i) = Jµ(i) ∀i ∈ S

as claimed.

Corollary 9 Assume that the kernel k(i, i′; Ω) = 〈Φ(i; Ω),Φ(i′; Ω)〉 is nondegenerate,

and that S̃ = S. Then BRE(GP) is equivalent to exact policy iteration.

Proof. By Corollary 4, we have that the cost-to-go produced by BRE(GP), J̃µ(i) is

equal to the exact cost-to-go Jµ(i), at every state i ∈ S. Since the policy improve-

ment step (Line 19) is also exact, the algorithm carries out exact policy iteration by

definition, and converges in a finite number of steps to the optimal policy.
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Chapter 4

Multi-Stage and Model-Free

Bellman Residual Elimination

The previous chapter developed the basic ideas behind the Bellman residual elim-

ination approach, under the assumption that the system model is known. In this

chapter, we show how the basic, model-based approach can be extended in several

ways. First, a multi-stage extension is discussed, in which Bellman residuals of the

form |J̃µ(i) − T nµ J̃µ(i)| are eliminated (the algorithms in the previous chapter corre-

spond to the special case where n, the number of stages, is equal to one). Second, a

model-free BRE variant is developed, in which knowledge of the system model is not

required.

4.1 Multi-Stage Bellman Residual Elimination

Before developing the multi-stage extension to BRE, it is useful to examine the asso-

ciated Bellman kernel K(i, i′) in some detail to understand its structure. Eq. (3.28)

shows that K(i, i′) can be viewed as the inner product between the feature mappings

Ψ(i) and Ψ(i′) of the input states i and i′, respectively. In turn, Eq. (3.8) shows

that Ψ(i) represents a new feature mapping that takes into account the local graph

structure of the MDP, since it is a linear combination of Φ features of both the state

i and all of the successor states j that can be reached in a single step from i (these
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i

j1

. . .
jm

i′

j′1
. . .

j′m′

Figure 4-1: Graph structure of the associated Bellman kernel K(i, i′) [Eq. (3.28)]. The
one-stage successor states of i and i′ are {j1, . . . , jm} and {j′1, . . . , j′m′}, respectively.
The associated Bellman kernel is formed by taking a linear combination of the base
kernel k(·, ·) applied to all possible state pairings (shown by the dashed blue lines)
where one state in the pair belongs to the set of i and its descendants (this set is
shown by the left shaded rectangle), and the other belongs to the set of i′ and its
descendants (right shaded rectangle).

are all the states j for which P µ
ij are nonzero).

Figure 4-1 is a graphical depiction of the associated Bellman kernel. Using the

figure, we can interpret the associated Bellman kernel as measuring the total “overlap”

or similarity between i, i′, and all immediate (one-stage) successor states of i and i′.

In this sense, the associated Bellman kernel automatically accounts for a limited

amount of local graph structure in the state space. Of course, we would expect that

by examining more states in the vicinity of i and i′, a more accurate representation of

the similarity of i and i′ would be obtained. A natural way to do this is to expand the

depth of the successor state tree that is considered in the calculation of the associated

Bellman kernel (this amounts to adding more layers of states in Figure 4-1). The next

section explains how this can be accomplished.
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4.1.1 Development of Multi-Stage BRE

We have seen that the associated Bellman kernel K(i, i′) plays a central role in

BRE. This kernel was derived starting from the definition of the Bellman residu-

als [Eq. (3.6)], which measure the error in solving the Bellman equation Jµ = TµJµ.

The fact that K(i, i′) incorporates information only about the one-stage successor

states of i and i′ is directly related to the fact that Tµ defines a relationship between

the cost-to-go of a state and its one-stage successors [Eq. (2.8)]. A more general

expression for the associated Bellman kernel that incorporates more successor states

(and therefore, more of the graph structure of the MDP) can be derived by start-

ing with a multi-stage form of the Bellman equation. This equation is generated by

repeatedly applying the dynamic programming operator Tµ:

T 2
µJµ = Tµ(TµJµ) = TµJµ = Jµ

...

T lµJµ = Jµ. (4.1)

Then, by taking a convex combination of n equations of the form (4.1), we obtain

n∑
l=1

γlT
l
µJµ = Jµ, (4.2)

where the weights γl satisfy γl ≥ 0 and
∑n

l=1 γl = 1. Finally, we define the generalized

Bellman residual BRn(i) to be the error incurred in solving Eq. (4.2):

BRn(i) ≡
n∑
l=1

γl

(
J̃µ(i)− T lµJ̃µ(i)

)
. (4.3)

Using the definition of Tµ and the functional form of the approximate cost-to-go

function J̃µ(i) [Eq. (3.4)], the individual terms J̃µ(i)− T lµJ̃µ(i) can be expressed as

J̃µ(i)− T lµJ̃µ(i) = J̃µ(i)− Tµ
(
T l−1
µ J̃µ(i)

)
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= J̃µ(i)−

(
gµi + α

∑
j1∈S

P µ
ij1
Tµ

(
T l−2
µ J̃µ(j1)

))
...

= J̃µ(i)−

(
gµi + α

∑
j1∈S

P µ
ij1

(
gµj1 + · · ·+ α

∑
jl∈S

P µ
jl−1jl

J̃µ(jl)

))

= 〈Θ,Φ(i)〉 −

(
gµi + α

∑
j1∈S

P µ
ij1

(
gµj1 + · · ·+ α

∑
jl∈S

P µ
jl−1jl
〈Θ,Φ(jl)〉

))

= 〈Θ,Ψl(i)〉 − gl,µi , (4.4)

where

Ψl(i) ≡ Φ(i)− αl
∑

j1,...,jl∈S

(
P µ
ij1
. . . P µ

jl−1jl

)
Φ(jl) (4.5)

is an l-stage generalization of the feature mapping Ψ(i), and

gl,µi ≡ gµi + α
∑
j1∈S

P µ
ij1

gµj1 + · · ·+ α
∑
jl−1∈S

P µ
jl−2jl−1

gµjl−1

 (4.6)

is the expected cost of state i over l stages. Using Eq. (4.4) allows us to express the

generalized Bellman residual BRn(i) as

BRn(i) =
n∑
l=1

γl

(
〈Θ,Ψl(i)〉 − gl,µi

)
=

〈
Θ ,

n∑
l=1

γlΨ
l(i)

〉
−

n∑
l=1

γlg
l,µ
i .

Therefore, in direct analogy with the derivation of BRE presented earlier, the condi-

tion of exactly satisfying the Bellman equation [Eq. (4.2)] at the sample states S̃ is

equivalent to finding a function W̃ n
µ (i) = 〈 Θ ,

∑n
l=1 γlΨ

l(i) 〉 satisfying

W̃ n
µ (i) =

n∑
l=1

γlg
l,µ
i ∀i ∈ S̃. (4.7)
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W̃ n
µ belongs to a RKHS whose kernel is the n-stage associated Bellman kernel :

Kn(i, i′) =

〈
n∑
l=1

γlΨ
l(i) ,

n∑
l′=1

γl′Ψ
l′(i′)

〉

=
n∑
l=1

n∑
l′=1

γlγl′〈Ψl(i),Ψl′(i′)〉 (4.8)

As before, the representer theorem implies that Θ can be expressed as

Θ =
∑
i′∈ eS

λi′

(
n∑
l=1

γlΨ
l(i)

)
,

so that once the coefficients {λi′}i′∈ eS are found by solving Eq. (4.7) with a kernel-based

regression technique, the resulting cost-to-go function is given by:

J̃µ(i) =

〈 ∑
i′∈ eS

λi′

(
n∑
l=1

γlΨ
l(i′)

)
, Φ(i)

〉

=
∑
i′∈ eS

λi′
n∑
l=1

γl〈Ψl(i′),Φ(i)〉

=
∑
i′∈ eS

λi′
n∑
l=1

γl

〈
Φ(i′)− αl

∑
j1,...,jl∈S

(
P µ
i′j1

. . . P µ
jl−1jl

)
Φ(jl) , Φ(i)

〉

=
∑
i′∈ eS

λi′
n∑
l=1

γl

(
k(i′, i)− αl

∑
j1,...,jl∈S

(
P µ
i′j1

. . . P µ
jl−1jl

)
k(jl, i)

)
. (4.9)

Therefore, the generalized, n-stage BRE procedure for evaluating the fixed policy µ

is as follows:

1. Solve the regression problem [Eq. (4.7)] using the n-stage associated Bellman

kernel Kn(i, i′) [Eq. (4.8)] and any kernel-based regression technique to find the

coefficients {λi′}i′∈ eS .

2. Use the coefficients found in step 1 to compute the cost-to-go function J̃µ

[Eq. (4.9)].
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One can verify that with n = 1 this procedure reduces to the single-stage variant of

BRE presented earlier. Furthermore, and again in direct analogy with single-stage

BRE, it is possible to prove that the generalized Bellman residuals [Eq. (4.3)] of the

resulting cost-to-go function J̃µ obtained by the n-stage BRE procedure are always

identically zero at the sample states S̃.

4.1.2 Computational Complexity

The computational complexity of n-stage BRE is dominated by two factors: first,

computing Kn(i, i′) over every pair of sample states (i, i′) ∈ S̃ × S̃ (this information

is often called the Gram matrix of the kernel), and second, solving the regression

problem. As illustrated in Fig. (4-2), computing Kn(i, i′) involves enumerating each

n-stage successor state of both i and i′ and evaluating the base kernel k(·, ·) for each

pair of successor states. If β is the average branching factor of the MDP, each state

will have βn n-stage successor states on average, so computing Kn(i, i′) for a single

pair of states (i, i′) involves O(β2n) operations. Therefore, if ns ≡ |S̃| is the number of

sample states, computing the full Gram matrix costsO(β2nn2
s) operations. The cost of

solving the regression problem clearly depends on the regression technique used, but

typical methods such as Gaussian process regression involve solving a linear system

in the dimension of the Gram matrix, which involves O(n3
s) operations. Thus, the

total complexity of n-stage BRE is of order

O(β2nn2
s + n3

s). (4.10)

4.1.3 Graph Structure of the n-stage Associated Bellman

Kernel

To understand the structure of the n-stage associated Bellman kernel Kn(i, i′), it is

helpful to first examine the generalized feature mapping Ψl(i) [Eq. (4.5)]. Ψl(i) is

composed of a linear combination of features of the state i itself (this is the term

Φ(i)), plus features of all states reachable from i in exactly l steps (these are the
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j1,1 . . . j1,m1

...

jn,1
. . .

...

. . .
jn,mn

i′

j′1,1 . . . j′1,m′1
...

j′n,1
. . .

...

. . .
j′n,m′n

Figure 4-2: Graph structure of the n-stage associated Bellman kernel Kn(i, i′)
[Eq. (4.8)]. The possible successor states of i are shown as a tree, where the lth

level in the tree represents all ml states reachable in exactly l steps, starting from
i (a similar tree is shown for the successors of i′). The depth of the tree is n. The
n-stage associated Bellman kernel is formed by taking a linear combination of the
base kernel k(·, ·) applied to all state pairings where one state belongs to the set of i
and its descendants (left shaded rectangle), and the other belongs to the set of i′ and
its descendants (right shaded rectangle). For clarity in the figure, only pairings with
a fixed state from the left shaded rectangle are depicted (dashed blue lines).

terms Φ(jl) appearing in the summation). The features of these successor states jl

are weighted by their total probability of being reached; this probability is given by

the product (P µ
ij1
. . . P µ

jl−1jl
). Thus, the features of the most important (i.e., most

probable) successor states receive a higher weighting.

Now examining Eq. (4.8), note that the n-stage associated Bellman kernel con-

sists of a sum of inner products of the form 〈Ψl(i),Ψl′(i′)〉. Each inner product

〈Ψl(i),Ψl′(i′)〉 represents the total, probabilistically-weighted similarity between the

l-stage successor states of i and the l′-stage successor states of i′. As a result of sum-

ming over all values of l and l′ up to n, the full n-stage associated Bellman kernel

effectively computes the total weighted similarity between all successor states of i

and i′, up to a depth of n. Figure 4-2 shows a graphical depiction of the n-stage
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associated Bellman kernel, highlighting how this similarity between successor states

is computed.

By the preceding discussion, Kn(i, i′) represents a natural kernel for use in approx-

imate dynamic programming, since it automatically accounts for the inherent graph

structure in the MDP state space. Indeed, its construction ensures that for states

i and i′ which share many common successor states (i.e. states that can be quickly

reached starting from both i and i′), the resulting overlap or similarity computed by

Kn(i, i′) will be high. Conversely, if i and i′ do not share many common successor

states, the similarity will be low.

4.1.4 Related Work

Several authors have explored other ideas for explicitly incorporating graph struc-

ture of the state space into an approximate dynamic programming algorithm. In

[150, 151], the authors proposed using “geodesic Gaussian kernels” which explicitly

compute the graph distance between states in the MDP using the Dijkstra algorithm,

and demonstrated improved performance over standard Gaussian kernels in several

robotics applications. However, that approach is limited primarily to deterministic

problems, whereas the BRE approach presented this chapter naturally incorporates

stochastic state transitions by weighting successor states with their transition proba-

bilities, as discussed earlier.

Another idea which has been studied is based on spectral graph theory [102,

103]. In this approach, the state space is modeled as an undirected graph, and the

eigenfunctions of the Laplacian operator on this graph are used as basis functions for

representing the cost-to-go function J̃µ. The authors demonstrate good performance

using these methods in a number of applications. However, since calculation of the

eigenfunctions requires working with the Laplacian matrix of the entire graph, these

methods may encounter difficulties when the state space is very large. Furthermore,

the assumption that the state space is an undirected graph implies that all actions

are reversible, which may not be true in some problems. In contrast, the n-stage

associated Bellman kernel can be computed using only local information (namely, the

102



n-stage successor states), and thus may be easier to compute when the state space is

large. Furthermore, our approach captures the directedness of the state space graph

(since it uses the state transition probabilities P µ
ij, which are inherently directional),

and thus avoids the need to assume reversibility.

4.2 Model-Free BRE

The family of n-stage BRE algorithms presented to this point require knowledge of

the system dynamics model, encoded in the probabilities P µ
ij, to evaluate the policy

µ. These probabilities are used in the calculation of the cost values gl,ui [Eq. (4.6)],

the associated Bellman kernel Kn(i, i′) [Eq. (4.8)], and the approximate cost-to-go

J̃µ(i) [Eq. (4.9)]. In particular, in order to solve the BRE regression problem given

by Eq. (4.7), it is necessary to compute gl,ui for each sample state i ∈ S̃, as well

as compute the Gram matrix of the associated Bellman kernel. By exploiting the

model information, BRE is able to construct cost-to-go solutions J̃µ(i) for which the

Bellman residuals are exactly zero.

However, there may be situations in which it is not desirable or possible to use

system model information. Clearly, one such situation is when an exact system model

is unknown or unavailable. In this case, one typically assumes instead that a genera-

tive model is available, which is a “black box” simulator that can be used to sample

state trajectories of the system under a given policy. A second situation concerns

the computational requirements necessary to carry out n-stage BRE. Recall that the

computational complexity of n-stage BRE is O(β2nn2
s + n3

s), where β is the average

branching factor of the MDP. If n or β is large, it may become intractable to compute

Kn(i, i′) directly, even though model information may be available.

To address these situations, we now develop a variant of n-stage BRE that uses

only simulated trajectories from a generative model, instead of using data from the

true underlying system model P µ
ij. This variant of BRE therefore represents a true,

model-free, reinforcement learning algorithm. The key idea behind model-free BRE

is to simulate a number of trajectories of length n, starting from each of the sample
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states in S̃, and use this information to build stochastic approximations to the cost

values gl,ui , kernel Gram matrix K, and cost-to-go J̃µ(i). We use the notation T iql to

denote the lth state encountered in the qth trajectory starting from state i ∈ S̃, where

l ranges from 0 to n (the length of the trajectory), and q ranges from 1 to m (the

number of trajectories starting from each state i ∈ S̃).

Using the trajectory data T iql , stochastic approximations of each of the important

quantities necessary to carry out BRE can be formed. First, examining Eq. (4.6),

notice that the cost values gl,µi can be expressed as

gl,µi = E

[
l∑

l′=0

αl
′
g(il′ , µ(il′)) | i0 = i

]

≈ 1

m

m∑
q=1

l∑
l′=0

αl
′
g(T iql′ , µ(T iql′ )), (4.11)

where the expectation over future states has been replaced by a Monte Carlo esti-

mator based on the trajectory data. In the limit of sampling an infinite number of

trajectories (m → ∞), the approximation given by Eq. (4.11) converges to the true

value of gl,µi .

A similar approximation can be constructed for the associated Bellman kernel by

starting with Eq. (4.5):

Ψl(i) = Φ(i)− αlE [Φ(il) | i0 = i]

≈ Φ(i)− αl

m

m∑
q=1

Φ(T iql ). (4.12)

Substituting Eq. (4.12) into Eq. (4.8) gives

Kn(i, i′) ≈
n∑
l=1

n∑
l′=1

γlγl′

〈
Φ(i)− αl

m

m∑
q=1

Φ(T iql ),Φ(i′)− αl
′

m

m∑
q′=1

Φ(T i
′q′

l′ )

〉
.(4.13)

In the limit of infinite sampling, Eq. (4.13) converges to Kn(i, i′).
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Finally, an approximation to J̃µ(i) [Eq. (4.9)] is needed:

J̃µ(i) =
∑
i′∈ eS

λi′
n∑
l=1

γl
(
k(i′, i)− αlE [k(jl, i) | j0 = i′]

)
≈

∑
i′∈ eS

λi′
n∑
l=1

γl

(
k(i′, i)− αl

m

m∑
q′=1

k(T i
′q′

l , i)

)
. (4.14)

The procedure for carrying out model-free, n-stage BRE can now be stated as follows:

1. Using the generative model of the MDP, simulate m trajectories of length n

starting from each of the sample states i ∈ S̃. Store this data in T iql .

2. Solve the regression problem [Eq. (4.7)] using stochastic approximations to gl,µi

and Kn(i, i′) (given by Eqs. (4.11) and (4.13), respectively), and any kernel-

based regression technique to find the coefficients {λi′}i′∈ eS .

3. Use the coefficients found in step 1 to compute a stochastic approximation to

the cost-to-go function J̃µ, given by Eq. (4.14).

4.2.1 Computational Complexity

One of the motivations for developing the model-free BRE variant was to reduce the

computational complexity of running BRE when either n or β is large. To see that this

is indeed the case, note that the overall complexity is still dominated by building the

kernel Gram matrix and solving the regression problem, just as in model-based BRE.

Furthermore, the complexity of solving the regression problem is the same between

both methods: O(n3
s). The main savings gained though using model-free BRE comes

about because computing an element of the associated Bellman kernel using Eq. (4.13)

now requires only O(m2) operations, instead of O(β2n) as in the model-based case.

In essence, in model-free BRE, the n-stage successor states for each sample state

i ∈ S̃ (of which there are on average βn) are approximated using only m simulated

trajectories. Thus, computing the full Gram matrix requires O(m2n2
s) operations,
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and the total complexity of model-free BRE is of order

O(m2n2
s + n3

s). (4.15)

Comparing this to the complexity for model-based BRE, O(β2nn2
s + n3

s), note that

the exponential dependence on n has been eliminated.

4.2.2 Correctness of Model-Free BRE

The following theorem and lemma establish two important properties of the model-

free BRE algorithm presented in this section.

Theorem 10. In the limit of sampling an infinite number of trajectories (i.e. m →

∞), the cost-to-go function J̃µ(i) computed by model-free BRE is identical to the

cost-to-go function computed by model-based BRE.

Proof. In order to approximate the quantities gµi , K(i, i′), and J̃µ(i) in the absence of

model information, model-free BRE uses the stochastic approximators given by Eqs.

(4.11), (4.13), and (4.14), respectively. Examining these equations, note that in each,

the state trajectory data T iql is used to form an empirical distribution

P̂ µ
ij =

1

m

m∑
q=1

δ(T iq1 , j),

where δ(i, j) is the Kronecker delta function. This distribution is used as a substitute

for the true distribution P µ
ij in computing gµi , K(i, i′), and J̃µ(i). Since by assumption

the individual trajectories are independent, the random variables {T iq1 |q = 1, . . . ,m}

are independent and identically distributed. Therefore, the law of large numbers

states that the empirical distribution converges to the true distribution in the limit

of an infinite number of samples:

lim
m→∞

P̂ µ
ij = P µ

ij.

Therefore, as m→∞, Eqs. (4.11), (4.13), and (4.14) converge to the true values gµi ,
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K(i, i′), and J̃µ(i). In particular, the cost-to-go function J̃µ(i) computed by model-free

BRE converges to the cost-to-go function computed by model-based BRE as m→∞,

as desired.

Using results shown in [28, 29], which prove that model-based BRE computes

a cost-to-go function J̃µ(i) whose Bellman residuals are exactly zero at the sample

states S̃, we immediately have the following lemma:

Lemma In the limit m → ∞, model-free BRE computes a cost-to-go function J̃µ(i)

whose Bellman residuals are exactly zero at the sample states S̃.

Proof. The theorem showed that in the limit m → ∞, model-free BRE yields the

same cost-to-go function J̃µ(i) as model-based BRE. Therefore, applying the results

from [28, 29], it immediately follows that the Bellman residuals J̃µ(i) are zero at the

sample states.

4.3 Simulation Results

4.3.1 Robot Navigation

A “grid world” robot navigation problem (see, for example, [103, 133, 150]) was used

to test the performance of the n-stage BRE method. In this problem, a robot moves

in a room modeled as a a two-dimensional, 21 × 11 discrete grid. At any point on

the grid, the robot may choose to try to move one unit up, right, left, or down.

The environment is stochastic, such that the robot moves to its intended point with

probability 0.8, and moves to either side of its intended point with probability 0.1

for each side (this effect might be due to wheel slippage or navigation errors, for

example). The room is divided by a wall into left and right halves which are joined

only by a small passageway in the middle of the room. The goal of the robot is to

navigate to a goal state in the far corner of the right-hand room.

Figure 4-3 illustrates the effect of varying n on the structure of the n-stage asso-

ciated Bellman kernel for this example problem. The figure shows the value of kernel

Kn(i, i′) over the state space for a fixed state i′ = (9, 8) in the center of the room.
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Figure 4-3: n-stage associated Bellman kernel centered at (9, 8) (highlighted in purple)
for the optimal policy in the robot navigation problem, for various values of n (top:
n = 1, bottom: n = 5). The optimal policy is shown as the small arrows, and the goal
state is marked with a green dot. Areas for which the kernel is nonzero are shaded
blue, and areas for which it is zero are white.

Figure 4-4: Standard RBF kernel exp (−||i− i′||2/γ), centered at (9, 8), for γ = 1.0
(top) and γ = 4.0 (bottom). Unlike the n-stage associated Bellman kernel, the RBF
kernel incorrectly predicts high similarity between states on opposite sides of the wall.
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Figure 4-5: Optimal policy and cost-to-go for the robot navigation problem (top),
and policy and cost-to-go generated by 4-stage BRE (bottom).

In the figure, the base kernel k(i, i′) is taken to be the Kronecker delta function, the

simplest kernel possible. Notice that the value of the kernel is zero immediately to

the right of the wall, correctly implying little similarity in cost-to-go between these

states. This remains true even as n increases and the kernel’s “footprint” grows,

leading to better generalization over the state space and higher-quality policies, as

we will discuss shortly. In contrast, Figure 4-4 shows the behavior of a standard RBF

kernel based on Euclidean distance. This kernel, being unaware of the structure of

the state space, incorrectly predicts high similarity between states on opposite sides

of the wall. This highlights the importance of using a kernel which is aware of the

structure of the state space.

To further illustrate the benefits of using the structured, n-stage associated Bell-
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man kernel over standard RBF kernels, a series of experiments were performed. First,

exact value iteration was used to compute the optimal policy for the robot navigation

problem. Then, approximate policy iteration using basic, single-stage BRE and a

standard RBF kernel were used to compute an approximate policy. Finally, approxi-

mate policy iteration using 4- and 6- stage BRE was used to compute an approximate

policy. A comparison of the policies and associated cost-to-go functions for the op-

timal solution and the 4-stage BRE solution is shown in Figure 4-5. In the figure,

the colors drawn in each of the squares represents the cost-to-go function, where red

indicates higher cost and blue indicates lower cost. The policy is shown by the arrows

in each square, indicating the direction of movement.

A number of simulations of each policy were run, and the average time to reach the

goal (averaged over all possible starting states) was computed. The average time for

the optimal policy, the single-stage RBF policy, and the 4- and 6-stage BRE policies

were 14.9, 27.2, 17.6, and 16.3, respectively, showing that multi-stage BRE yields

near-optimal performance and significantly outperforms the policy based on the RBF

kernel. Furthermore, as discussed, 6-stage BRE slightly outperforms 4-stage BRE due

to the larger “footprint” and generalization ability of the 6-stage associated Bellman

kernel; this performance gain is achieved at the expense of higher computational

requirements to compute the kernel.

4.3.2 Chain Walk

A further series of tests were carried out to compare the performance of the BRE al-

gorithms presented in this chapter to LSPI [93], a well-known approximate dynamic

programming algorithm. LSPI uses a linear combination of basis functions to repre-

sent approximate Q-values of the MDP, and learns a weighting of these basis functions

using simulated trajectory data. In learning the weights, LSPI can take advantage

of system model information if it is available, or can be run in a purely model-free

setting if not. Thus, our tests compared the performance of four different algorithms:

model-based BRE, model-free BRE, model-based LSPI, and model-free LSPI. The

LSPI implementation used for these tests is the one provided by the authors in [93].
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The benchmark problem used was the “chain-walk” problem [91, 93], which has a

one-dimensional state space and two possible actions (“move left” and “move right”)

in each state. In the first set of experiments, a total of 50 states were used, similar

to the experiments presented in [93]. In order to make the comparisons between

BRE and LSPI as similar as possible, the same cost-to-go representation was used in

both algorithms. More precisely, in LSPI, five radial basis functions (with standard

deviation σ = 12), with centers at x = 1, 11, 21, 31, 41, were used; while in BRE,

the same radial basis kernel (with the same σ) was used and the sample states were

taken as S̃ = {1, 11, 21, 31, 41}. This ensures that neither algorithm gains an unfair

advantage by being provided with a better set of basis functions. Furthermore, for

these tests, only single-stage BRE (n = 1) was used, since we found that single-stage

BRE consistently found optimal or very close to optimal policies, and increasing n

therefore had no chance to further improve performance.

The algorithms were compared on two different performance metrics: quality of

the approximate policy produced by each algorithm (expressed as a percentage of

states in which the approximate policy matches the optimal policy), and running

time of the algorithm (measured in the total number of elementary operations re-

quired, such as additions and multiplications). The policies produced LSPI and the

model-free variant of BRE depend on the amount of simulated data provided to the

algorithm, so each of these algorithms was run with different amounts of simulated

data to investigate how the amount of data impacts the quality of the resulting pol-

icy. Furthermore, since the simulated data is randomly generated according to the

generative model, each algorithm was run multiple times to examine the effect of this

random simulation noise on the algorithm performance.

The results of the comparison tests are shown in Fig. 4-6. Model-based BRE,

shown as the filled blue diamond, finds the optimal policy. Furthermore, its running

time is faster than any other algorithm in the test by at least one order of magnitude.

In addition, it is the only algorithm that is free from simulation noise, and it therefore

consistently finds the optimal policy every time it is run, unlike the other algorithms

which may yield different results over different runs. Thus, if a system model is
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Figure 4-6: Comparison of BRE vs. LSPI for the “chain-walk” problem. Numbers
after the algorithm names denote the amount of simulation data used to train the
algorithm. Note that model-based BRE does not require simulation data.

available, model-based BRE has a clear advantage over the other algorithms in the

chain-walk problem.

LSPI also found the optimal policy in a number of the tests, confirming similar

results that were reported in [93]. However, the amount of simulation data required to

consistently find a near-optimal policy was large (between 5,000 and 10,000 samples),

leading to long run times. Indeed, for any of the LSPI variants that consistently found

policies within 10% of optimal, all were between two and four orders of magnitude

slower than model-based BRE. As the amount of simulation data is decreased in an

attempt to reduce the solution time of LSPI, the quality of the produced policies

becomes lower on-average and also more inconsistent across runs. For simulated data

sets of less than about 1,000, the policy quality approaches (and sometimes drops

below) 50% of optimal, indicating performance equivalent to (or worse than) simply
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guessing one of the two actions randomly. Allowing LSPI access to the true system

model does appear to improve the performance of the algorithm slightly; in Fig. 4-6,

model-based LSPI generally yields a higher quality policy than model-free LSPI for

a given data set size (although there are several exceptions to this). However, the

results indicate the model-based BRE is significantly more efficient than model-based

LSPI at exploiting knowledge of the system model to reduce the computation time

needed to find a good policy.

Finally, examining the results for model-free BRE, the figure shows that this

algorithm yields consistently good policies, even when a small amount of simulation

data is used. As the amount of simulation data is reduced, the variability of the

quality of policies produced increases and the average quality decreases, as would

be expected. However, both of these effects are significantly smaller than in the

LSPI case. Indeed, the worst policy produced by model-free BRE is still within

12% of optimal, while using only 50 simulation data. In contrast, LSPI exhibited a

much greater variability and much lower average policy quality when the amount of

simulation data was reduced.

In a second set of experiments, the size of the state space was increased (to 10, 000)

to make the problem more challenging. The number of basis functions (in the case

of LSPI) and sample states (in the case of BRE) was increased accordingly, using an

evenly spaced grid of 100 radial basis functions with standard deviation σ = 2, 000.

In applying the BRE algorithms to this problem, it was noted that one-stage BRE

encountered numerical difficulties due to the Gram matrix being near-singular. This

issue is due to the fact in the larger chain-walk problem, it is necessary to use a

wider kernel (one with larger σ) in order to generalize over many states that are not

sampled. However, since one-stage BRE only considers one-stage successors of the

sample states, the kernels centered at a sample state and the successor states overlap

almost completely, leading to near-singularity of the Gram matrix. To address this

issue, the n-stage, model-free variant of BRE was applied instead, for n = 200. It was

found that these algorithms eliminated the numerical issues (due to the fact that they

consider successor states that are further apart in the state space, as measured by the
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Figure 4-7: Comparison of 200-stage BRE vs. LSPI for a larger “chain-walk” problem.
Numbers after the algorithm names denote the amount of simulation data used to
train the algorithm.

normal Euclidean distance), allowing the algorithms to proceed. Note that for these

large values of n, performing model-based BRE is impractical since the algorithm

would be required to perform computations for each of the βn successor states of

each sample state (for the chain-walk problem, β = 2); however, as discussed earlier,

the model-free BRE variant avoids this difficulty by sampling the successor states.

Similar numerical issues, related to near-singularity in the linear system that LSPI

solves, were also noted with the LSPI algorithm in this larger problem if insufficient

amounts of training data were used. To address the numerical issues for the LSPI

algorithm, it was necessary to increase the amount of training data substantially

(using between 50, 000 and 500, 000 samples).

Results of the larger chain-walk experiments are shown in Figure 4-7. Similar to

the results for the smaller-scale chain-walk experiments, the BRE algorithms tend

to give more consistent, higher quality policies compared to LSPI, while requiring
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less computational effort. Note that memory usage issues in the reference Matlab

implementation of LSPI prevented using more than 500, 000 training samples.

4.4 Summary

This chapter has presented several extensions of the BRE approach to approximate

dynamic programming. The first extension, multi-stage BRE, eliminates Bellman

residuals of the form |J̃µ(i) − T nµ J̃µ(i)|, where n ≥ 1 is an integer. As a result of

this multi-stage extension, a specialized kernel, called the n-stage associated Bellman

kernel, naturally arises. This kernel automatically accounts for the inherent graph

structure in the state space by accounting for the total “overlap” between all successor

states up to a depth of n. Our approach has several advantages over other approaches

which are also designed to exploit graph structure in the state space. Applying the

multi-stage BRE approach to a stochastic robot navigation problem shows that the n-

stage associated Bellman kernel is a natural and intuitive representation of similarity

on the state space, and can produce approximate policies that have significantly better

performance than those generated using standard RBF kernels.

The second extension extends BRE to the model-free case, in which knowledge of

the system transition probabilities P µ
ij is not required. Instead of relying on knowledge

of the system model, the model-free variant uses trajectory simulations or data from

the real system to build stochastic approximations to the cost values gl,µi and n-stage

associated Bellman kernel Kn(i, i′) needed to carry out BRE. It is straightforward to

show that in the limit of carrying out an infinite number of simulations, this approach

yields the same results as the model-based BRE approach, and thus enjoys the same

theoretical properties of that approach (including the important fact that the Bellman

residuals are identically zero at the sample states S̃.

Furthermore, experimental comparison of BRE against another well-known ap-

proach, LSPI, indicates that while both approaches find near-optimal policies, both

model-based and model-free BRE appears to have several advantages over LSPI in the

benchmark problem we tested. In particular, model-based BRE appears to be able to
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efficiently exploit knowledge of the system model to find the policy significantly faster

than LSPI. In addition, model-based BRE is free of simulation noise, eliminating the

problem of inconsistent results across different runs of the algorithm. Even when

model information is not available, model-free BRE still finds near-optimal policies

more consistently and more quickly than LSPI.
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Chapter 5

Multi-Agent Health Management

and the Persistent Surveillance

Problem

UAVs are becoming increasingly sophisticated in terms of hardware capabilities. Ad-

vances in sensor systems, onboard computational platforms, energy storage, and other

enabling technologies have made it possible to build a huge variety of UAVs for a range

of different mission scenarios [6, 116]. Many of the mission scenarios of interest, such

as persistent surveillance, are inherently long-duration and require coordination of

multiple cooperating UAVs in order to achieve the mission objectives. In these types

of missions, a high level of autonomy is desired due to the logistical complexity and

expense of direct human control of each individual vehicle. Currently, autonomous

mission planning and control for multi-agent systems is an active area of research

[69, 77, 92, 113, 119]. Some of the issues in this area are similar to questions arising

in manufacturing systems [22, 74] and air transportation [7, 14, 25, 48, 72, 76, 131].

While these efforts have made significant progress in understanding how to handle

some of the complexity inherent in multi-agent problems, there remain a number of

open questions in this area.

This chapter investigates one important question that is referred to as the health

management problem for multi-agent systems [98, 99]. Designs of current and future
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UAVs increasingly incorporate a large number of sensors for monitoring the health of

the vehicle’s own subsystems. For example, sensors may be installed to measure the

temperature and current of electric motors, the effectiveness of the vehicle’s control

actuators, or the fuel consumption rates in the engine. On a typical UAV, sensors

may provide a wealth of data about a large number of vehicle subsystems. By making

appropriate use of this data, a health-aware autonomous system may be able to

achieve a higher level of overall mission performance, as compared to a non-health-

aware system, by making decisions that account for the current capabilities of each

agent. For example, in a search and track mission, utilization of sensor health data

may allow an autonomous system to assign the UAVs with the best-performing sensors

to the search areas with the highest probability of finding the target.

Utilization of the current status of each vehicle is an important aspect of the

health management problem. Another important aspect is the ability not only to

react to the current status, but to consider the implications of future changes in

health status or failures on the successful outcome of the mission. This predictive

capability is of paramount importance, since it may allow an autonomous system to

avoid an undesirable future outcome. For example, if a UAV tracking a high value

target is known to have a high probability of failure in the future, the autonomous

system may be able to assign a backup vehicle to track the target, ensuring that the

tracking can continue even if one of the vehicles fails.

This chapter addresses these health management issues and develops a general

framework for thinking about the health management problem. It then specializes the

discussion to the persistent surveillance problem with a focus on modeling numerous

realistic failure modes and constraints that are present in actual UAV missions. In

particular, the persistent surveillance problem formulation includes uncertainty in the

fuel consumption rates of the UAVs (due to random environmental factors, engine

degradation, etc), communication constraints (which require a communications link

to be maintained with the base location at all times), and randomly-occurring sensor

failures (which render the UAV incapable of performing surveillance, although it

may still be useful for other tasks such as communications relay). In addition, the
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problem formulation can account for heterogeneous teams of UAVs, where different

classes of UAVs have different capabilities. This work builds on previous health

management techniques developed for the persistent surveillance problem [98]. While

the previous work focused on embedding health-aware heuristics into an already-

existing mission management algorithm, this chapter develops a new formulation

of the problem in which health-aware behaviors emerge automatically. Simulated

flight results are provided in this chapter which demonstrate the properties of the

new problem formulation for small problem instances that can be solved exactly.

Later chapters will focus on efficiently solving larger and more complex instances of

the problem using our Bellman residual elimination algorithms, as well as present

persistent surveillance flight results for a number of complex mission scenarios.

5.1 Health Management In Multi-Agent Systems

The term health management is often used in different contexts, so it can be diffi-

cult to define exactly what it means for a multi-agent system to incorporate health

management techniques. To make the problem more precise, we can define a num-

ber of general properties that we would like a multi-agent system to exhibit. Once

these properties are defined, potential design methodologies for incorporating health

management into such systems can be evaluated.

In the context of multi-agent systems, health management refers to accounting

for changing resource or capability levels of the agents. These changes may be caused

by failures, degradations, or off-nominal conditions (of actuators, sensors, propulsion

systems, etc), or by unpredictable events in the environment. Broadly speaking, we

would like a multi-agent system to exhibit the following properties:

1. The system should be proactive. That is, the system should be capable of

“looking into the future” to anticipate events that are likely to occur, and given

this information, actively select a course of action that leads to a desirable state

and/or avoids an undesirable state. In contrast, a reactive system is incapable

of making such future predictions (or cannot effectively use such predictions if
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they are available). Thus, a reactive system can only respond to failures after

they occur, instead of trying to avoid them in the first place.

2. The system should manage health information at the group, not just the in-

dividual, level. In most multi-agent mission scenarios, there are strong cou-

pling effects between vehicles that must be accounted for. For example, in the

multi-UAV task assignment problem, failure of a single UAV may necessitate

reassigning all the other UAVs to different targets in order to continue the mis-

sion. These coupling effects may be very complex, depending on the mission.

Nevertheless, they must be considered if the system is to be robust to changing

conditions.

5.1.1 Design Considerations

Given the above properties, we now consider some of their implications for design of

multi-agent systems. First, Property 1 implies that the system must have a model

of its environment in order to anticipate the system state in the future. This model

should account for how the current control action will influence the future state. Fur-

thermore, since many of the events of interest in the health management problem—

such as failures—cannot be predicted with certainty, the model should be stochastic,

and the system should account for the relative probability of possible future events

in selecting actions. In general, then, the system model will be of the form:

xk+1 = f(xk,uk,wk) (5.1)

where x is the system state, u are the control inputs, w are random variables that

capture the uncertainty in the system dynamics, and k is a discrete time index.

If the system is to proactively choose control actions that lead to desirable future

states, it therefore must have some method of ascertaining whether a given state is

desirable or not. A natural way to accomplish this is to define a cost function g(x,u)

which maps state/action pairs (x,u) to a scalar cost value.
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Property 2 also has implications for the design of health-enabled systems. Nor-

mally, the interdependence between agents plays a large role in overall mission per-

formance. Therefore, the system model f(xk,uk,wk) and cost function g(x,u) should

capture this interdependence so that knowledge of how health related events such as

failures can be exploited.

The considerations presented here lead naturally to the idea of applying MDP

techniques to the multi-agent health management problem. MDPs provide an at-

tractive method for achieving proactive behavior, since the problem solution method

involves calculating the actions that minimize not only the current cost, but also the

expected future cost [22]. Furthermore, formulating the health management problem

as an MDP allows the interdependence between agents to be encoded naturally in

the system model and cost function.

Consideration must be given to computational issues in the formulation of the

system model. The choice of too complex a model may lead to an unnecessarily

large state space, rendering the problem difficult to solve and implement in real-time.

On the other hand, selecting a model which is too simplified may not adequately

capture important aspects of the problem, leading to poor performance. Thus, a

balance between model complexity and computational tractability must be struck in

the formulation of the health management problem. In the following sections, we

use the multi-vehicle persistent surveillance problem as an example to show how an

appropriate dynamic program capturing the important aspects of the problem can

be formulated and solved, and show that the resulting control policy exhibits the

desirable properties discussed in this section.

5.2 Persistent Surveillance With Group Fuel Man-

agement

Health management techniques are an enabling technology for multi-vehicle persistent

surveillance missions. In the model of this scenario considered here, there is a group
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of n UAVs equipped with cameras or other types of sensors. The UAVs are initially

located at a base location, which is separated by some (possibly large) distance from

the surveillance location. The objective of the problem is to maintain a specified

number r of requested UAVs over the surveillance location at all times.

The UAV vehicle dynamics provide a number of interesting health management

aspects to the problem. In particular, management of fuel is an important health

management concern. The vehicles have a certain maximum fuel capacity Fmax,

and we assume that the rate Ḟburn at which they burn fuel may vary stochastically

during the mission due to aggressive maneuvering that may be required for short time

periods, engine wear and tear, adverse environmental conditions, etc. Thus, the total

flight time each vehicle may achieve on a full tank of gas is a random variable, and

we would like to account for this uncertainty in the problem. If a vehicle runs out of

fuel while in flight, it crashes and is lost. Finally, when the vehicle returns to base, it

begins refueling at a deterministic rate given by Ḟrefuel (i.e., the vehicles take a finite

time to refuel).

Another health management concern we will model in the problem is the possi-

bility for randomly-occurring vehicle failures. These may be due to sensors, engines,

control actuators, or other mission-critical systems failing in flight.

Note that we assume the vehicles run low-level controllers that accept commands

such as “take off”, “land”, and “fly to waypoint.” By making this assumption, we

are free to design the high-level decision making process that handles the persis-

tent surveillance activity without having to complicate the problem formulation with

low-level control considerations. This leads to a natural and hierarchical overall con-

trol architecture. More details about this control architecture will be presented in

Chapter 7, which also discusses how the architecture can be implemented on a real

hardware testbed.

5.2.1 MDP Formulation

Given the description of the persistent surveillance problem, a suitable MDP can now

be formulated. The MDP is defined by its state vector x, control vector u, state
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transition model f(xk,uk,wk), cost function g(x,u), and discount factor α.

State Space

The state of each UAV is given by two scalar variables describing the vehicle’s flight

status and fuel remaining. The flight status yi describes the UAV location,

yi ∈ {Yb, Y0, Y1, . . . , Ys, Yc} (5.2)

where Yb is the base location, Ys is the surveillance location, {Y0, Y1, . . . , Ys−1} are

transition states between the base and surveillance locations (capturing the fact that

it takes finite time to fly between the two locations), and Yc is a special state denoting

that the vehicle has crashed.

Similarly, the fuel state fi is described by a discrete set of possible fuel quantities,

fi ∈ {0,∆f, 2∆f, . . . , Fmax −∆f, Fmax} (5.3)

where ∆f is an appropriate discrete fuel quantity.

The total system state vector x is thus given by the states yi and fi for each UAV,

along with r, the number of requested vehicles:

x = (y1, y2, . . . , yn; f1, f2, . . . , fn; r)T (5.4)

The size of the state space Nss is found by counting all possible values of x, which

yields:

Nss = (n+ 1)

(
(Ys + 3)

(
Fmax
∆f

+ 1

))n
(5.5)

Control Space

The controls ui available for the ith UAV depend on its current flight status yi.

• If yi ∈ {Y0, . . . , Ys−1}, then the vehicle is in the transition area and may either

move away from base or toward base: ui ∈ {“ + ”, “− ”}
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• If yi = Yc, then the vehicle has crashed and no action for that vehicle can be

taken: ui = ∅
• If yi = Yb, then the vehicle is at base and may either take off or remain at base:

ui ∈ {“take off”,“remain at base”}
• If yi = Ys, then the vehicle is at the surveillance location and may loiter there

or move toward base: ui ∈ {“loiter”,“− ”}

The full control vector u is thus given by the controls for each UAV:

u = (u1, . . . , un)T (5.6)

State Transition Model

The state transition model (Equation 5.1) captures the qualitative description of

the dynamics given at the start of this section. The model can be partitioned into

dynamics for each individual UAV.

The dynamics for the flight status yi are described by the following rules:

• If yi ∈ {Y0, . . . , Ys−1}, then the UAV moves one unit away from or toward base

as specified by the action ui ∈ {“ + ”, “− ”} with probability (1− pcrash), and

crashes with probability pcrash.

• If yi = Yc, then the vehicle has crashed and remains in the crashed state forever

afterward.

• If yi = Yb, then the UAV remains at the base location with probability 1 if the

action “remain at base” is selected. If the action “take off” is selected, it moves

to state Y0 with probability (1− pcrash), and crashes with probability pcrash.

• If yi = Ys, then if the action “loiter” is selected, the UAV remains at the

surveillance location with probability (1− pcrash), and crashes with probability

pcrash. Otherwise, if the action “−” is selected, it moves one unit toward base

with probability (1− pcrash), and crashes with probability pcrash.

• If at any time the UAV’s fuel level fi reaches zero, the UAV transitions to the

crashed state (yi = Yc) with probability 1.

The dynamics for the fuel state fi are described by the following rules:
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• If yi = Yb, then fi increases at the rate Ḟrefuel (the vehicle refuels)

• If yi = Yc, then the fuel state remains the same (the vehicle is crashed)

• Otherwise, the vehicle is in a flying state and burns fuel at a stochastically mod-

eled rate: fi decreases at the rate Ḟburn with probability pfnominal and decreases

at the rate 2Ḟburn with probability (1− pfnominal).

Cost Function

The cost function g(x,u) has three distinct components due to loss of surveillance

area coverage, vehicle crashes, and fuel usage, and can be written as

g(x,u) = Cloc max{0, (r − ns(x))}+ Ccrashncrashed(x) + Cfnf (x)

where:

• ns(x): number of UAVs in surveillance area in state x,

• ncrashed(x): number of crashed UAVs in state x,

• nf (x): total number of fuel units burned in state x,

and Cloc, Ccrash, and Cf are the relative costs of loss of coverage events, crashes, and

fuel usage, respectively.

5.3 Basic Problem Simulation Results

In order to solve the basic persistent surveillance MDP, a software framework was

developed. The framework allows for generic MDPs to be programmed by specifying

appropriate system transition, action, and cost functions. Once programmed, the

framework applies the value iteration algorithm to iteratively solve Bellman’s equation

for the optimal cost-to-go J?(xk). The results of this computation are stored on disk

as a lookup table. Once J?(xk) is found for all states xk, the optimal control action

u?(xk) can be quickly computed by choosing the action which minimizes the expected

future cost [22]:

u?(xk) = arg min
u

(
g(xk,u) + Exk+1

[αJ?(xk+1)]
)

(5.7)
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Figure 5-1: Simulation results for n = 3, r = 2. Note the off-nominal fuel burn events
that can be observed in the fuel level plot (these are places where the graph has a
slope of -2).

Figure 5-2: Simulation results for n = 3, r = 1. Response to vehicle crash.

While the controller runs very quickly once J?(xk) is known, a potentially large

amount of computation is required to find J?(xk). In these experiments, the largest

MDP solved was a three-vehicle problem (n = 3) with s = 1, Fmax = 16, and ∆f = 1,

resulting in a state space size (Equation 5.5) of approximately 1.2 million states.

To test the performance of the health-enabled control strategy, J?(xk) was cal-

culated for several different sets of problem parameters, and the resulting optimal

control law u?(xk) was found. The system dynamics were then simulated under the

action of u?(xk). Unless otherwise specified, many of the problem parameters were

held fixed at the following values: Ys = 1, pcrash = 0.01, pfnominal = 0.90, ∆f = 1,

Ḟburn = 1, Cloc = 8.0, Ccrash = 50.0, and Cf = 1.0.
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Figure 5-3: Simulation results for n = 2, r = 1. Response to vehicle crash.

Figure 5-4: Simulation results for n = 2, r = 1. Control policy based on deterministic
fuel burn.

Figure 5-1 shows a simulation result for the three-vehicle (n = 3) case with two

vehicles requested (r = 2). In this experiment, the fuel capacity Fmax was 12 and the

refuel rate Ḟrefuel was 4. The figure shows the flight status yi for each of the UAVs

in the lower graph (where -2 = crashed, -1 = base location, 0 = transition area,

and 1 = surveillance location) and the fuel state fi for each UAV in the top graph.

These results exhibit a number of desirable behaviors. First, note that the system

commands two UAVs to take off at time t = 0 and fly immediately to the surveillance

area to establish initial coverage. If the system were to leave these two UAVs in the

surveillance area until both were close to the minimum fuel level needed to return

to base, they would both have to leave at the same time, resulting in coverage gap.
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However, because the system anticipates this problem, it instead recalls the green

UAV to base well before it has reached the minimum fuel level. In addition, it

launches the blue UAV at the right moment so that the blue UAV arrives at the

surveillance location precisely when the green UAV is commanded to return to base,

resulting in continuous coverage throughout the vehicle swap. This initial command

sequence allows the system to set up a regular pattern of vehicle swaps which results

in the greatest possible coverage. Another desirable feature of the solution is that the

system tries to arrange for the UAVs to return to base with a small reserve quantity of

fuel remaining. This behavior is a proactive hedge against the uncertainty in the fuel

burn dynamics, reducing the probability that the vehicle will run out of fuel before

reaching base due to one or more higher-than-average fuel burn events.

Note that in this example, the parameters were chosen so that the ratio of fuel

capacity to refueling rate of the UAVs was slightly less than the minimum necessary

to maintain perfectly continuous coverage. In other words, it was a “hard” problem

where even an optimal solution must exhibit small periodic coverage gaps, such as the

one seen at time t = 20. In spite of the intentionally challenging problem setup, the

system performed extremely well. It is especially interesting to note that, as discussed,

the system exhibits a number of distinct and relatively sophisticated behaviors, such

as bringing back vehicles early and the hedge against fuel burn uncertainty. These

behaviors emerge naturally and automatically due to the formulation and solution

method applied to the problem.

A further example is shown in Figure 5-2. This experiment was an “easy” problem

where three UAVs (n = 3) with high fuel capacity and refuel rates (Fmax = 12,

Ḟrefuel = 4) were available to satisfy a single request (r = 1). In this example, the

system initially sets up a regular switching pattern between only the red and blue

UAVs. The green UAV is left in reserve at the base location since it is not needed to

satisfy the requested number of vehicles, and commanding it to fly would consume

extra fuel (recall that fuel burn is a small part of the cost function g(x,u)). However,

at time t = 47, the blue UAV suffers a random failure during take off and crashes

(this failure was a result of having a nonzero value pcrash for the probability of random
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crashes, which the system can do nothing to prevent). The system immediately

commands the green UAV to take off to replace the blue UAV, while simultaneously

leaving the red UAV in the surveillance area for an extra time unit to provide coverage

until the green UAV arrives on station. After that point, the switching pattern is

maintained using the green and red UAVs. Even though a catastrophic failure occurs

in this example, coverage is maintained at 100% at all times.

Another set of simulation results is shown in Figure 5-3. This experiment was a

hard problem where the two UAVs had limited fuel capacity (Fmax = 8, Ḟrefuel = 4),

and there was a single vehicle request (r = 1). In this scenario, vehicle crashes were

intentionally difficult to avoid because the off-nominal fuel burn events consumed a

significant fraction (25%) of the UAV’s fuel. In the figure, we see that the system

initially sets up a regular switching pattern for the UAVs, trying to keep the time that

each UAV must spend in the surveillance area low to minimize the chances of a crash,

while maintaining full coverage at the same time. Again, we see the hedging behavior

with respect to the fuel dynamics; the system tries to have the vehicles arrive back

at base with 1 or 2 units of fuel left. Despite this hedging behavior, starting at time

t = 87, the blue vehicle experiences a very “unlucky” series of three off-nominal fuel

burn events in a row (the probability of this event is (1−pfnominal)3 = 0.001), resulting

in a crash. Interestingly, the system responds to this crash by taking the “risk” of

leaving the remaining UAV out in the surveillance area for longer (5 time units instead

of 4), attempting to provide the maximum amount of coverage. However, it only does

this if the fuel consumption while in the surveillance area is nominal continuously; if

off-nominal fuel burn occurs, it still brings the vehicle back after only 4 time units.

This is another example of a subtle but complex behavior that emerges naturally

from the planning formulation.

A final example, shown in Figure 5-4, illustrates the value of the problem formu-

lation presented here, which accounts for the inherent uncertainty in the fuel burn

dynamics. In this example, an optimal policy for the purely deterministic problem

(pfnominal = 1), which does not account for this uncertainty, was calculated. This

policy was then simulated using the true, uncertain, dynamics (pfnominal = 0.90). The
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fuel state graph in Figure 5-4 reveals that the proactive hedging behavior is lost with

the policy based on deterministic dynamics; the policy always brings vehicles back

to base with exactly zero fuel remaining. Unfortunately, this strategy is highly risky,

since any off-nominal fuel burn events which occur when the vehicle is returning to

base are guaranteed to produce a crash. In the simulation shown, both vehicles crash

after a short period of time. Indeed, in every simulation run to date, both UAVs end

up crashing after a short period of time. The reason for this is that for each vehicle

cycle, the probability of a crash is 1 − pfnominal = 0.100, as opposed to the control

policy based on uncertain fuel dynamics, which effectively reduces this probability to

(1 − pfnominal)3 = 0.001. When viewed in this light, the uncertainty-based controller

has a clear advantage.

5.4 Extensions of the Basic Problem

The basic persistent surveillance problem discussed to this point can be extended in a

number of ways to more accurately model complex, real-world UAV missions. In this

section, we extend the formulation to include a communications relay requirement, a

failure model of the UAVs’ sensors, and the possibility of using heterogeneous teams

of UAVs with differing capabilities.

5.4.1 Communications Relay Requirement

The addition of a communications relay requirement is motivated by the fact that in

many UAV applications, it is necessary to maintain a communications link between

the UAVs performing the mission and a fixed based location. This link may be

used by human operators and/or ground-based autonomous planning systems to send

commands to the UAVs, or to collect and analyze real-time sensor data from the

UAVs. For example, in a search-and-rescue mission with camera-equipped UAVs, a

human operator may need to observe the real-time video feeds from each UAV in

order to determine probable locations of the party to be rescued. Furthermore, in

many cases, the communication range of each UAV may be limited, and in particular
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may be less than the distance between base and the surveillance area. Therefore,

in these situations, it is necessary to form a communications “chain” consisting of a

spatially separated string of UAVs which relay messages back and forth between the

base and the surveillance area [60, 61].

In order to model the requirement for establishment of a communications chain

in the MDP formulation, the cost function g(x,u) is modified in the following way.

Recall that the form of the cost function is

g(x,u) = Cloc max{0, (r − ns(x))}+ Ccrashncrashed(x) + Cfnf (x),

where ns(x) is a function that counts the number of UAVs in the surveillance area,

and the term Cloc max{0, (r − ns(x))} serves to penalize loss of surveillance cover-

age (i.e. having fewer UAVs in the surveillance area than are needed). To enforce

the communications requirement, let comm(x) be a function that indicates whether

communications are possible between base and the surveillance area:

comm(x) =

1 if communications link exists in state x

0 otherwise

.

The functional form of comm(x) should be chosen to reflect the communication range

capabilities of each UAV. For example, if the base and surveillance locations are

separated by 2 miles, and each UAV has a communication range of 1 mile, then

comm(x) should be 1 whenever there is a UAV halfway between the base and the

surveillance location (since in this case, this UAV has just enough range to relay

communications to both areas). In the results presented in this chapter, we use a

communications model of this type for comm(x), assuming that communications are

possible anytime a UAV is halfway between base and the surveillance location. Note

that more complex communications models can be easily incorporated by simply

changing the form of comm(x).

Once the particular form of comm(x) is chosen, it is incorporated into the cost
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function g(x,u) as follows:

g(x,u) = Cloc max{0, (r − ns(x)comm(x))}+ Ccrashncrashed(x) + Cfnf (x).

Note the only change from the original cost function is through the term ns(x)comm(x).

Thus, whenever a communications link is established, comm(x) is 1 and the cost func-

tion behaves as before, penalizing loss of coverage. However, if communications are

broken, comm(x) is 0 and any UAVs that are in the surveillance location become

useless to the mission since they cannot communicate with base. Therefore, in order

to minimize the cost g(x,u), it is necessary to maintain UAVs in the surveillance area

and maintain a communications link, as desired.

5.4.2 Sensor Failure Model

In order to perform the surveillance missions of interest in this chapter, UAVs may

be equipped with a variety of sensors, such as visible-light cameras, infrared sensors,

radars, etc. Of course, these sensors are not totally reliable, and in general may fail

at any point during the mission. In order to develop a realistic, health-management

problem formulation, it is necessary to account for the possibility of these failures

in the MDP model. The qualitative description of our failure model is as follows.

We assume that a UAV’s sensor may fail at any point during the mission, and that

the probability of failure at any given moment is described by a parameter 0 <

psensor fail < 1. When a sensor failure occurs, the UAV becomes useless for performing

any tasks in the surveillance area. Note, however, that we assume the failure does not

affect the UAV’s communication subsystem, so that a UAV with a failed sensor can

still perform a useful function by serving as a communications relay. Furthermore,

upon returning to base, the UAV’s sensor can be repaired.

In order to incorporate this failure model into the MDP, it is necessary to modify

the state space S, the system state transition model P , and the cost function g(x,u).

The state space modification is straightforward; the state vector for every UAV is

simply augmented with a binary variable that describes whether that UAV’s sensor
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is failed or not. In particular, the full state vector x is given by

x = (y1, y2, . . . , yn; f1, f2, . . . , fn; s1, s2, . . . , sn; r)T ,

where si ∈ {0, 1} describes the sensor state of UAV i. We use the convention that

si = 1 indicates that the sensor is failed, and si = 0 indicates that it is operational.

Along with the augmented state space, the transition model P must also be up-

dated to reflect the failure dynamics of the sensors. First, whenever a UAV is flying

and its sensor is already failed (si = 1), it remains failed with probability 1; if its

sensor is operational (si = 0), then it fails with probability psensor fail and remains

operational with probability (1 − psensor fail). Finally, if a UAV returns to the base

location (yi = Yb), then its sensor is restored to operational status (si = 0) with

probability 1.

The final requirement to incorporate the sensor failure model is to update the

cost function g(x,u) to reflect the fact that UAVs with failed sensors are useless

for performing tasks in the surveillance area. To do this, the function ns(x), which

previously counted the total number of UAVs in the surveillance area, is modified to

instead count the number of UAVs in the surveillance area with operational sensors.

5.4.3 Heterogeneous UAV Teams and Multiple Task Types

In the problem formulation developed to this point, it was assumed that all of the

UAVs are of the same type and therefore have the same capabilities. As a consequence,

there is only one type of UAV that can be requested (by changing the state variable

r) to maintain coverage in the surveillance area. In many mission scenarios, this

assumption may be too simplistic, and it may be necessary to account for several

different classes of UAV types, as well as several different classes of tasks. For example,

in a search and tracking mission, there may be two different classes of UAVs available:

one class which has sensors and flight capabilities optimized for searching (the first

task), and one class which is optimized for tracking (the second task). Depending

on the phase of the mission, it may be necessary to be able to individually request
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UAVs to accomplish either type of task. Furthermore, in general, the different types

of UAVs may each be able to perform several different types of tasks, and some UAVs

may perform certain task types better than others. In addition, the different types

of tasks may be causally related to each other; for example, a search task may cause

a tracking task to be generated when the searching UAV discovers a new object of

interest that then must be tracked.

In order to extend the persistent surveillance problem formulation to account for

these additional complexities, we first define NUAV s as the total number of different

UAV types available to accomplish the mission, and Ntasks as the total number of

different task types that must be accomplished. To keep track of the number of

requested vehicles for each task type, it is necessary to augment the state vector x with

Ntasks request variables r1, . . . , rNtasks , where rj represents the number of requested

vehicles that can perform task type j. Additionally, assuming that there are ni UAVs

of type i (i = 1, . . . , NUAV s), the full state vector is now given by

x = (y1,1, . . . , y1,n1 ; . . . ; yNUAV s,1, . . . , yNUAV s,nNUAV s ;

f1,1, . . . , f1,n1 ; . . . ; fNUAV s,1, . . . , fNUAV s,nNUAV s ;

s1,1, . . . , s1,n1 ; . . . ; sNUAV s,1, . . . , sNUAV s,nNUAV s ;

r1, . . . , rNtasks)
T

where yi,k, fi,k, and si,k are the location, fuel state, and sensor status, respectively, of

the kth UAV of type i.

To model the UAVs’ varying abilities to accomplish different types of tasks, we

define the NUAV s ×Ntasks vehicle capability matrix

M =


m1,1 . . . m1,Ntasks

...
. . .

...

mNUAV s,1 . . . mNUAV s,Ntasks

 , (5.8)

where mi,j ∈ [0, 1] represents the capability of a UAV of type i to perform a task

of type j. Note that setting mi,j = 0 implies that a UAV of type i is completely
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incapable of performing task type j, while setting mi,j = 1 indicates the vehicle is

fully capable of performing the task. The cost function g(x,u) is now modified as

follows:

g(x,u) = ClocW (x) + Ccrashncrashed(x) + Cfnf (x),

where the function W (x) measures the cost of the best assignment of the UAVs in the

surveillance area to the current task list (given by the request vector (r1, . . . , rNtasks)
T ).

To specify W (x), it is first necessary to define the NUAV s×Ntasks assignment matrix

A =


a1,1 . . . a1,Ntasks

...
. . .

...

aNUAV s,1 . . . aNUAV s,Ntasks

 ,

where ai,j ∈ Z? is a non-negative integer representing the number of UAVs of type i

assigned to tasks of type j. In order for A to be a valid assignment matrix, the total

number of UAVs of type i assigned to all task types must be equal to ns(x, i), the

number of UAVs of type i present in the surveillance area:

Ntasks∑
j=1

ai,j = ns(x, i) ∀i ∈ {1, . . . , NUAV s}.

W (x) can now be defined by minimizing the total cost of assigning UAVs to tasks:

W (x) = min
ai,j∈Z?

Ntasks∑
j=1

max{0, rj −
NUAV s∑
i=1

mi,jai,jcomm(x)}

subj. to

Ntasks∑
j=1

ai,j = ns(x, i) ∀i ∈ {1, . . . , NUAV s} (5.9)

The optimization problem (5.9) is an integer programming problem similar to those

found in many task assignment frameworks [3–5, 42, 45, 86]. When the number

of UAVs in the surveillance area and tasks is not too large, (5.9) can be solved by

enumerating the possible assignments. For larger problems, it can be solved using

more sophisticated techniques presented in the references above.
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As a final modification, it may be desirable to model the causal relationship be-

tween different task types, since certain types of tasks may naturally follow each

other, cause events that lead to other tasks becoming unnecessary, etc. A natural

way to model the relationships is by defining a Markov chain whose state space is

the set of possible request vectors (r1, . . . , rNtasks)
T . We assume that each task type

i ∈ [1, . . . , Ntasks] is associated with a set of “creation” probabilities ρ+
i,j and “com-

pletion” probabilities ρ−i,j, where j ∈ [1, . . . , Ntasks]. In particular, ρ+
i,j denotes the

probability that, given a single task of type i that is currently active, a new task

of type j will become active in the subsequent time step (in other words, rj will

increase by one). Similarly, ρ−i,j denotes the probability that, given a single task of

type i that is currently active, a currently active task of type j will be completed

in the subsequent time step (in other words, rj will decrease by one). The state

transitions of the Markov chain are then formed by taking all possible creation and

completion events that are possible for a given set of active tasks (denoted by the

request vector (r1, . . . , rNtasks)
T ), and computing the probabilities of each event using

the ρ values. The resulting Markov chain describes the (probabilistic) evolution of

the request vector over time.

Notice that prior to making this modification, the request vector was assumed to

be a constant; the new modification allows the request vector to change dynamically

over time, via state transitions that are uncontrollable by the planner. Thus, in order

to achieve optimal performance, the planner must anticipate the types and numbers

of tasks that are likely to arise in the future, and allocate resources accordingly in

order to meet this demand.

5.5 Summary

Health management in multi-agent systems is a complex and difficult problem, but

any autonomous control system that is health-aware should be proactive (capable

of using a model of the system to anticipate the future consequences of randomly-

occurring failures or off-nominal events) as well as capable of exploiting the interde-
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pendencies between agents at the group level. For this reason, MDPs are a natural

framework for posing the health management problem. The basic persistent surveil-

lance problem formulation demonstrates how a suitable MDP may be formulated to

capture the important health-related issues in a problem, and simulation results of the

basic problem demonstrate how desirable, proactive, group-aware behaviors naturally

emerge when the MDP is solved.

While the basic persistent surveillance problem primarily focuses on group fuel

management, the extensions to the basic problem capture further important aspects

of complex, real-world UAV missions, including the need to deal with randomly-

occurring sensor failures, communication constraints, and heterogeneous teams of

UAVs with different capabilities. Computationally, this formulation is significantly

more complex than the basic persistent surveillance problem, having both a larger

state space and more complex dynamics. While the basic problem with only 3 UAVs

has a state space of approximately 1.2 million states and can be solved exactly using

value iteration, this solution approach quickly becomes intractable for larger, possibly

heterogeneous UAV teams using the extended problem formulation. In Chapter 7, we

describe how running the BRE approximate dynamic programming algorithms on a

parallel, distributed computer cluster can be used to solve problems with very large

state spaces (on the order of 1012 states) while maintaining near-optimal mission

performance. Furthermore, we demonstrate performance benefits of our approach

over a deterministic planning approach that does not account for randomness in the

system dynamics model.
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Chapter 6

Adaptive MDP Framework

As discussed in Chapter 5, MDPs are a powerful approach for addressing multi-agent

control and planning problems, especially those in which the health state of the agents

may be subject to stochastic dynamics caused by failures, unknown environmental ef-

fects, etc. The persistent surveillance MDP formulation developed in Chapter 5 relies

on having an accurate estimate of the system model (i.e. state transition probabili-

ties) in order to guarantee optimal behavior of the control policy. When solving the

MDP offline (i.e. before the true system begins operating), inaccuracies in the system

model can result in suboptimal performance when the control policy is implemented

on the real system. A further issue is that that, throughout the course of actual UAV

missions, it is likely that the parameters of the MDP will be time-varying, due to

unmodeled changes in the system dynamics over time. For example, in the persistent

surveillance problem, the probability of sensor failures occurring may slowly increase

over time as the UAVs accumulate wear and tear.

The general problem of parametric uncertainty in MDPs has been investigated

in [82, 115], which showed that robust MDP problems can be solved by developing

robust counterparts to Value Iteration and Policy Iteration. In [115], the authors

also showed that robust MDPs could be solved if scenarios—samples from a prior

distribution defined over the set of possible models—were available as a description for

the parametric uncertainty. Sampling-based solutions to Partially Observable Markov

Decision Processes (POMDPs) with parametric uncertainty have been proposed in
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[84]. Recent work [27] has extended sampling-based robust MDPs by proposing a

new technique that requires far fewer total samples to achieve a robust solution. If

the model parameters are time-varying, common solution methods such as those used

in model-based adaptation [64, 85] can be used in updating the model.

The focus of this chapter is on implementation of an MDP-based control archi-

tecture that addresses the challenges of poorly known and/or time-varying models.

Since the overall system may exhibit model changes in real-time, online adaptation

is a necessary requirement for real-life UAV missions. Our adaptive MDP approach

is similar in spirit to ideas from adaptive control [12, 15], in that the system model is

continuously estimated, and an updated policy (i.e., the control law) is computed at

every time step. However, unlike adaptive control, the system in question that must

be controlled is modeled by a MDP, whose dynamics may be stochastic in the gen-

eral case. An alternative approach to dealing with model uncertainty in this context

would be an offline, minimax strategy, where the “worst case” model is assumed and

the corresponding control policy implemented [49]. However, this approach can lead

to overly conservative policies that do not achieve sufficient levels of performance if

the true system model is different than the worst-case scenario. The flight results

that will be presented in Chapter 7 demonstrate that the adaptive MDP architecture

can achieve significant performance benefits over offline, minimax-like strategies. In

addition, we shall demonstrate that the adaptive architecture is effective for dealing

with changing system models such as vehicle degradation or damage.

Two factors influence the responsiveness (i.e. the speed with which an updated

policy will begin to execute in response to a change in the system model) of the

adaptive MDP architecture. First, the time needed to recompute the optimal policy,

given a new model estimate, is clearly a factor in how soon the system will respond to

the new model. In this chapter, we develop an approach that utilizes previous cost-

to-go solutions in a “bootstrapping” fashion to reduce the time needed to recompute

the policy. Any approximate dynamic programming technique, such as the BRE

techniques developed in Chapters 3 and 4 can be leveraged in the bootstrapping

framework in order to quickly recompute the policy. Second, the rate of convergence
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of the model estimator also influences the responsiveness, since if a change in the

model takes a long time to be detected, then the execution of the optimal policy will

be delayed. Unfortunately, classical estimators [64, 85, 87], can be slow to respond to

such changes. To avoid this slow response, we show the benefits of using a modified

(discounted mean-variance) formulation to speed up the response of the estimator,

and in turn improve the response time of the optimal policy [26].

6.1 Parametric Uncertainty in the Persistent Surveil-

lance Problem

The problem of online MDP adaptation deals with situations in which the system

dynamics model exhibits parametric uncertainty. That is, the model is governed by a

set of parameters Ω which may not be well-known before the system begins operation,

and may vary with time. The optimal cost-to-go function and policy of the MDP

shall be denoted by J?Ω and µ?Ω, respectively, to emphasize their dependence on the

parameter values. A concrete example of parametric uncertainty is in the case of the

testing and implementation of a completely new system, where system identification

may be needed to quantify the values of the parameters. Another example is one

where the parameters may be evolving over time, and need to be estimated on-

line. For the purposes of discussion, throughout this chapter, we will use the basic

persistent surveillance problem described in Chapter 5 as an example, and our primary

parameter of interest will be the nominal fuel flow transition probability pnom. This

parameter may be uncertain because we do not fully know the characteristics of the

UAVs, or it may change during the course of the mission as the vehicles are damaged in

flight, for example. Extending the adaptation approach to include other parameters in

addition to the fuel flow probability is straightforward, and more complex adaptation

scenarios will be presented in the flight results of Chapter 7.

The optimal policy and other characteristics of the persistent surveillance mission

are very sensitive to the precise value of the parameter pnom. Figure 6-1 demonstrates
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Figure 6-1: Persistent surveillance coverage time (mission length: 50) as a function
of nominal fuel flow transition probability pnom.

the sensitivity of the coverage time of the mission (the total number of time steps in

which a single UAV was at the surveillance location) as a function of pnom. For values

of pnom < 0.9, typical coverage times for a 50-time step mission can range from 25

to 30 time steps, while for values of pnom > 0.9, the coverage times can increase to

almost 47 time steps.

Figure 6-2 shows the impact of a mismatched transition model on the overall

mission coverage times. For each pair of “Modeled” and “Actual” values of pnom given

in the figure, the total coverage time was evaluated as follows. First, a control policy

based on the “Modeled” value was computed exactly, using value iteration. Then,

the system was simulated several times, under the control of this policy, for the true
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Figure 6-2: Sensitivity of persistent surveillance coverage time to modeling errors in
the nominal fuel flow transition probability pnom.

system whose pnom was given by the “Actual” value. The resulting (averaged) mission

coverage was then computed. Examining Figure 6-2, there are a number of interesting

results. When the modeled pnom is less than the actual pnom, more conservative

policies result: the control policy recalls the UAVs to base well before they are out of

fuel, because it (incorrectly) assumes they will use a lot of fuel on the flight back to

base. This results in fewer crashes, but also leads to decreased surveillance coverage

since the vehicles spend less time in the surveillance area. Conversely, riskier policies

are the result when the modeled pnom is greater than the actual pnom, since the control

policy assumes the UAVs can fly for longer than they actually are capable of. This

leads to significant coverage losses, since the UAVs tend to run out of fuel and crash

more frequently.

The results presented in this section provide quantitative evidence of the impor-
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tance of running a control policy that is based on an accurate model of the true

system. The following section will develop an adaptive architecture that addresses

the problem of model mismatch by updating the model online, and using this infor-

mation to recompute the policy.

6.2 Development of the Adaptive Architecture

The prior results showed that value of the parameter pnom has a strong effect on

the optimal policy, and in particular, how mismatches between the true parameter

value and the value used to compute the optimal policy can lead to degraded perfor-

mance when implemented in the real system. Therefore, in order to achieve better

performance in the real system, some form of adaptation mechanism is necessary to

enable the planner to adjust the policy based on observations of the true parameter

values. These observations cannot be obtained prior to the start of operation of the

real system, so this adaptation must be done online.

The system architecture shown in Figure 6-3 was designed to achieve the goal of

online policy adaptation. The architecture consists of two concurrent loops. In the

control loop (top), the policy executor receives the current system state i, computes

the corresponding control decision µ?
Ω̂

(i), and applies this decision to the system. This

part of the architecture is nearly identical to how a standard, static MDP control pol-

icy would be implemented. The single, important difference is that the policy executor

receives periodic updates to its current policy µ?
Ω̂

via the estimation/adaptation loop.

In this loop, the parameter estimator receives state transition observations of the

controlled system and uses this information to update its estimate of the system pa-

rameters. This estimate is then sent to the online MDP solver, which computes a

new optimal policy based on the estimate. The updated policy is then transmitted

to the policy executor. In this fashion, the policy being used to control the system

is continually updated to reflect the latest knowledge of the system parameters. The

two key elements of the adaptive MDP architecture are the parameter estimator and

the online MDP solver. The next two sections discuss how each of the elements works.
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Figure 6-3: Adaptive MDP architecture, consisting of concurrent estima-
tion/adaptation and control loops.

6.2.1 Parameter Estimator

When starting with a new vehicle that has not been extensively tested, the true

probability pnom may not be well known, and thus must be effectively identified. A

very effective method to handle an uncertain probability, and develop and adaptation

scheme provides a prior on this probability, and updates this prior with observed

transitions as the mission progresses. For this problem, a reasonable prior is the Beta

density (Dirichlet density if the fuel is discretized to 3 or more different burn rates),

given by

fB(p | α) = K pα1−1(1− p)α2−1

where K is a normalizing constant that ensures fB(p | α) is a proper density, and

(α1, α2) are parameters of the density that can be interpreted as prior information

that we have on pnom. For example, if 3 nominal transitions and 2 off-nominal transi-

tion had been observed, then α1 = 3 and α2 = 2. The maximum likelihood estimate
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of the unknown parameter is given by

p̂nom =
α1

α1 + α2

A particularly convenient property of the Beta distribution is its conjugacy to

the Bernoulli distribution meaning that the updated Beta distribution on the fuel

flow transition can be expressed in closed form. If the observation are distributed

according to

fM(p | γ) ∝ pγ1−1(1− p)γ2−1

where γ1 (and γ2) denote the number of nominal (and off-nominal, respectively)

transitions, then the posterior density is given by

f+
B (p | α′) ∝ fB(p | α) fM(p | α)

By exploiting the conjugacy properties of the Beta with the Bernoulli distribution,

Bayes Rule can be used to update the prior information α1 and α2 by incrementing

the counts with each observation, for example

α
′

i = αi + γi ∀i

Updating the estimate with N = γ1 + γ2 observations, results in the following Maxi-

mum A Posteriori (MAP) estimator

MAP: p̂nom =
α
′
1

α
′
1 + α

′
2

=
α1 + γ1

α1 + α2 +N

The MAP estimator and is asymptotically unbiased, and we refer to it as the undis-

counted estimator in this chapter. Recent work [26] has shown that probability up-

dates that exploit this conjugacy property for the generalization of the Beta, the

Dirichlet distribution, can be slow to responding to changes in the transition proba-

bility, and a modified estimator has been proposed that is much more responsive to

time-varying probabilities. One of the main results is that the Bayesian updates on
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the counts α can be expressed as

α
′

i = λ αi + γi ∀i

where λ < 1 is a discounting parameter that effectively fades away older observations.

The new estimate can be constructed as before

Discounted MAP: p̂nom =
λα1 + γ1

λ(α1 + α2) +N

Figure 6-4 shows the response of the MAP estimator (blue) compared to the Dis-

counted MAP (red) to a step change in a reference transition probability (shown in

black), for λ = 0.8. The response speed of the discounted MAP is almost 10 times as

fast as that of the undiscounted MAP. This implies that the optimal policy obtained

with a discounted MAP estimator converges to the optimal policy much quicker, due

to the fast estimator convergence.

6.2.2 Online MDP Solver

The online MDP solver in the architecture described in the previous section relies on

the ability to rapidly re-solve the MDP as new parameter estimates become avail-

able. If the new solution cannot be computed quickly, then the advantages of the

adaptive architecture - namely, the ability to adapt to unknown and/or changing

system parameters - are lost. Furthermore, solving an MDP “from scratch” without

any prior knowledge of the optimal cost or policy typically requires a large amount

of computational effort and time. If the online MDP solver attempted to solve each

new problem from scratch, it is unlikely that the new solution could be found quickly

enough to be useful.

Fortunately, the following empirical observation can allow the online MDP solver

to converge to a new solution much faster than it could by solving each MDP instance

from scratch. The observation is that the optimal cost function from a previously-

obtained solution (i.e. a solution for a different set of parameter values) is “close
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Figure 6-4: Response rate of the discounted MAP with λ = 0.8 (red) is almost 10
times faster than the undiscounted MAP (blue).

to” the optimal cost of the new problem in many cases. By initializing the solution

process with a previously-obtained cost function (“bootstrapping”), it may be possible

to converge to the new solution much more quickly.

A visualization of this idea is shown in Figure 6-5. In the figure, the axes represent

the space of possible cost functions. The optimal cost for a problem with parameters

Ω is shown as a black dot and labeled by J?Ω. The optimal cost for a problem with

a slightly different set of parameters Ω + ∆Ω is shown as a gray dot and labeled by

J?Ω+∆Ω. These two costs are close to each other in the cost space. The progression of

the value iteration solution algorithm is represented by the red, green, and blue tra-

jectories, with each iteration of the algorithm shown as a small blue dot. Initializing

value iteration with no prior knowledge corresponds in the diagram to starting at the

origin (i.e. J = 0), as the red and green trajectories do. The number of iterations

necessary for value iteration to find the optimal policy corresponds roughly to the

distance that must be traversed in the cost space, so finding both J?Ω and J?Ω+∆Ω
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Figure 6-5: Visualization of the MDP solution “bootstrapping” process. The number
of value iterations (and therefore, the time required) to find the cost of the perturbed
problem, J?Ω+∆Ω, is typically much smaller by starting from a previously computed
solution J?Ω as opposed to starting from scratch (i.e. J = 0). This is represented in
the figure by the bootstrapping path (blue) being shorter than the non-bootstrapped
path (green).

along the red and green trajectories, respectively, requires many iterations. However,

if the previous solution J?Ω is already known and the solution J?Ω+∆Ω is desired, value

iteration may be initialized at the currently known solution and may thus converge

to J?Ω+∆Ω more quickly, as represented by the blue trajectory.

A series of bootstrapping experiments were conducted using the persistent mission

MDP as an example problem. In these experiments, the probability of nominal fuel

usage pnom was initialized at 0.9, and value iteration was run, starting from J = 0. At

each iteration, the Bellman error ||TJ−J || was recorded and a test was run to detect

whether the policy had converged to the optimal policy. Then, pnom was set to a dif-

ferent value, and value iteration was begun again. However, this time value iteration

was initialized with the optimal cost function for pnom = 0.9. Again, the Bellman

error and policy convergence were recorded for each iteration. Results are shown in

Figures 6-6, 6-7, 6-8, and 6-9, which show the log of the Bellman error as a function
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Figure 6-6: Value iteration bootstrapping (VIB) with pnom = 0.97

Figure 6-7: VIB with pnom = 0.8
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Figure 6-8: VIB with pnom = 0.6

Figure 6-9: VIB with pnom = 0.5
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of iteration number for bootstrapped value iteration (shown in green), as well as non-

bootstrapped value iteration for pnom = 0.9. In all cases, bootstrapped value iteration

converged much more quickly than non-bootstrapped value iteration. Indeed, the pol-

icy converged to the optimal policy within at most 5 iterations for bootstrapped value

iteration, compared with more than 40 for non-bootstrapped value iteration. Our on-

line MDP solver uses this bootstrapping technique to quickly recompute the new

optimal policy when an updated model estimate arrives from the parameter estima-

tor. In the current implementation, each value iteration for the two vehicle problem

takes around 5 seconds and the policy is executed every 30 seconds. Therefore, the

bootstrapping process makes it possible to continuously recompute the optimal policy

in time for the next scheduled policy execution. Without bootstrapping, the solution

process would be too slow (around 10 minutes) to accomplish this goal.

The bootstrapping procedure presented here is conceptually similar to prioritized

sweeping methods for executing value iteration. Prioritized sweeping was originally

proposed by Moore and Atkeson [109] and subsequently extended by a number of

authors [8, 90, 120, 168, 170]. The basic idea behind prioritized sweeping is to

update the values of states in an efficient order. In order to do this, prioritized

sweeping maintains a queue of states, sorted in order of the states whose values are

likely to change significantly in the next update. By updating the values of states

in the order they are stored in the queue, the computational effort of carrying out

value iteration is focused efficiently in areas of the state space where large changes of

the value function are occurring. Like the value iteration bootstrapping procedure,

prioritized sweeping generally leads to fast convergence of value iteration.

Unfortunately, in order to address larger problems, the computational savings

generated by the bootstrapping procedure, prioritized sweeping, or any other exact

solution approach, are likely to be insufficient to recompute the policy quickly enough

to be useful. This is because, for problems with very large state spaces, even a single it-

eration of value iteration may be computationally intractable. However, the adaptive

architecture presented in this chapter can be used in conjunction with any approxi-

mate dynamic programming method to further reduce the policy re-computation time
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when exact methods (such as value iteration or policy iteration based methods) are

impractical. Notice that, regardless of the algorithm that is used to recompute the

policy, the key boostrapping observation remains valid: the cost-to-go (and therefore

the policy) of the system under the old set of model parameters Ω is likely to be close

to the cost-to-go of the system under the new parameters Ω + ∆Ω. Therefore, any

approximate dynamic programming algorithm can be bootstrapped by initializing it

using the policy and cost function computed for the previous set of parameters. In

particular, results presented in Chapter 7 will demonstrate the use of the BRE al-

gorithm in the bootstrapping framework to quickly recompute the policy for a large

and complex persistent surveillance problem. In this problem, the size of the state

space is so large (around 1012) that solving it using any exact method is intractable.

6.3 Summary

This chapter presented a framework for continuously estimating the dynamic model of

a Markov decision process and adapting the policy on-line. This framework is useful in

the cases where the initial model is poorly known and where the true model changes as

the system is operating. Analysis of the persistent surveillance problem demonstrates

the detrimental impact of modeling mismatches. The results of Chapter 7 will show

that the adaptation approach can mitigate these effects even in the presence of a

poorly known initial model and dynamic model changes, and furthermore, that the

adaptive approach yields better performance over offline, minimax type approaches,

which must trade-off performance versus robustness.
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Chapter 7

Simulation and Flight Results

In order to validate the performance and applicability of the multi-UAV, health-aware

persistent surveillance problem formulation, the adaptive MDP architecture, and the

BRE approximate dynamic programming algorithms presented so far in the thesis, a

series of experiments were conducted both in simulation and in a realistic flight test

environment. This chapter presents these simulation and flight results.

7.1 Background and Experimental Setup

This section discusses details of the experimental setup, including the flight test fa-

cility, autonomous mission planning architecture, and implementation of the BRE

algorithms.

7.1.1 RAVEN Flight Test Facility

The flight experiments presented in this chapter were conducted in the MIT Real-

time indoor Autonomous Vehicle test ENvironment (RAVEN). RAVEN allows for

rapid prototyping and testing of a variety of unmanned vehicle technologies, such as

adaptive flight control [106, 107], automated UAV recharging [51], autonomous UAV

air combat [105], and coordinated multi-vehicle search and track missions [30, 31, 33],

in a controlled, indoor flight test volume. RAVEN utilizes a camera-based motion-
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Figure 7-1: Distributed planning, perception, and control processing architecture for
RAVEN [80].

capture system [165] to simultaneously track multiple air- and ground-based vehicles,

and provide highly accurate position and orientation information about these vehicles

in real-time. This information is then distributed to a group of command and control

computers responsible for managing the autonomous execution of the mission. The

RAVEN system architecture shown in Figure 7-1, which highlights the perception,

planning, and control processing components. Figures 7-2 and 7-3 show the general

layout of the RAVEN facility and an experiment demonstrating simultaneous control

of 10 UAVs, respectively. For more details about RAVEN, see [80].

7.1.2 Multi UxV Planning and Control Architecture

The persistent surveillance problem formulation plays an important role in long-

term, multi-UAV planning systems: namely, it solves the problem of how to robustly

maintain a set of assets on-station and available to carry out the intended mission,

even in the face of randomly-occurring failures and other adverse conditions. However,

in order to achieve the goals of the mission, this persistency planning capability must
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Figure 7-2: The RAVEN flight test facility.

Figure 7-3: Simultaneous flight of 10 UAVs in RAVEN.
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Figure 7-4: Multi-UxV planning and control architecture used in the heterogeneous
persistent surveillance flight experiments.

be integrated into a larger planning and control architecture that also performs other

important functions, such as generating tasks that will lead to successful completion of

the mission, assigning these tasks to the on-station UAVs, and maintaining low-level

stabilization and control of the UAVs themselves.

To address this problem, the multi-UAV mission planning architecture shown in

Figure 7-4 was developed in order to carry out complex missions using a team of

heterogeneous air- and ground-based UxVs. In the architecture, a mission planner

generates a prioritized list of tasks necessary to accomplish the mission. The gener-

ated tasks can be either persistent in nature (i.e. long-term surveillance) or transient

(i.e. inspect a target vehicle that has been discovered for a short period of time

to determine its characteristics). This task list is sent to the task assignment al-

gorithm; possible candidates for this algorithm are for example CBBA [45], RHTA

[3, 5], or other task assignment algorithms. Additionally, the mission planner decides

how many vehicles are needed to carry out the tasks effectively, and this information

is communicated to the persistency planner in order to update the state variable r

(number of requested vehicles). The persistency planner executes a policy computed

for the persistent surveillance MDP formulation presented in Chapter 5; this policy

may be computed exactly if the problem instance is small enough, or BRE or other

approximate dynamic programming techniques may be used to compute an approxi-

mate policy for large-scale problems. Regardless of the mechanism used to compute
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the policy, the persistency planner sends takeoff, landing, and movement commands

to the UxVs in order to position them to satisfy the requirements on the number

and type of vehicles that are needed to carry out the mission. At the same time, the

persistency planner provides a list of active vehicles (i.e. those vehicles that are on

station and ready to perform tasks) to the task assignment algorithm. In turn, the

task assignment algorithm then uses the list of tasks and the list of active vehicles to

assign tasks to the active vehicles. As vehicles become low on fuel or experience sensor

failures or degradations, the persistency planner recalls vehicles from the surveillance

area as necessary and updates the list of active vehicles accordingly. Given the lists

of tasks and active vehicles able to perform those tasks, the task assignment algo-

rithm assigns tasks to vehicles, and communicates the assignments to the vehicles

themselves for execution. The adaptive MDP architecture discussed in Chapter 6

enters into Figure 7-4 through the “System Health Information” feedback channel.

This channel’s purpose is to continually estimate and update the models used in the

persistency planner (and potentially in other mission components as well), using the

adaptation scheme described in Chapter 6.

7.1.3 Parallel BRE Implementation

The BRE algorithms presented in the thesis were implemented on a high-performance

parallel computer cluster. This section describes the parallel implementation and

discusses several of the design considerations in applying the BRE algorithms to solve

the large-scale persistent surveillance problems that are the subject of the simulation

and flight experiments.

All of the various BRE algorithms presented in the thesis are naturally suited to

parallel implementation, meaning that many of the steps involve multiple calculations

that can be carried out independently, allowing multiple processors to simultaneously

work on different pieces of the overall computation. In the following discussion, we

will use the BRE(SV) algorithm, presented in Algorithm 3 on page 62, as an example

to illustrate the parallelization procedure; all other BRE variants are parallelized in

a similar way.
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Examining Algorithm 3, notice that the main body of the algorithm consists of

a single loop (Lines 8-12). Each of these lines can be parallelized, in the following

ways:

Line 8 requires construction of the Gram matrix K of the associated Bellman kernel

K(i, i′), over the set of sample states S̃. Since the associated Bellman kernel is

symmetric (K(i, i′) = K(i′, i)), the Gram matrix is also symmetric and contains

ns(ns + 1)/2 unique elements (where ns = |S̃| is the number of sample states).

Each of these elements is independent of the others, so they can be computed

in parallel.

Line 9 requires construction of the single-stage cost values gµi for all states i ∈ S̃.

Again, since each of these values are independent of the others, they can all be

computed in parallel.

Line 10 involves solving the linear system Kλ = gµ, using the Gram matrix and

cost values computed in Lines 8 and 9. The problem of solving such linear alge-

bra problems in parallel has been extensively studied due to its large practical

importance [11, 62, 137]. Furthermore, the ScaLAPACK project [35, 46] is a

freely available software package that provides a reference implementation of

many parallel linear algebra routines. In our implementation, ScaLAPACK is

employed to solve the linear system from Line 10 in parallel.

Line 11 computes the approximate cost-to-go function J̃µ(i) using Eq. (3.18) and

the solution λ computed in Line 10. Examining this equation, note that J̃µ(i)

consists of a sum of terms of the form

k(i′, i)− α
∑
j∈S

P µ
i′jk(j, i),

one for each state i′ ∈ S̃. Each of these terms can be computed in parallel and

combined at the end to form the final sum.
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Line 12 computes a policy improvement step to get an improved policy µ(i), which

involves minimizing the expected cost, of the form

∑
j∈S

Pij(u)
(
g(i, u) + αJ̃µ(j)

)
,

over all possible actions u. The expected costs for different actions are indepen-

dent, and can thus also be computed in parallel.

As shown, all of the steps of the BRE algorithm can be performed in parallel,

allowing the possibility to reduce the total time needed to run the algorithm by a

factor of up to m, where m is the total number of processors available. To achieve

this goal, a parallel, distributed software architecture has been developed for the

purpose of running BRE in parallel. The software utilizes the OpenMPI framework

[1], a high-performance message passing library, for communication and coordination

between the parallel processes. This framework is highly scalable and is currently

utilized in a number of supercomputing applications [68]. In addition to using the

core MPI functionality provided by OpenMPI, an extension called STL-MPI [2] is used

to allow objects from the C++ Standard Template Library to be easily transmitted

and received between processes. The Intel Math Kernel Library [81] provides a high-

performance implementation of the ScaLAPACK library and is used for solving the

linear system in Line 10.

The current hardware setup used for the parallel BRE implementation consists of

12 workstations equipped with Intel Core2 Duo CPUs, for a total of 24 processors.

The workstations run Gentoo linux [70] and are networked together using gigabit

ethernet.

7.1.4 BRE Applied to the Persistent Surveillance Problem

In order to apply the BRE algorithm to the various persistent surveillance problems

described in this chapter, the base kernel function k(·, ·), as well as a strategy for

collecting the sample states S̃, must be specified. In designing the kernel function,
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it is useful to take advantage of any problem-specific structure that allows the kernel

to generalize over a large number of states. One important aspect of the persistent

surveillance problem that can be exploited is the fact that all agents of the same UxV

class are interchangeable. This interchangeability has an important consequence for

the cost-to-go function: namely, the cost-to-go function is constant under exchange

of agent states. More precisely, assuming only a single UxV class for the moment,

the state x of the persistent surveillance problem can be expressed as

x = (x1, . . . ,xN ,q)T ,

where xi is the state of the ith UAV, N is the total number of UAVs, and q captures

all state information not related to the UAVs themselves (i.e. task request numbers).

Then, since the agents are interchangeable, it must be the case that the cost-to-go

function J(·) satisfies

J((x1, . . . ,xi, . . . ,xj, . . .xN ,q)T ) = J((x1, . . . ,xj, . . . ,xi, . . .xN ,q)T ). (7.1)

Intuitively, Eq. 7.1 captures the idea that it does not matter which particular agent

happens to be in a given state; since all the agents have the same capabilities, per-

muting the list of all agent states has no impact on the cost-to-go function. This idea

generalizes easily to the case when there are multiple UAV classes; in this case, agent

states within the same class can be permuted without affecting the cost-to-go.

To exploit the interchangeable structure of the state space in the kernel function,

it is sufficient to sort the individual states of each UAV (using an arbitrary sorting

metric) class before processing them by the kernel function. This ensures that all

state permutations that are identical in terms of the cost-to-go function are mapped

to a unique permutation (namely, the permutation in which the states are sorted)

before the kernel processes them. In the experiments presented in this chapter, we

employ this sorting strategy along with a standard radial basis function kernel of the

form k(x,x′) = exp(−||x− x′||2/γ2).

In order to generate sample states, sampling trajectories of several types of heuris-
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tic policies was used. The heuristic policies ensure that relevant parts of the state

space are preferentially sampled. These sample states are then used by the BRE al-

gorithm to compute approximate policies. The results in this chapter will show that

the BRE policies often demonstrate significant performance improvements over the

heuristic policies used to generate the sample states.

7.2 Basic Persistent Surveillance Problem Results

The first series of flight experiments focused on demonstrating the properties of the

overall mission planning architecture (Figure 7-4), including the online MDP adap-

tation component, using the basic persistent surveillance problem formulation. For

these first flight experiments, small instances (involving only 2 or 3 UAVs) of the basic

persistent surveillance problem were used, so that the state space of the persistent

surveillance MDP was small enough to allow for the optimal policy to be computed

exactly using value iteration. These small problems allow baseline results, which use

the optimal policy, to be established. In later sections, we will move to using the more

complex, extended version of the persistent surveillance problem, as well as increase

the number of UAVs. As a result, it will no longer be possible to solve the MDP

exactly, and we will instead apply BRE algorithms to quickly compute approximate

policies for these problems. Furthermore, we will show that the approximate BRE

policies give results that are near-optimal.

7.2.1 Baseline Results

To begin, we used the basic persistent surveillance problem formulation in conjunction

with the mission planning architecture presented in Figure 7-4 to establish baseline

performance and confirm that the results achieved in real flight experiments match

the behavior observed in simulation (i.e. Figure 5-1).

In these experiments, the controller had access to n = 3 quadrotor UAVs and was

commanded to maintain r = 2 UAVs over a surveillance area. The parameters of the

experiments were adjusted to make the problem intentionally hard for the controller.
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Figure 7-5: Persistent surveillance flight experiment (n = 3, r = 2), showing UAVs
#1 and #2 tracking the two target vehicles, while UAV #3 waits at base.

That is, the distance from base to the surveillance area was large relative to the

amount of fuel each UAV could carry, thus necessitating rapid swapping of the UAVs

in order to maintain the desired coverage.

Figure 7-5 shows the basic setup of the flight experiment in RAVEN. The base

area is located on the left side of the figure, and the the two requested UAVs in

the surveillance area are tasked with tracking two ground targets that move about

randomly in this area.

Flight results for a typical experiment are shown in Figure 7-6. Despite the diffi-

culty of the problem, the performance of the controller is excellent, providing nearly

continuous (97%) coverage over the 45-minute duration of the mission. Furthermore,

the qualitative behavior of the flight controller is identical to that seen in simulation.

This establishes that the MDP-based controller can be successfully implemented on
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the RAVEN flight testbed.

7.2.2 Importance of Group Fuel Management

As discussed in Chapter 5, one of the key requirements of a health management sys-

tem is the ability to consider the impact on the overall mission of a change in the

health state of individual vehicles. This requirement is automatically satisfied by

our MDP based approach, since the cost function of the MDP captures the interde-

pendencies between vehicles on the overall mission. To highlight the importance of

this requirement, we compare the flight results shown in Figure 7-6 with an alterna-

tive planning approach for the persistent surveillance problem [98]. This approach is

based on a non-proactive, heuristic method that requires every UAV to keep the base

location within its “operational radius”, which is an estimated distance the UAV can

fly before running out of fuel. Thus, while the heuristic ensures individual vehicle

safety by always requiring that the vehicle is able to return to base when necessary

for refueling, it does not consider the broader impact that refueling a vehicle has on

the overall mission coverage.

The operational radius heuristic was used to command a group of three UAVs

(n = 3) to track two ground vehicles (r = 2), in an identical experimental setup to that

of the previous section. The heuristic commanded the UAVs to enter the surveillance

area based on the request number r. When an individual vehicle’s estimated flight

time remaining dropped below 1 minute, the method recalled the UAV to base for

refueling and commanded another one to take its place.

Flight results from the heuristic-driven experiment are shown in Figure 7-7. Notice

the gap in coverage that occurs at time t = 38. This problem was caused because

both UAVs in the surveillance area reached a low fuel state at nearly the same time.

Since the heuristic method was not proactive in looking into the future to predict this

conflict, it could not avoid the undesirable situation of needing to recall both vehicles

at the same time, resulting in a loss of coverage. Also, since the heuristic method did

not account for the transit time between the base and the surveillance location, gaps

were observed in the coverage even during normal swap-out events. As a result, the
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Figure 7-6: Persistent surveillance flight results for n = 3, r = 2.

Figure 7-7: Persistent surveillance flight experiment, using a heuristic control policy
that manages fuel for each UAV individually. Note the coverage gap beginning at
t = 37.

heuristic’s achieved coverage over the course of the 45-minute mission is only 85%,

compared with 97% for the MDP-based control policy.

7.2.3 Adaptive Flight Experiments

In order to demonstrate the effectiveness of the adaptive MDP architecture in ad-

dressing the problem of uncertain and time-varying models in the basic persistent

surveillance problem, a number of adaptive flight experiments were conducted. The

flight experiments encompassed a number of scenarios to illustrate the benefits of the

adaptive MDP architecture. The flight experiments all involved a two-UAV, basic

persistent surveillance mission where the goal was to maintain one vehicle on-station

at all times. The scenarios were designed to be challenging to solve, in the sense that

the vehicles had very limited fuel capacities. Due to this limitation, any inefficiencies

introduced by vehicle failures (such as increased fuel usage) or sub-optimal policy
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decisions resulted in degraded surveillance performance, making it possible to clearly

observe the benefits of the adaptive approach.

First Scenario

To begin, a simple scenario illustrating the importance of proper modeling was run.

In this scenario, a static (non-adaptive) control policy, based on a nominal fuel flow

parameter of pnom = 1.0, was implemented. In reality, the true parameter value of

the system was pnom = 0.8. Flight results are shown in Figure 7-8. Since the control

policy was overly optimistic about the fuel burn rate, vehicles do not return to base

with any extra fuel reserves, making them vulnerable to off-nominal fuel burn events.

As a result, both vehicles end up crashing relatively soon after the start of the mission.

The parameter mismatch in these flights corresponds to the risky region of Fig-

ure 6-2, where, by virtue of being overly optimistic with regards to the true parameter,

there is a dramatic loss of coverage due to vehicle crashes.

Second Scenario

The first scenario illustrated the danger of implementing an overly optimistic policy.

A second non-adaptive scenario shows that the opposite, conservative approach is

safer, but also leads to sub-optimal mission performance. In this scenario, a static

policy based on pnom = 0.0 was implemented for the same system as the first scenario,

where the true value was pnom = 0.8. In this case, the policy is overly conservative.

Since it assumes the vehicles will burn fuel at a high rate all the time, the vehicles

return to base with very large fuel reserves. This is a safe strategy in that the vehicles

never crash, but the overall mission performance is quite low, because the vehicles

only stay on station for a short period of time before returning to base (see Fig. 7-

9). Note that minimax-like strategies for computing the policy offline result in these

types of conservative policies, which are safe but may not perform well.
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Figure 7-8: Static policy based on pnom = 1.0. True value: pnom = 0.8. Both vehicles
crash shortly after the start of the mission.

Figure 7-9: Static policy based on pnom = 0.0. True value: pnom = 0.8. This overly
conservative policy avoids crashes at the expense of very low mission performance.
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Figure 7-10: Undiscounted estimator (blue) is slower at estimating the probability
than the discounted estimator (red)

Third Scenario

Having established the difficulties in implementing both overly conservative and op-

timistic policies, a new set of scenarios were run in which the adaptation mechanism

described in the previous section was used. In this scenario the estimator and policy

were initialized at pnom = 0.0, while the true value was pnom = 1.0. The flight was

started with the adaptation mechanism running. A plot of the estimated parameter

value as a function of time is shown in Fig. 7-10, for two different values of the fading

factor λ. The figure shows that the estimate converges to the true value of 1, as ex-

pected. Furthermore, the vehicle flight data is shown in Fig. 7-11. For these missions,

the surveillance efficiency of the vehicles was defined as the ratio of the time the UAV

spent on surveillance to the total mission time, TSurv/Tmission.

Fig. 7-11 illustrates that the system policy continually improves the performance

as better estimates of the fuel flow parameter are obtained. In particular, when the

system starts operating, the policy is very conservative since its initial estimate is

pnom = 0. Therefore, the vehicles do not stay on station very long. However, as
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(a) Adaptation with λ = 0.95

(b) Adaptation with λ = 1

Figure 7-11: Surveillance efficiency for the two estimators. The discounted (top), with
surveillance efficiency of 72%, and undiscounted estimator (bottom) with surveillance
efficiency of only 54%.
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Figure 7-12: Step response from pnom = 1 to pnom = 0 for three values of λ, showing
that λ = 0.6 has a response time of approximately 5 times steps, while λ = 1 has a
very slow response time.

the estimate increases towards the actual value, the policy is updated and the vehi-

cles stay on station longer, thereby increasing mission performance. This experiment

demonstrates successful adaptation from an initially poor parameter estimate. Fur-

thermore, it demonstrates the value of the discounted estimation approach, since

the discounted estimator (λ = 0.95) converged to the true value more quickly than

the undiscounted estimator (λ = 1.0). As a result, total mission efficiency for the

discounted estimator was higher than the undiscounted estimator.

Fourth Scenario

The next scenario demonstrated the ability of the adaptation mechanism to adjust

to actual model changes during the mission, such as might be observed if the vehicles

were damaged in flight. In this scenario, the vehicles were initialized with a pnom = 1
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(a) Adaptation with λ = 0.80

(b) Adaptation with λ = 1

Figure 7-13: For λ = 0.8 (top), the red vehicle crashes as it runs out of fuel following a
change in the fuel burn dynamics, but the faster estimator response allows an updated
policy to be computed in time to prevent the blue vehicle from crashing. For λ = 1
(bottom), the estimator is too slow to respond to the change in the dynamics. As a
result, both vehicles crash.

172



and the model was changed to pnom = 0 after approximately 2 minutes (5 time steps),

mimicking adversarial actions (such as anti-aircraft fire) and/or system degradation

over time. The change in the probability estimate is shown in Figure 7-12 for three

different choices of λ = {0.6, 0.8, 1}. It can be seen that the classical estimation

(λ = 1) results in a very slow change in the estimate, while λ = 0.8 is within 20% of

the true estimate after 10 time steps, while λ = 0.6 is within 20% after only 3 time

steps, resulting in a significantly faster response. The variation of λ resulted in an

interesting set of vehicle behaviors that can be seen in Figure 7-13. For λ = 1, the

estimate converges too slowly, resulting in slow convergence to the optimal policy.

The convergence is so slow that both vehicles crash (vehicle 1 at time step 9, and

vehicle 2 at time step 12), because the estimator was not capable of detecting the

change in the value of pnom quickly, and these vehicle were still operating under an

optimistic value of pnom ≈ 0.8. Due to the physical dynamics of the fuel flow switch for

this scenario, it turns out that the first vehicle will inevitably crash, since the switch

occurs when the vehicle does not have sufficient fuel to return to base. However, if

the estimator is responsive enough to detect the switch quickly, the updated policy

can prevent the second vehicle from crashing. This does not occur when λ = 1. The

benefits of the more responsive estimator are seen in the bottom figure, where by

selecting λ = 0.8, the second vehicle only spends one unit of time on surveillance,

and then immediately returns to base to refuel, with only 1 unit of fuel remaining.

Thus, the faster estimator is able to adapt in time to prevent the second vehicle from

crashing.

Fifth Scenario

The final scenario was a slightly different test of the adaptation mechanism in tracking

a series of smaller step changes to pnom. In the earlier flight tests, under a nominal

fuel flow, pnom = 1, the fuel transitions were always of 1 unit of fuel. Likewise,

when pnom = 0, the fuel transitions were always of 2 units of fuel. In this test, the

transition probability pnom was decreased in steps of 0.3, and the estimators saw

both nominal and off-nominal fuel transitions in the estimator updates at each time
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Figure 7-14: Probability estimates of pnom for λ = 0.8 and λ = 1. Due to the slow
response of the latter estimator, both vehicles crash by time step 13, and no further
adaptation is possible. Estimator with λ = 0.8 shows faster response, and ultimately
converges to the true value.

step (unlike the earlier tests where they either saw nominal transitions or off-nominal

transitions). As a result, this test was perhaps a more realistic implementation of a

gradual temporal degradation of vehicle health. Figure 7-14 is shown for two different

choices of λ = {0.8, 1}. The first item of note is the step decreases in pnom, that unlike

the earlier flight results, are more subtle. Next, note that the initial response of the

undiscounted estimator (blue) is extremely slow. In this flight test, the adaptation

was so slow that the significant mismatch between the true and estimated system

resulted in a mismatched policy that ultimately resulted in the loss of both vehicles.

Also of interest is the responsiveness of the discounted estimator (red) which

shows that the variation of λ resulted in a rich set vehicle behaviors that can be

seen in Figure 7-15. For λ = 1, the estimate converges too slowly, resulting in slow
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(a) Adaptation with λ = 0.80

(b) Adaptation with λ = 1

Figure 7-15: The slower estimator λ = 1 (bottom) does not detect the fuel flow
transition sufficiently quickly, causing both vehicles to crash. The faster estimator
λ = 0.8 (top) quickly detects changes in the transition and results in good mission
performance with no crashes.
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convergence to the optimal policy. The convergence is so slow that both vehicles

crash (vehicle 1 at time step 9, and vehicle 2 at time step 12), because the estimator

was not capable of detecting the change in the value of pnom quickly, and the vehicles

were still operating under an optimistic value of pnom ≈ 0.8. In contrast, for the

faster estimator λ = 0.8, the changes are detected quickly, and the policy smoothly

decreases the vehicles’ on-station surveillance times in accordance with the changing

fuel dynamics. This results in the greatest possible surveillance coverage given the

gradual degradation of the vehicles, while still avoiding crashes.

7.3 Extended Persistent Surveillance Problem Re-

sults

We now turn to larger, more complex missions using the extended persistent surveil-

lance problem formulation. Due to their increased complexity, many of these problem

instances were impossible to solve exactly, so BRE algorithms were used to compute

approximate policies instead. However, performance comparisons between the ap-

proximate BRE policies and the optimal policy are made for several problem instances

that are small enough to solve exactly.

7.3.1 Simulation Results

The parallel BRE implementation was used to compute an approximate policy for a

number of extended persistent surveillance missions with communication constraints

and sensor failures to illustrate the properties of the solution. Note that in these

missions, only a single type of UAV was used (so that the “heterogeneous UAV

team” extension described in Section 5.4.3 was not needed). The basic layout of

the mission is shown in Figure 7-16. In the mission, the surveillance area is located

behind a group of mountains which prevents direct communication with base. In

order to establish a communications link, it is necessary to have a UAV loiter in the

area marked “communications relay point” in the figure. Therefore, for this mission,
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Figure 7-16: Layout of the extended persistent surveillance mission.

the communications function comm(x) is given by

comm(x) =

1 if a UAV is present at the communications relay point in state x

0 otherwise

.

(7.2)

The chosen mission used a total of n = 3 UAVs. The surveillance location was

taken as Ys = 3, and the fuel capacity of each UAV was Fmax = 15 (with ∆f = 1).

Therefore, using Eq. 5.5, the size of the state space was 28, 311, 552, and the average

branching factor β was 8. Finally, the parameters psensorfail and pnom were set at 0.02

and 0.95, respectively.

An approximate policy for this mission was computed using the parallel BRE

implementation. Using a set of 300 sample states (generated by sampling trajectories

from a heuristic policy, described below), the parallel BRE algorithm was run on

the 24-processor computer cluster to compute an approximate policy. Starting from

the initial configuration with all UAVs located at base, the approximate policy was

simulated for 1,000,000 steps, and the average cost incurred per step was computed
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to be 0.802.

In order to compute the exact policy for comparison purposes, a parallel imple-

mentation of value iteration was run using the same 24-processor cluster and software

setup as described in the previous section. The optimal policy incurs an average cost

of 0.787. Thus, for this problem, the approximate policy computed by BRE is within

1.9% of optimal, while requiring significantly less time to compute compared to the

optimal policy.

Results of simulating the approximate policy for the persistent surveillance mis-

sion, for a “lucky” case where no sensor failures occur, are shown in Figure 7-17.

These results are presented first to show how the policy behaves in the nominal case.

Examining the figure, notice that the policy establishes a regular switching pattern,

where each vehicle alternates between providing a communications link, performing

surveillance, and returning to base for refueling and maintenance. Even in the nominal

case without the added complexity of dealing with sensor failures, the policy exhibits

a number of complex and subtle properties, including having UAVs return to base

with a reserve of fuel (similar to the results presented in [30]) and precisely arranging

the arrivals and departures of each UAV at the communications and surveillance lo-

cations such that the important communications link is always established, allowing

unbroken communications with base even as UAVs switch roles and locations.

A set of further results is shown in Figure 7-18. This scenario is similar to the

results of Figure 7-17, but in this case, a number of sensor failures did occur over the

course of the mission. Depending on when in the mission a particular failure occurs,

the policy responds differently to the failure. If a failure occurs when the UAV is

in the surveillance area, it is sometimes immediately recalled to base to refuel and

be repaired (this is case for the top UAV in the figure at time t = 79). In other

cases, the vehicle instead moves to the communications area and begins providing

communications relay service while another UAV with a functional sensor takes its

place in the surveillance area (for example, this happens to the middle UAV at t = 31).

If the sensor failure occurs while the UAV is en route to the communications area,

on the other hand, the policy reassigns the UAV currently providing communications

178



Figure 7-17: Extended persistent mission results for a nominal 3-vehicle mission with
no sensor failures. Each of the 3 UAVs’ states is separately depicted, where the
green lines indicate fuel remaining, the blue lines indicate position, and the red circles
indicate sensor state (0: sensor operational, 1: sensor failed). The approximate policy
computed using BRE establishes a regular switching pattern, where each vehicle
alternates between providing a communications link (labeled “comm”), performing
surveillance (labeled “surv”), and returning to base for refueling and maintenance.

coverage to the surveillance area (this occurs at t = 24, for example). In all cases,

the policy produces an appropriate response that results in maintaining surveillance

and communications coverage, even in the event of the failures.

An interesting qualitative change in the behavior of the policy happens as the

probability of sensor failures increases. For higher failure probabilities, the extra

fuel cost of sending an additional, “backup”, UAV to the surveillance area becomes

outweighed by the cost of losing surveillance coverage if only a single UAV is sent and

subsequently fails. For the selected mission parameters described above, the optimal

policy switches to sending a backup UAV as psensorfail increases from 0.02 to 0.03.

Similarly, the approximate BRE policy switches to the backup strategy at the same
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Figure 7-18: Extended persistent mission results for a 3-vehicle mission with sensor
failures (psensorfail = 0.02). The sensor failures are indicated by the raised red dots.
UAVs with failed sensors are useless for performing surveillance, but can still relay
communications.

value of psensorfail as the optimal policy. Results of the approximate BRE policy

running for the case psensorfail = 0.03 are shown in Figure 7-19. In the figure, the

effectiveness of the backup strategy is highlighted: several UAVs experience sensor

failures while in the surveillance area, but since a backup UAV is always on station,

continuous surveillance coverage is maintained.

To further explore the effect of changing the sensor failure probability on the

BRE policy, a series of simulations was run. In each simulation, the BRE policy

was computed for a specific value of psensorfail, and this policy was then simulated to

determine the number of UAVs that the policy attempted to maintain at the surveil-

lance location. Simulations were carried out for values of psensorfail from 0.0 to 1.0 in

steps of 0.01. The results of these simulations are shown in Figure 7-20. The figure

illustrates that the policy behavior is constant over a wide range of failure proba-

180



Figure 7-19: Extended persistent mission results for psensorfail = 0.03. For this higher
value of psensorfail, the approximate policy computed by BRE recognizes the increased
risk and sends two UAVs to the surveillance location, anticipating the possibility that
one of them will fail while on station.

bilities: namely, a single surveillance UAV is maintained for all values of psensorfail

less than 0.03, while two surveillance UAVs are maintained for all values of psensorfail

from 0.03 to 0.89. Note that for values of psensorfail greater than 0.89, the policy does

not maintain any UAVs at the surveillance location, since the likelihood of achieving

successful coverage is very low, and any benefit of this coverage is outweighed by the

fuel costs necessary to fly the UAVs. Of course, for realistic systems, we would hope

that the failure probability is not excessively large, so the data for these large values

of psensorfail is less interesting from a practical standpoint. Nevertheless, it is useful

to observe the behavior of the policy over the entire range of the psensorfail parameter.

Figure 7-20 has important implications for online adaptation in the persistent

surveillance problem. Clearly, in the online adaptation architecture presented in

Chapter 6, the accuracy of the parameters learned by the online parameter estimator

play an important role in ultimate performance achieved by the adaptive policy. As

shown in Chapter 6, using a discounted MAP estimation strategy can help to achieve

fast convergence to the true parameter values, but there may still be cases where
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Figure 7-20: Number of UAVs maintained at the surveillance location by the BRE
policy, as a function of psensorfail. The mission has n = 3 total UAVs available.

excessive noise precludes estimating the parameters exactly, or where insufficient data

has been gathered to permit an accurate estimate. The data shown in Figure 7-20

indicates that the policy for the persistent surveillance problem is relatively insensitive

to the value of psensorfail. Essentially, this means that as long as the estimator can

determine that the value of psensorfail lies in of the “bins” defined by the segments in

Figure 7-20 where the policy remains constant, the adaptive system will execute the

correct policy.

7.3.2 Comparison with Heuristic Policy

A heuristic policy was developed for the extended persistent surveillance problem

in order to compare against both the optimal policy and the approximate policy

computed by BRE. The heuristic is based on the Receding Horizon Task Assignment

(RHTA) framework [3]. In particular, the heuristic computes the actions for each

UAV by first defining tasks at the communications relay point and the surveillance

location. It then uses RHTA to compute the optimal assignment of UAVs to tasks,

where the goal is to minimize the total fuel usage of all UAVs (or, equivalently, to
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Figure 7-21: Average cost incurred in the extended persistent surveillance mission by
the optimal policy, heuristic policy, and the policy computed by BRE, as a function
of psensorfail.

minimize the total distance traveled). The optimization problem solved by RHTA

includes constraints that account for the need of the UAVs to periodically return to

base to refuel and the inability of UAVs with failed sensors to perform surveillance.

The RHTA framework does not account for uncertainties in the system dynamics.

Thus, the fuel constraint is designed to ensure the UAVs always conserve enough

fuel to return to base even in the worst-case scenario where the UAV burns the

maximum amount of fuel at each time step. The heuristic policy is computed on-line

by constructing and solving the task assignment problem at every time step.

A comparison of the performance of the heuristic policy, BRE policy, and optimal

policy is shown in Figure 7-21. The figure plots the average cost incurred by each

policy (over a simulation run of 1,000,000 steps) as a function of psensorfail. For

values of psensorfail near zero, both the heuristic policy and the BRE policy yield

near-optimal performance: the heuristic policy’s cost is within 10% of optimal, and

183



the BRE policy is within 2%. This indicates that, for nearly deterministic systems

where failures are very unlikely to occur, the heuristic policy is a good approach

to solving the persistent surveillance problem. However, as psensorfail increases, the

performance of the heuristic policy degrades while the BRE policy remains very close

to optimal performance. This is due to the fact that the heuristic policy does not

account for the stochastic dynamics of the problem. Therefore, the heuristic can react

to failures as they occur, but it cannot anticipate their occurrence and take steps to

mitigate their consequences. In particular, notice the large increase in cost that the

heuristic policy incurs around psensorfail = 0.025. Recall that this is the point at

which the optimal and BRE policies recognize the need to send out a backup vehicle

to the surveillance area, because the likelihood of a failure becomes more important

to consider. Since the heuristic policy cannot anticipate failures, it fails to send out

a backup vehicle and incurs a large cost increase as a result.

Results shown in Figure 7-22 further illustrate the advantage of the proactive

policy that is generated by the BRE solution approach. The figure plots the total

accumulated cost incurred by the BRE policy and the heuristic policy over the course

of a simulated mission. In particular, the figure plots the function

G(t) =
t∑

t′=0

g(x(t′),u(t′)) (7.3)

as a function of elapsed time t, for each policy. In order to make the comparisons fair,

the missions for both policies were simulated in the same way: namely, a number of

failures were pre-scheduled to occur at the same time for both missions. psensorfail

was set to 0.03, the length of each mission was 100 time steps, and the sensor failures

occurred at t = 10, 43, and 76. Therefore, both policies had to deal with the same

type and number of failures, so differences in performance between the two policies

are due only to the way they handle the failures. Examining Figure 7-22, notice

first that the slope of the accumulated cost function G(t) is slightly higher for the

BRE policy than for the heuristic policy in the nominal case when no failures occur,

indicating that when no failures occur, the BRE policy actually incurs slightly more
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Figure 7-22: Total accumulated cost G(t) =
∑t

t′=0 g(x(t′),u(t′)), as a function of
time t, for the BRE policy and the heuristic policy. The total length of the simulated
mission is 100, and sensor failure events are depicted by the vertical lines.

cost than the heuristic over time. This effect is noticeable at the start of the mission

up until the first sensor failure occurs at t = 10. The effect is to be expected, since

the backup UAV that the BRE policy flies out to the surveillance area burns extra

fuel, which is penalized by the cost function. However, when a failure occurs, the

BRE policy avoids a surveillance gap (and the resulting large cost penalty) since the

backup UAV is able to immediately take over. In contrast, heuristic policy suffers a

surveillance gap, and incurs a large penalty, when a failure occurs. Over time, the

effect of these intermittent, large costs incurred by the heuristic easily outweighs the

extra fuel costs incurred by the BRE policy. As a result, by the end of the mission,

the BRE policy has incurred significantly less total cost than the heuristic policy.
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7.3.3 Flight Results with Heterogeneous UxV Team

A further series of flight experiments utilized a heterogeneous team of UxVs en-

gaged in a complex search and track mission. The mission therefore required use of

the “heterogeneous team” extension to the persistent surveillance mission discussed

in Section 5.4.3. In these experiments, there were three different classes of UxVs

available to the planner: a quadrotor UAV class, a car UGV class, and a unique

three-winged UAV class. Furthermore, there were four possible types of tasks that

needed to be performed, depending on the phase of the mission: search for targets

of interest, track any discovered ground-based targets, track any discovered flying

targets, and “perch” to stealthily observe any discovered targets. These task types

were generated as appropriate by the mission planner as the mission progressed (a

detailed discussion of the mission evolution is below).

To fit this general description of the UxV and task types into the persistent mission

framework, it is necessary to specify the capabilities matrix M given by Eq. 5.8. We

adopt the convention that quadrotors, cars, and three-wings have indices 1, 2, and

3, respectively, in the capabilities matrix. Furthermore, the search, track ground

targets, track air targets, and perch tasks have indices 1, 2, 3, and 4, respectively.

With these conventions, the capabilities matrix is given by

M =


1.0 0.8 1.0 0.0

0.0 1.0 0.0 0.5

0.0 0.0 0.0 1.0

 .

(In other words, the quadrotors can do all tasks except perch, cars are best at tracking

ground targets but can also perch, and three-wings can only perch.) The chosen

mission used a total of three quadrotor UAVs, two car UGVs, and one triwing UAV.

The surveillance location was taken as Ys = 2, and the fuel capacity of each UxV was

Fmax = 15 (with ∆f = 1). The same communications function as in the previous

experiments [Eq. (7.2)] was utilized. With these parameters, the total size of the

state space was 4.251×1012. The parameters psensorfail and pnom were set at 0.02 and
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0.95, respectively. To carry out the flight experiments, an approximate policy for the

problem formulation was computed using BRE.

A sequence of still images of a single flight experiment is shown in Figure 7-23.

The mission for this experiment was to use a team of three quadrotor UAVs, one

three-winged UAV, and two ground-based UGVs to perform a persistent search and

track mission. This “blue team” is under the control of the multi-UAV planning

architecture and is initially located in a group at the near end of the flight volume

(frame 1). Unknown to the blue team at the beginning of the mission, the search

area (located at the far end up the flight volume) contains an enemy “red team”

quadrotor (initially landed) and car UGV; these red team vehicles must be found and

tracked. At the start of the mission, the mission planner requests a single vehicle to

perform a search task in the surveillance area. As a result, two quadrotors launch to

(1) search the area and (2) provide a communications link back to base (frame 2).

Shortly after the search begins, the red team quadrotor is discovered by the searching

blue team UAV, and the blue UAV drops down to inspect it (frame 3). At the same

time, the mission planner requests the three-winged UAV to “perch” near the red

quadrotor, and the persistency planner launches the blue three-wing and commands

it to the search area (frame 4). Meanwhile, the blue quadrotor continues searching

and discovers the red team UGV. After dropping down to inspect the red team UGV

(frame 5), the mission planner requests a blue team UGV in order to monitor the

red team UGV, and a blue UGV is commanded to the search area in response (frame

6). Shortly after the blue UGV arrives on station and begins monitoring the red

UGV, the red UGV begins moving, and the blue UGV begins tracking it (frame

7). After several minutes, the blue quadrotor providing the communications link to

base is recalled for refueling, and the third blue quadrotor launches to take its place

(frame 8). Immediately following the swap, the red quadrotor takes off and begins

maneuvering around the flight volume. The perching blue three-wing observes this

event and notifies the searching blue quadrotor to begin tracking the red quadrotor

(frame 9). Simultaneously, the mission planner requests a second blue quadrotor in

the search area so that the searching task can continue in parallel with tracking the
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frame 1 frame 2 frame 3
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frame 7 frame 8 frame 9

frame 10 frame 11 frame 12

Figure 7-23: Persistent surveillance flight experiment in RAVEN, using a heteroge-
neous team of UxVs. The base location for the “blue team” is located at the near
end of the flight volume, while the surveillance area is at the far end.
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Figure 7-24: Heterogeneous search and track mission layout, at the start of the mis-
sion. The searching team consists of three quadrotor UAVs and two blue iRobot
UGVs (bottom of the image). The objective is to find and track the red and green
UGVs, which drive randomly in the presence of several “drone” UGVs (top of the
image).

red quadrotor. In response, the now-refueled blue quadrotor at base launches and

moves to the search area (frame 10). After a few more minutes, the tracking blue

quadrotor must return to base for refueling, and the searching quadrotor takes its

place tracking the red quadrotor (frame 11). Finally, the experiment ends and all

blue vehicles return to base for landing (frame 12).

7.3.4 Adaptive Flight Results with Heterogeneous UxV Team

A further series of flight experiments was conducted using a heterogeneous team of

UAVs and UGVs to carry out a vision-based search and track mission. In this mission,

the targets of interest were two UGVs that moved about randomly in the presence

of several other UGV “drones” that made it more difficult to track the targets. A

photo of the mission layout is shown in Figure 7-24. The searching UGVs were

equipped with onboard cameras, and ran vision processing software that attempted

to locate the targets of interest. The UAVs in this mission were not equipped with

cameras, but instead ran simulated sensor software that allowed the UAVs to “see”
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the targets when they were within a small distance (in this test, 1.5 meters) of the

target. In the mission, the UAVs were assumed to be primarily equipped for searching

for the targets, while the UGVs were best suited for tracking the targets once they

are detected. However, due to the presence of the drones, it was difficult for the

UGVs to maintain perfect tracking at all times, since occasionally, a drone would

move between the target and the tracking UGV, causing the tracking UGV to lose

sight of the target. When this occurred, the mission manager was programmed to

task a UAV with tracking the target temporarily until the UGV could regain sight of

the target.

This mission specification was mapped into a persistent surveillance problem for-

mulation as follows. Similar to the formulation presented in the previous section, we

adopt the convention that UAVs and UGVs have indices 1 and 2, respectively, in the

vehicle capabilities matrix. Furthermore, there are three task types: search, track

using a UGV, and track using a UAV. These task types have indices 1, 2, and 3,

respectively. With these conventions, the capabilities matrix is given by

M =

 1.0 0.0 1.0

0.0 1.0 0.0

 . (7.4)

Note that the tracking tasks are split into two categories (track using a UGV, and

tracking using a UAV) in order to capture the assumption that when a UGV loses

sight of the target, a UAV must be called in to help. To allow the problem formulation

to recognize the dependence of these tasks on each other, a small probability of task

generation

ρ+
23 = 0.1

was set according to the discussion in Section 5.4.3. Thus, the planner can anticipate

the possibility that the UGV will lose track of its target and require a UAV to assist.

The chosen mission used a total of three quadrotor UAVs and two car UGVs. The

surveillance location was taken as Ys = 2, and the fuel capacity of each UxV was

Fmax = 15 (with ∆f = 1). Again, the same communications function as in the
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Figure 7-25: Total accumulated cost, as a function of time, for the BRE policy and
the heuristic policy for a flight test with a heterogeneous UxV team. The total
length of the mission is 11 minutes, and sensor failure events are depicted by the
vertical lines. For this mission, the BRE policy is computed using the true value of
psensorfail = 0.030, and no adaptation occurs.

previous experiments [Eq. (7.2)] was utilized. With these parameters, the total size

of the state space was 4.724×1010. The parameter pnom was set at 0.95, and psensorfail

was varied as described below. To carry out the flight experiments, an approximate

policy for the problem formulation was computed using BRE.

For the first set of flight experiments, the heterogeneous search and track mission

was run twice, using the BRE policy for the first run and the heuristic policy for

the second run. In order to create a fair comparison between the two policies in the

presence of sensor failures, two failures were pre-programmed to occur during each

run. The failures occurred two and six minutes after the start of each mission, and

the total duration of each mission was 11 minutes. Therefore, since both policies

experienced the same number and timing of failures, differences in the total cost
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frame 1 frame 2 frame 3

frame 4 frame 5 frame 6

frame 7 frame 8 frame 9

Figure 7-26: Adaptive persistent surveillance flight experiment in RAVEN, using a
heterogeneous team of UxVs. The base location for the “blue team” is located at the
near end of the flight volume, while the surveillance area is at the far end.

accrued over the course of the missions are due only to differences in the policies

themselves. During the mission, the control policies were evaluated once every 10

seconds. Since the length of the mission was 11 minutes (660 seconds) and two sensor

failures occurred during this time, the effective psensorfail for these mission scenarios

was 2
660/10

= 0.030. For the first set of flight experiments, the BRE policy was

computed using the true value of psensorfail, and no adaptation was used (the same

fixed policy was used over the entire course of the mission).

The total accumulated cost of each mission was computed using Eq. 7.3, and the

results are shown in Figure 7-25. The flight data shown in Figure 7-25 confirms the

results found in simulation (Figure 7-22), where it was observed that the heuristic

policy incurs slightly lower cost than the BRE policy when no failures occur (due to

the fact that the heuristic policy does not send a backup vehicles), but incurs large
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Figure 7-27: Total accumulated cost, as a function of time, for the adaptive BRE
policy and the heuristic policy for a flight test with a heterogeneous UxV team. The
total length of the mission is 31 minutes, and sensor failure events are depicted by the
vertical lines. The BRE policy is initially computed using an incorrectly “optimistic”
value of psensorfail = 0.0. After the first failure occurs, the BRE policy adapts its
behavior, and subsequently avoids a surveillance gap when the subsequent failures
occur.

cost penalties when failures occur. As a result, the BRE policy again incurs lower

total cost over the course of the mission compared to the heuristic.

Another flight experiment was conducted using the BRE solver in conjunction with

the adaptive MDP architecture. In this flight experiment, the initial BRE policy was

computed using an incorrect estimate of psensorfail (namely, psensorfail = 0). This

resulted in an initial policy that was too “optimistic”: it did not account for the

possibility of failures, nor did it send out a backup vehicle. Again, the search and

track mission was run, this time with the adaptation loop running. When improved

estimates of psensorfail arrived, the adaptation loop used the previously-computed
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policy as the initial policy given to the BRE algorithm. It was observed that this

bootstrapping procedure reduced the number of policy iterations needed to compute

the updated policy.

Figure 7-26 shows several photo frames of the mission as it was running. At

the start of the mission, all “blue team” vehicles are located at the near end of the

flight volume, while all target vehicles and drones are located in the far end (frame

1). Initially, since the BRE policy is overly optimistic, only a single UAV begins

searching while another provides a communications link (frame 2). After a short

period of time, the searching UAV discovers the red target, and as a result one of the

blue team UGVs is called out to track it (frames 3–4). The green target is discovered

shortly afterward, and the second blue team UGV is called out to track it (frames

5–6). Then, the searching UAV experiences a failure, resulting in a short coverage

gap (frame 7). The adaptive framework updates its estimate of psensorfail and sends

out two searching UAVs for the rest of the mission (frame 8). Finally, the mission

ends and all vehicles return to base (frame 9).

Cost data for this flight test are shown in Figure 7-27. In the figure, notice that

the adaptive BRE policy initially performs almost identically to the heuristic policy,

since both policies do not employ a backup vehicle. Therefore, when the first failure

occurs, both policies incur a coverage gap and a large cost penalty. However, after

the failure occurs, the adaptive MDP architecture adjusts its estimate of psensorfail

and recomputes the BRE policy, after which point the policy recognizes the increased

risk of failures occurring and sends out a backup vehicle to mitigate this risk. As

a result, when the subsequent failures occur later in the mission, the BRE policy

maintains continuous coverage due to the backup vehicle, while the heuristic policy

again suffers coverage gaps. These results demonstrate that the BRE algorithm in

conjunction with the adaptive MDP architecture allow the system to effectively and

quickly adjust its behavior as better parameter estimates are generated.
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7.3.5 Boeing Flight Results

In this section, we provide initial flight results from joint work with the Boeing Com-

pany [32]. This work carried out a number of flight experiments utilizing the persis-

tent surveillance problem formulation and mission architecture depicted in Figure 7-

4. The flight experiments were conducted in the Boeing Vehicle Swarm Technology

Laboratory (VSTL), an environment for testing a variety of vehicles in an indoor,

controlled environment [134]. VSTL has been developed in conjunction with MIT’s

RAVEN testbed, allowing easy interoperability between the two flight test environ-

ments. Similar to RAVEN, the primary components of the VSTL are:

1. A camera-based motion capture system for reference positions, velocities, atti-

tudes and attitude rates;

2. A cluster of off-board computers for processing the reference data and calculat-

ing control inputs;

3. Operator interface software for providing high-level commands to individual

and/or teams of agents.

The VSTL environment is shown in Figure 7-28.

The mission scenario implemented is a persistent surveillance mission with static

search and dynamic track elements, similar to the mission scenarios presented earlier.

The mission scenario employed a heterogeneous team of six agents, consisting of four

UAVs and two UGVs, that begin at the base location Yb and are tasked to persistently

search the surveillance area. As threats are discovered via search, additional agents

are called out to provide persistent tracking of the dynamic threat. Figure 7-29 shows

the initial layout of the mission. Agents 1−6 are shown in the base location Yb, while

threats 1− 3 are located in the surveillance region, Ys = 2. The fuel capacity of each

UxV was Fmax = 15 (with ∆f = 1). Similar to the previous experiment, the same

communications function [Eq. (7.2)] and vehicle capabilities matrix [Eq. (7.4)] was

utilized. With these parameters, the total size of the state space was 4.251 × 1012.

The parameter pnom was set at 0.95, and psensorfail was varied as described below.
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Figure 7-28: Boeing Vehicle Swarm Technology Laboratory [134]

Two different types of flight experiments were conducted. In the first experiment

type, psensorfail was set to zero, to establish baseline flight results in which no sensor

failures occur. In the second experiment type, psensorfail was set to 0.03, and several

failures did occur over the course of the mission.

Under the no-failure scenario, a persistent surveillance mission is initiated with

three unknown threats that must be discovered and tracked. Figure 7-30 shows the

flight status of each of the agents as well as the coverage of the surveillance and

communication regions (Ys, Y0 respectively). In this case, two of the threats were

detected early (around 100 seconds into the mission), by agents 5 and 1, resulting

in agents 1, 2 and 5 being called out the surveillance region simultaneously. It is

important to note that, in addition to the track tasks generated by the discovery of

threats, the search task is continuous and we see in the combined coverage plot of

Figure 7-30 that the surveillance region is persistently surveyed over the duration of

the mission. Also of note in Figure 7-30, the vertical black lines show the initiation of
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Figure 7-29: Boeing VSTL [134] mission setup with six autonomous agents and three
unknown threats.
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important events occurring during the flight test, such as the discovery of additional

targets and commands sent from the planner.

In the second scenario, a similar mission is initiated with three unknown threats

that must be discovered and tracked. However, in this case, the control policy is

computed using psensorfail = 0.03 and therefore accounts for the possibility of vehicle

failures over the course of the mission. Results for this scenario are shown in Figure 7-

31, where again, the vertical black lines indicate the occurrence of important events

during the mission. During the mission, Agent 2 experiences a sensor failure that

is detected by its onboard health monitoring module and transmitted to the control

policy, which has anticipated the possibly of a failure occurring and pre-positioned a

backup vehicle in the surveillance location, allowing for continuous coverage despite

the failure. Furthermore, note that during this mission, one of the agents crashed

during takeoff due to a momentary loss of signal from the camera-based motion cap-

ture system. The control policy gracefully recovers from this crash and sends out

another vehicle in its place, allowing the mission to continue.

7.4 Summary

This chapter has presented a number of both flight and simulation results demon-

strating the use of the persistent surveillance problem formulation, the adaptive MDP

architecture, and the BRE algorithms in solving a number of complex, realistic multi-

UxV missions. In addition, we have compared our approach with several heuristic

techniques and highlighted the performance benefits that our approach offers over

these techniques. The flight results, carried out on two realistic flight testbeds (the

MIT RAVEN testbed [80] and the Boeing VSTL testbed [134]), confirm that the tech-

nologies presented in this thesis can be successfully applied to challenging, real-world,

multi-agent robotic applications.
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Figure 7-30: VSTL flight results with six agents, three threats and no induced failures
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Figure 7-31: VSTL flight results with six agents, three threats and induced failures
that degrade agent capability
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Chapter 8

Conclusions and Future Work

This thesis has presented contributions in three main areas: kernel-based approximate

dynamic programming algorithms, online adaptation to unknown and/or time-varying

MDP models, and robust planning in multi-agent robotic systems that are subject to

failures. In particular, in the area of kernel-based approximate dynamic programming,

the thesis has:

• Developed the basic, model-based Bellman residual elimination (BRE) approach

to approximate dynamic programming, and studied its theoretical properties.

In particular, the thesis has demonstrated how the problem of finding a cost-to-

go solution, for which the Bellman residuals are identically zero at the sample

states, can be cast as a regression problem in an appropriate Reproducing Ker-

nel Hilbert Space (RKHS). It then explained how any kernel-based regression

technique can be used to solve this problem, leading to a family of BRE algo-

rithms. These algorithms were proved to converge to the optimal policy in the

limit of sampling the entire state space. Furthermore, we have shown that the

BRE algorithm based on Gaussian process regression can provide error bounds

on the cost-to-go solution and can automatically learn free parameters in the

kernel.

• Developed a multi-stage extension of the basic BRE approach. In this extension,

Bellman residuals of the form |J̃µ(i) − T nµ J̃µ(i)|, where n ≥ 1 is an integer,
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are eliminated at the sample states. As a result of this extension, a kernel

function arises that automatically captures local structure in the state space.

In effect, this allows the multi-stage BRE algorithms to automatically discover

and use a kernel that is tailored to the problem at hand. Similar to the basic

BRE approach, multi-stage BRE converges to the optimal policy in the limit of

sampling the entire state space.

• Developed a model-free variant of BRE, and demonstrated how the general,

multi-stage BRE algorithms can be carried out when a system model is un-

available, by using simulated or actual state trajectories to approximate the

data computed by the BRE algorithms. Convergence results for these model-

free algorithms were proved. Furthermore, the thesis presented results compar-

ing the performance of model-based and model-free BRE against model-based

and model-free LSPI [93], and showed that both variants of BRE yield more

consistent, higher performing policies than LSPI in a benchmark problem.

In the area of online MDP adaptation, the thesis has:

• Presented an architecture for online MDP adaption that allows the unknown

model parameters to be estimated online; using these parameter estimates, a

policy for the corresponding MDP model is then re-computed in real-time. As

a result, the adaptive architecture allows the system to continuously re-tune

its control policy to account for better model information obtained through

observations of the actual system in operation, and react to changes in the

model as they occur.

• Discussed how the adaptive architecture permits any MDP solution technique

to be utilized to recompute the policy online. In particular, the architecture

allows BRE-based algorithms to be used to compute approximate policies for

large MDPs quickly.

• Validated the architecture through hardware flight tests carried out in the MIT

RAVEN indoor flight facility [80]. These flight tests demonstrate the successful
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ability of the adaptive architecture to quickly adjust the policy as new model

information arrives, resulting in improved overall mission performance.

In the area of planning in multi-agent robotic systems, the thesis has:

• Formulated the basic persistent surveillance problem as an MDP, which cap-

tures the requirement of scheduling assets to periodically move back and forth

between the surveillance location and the base location for refueling and mainte-

nance. In addition, the problem formulation incorporates a number of randomly-

occurring failure scenarios (such as sensor failures, unexpected fuel usage due

to adverse weather conditions, etc) and constraints (such as the requirement

to maintain a communications link between the base and agents in the surveil-

lance area). We showed that the optimal policy for the persistent surveillance

problem formulation not only properly manages asset scheduling, but also antic-

ipates the adverse effects of failures on the mission and takes actions to mitigate

their impact on mission performance.

• Highlighted the difficulties encountered in solving large instances of the persis-

tent surveillance problem using exact methods, and demonstrated that BRE

can be used to quickly compute near-optimal approximate policies.

• Presented a fully autonomous UxV mission architecture which incorporates the

persistent surveillance planner into a larger framework that handles other nec-

essary aspects including including low-level vehicle control; path planning; task

generation and assignment; and online policy adaptation using the adaptive

MDP architecture.

• Presented flight experiments, conducted in the MIT RAVEN indoor flight facil-

ity [80], that demonstrate the successful application of our problem formulation,

BRE solution technique, and mission architecture to controlling a heterogeneous

team of UxVs in a number of complex and realistic mission scenarios. Further-

more, we demonstrated performance benefits of our approach over a determin-
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istic planning approach that does not account for randomness in the system

dynamics model.

8.1 Future Work

There are several areas related to the topics discussed in this thesis that could be

explored in future work:

Adaptive state sampling The question of how to best select the sample states

used in the BRE approach is important in determining the ultimate perfor-

mance of the BRE algorithms. Intuitively, a higher density of sample states in

a particular region of the state space will tend to increase the accuracy of the

cost-to-go function in that region. Furthermore, since the running time of the

algorithms increases with the number of sample states [Eq. (3.43)], there is a

tradeoff between number of samples and performance. Therefore, it is desirable

to choose a set of sample states that adequately represent the important regions

of the state space (where here “important” means “likely to be visited under the

optimal policy”), while being of practical size for the computational resources

at hand. Of course, without knowledge of the optimal policy, it may be difficult

to determine which states are important a priori. This sample state selection

problem is closely related to the central exploration vs. exploitation issue in

reinforcement learning [15, 100]. There are several strategies that could be em-

ployed to select the sample states. In some problems, simple uniform sampling

of the state space may be acceptable if the state space is small enough. If the

problem is such that the important states can be inferred from prior knowledge,

then this knowledge could be used to select the sample states. An interesting

additional possibility, similar to active learning techniques [63, 159], is to use the

posterior error covariance information computed by BRE(GP) to automatically

help determine the regions of the state space where more samples are needed.

In this approach, states would be adaptively re-sampled to include more states

in regions of the state space where the posterior error covariance is large.
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BRE with sparse kernel methods The BRE algorithms presented in this thesis

employ kernel-based regression techniques such as support vector regression

and Gaussian process regression in order to compute the cost-to-go function.

As a result of using these techniques, the computational complexity of the BRE

algorithms is cubic in ns, the number of sample states used in the training

process (see, e.g., Eqs. (3.43), (4.10), and (4.15)). It is well-known that this

cubic dependence on the number of training data can be a limiting factor for

kernel-based techniques as the number of training data points grows [128, Ch.

8]. Nevertheless, in some cases, it may be desirable to use many sample states

when applying BRE in order to increase the performance of the algorithm. In

order to allow kernel-based techniques to scale to large amounts of training

data, researchers have investigated a number of sparse approximation methods.

For example, [169] applied the Nyström method to approximate the dominant

eigenvectors of the kernel Gram matrix, and [94] proposed a method to select

and use only a representative subset of the training data. For an overview of

these sparse methods, see [43], [128, Ch. 8], and [141, Sec. 10.2]. In the rein-

forcement learning domain, [65–67] applied sparse kernel methods to temporal

difference algorithms that learn the cost-to-go function or Q-factors on-line. It

would be interesting to apply similar sparse methods to the BRE algorithms

developed in this thesis; such methods could allow BRE to handle more sample

states in a computationally tractable way.

Adaptive MDP architecture extensions With respect to the adaptive MDP ar-

chitecture presented in Chapter 6, there are a number of interesting future

research areas that could be explored. First, in the flight experiments done to

date, the same fuel usage and sensor failure models were assumed for all vehi-

cles. A small but interesting modification would be to run a separate model

estimator for every vehicle, allowing for the possibility that vehicles degrade at

different rates, for example. Another area would be modification of the system

cost function to explicitly reward exploration, where vehicles would be rewarded
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for taking actions that reduce the uncertainty in the system parameters. This

idea is closely related to Bayesian reinforcement learning, where a distribution

over models or Q-factors is maintained by the learning agent and used to balance

the exploration vs. exploitation tradeoff [56, 123, 132, 149]. One way to accom-

plish the goal of explicitly rewarding exploration is to embed the dynamics of

the model estimator as part of the MDP, allowing the controller to estimate

the effects of its actions on the uncertainty in the model. This could lead to

interesting policies where the vehicles would actively and cooperatively act in

ways to ensure that the system model was as accurate as possible, while simul-

taneously satisfying the objectives of the primary mission. An initial approach

to this idea can be found in [129], but future work could expand the complexity

of the models considered as well as explore the effect of embedding other types

of model estimators into the exploration procedure.
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