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Abstract

We study a periodic-reviewed, infinite horizon serial network inventory control prob-
lem. The demands in different periods are independent of each other and follow an
identical Poisson distribution. Unsatisfied demands are backlogged until they are sat-
isfied by supply units. In each period, there is a per-unit holding cost is incurred for
each unit of supply that stays in the system and a per-unit backorder cost is incurred
for each unsatisfied unit of demand. The objective of the inventory control policy is
to minimize the long-run expected average cost over an infinite horizon.

The goal of the thesis is to evaluate the empirical performance of the dual-
balancing policy and several other variants of cost balancing policies through nu-
merical simulations. The dual-balancing policy is based on two novel ideas: the
marginal cost accounting scheme, which assigns to each decision all the costs that are
made inevitable after that decision is made; and the cost balancing idea to balance
opposing costs. The dual-balancing policy can be modified in several ways to get
other cost balancing policies.

It has been proven that the dual-balancing policy has a worst-case guarantee of
2 but this does not indicate the empirical performance. An approximately optimal
policy is considered as the benchmark to test the quality of the cost balancing poli-
cies. In the computational experiments, the dual-balancing policy shows an average
error of 7.74% compared to the approximately optimal policy, much better than the
theoretical worst-case guanratee. The three variants of cost balancing policies have
made significant improvement on the performance of the dual-balancing policy. The
accuracy of the dual-balancing policy is also affected by the system parameters. In ad-
dition, with high demand rate and long lead times, we have observed several scenarios
when the cost balancing policies dominate the approximately optimal policy.
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Chapter 1

Introduction

In this thesis, we study the inventory control problem of a single-item periodic-

reviewed serial network with stochastic demands and infinite time horizon. This

is one of the core problems in inventory management. The design of computationally

efficient and provably good inventory control policies for these systems has been a

fundamental yet challenging problem in inventory theory and practice. It arises in

many domains and has many practical applications in supply chain management and

logistics (see examples like Erkip et al. [13] and Lee et al. [14] ).

We start with a detailed description of the inventory model. A single commodity

moves through a supply chain that consists of an external supplier, distinct ware-

houses (called stages or echelons), to satisfy external demand. Each stage is supplied

by the preceding stage in the serial network. The lowest stage (echelon) is facing a

sequence of stochastic demands over the time horizon and the highest stage (eche-

lon) is supplied by an external supplier with infinite capacity. There are lead times

between each two consecutive stages, representing the number of periods it takes to

ship a unit of commodity from one stage to the next. At the end of each period,

several types of costs are incurred at each of the echelons in the network: a per-unit

ordering cost for each unit that is first ordered in this period, a per-unit holding cost,

for each unit of inventory that is on-hand at a stage or in transit between stages, and

a per-unit backordering penalty cost, for each unit of demand that is not yet satisfied;

the latter cost is incurred only at the lowest stage. Unsatisfied demand units are fully
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backlogged, i.e., wait in the system until they are satisfied. The goal is to find an

inventory control policy that minimizes the long-run expected average cost.

Dynamic programming framework has been the most common paradigm to study

these problems. It has been very effective in characterizing the structure of the op-

timal policies. In particular, echelon base-stock policies were proven to be optimal

for multiple variants of the problem. The first optimality proof is due to Clark and

Scarf [7] who study the serial network with independently and identically distributed

demands. Subsequently, several researchers have also extended the proof to other

models and introduced simpler proofs of optimality of the echelon base-stock poli-

cies. Specifically, echelon base-stock policies were proven optimal under more general

assumptions on the demand distributions. For example, the optimality of the ech-

elon base-stock policies in serial network has been established for the case where

demands follow an exogenous Markov-modulated process [8], Poisson process [9] and

compound-Poisson process [10]. Muharremoglu and Tsitsiklis [11] have proposed an-

other simpler approach to prove the optimality of the echelon base-stock policies.

Each unit of supply that has been ordered is matched with the corresponding de-

mand unit that is satisfied by the supply unit. The problem is then decomposed into

a series of unit supply-demand subproblems, where each subproblem corresponds to

a pair of supply and demand unit that are matched together. They have established

the optimality of the echelon base-stock policy for the uncapacitated model with

Markov-modulated demand and lead times.

The structure of the echelon base-stock policies is rather simple. They are based

on the concept of echelon inventory. The echelon inventory at a given stage (echelon)

is defined as the total inventory that is at or in transit from that stage to the next

stage, and that is at or in transit to any downstream stages in the network. For each

stage, there is a target echelon inventory level, defined as echelon base-stock level.

Whenever the echelon inventory level at the beginning of a period falls below the

echelon base-stock level, that stage makes an order to bring up the echelon inventory

level, as long as there is enough inventory on hand at the preceding stage; if the

echelon inventory level exceeds the echelon base-stock level, no order is placed.

14



Unfortunately, the simple base-stock form of the optimal policy does not always

lead to efficient algorithms for computing the order sizes. The dynamic programming

approach can only be tractable in cases where the demands are independent at dif-

ferent periods and do not evolve over time, or in cases where the demands follow an

exogenous Markov-modulated process with small-dimension state space [17]. Even in

such scenarios, the computations can be tedeous and complex. The difficulty comes

from the fact that we need to solve too many subproblems, a phenomenon called

the curse of dimensionality. Therefore, the straightforward approach to solve the

dynamic programs becomes theoretically and often also practically intractable in the

presence of correlated and evolving demand distributions.

In recent work, Levi et al. [1] have introduced the dual-balancing policies for

periodic-reviewed, single-stage inventory models. This is the first computationally

efficient algorithm which also admits a worst-case performance guarantee of 2. That

is, the expected cost following the dual-balancing policy is guaranteed to be at most

twice the expected cost according to the optimal policy. It has been shown in compu-

tational experiments in [3] that the policy is computationally efficient and dominates

other policies in many common scenarios. The dual-balancing policies were also ex-

tended to the multi-echelon stochastic inventory control models with correlated and

evolving demands over a finite and infinite horizon (see [2]); this includes the model

studied in this thesis. The dual-balancing policies are based on two novel ideas:

I. Marginal Cost Accounting Scheme Traditional cost accounting schemes are pri-

marily based on dynamic programming and decompose the cost by stages and time

periods. In contrast, the marginal cost accounting scheme decomposes the cost by

ordering decisions and assign to each decision all the costs that, after the decision is

made, become unaffected by any future decision, even if the costs occur in the future.

To be specific, each unit of cost is assigned to a specific decision that caused that cost

to be incurred. Similar ideas of marginal cost accounting has been used by Axsäter [4]

for inventory control problems in continuous and infinite time horizon with Poisson

demands.

There are several cost accounting schemes applied to the serial networks all based

15



on dynamic programming approach. The first cost accounting scheme was established

in the classical proof of the optimality of the echelon base-stock policy by Clark

and Scarf [7]. The inventory problem is decomposed into a sequence of single-stage

subproblems and each subproblem is solved for optimality, assuming that the lower

stages have already been optimized. Using the same cost accounting scheme, Zipkin

[15] has simplified the proof and later Dong and Lee [16] extended the optimality with

time-correlated demand. Another cost accounting scheme was developed by Chen and

Zheng for models involving fixed set up costs, that are incurred whenever a positive

order is placed [12]. They create a component for each stage in the system and a

separate multi-stage inventory model for each component. The cost parameters are

then allocated to the different components.

Π. Cost-Balancing The simple idea of cost balancing is based on the key ob-

servation that any ordering policy incurs two potential opposing costs in the serial

network. One of the costs increases with the order size while the other decreases to

0. Hence, it is always possible to order a quantity that will make these two equal.

Next we describe the main ideas underlying the marginal cost accounting scheme

developed in [2] for the serial network. The approach is based on the notion of the

critical period. If the demand arrival time is known in advance, the corresponding

supply unit should be ordered in a just-in-time fashion at every stage to minimize the

cost incurred. This time period is referred to as critical period. The holding costs are

further categorized into three types and assigned to the corresponding decisions that

made the cost inevitable. Holding costs incurred when units are in transit between

stages are called pipeline costs. The pipeline costs are incurred for every unit that

is ordered, regardless of the policy followed. Hence, they are not assigned to any

decision that has been made. An early holding cost is incurred for a supply unit

that has been ordered before the critical period. It is then assigned to the stages

and periods when the unit is ordered earlier than the corresponding critical period of

the stage. Similarly, a late holding cost is incurred for a supply unit that is ordered

after the critical period. In addition, there are backorder costs incurred whenever

a demand unit is not satisfied. Details of the assignment rules will be discussed in
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Section 3.1.

The ordering decisions at different stages can be done separately. Given a specific

ordering size at some stage, we assign all the costs that are made inevitable in the

system and categorize the costs into: the conditional expected marginal early holding

cost and the conditional expected marginal late holding and backorder cost. The

conditional expected marginal early holding cost is an increasing function with the

order size while the later cost is a decreasing function. This leads to the dual-balancing

policy, which aims to select an order quantity to balance these two opposing cost

functions. The policy is computationally efficient, and can be implemented in an

on-line manner.

The dual-balancing policy can be modified in two ways to devise policies with bet-

ter empirical performance. First, we use the interval-constrained bounding technique,

which was first proposed by Levi et al [3] for the single-stage inventory control prob-

lem. Given the upper and lower bounds on the optimal base-stock level, whenever the

after-order inventory level falls out of the bounds, the interval-constrained bounding

procedure modifies the ordering decisions. Specifically, when the after-order inventory

level exceeds the upper bound, the order size is reduced down so that the after-order

inventory level equals the upper bound; if on the other hand it is smaller than the

lower bound, then the order size is increased to an appropriate amount to bring up the

after-order inventory level to the lower bound. The computational experiments in [3]

had indicated that the typical performance of the dual-balancing policy with bounds

is better than the dual-balancing policy without bounds. In the serial model with

infinite horizon that we study in this thesis, we adopt the upper and lower bounds on

the optimal echelon base-stock level developed by Shang and Song [6]. The modified

policy works as follows: an order size is computed at each stage following the dual-

balancing policy. We then consider the after-order echelon inventory level. If it is

smaller than the lower bound of the optimal echelon base-stock level, the order size is

increased as long as the on-hand inventory at the preceding stage is positive to bring

up the after-order echelon inventory level to the lower bound. On the other hand,

if the after-order echelon inventory level exceeds the upper bound, the order size is
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reduced down by an appropriate quantity. When the after-order echelon inventory

level is between the bounds, we make no adjustment to the order size.

Another way to modify the dual-balancing policy is to introduce parameterized

balancing policies, which were also first developed in [3] for the single-stage model.

Here one aims to select an order quantity which balances the two opposing cost

functions in a ratio different than 1.

In this thesis, our goal is to evaluate the empirical performance of the dual-

balancing policies and several other variants of cost-balancing policies discribed above.

It has been proven that the dual-balancing policies are computationally efficient and

can be applied in an on-line manner. In [2], it was shown that they have a worst-case

guarantee of 2. However, this does not necessarily indicate what is the typical em-

perical performance. The goal of this thesis is to explore the efficiency and empirical

performnace of the dual-balancing policy via computational experiments. Hence, we

focus on an inventory model in which the demands in different periods are indepen-

dent identically distributed following a Poisson distribution. For these models, Shang

and Song has developed an approximately optimal policy so one can actually test

how far from the optimal the cost balancing policies perform [6]. Moreover, it has

been shown that the approximately optimal policy produces the optimal solution in

several experiments in [6] and hence it is used as a benchmark of the performance of

the cost balancing policies in our experiments.

The performance of the dual-balancing policy is evaluated based on two aspects:

accuracy, in terms of long-run expected average cost, and efficiency, in terms of the

expected computational time taken for each decision made. First, we examine the

error of the dual-balancing policy compared to the approximately optimal policy

(based on [6]). We did not observe any case when the dual-balancing policy showed

an error larger than 20%. The empirical results showed an average error of 7.74%

with the largest error being 19.73%, which is significantly better than the current

known worst-case factor of 2. It follows that the worst-case guarantee of 2 does not

reflect the empirical performance of the dual-balancing policies in many scenarios.

The sensitivity analysis on the system parameters also indicates that the error is
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monotonically increasing with the per-unit backorder cost and decreasing with the

demand rate.

In addition to the dual-balancing policy, we test three variants of cost balancing

policies, which are the dual-balancing policy with bounds, the parameterized balanc-

ing policy and the parameterized balancing policy with bounds. They all use the

same bounds on the optimal echelon base-stock level, obtained from [6]. The details

of computation of the balancing ratio of the parameterized balancing policies are

given in Chapter 4. The effect of each modification is evaluated based on the dif-

ference in error compared to the approximately optimal policy. They all show great

improvement over the original dual-balancing policy. Using bounds reduces the error

of the dual-balancing policy to an average of 1.15% while the parameterized balancing

policy with bounds results in an average error of 1.62%. Our suggestion is hence to

take these two modifications to the dual-balancing policy to further improve its per-

formance. Similarly to the dual-balancing policy, the parameterized balancing policy

also has an error which increases with the per-unit backorder cost and decreases with

the demand rate. However, the modification of system parameters has little impact

on the performance of the dual-balancing policy with bounds and the parameterized

balancing policy with bounds. In particular, the fluctuations of the errors of these

two policies are within 3% when the system parameters change.

Throughout the 52 experiments we have taken, there are several cases when the

error of some cost balancing policy becomes negative, that is, the cost balancing policy

out performs the approximately optimal policy. Since the magnitude of the error is

too small, we further modified the system parameters and found several cases when

the cost balancing policy dominates the approximately optimal policy. For example,

for a 5-stage system with demand rate λ = 32, per-unit backorder cost π = 5, per-unit

echelon holding cost of [0.25 0.25 0.25 0.25 2.5] and lead time being [1 1 50 1 1], all

the cost balancing policies out perform the approximately optimal policy by at least

2% and especially the dual-balancing policy with bounds results in an improvement

of 3.05%.

In terms of efficiency, the approximately optimal policy does not require any
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computational time at each decision making while the dual-balancing policy takes an

average of 0.29 seconds to compute the balancing orders. The computational time

increases with the demand rate and the per-unit backorder cost. Since the accuracy

of the cost balancing policies is quite high, the computational time for each decision

making is still acceptable.

The rest of the thesis is organized as follows. In Chapter 2, we describe the

mathematical formulation of the inventory model and specify the sequence of events

in each time period. In Sections 3.1 and 3.2, we present the cost decomposition

scheme and prove its equivalent with the traditional cost accounting scheme. Then

we assign to each desicion the costs that are made inevitable after the decision in

Section 3.3. The ordering rules of the dual-balancing policy and the other variant

of cost balancing policies are presented in Chapter 4. In Chapter 5, we present the

implementation of the numerical simulation. Lastly, we present the details of the

experiment design and the numerical results.
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Chapter 2

The Serial Inventory Model

In this chapter, we introduce the mathematical formulation of the serial network

that will be used throughout the thesis. Consider a periodic-reviewed system with

n stages, numbered 1, 2, ..., n. Stage n orders from an external supplier with infinite

capacity and units are shipped downstream through all the stages to stage 1 to meet

the external demand. Each stage k = 1, ..., n − 1 can order only from the on-hand

inventory at the preceding stage k + 1. It takes lk periods to ship units from stage

k + 1 to stage k. We assume that the lead times lk are strictly positive; otherwise

we can merge two stages without loss of generality. Hence, the cumulative time for

transportation from stage k + 1 to stage 1 is Lk =
k

∑

j=1

lj periods.

We consider a model with discrete time and infinite horizon. Let Dt denote the

demand in period t. The random variables {Dt}
∞

t=1 are i.i.d., following the Poisson

distribution with parameter λ. Denote D[1,t] as the cumulative demand arrivals from

period 1 (the starting time) to period t. Therefore, D[1,t] =
∑t

j=1 Dj and hence it is a

Poisson random variable with parameter λt. Demands can be observed at all stages

but is only satisfied from the on-hand inventory at stage 1. Unsatisfied demands are

fully backlogged and accumulate over time until they are satisfied. That is, they wait

in the system until they are satisfied.

Two types of costs are incurred at the end of each period. A conventional per-

unit holding cost h′
k is incurred for each unit in the on-hand inventory at stage k or

in transit to stage k from stage k + 1, and a per-unit backordering penalty cost π
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is incurred for each unit of demand at stage 1 that is not yet satisfied. It is more

convenient to use an echelon holding cost accounting scheme, described below.

Denote the number of units on-hand at stage j or in transit from stage j + 1 to

stage j at the end of period τ by vjτ . The echelon inventory at stage k at the end

of period τ is denoted by Yk(τ) and defined as the sum of all vjτ , for 1 ≤ j ≤ k

(i.e. Yk(τ) =
k

∑

j=1

vjτ ). For each unit of the echelon inventory, we charge a per-unit

echelon holding cost of hk where hk = h′
k − h′

k+1 (assuming h′
n+1 = 0 and h′

k ≥ h′
k+1,

we have hk ≥ 0). This implies that the conventional per-unit holding cost h′
k can be

expresssed as
n

∑

j=k

hj. Hence, the total holding cost at the end of period τ at all stages

is
n

∑

k=1

vkτh
′

k =
n

∑

k=1

vkτ

n
∑

j=k

hj =
n

∑

k=1

hk

k
∑

j=1

vjτ =
n

∑

k=1

hkYk(τ).

This shows that the echelon holding cost accounting scheme is equivalent to the

conventional holding cost accounting scheme. In addition, denote B(τ) by the number

of backlogged demand unit at the end of period τ .

Denote P as the set of all feasible policies. For each feasible policy P ∈ P, the

total cost incurred over the first t periods is

RP
t =

t
∑

τ=1

πBP (τ) +
n

∑

k=1

hkY
P
k (τ).

Define the long-run expected average cost per period as

RP = lim
t→∞

E(
RP

t

t
).

The objective of the inventory problem becomes

minP∈PRP

Denote the order placed at stage k at period τ by Qk(τ) according to some feasible

policy P . Define the echelon inventory position at stage k as the echelon inventory of

stage k minus current backorders at stage 1. It can be seen that the echelon inventory
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position goes up when orders are placed and goes down when demand arrives. Let

Xk(τ) denote the echelon inventory position at stage k at the beginning of period k,

before the order Qk(τ) is placed. The echelon net inventory at stage k includes all

units that are in the echelon inventory position but not in transit to stage k. We can

also observe that the echelon net inventory goes up when past orders arrive and goes

down when demand occurs. Let NIk(τ) denote the echelon net inventory at stage k

after past orders arrive at period τ but before demand arrives. Let Ik(τ) denote the on-

hand inventory at stage k after past orders have arrived at period τ . We can conclude

that for any stage k and period τ , Qk(τ) ≤ Ik+1(τ) and Ik+1(τ) = NIk+1(τ)−Xk(τ).

Next we specify the sequence of events in each period τ :

1. Period τ begins with echelon inventory position Xk(τ) and echelon net inventory

NIk(τ − 1) − Dτ−1 at each stage k;

2. At each stage k, the orders placed at period τ − lk of Qk(τ − lk) units will

arrive and the echelon net inventory increases to NIk(τ − 1) − Dτ−1 + Qk(τ −

lk) = NIk(τ). Consequently, the on-hand inventory at stage k also increase by

Qk(τ − lk) units;

3. At each stage k, an order of Qk(τ) units is determined by the specific policy.

The order size is constrained by the on-hand inventory at the preceding stage

k + 1, i.e. 0 ≤ Qk(τ) ≤ Ik+1(τ). Consequently, the echelon inventory position

at each stage k increases to Xk(τ) + Qk(τ);

4. At the end of period τ , we observe the demand Dτ and satisfy them from the

on-hand inventory at stage 1. The echelon inventory position and echelon net

inventory at each stage k will decrease to Xk(τ)+Qk(τ)−Dτ and NIk(τ)−Dτ

respectively;

5. For each demand unit that is not satisfied at stage 1, we charge a backorder cost

of π. The total number of backorders is B(τ) = (−NI1(τ))+. For each unit that

has been ordered by stage k and is still in the system, we charge a holding cost

of hk. The total number of such units is Yk(τ) = Xk(τ) + Qk(τ) − Dτ + B(τ).
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Hence, the total costs charged in this period is

π(−NI1(τ))+ +
n

∑

k=1

hk[Xk(τ) + Qk(τ) − Dτ + (−NI1(τ))+]

= (h′
1 + π)(−NI1(τ))+ +

n
∑

k=1

hk[Xk(τ) + Qk(τ) − Dτ ]
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Chapter 3

Marginal Cost Accounting Scheme

In this chapter, we describe the cost accounting scheme introduced by Levi et al. [1]

for serial systems. The general approach is to take costs incurred, classify them into

categories, and use the categories to assign each unit of cost to the specific decision

which caused that cost to be incurred. More rigorously, we assign to a given decision

all costs that become inevitable after this specific decision and are not affected by any

future decisions. This marginal cost accounting scheme significantly differs from most

of the literature on stochastic inventory control problems. In the conventional cost

accounting scheme, the costs are accounted in the periods when they are incurred.

In the marginal cost accounting scheme, each decision is assigned by all the costs

that were made inevitable by that decision, whether they are incurred in the current

period or in the future.

To make the discussion more rigorous, we adopt a distance-numbering scheme

for the units of demand and supply respectively. Let TD be a half-infinite time line

segement [0,∞] that represents the units of demand realized over the time horizon

and TS be another half-infinite time line segement [0,∞] that represents the units

of supply that can be ordered. Define demand unit i as the unit that is located at

a distance of i from the origin on the time line TD and supply unit i in the same

manner respectively on TS. Without loss of generality, assume that the supply units

are consumed by the demand on a first-ordered-first-consumed manner. As a result,

we can match each supply unit with the demand unit that has the same distance.
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In other words, each unit of demand is satisfied by the unit of supply with the same

distance.

The exposition of the accounting scheme is unit-based. That is, we track the

sample path of unit i in the system and categorize the costs incurred. Then in Section

3.2, we show that this cost accounting scheme is equivalent to the conventional cost

accounting scheme, i.e. it includes all the costs incurred for each unit i. In the last

section, we present the assignment of costs to the specific ordering decisions that

made the costs inevitable.

3.1 Cost Decomposition

Using the concept of demand-supply unit matching, denote the period when demand

unit i arrives by Ti and the period when stage k orders supply unit i by uik. Sup-

pose we know the value of Ti before hand. It is obvious that to minimize the total

cost incurred, we should order the corresponding supply unit in just-in-time manner,

defering orders to avoid unnecessary holding cost and ensuring it arrives at stage 1

exactly at period Ti to avoid backorder cost. More precisely, each stage k should or-

der supply unit i at period Ti − Lk, which is defined as the critical period. However,

obviously in general we do not know the value of Ti in advance, making it difficult

to anticipate when is critical for ordering. Therefore, we classify the costs incurred

by supply unit i into four categories and assign each cost to the ordering decisions

that caused that cost to be incurred. That is, after the ordering decision, that unit

of cost will incur regardless of any future decision. Let y+ denote the positive part of

y (i.e., max {y, 0}). For a given sample path, we consider the following costs related

to demand-supply unit i:

• Pipeline holding cost is incurred when unit i is in transit from one stage to

another. It takes Lk periods in transit from the time when it is ordered at

some stage k to the time when it reaches stage 1. Hence, for each unit i, we

incur a pipeline holding cost of hkLk at each stage k. In our infinite model, the

pipeline holding costs are inevitable even if one orders the unit according to the
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critical periods. Thus for any feasible policy, there is a pipeline cost of
n

∑

k=1

hkLk

incurred for each unit i.

• Early holding cost is the holding cost incurred when the supply unit is on-hand

inventory at some stage of the system and it is still possible to ship the unit on

time to meet the demand unit. Assume that at some stage k, unit i is ordered

prior to the respective critical period, i.e. uik < Ti − Lk. In this case, there

are Ti −Lk − uik periods when unit i is in the echelon inventory of stage k and

at the same time, it is still possible to ship the supply unit on time to satisfy

the demand unit. Hence, a holding cost of hk(Ti − Lk − uik)
+ is incurred in

addition to the pipeline costs. We call this early holding cost and assign it to

the decision of ordering unit i at stage k at period uik.

• Late holding cost is the holding cost incurred when the supply unit is on-hand

inventory at some stage of the system but it is no longer possible to ship the

unit on time to meet the demand unit. Assume that unit i is on-hand at stage

k+1 from period τ to period τ +1. However, it is no longer possible to ship the

supply unit on time to stage 1, i.e. τ > Ti −Lk. A conventional holding cost of

h′
k+1 is incurred. We call it late holding cost and consider it as a result of not

ordering that unit at stage k at period τ . Therefore, whenever unit i is stored

at stage k + 1 from period τ to τ + 1 with τ > Ti −Lk, then a late holding cost

of h′
k+1 is assigned to the ordering decision at stage k at period τ .

• Backorder cost. Consider a period τ such that τ > Ti. If unit i is not delivered

to stage 1 at period τ , a backorder cost of π will be accounted. This cost can

be avoided if every stage k has ordered the supply unit at the critical period

τ −Lk. Let j be the largest stage index at which unit i is not ordered by period

τ − Lj. The backorder cost π is considered as a result of the decision not to

order that unit at stage j at period τ − Lj. Therefore, for any period τ > Ti

such that unit i has not reached stage 1 by the end of period τ , we assign a

backorder cost of π to the ordering decision made at period τ − Lj at stage j
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where j is defined in the manner just described.

Consider the total cost incurred for the i-th demand-supply unit for a given policy

P . The period when stage k orders the supply unit is denoted by uik and the arrival

time of the demand unit is denoted by Ti. First, the total pipeline holding cost and

early holding cost incurred are
n

∑

k=1

hkLk and
n

∑

k=1

hk(Ti − Lk − uik)
+, respectively. A

late holding cost of h′
k+1 is incurred when the supply unit is on-hand at stage k + 1

from period τ to period τ + 1 with τ > Ti −Lk, for k = 1, ..., n− 1. According to the

ordering policy, the supply unit stays at stage k + 1 from the time when it arrives at

stage k + 1, i.e. period ui(k+1) + lk+1 to the time when it is ordered by stage k, i.e.

period uik. Hence, the late holding cost incurred when the supply unit is on-hand

at stage k + 1 is h′
k+1

[

uik − max(Ti − Lk, ui(k+1) + lk+1)
]+

and the total late holding

cost incurred for unit i is

n−1
∑

k=1

h′

k+1

[

uik − max(Ti − Lk, ui(k+1) + lk+1)
]+

The supply unit arrives at stage 1 at period ui1 + l1 and thus backorder cost is only

incurred if ui1 + l1 > Ti. A backorder cost of π is incurred for each period τ such that

the supply unit is not delivered to stage 1 at period τ and τ > Ti. Hence, the total

backorder cost incurred is π(ui1 + l1 > Ti)
+. To summarize, the total cost incurred

for the demand and supply unit i for policy P is

π(ui1 + l1 − Ti)
+ +

n
∑

k=1

hk

[

Lk + (Ti − Lk − uik)
+

]

+
n−1
∑

k=1

h′

k+1

[

uik − max(Ti − Lk, ui(k+1) + lk+1)
]+

3.2 Validity of Marginal Cost Accounting Scheme

In the conventional cost accounting scheme, at the end of period τ , an echelon holding

cost hk is incurred for each stage k such that the supply unit i is within the echelon

inventory of stage k and a backorder cost π is incurred if supply unit i has not reached
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stage 1 but the demand unit has already occurred. To see the validity of the new

cost accounting scheme, we need to show that the total cost incurred according to the

marginal cost accounting scheme equals the total cost incurred in the conventional

cost accounting scheme. Recall that uik denote the period when the supply unit i is

ordered by stage k and Ti denote the period when the demand unit i occurs. The

supply unit is included in the echelon inventory of stage k from the time when it is

ordered, i.e. uik to the time it is consumed by the demand unit, i.e. max(Ti, ui1 +L1).

Hence, the total echelon holding cost incurred by unit i is

n
∑

k=1

hk[max(Ti, ui1 + L1) − uik]

The backorder cost is incurred from the time when the demand unit arrives, i.e. Ti

to the time when the supply unit actually arrives at stage 1, i.e. ui1 + l1. Hence,

the total backorder cost is π(ui1 + l1 − Ti)
+, which is the same as the backorder cost

incurred according to the marginal cost accounting scheme. Hence, we only need to

prove the equality of the total echelon holding cost incurred according to the two cost

accounting schemes, that is, to prove that

n
∑

k=1

hk

[

Lk + (Ti − Lk − uik)
+

]

+
n−1
∑

k=1

h′

k+1

(

uik − max(Ti − Lk, ui(k+1) + lk+1)
)+

and
n

∑

k=1

hk[max(Ti, ui1 + L1) − uik]

are equal for any policy P . Next we consider three possible cases of unit i to show

that the marginal cost accounting scheme includes all the echelon holding costs.

Case 1 : The supply unit i arrives at stage 1 before the demand unit occurs.

In this case, each stage orders the supply unit before the corresponding critical

time, i.e. Ti − Lk ≥ uik for each k. Hence, the total echelon holding cost is

n
∑

k=1

hk[max(Ti, ui1 + L1) − uik]
+ =

n
∑

k=1

hk(Ti − uik)
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According to the marginal cost accounting scheme, only pipeline holding cost

and early holding cost are incurred, which are

n
∑

k=1

hkLk and
n

∑

k=1

hk(Ti − Lk − uik)
+ =

n
∑

k=1

hk(Ti − Lk − uik)

respectively. Then the sum of holding costs according to the marginal cost

accounting scheme is
n

∑

k=1

hk(Ti − uik), which is the same as the total echelon

holding cost according to the conventional cost accounting scheme.

Case 2 : The supply unit i does not reach stage 1 on time to meet the demand. But

when stage n orders the supply unit, it is still possible to ship the unit on time.

In this case, we have Ti ≤ ui1 + L1 and Ti −Ln ≥ uin. Hence, the total echelon

holding cost is

n
∑

k=1

hk[max(Ti, ui1 + L1) − uik] =
n

∑

k=1

hk(ui1 + L1 − uik)

Denote j as the largest index such that stage j orders the supply unit after the

respective critical time, i.e. Ti − Lj ≤ uij. Then we have 1 ≤ j ≤ n − 1. Let’s

consider the three types of costs in the marginal cost accounting scheme:

– Pipeline holding cost is inevitable, which is
n

∑

k=1

hkLk;

– Early holding cost is
n

∑

k=1

hk(Ti − Lk − uik)
+. In this case, Ti − Lk − uik is

positive only for stage k such that j + 1 ≤ k ≤ n. Hence, the total early

holding cost is
n

∑

k=j+1

hk(Ti − Lk − uik);

– It becomes impossible to ship the unit on time only after stage j +1 makes

the order. Hence, late holding cost is only incurred when the supply unit

i stays at stage 2 up to stage j + 1. The time period when the supply unit

is on-hand inventory at some stage k is [uik + lk, ui(k−1)] and it becomes

impossible to ship the unit on time after period Ti − Lk−1. Hence, a late

holding cost of h′
k[ui(k−1) −max(uik + lk, Ti −Lk−1)]

+ is incurred when the

supply unit is on-hand at stage k, for all 2 ≤ k ≤ j+1. From the definition
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of j, we have Ti ≥ ui(j+1) + Lj+1 and Ti ≤ uik + Lk for 1 ≤ k ≤ j. Hence,

the total late holding cost becomes

h′

j+1(uij − Ti + Lj) +
j

∑

k=2

h′

k[ui(k−1) − uik − lk]

=
n

∑

m=j+1

hm(uij − Ti + Lj) +
j

∑

k=2

n
∑

m=k

hm[ui(k−1) − uik − lk]

=
n

∑

m=j+1

hm(uij − Ti + Lj) +
j−1
∑

m=2

hm

m
∑

k=2

[ui(k−1) − uik − lk]

+
n

∑

m=j

hm

j
∑

k=2

[ui(k−1) − uik − lk]

=
n

∑

m=j+1

hm(uij − Ti + Lj) +
j−1
∑

m=2

hm(ui1 + L1 − uim − Lm)

+
n

∑

m=j

hm(ui1 + L1 − uij − Lj)

=
n

∑

m=j+1

hm(uij − Ti + Lj) +
j−1
∑

m=2

hm(ui1 + L1 − uim − Lm)

+
n

∑

m=j+1

hm(ui1 + L1 − uij − Lj) + hj(ui1 + L1 − uij − Lj)

=
n

∑

m=j+1

hm(ui1 + L1 − Ti) +
j

∑

m=2

hm(ui1 + L1 − uim − Lm)

Therefore, the sum of three costs becomes

n
∑

k=1

hkLk +
n

∑

k=j+1

hk(Ti − Lk − uik)

+
n

∑

m=j+1

hm(ui1 + L1 − Ti) +
j

∑

m=2

hm(ui1 + L1 − uim − Lm)

=
n

∑

k=1

hkLk +
n

∑

k=j+1

hk(ui1 + L1 − Lk − uik) +
j

∑

m=2

hm(ui1 + L1 − uim − Lm)

=
n

∑

k=1

hkLk +
n

∑

k=2

hk(ui1 + L1 − uik − Lk)

= h1L1 +
n

∑

k=2

hk(ui1 + L1 − uik)

=
n

∑

k=1

hk(ui1 + L1 − uik)
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which is equivalent to the total echelon holding cost according to the conven-

tional cost accounting scheme.

Case 3 : The supply unit i does not reach stage 1 on time to meet the demand. More-

over, when stage n orders the supply unit, it is already impossible to ship the

unit on time.

In this case, we have Ti − Lk ≤ uik for any stage k. The total echelon holding

cost incurred is hence
n

∑

k=1

hk(ui1 + L1 − uik)

In the marginal cost accounting scheme, there is no early holding cost since

every stage orders after the corresponding critical time. The pipeline holding

cost is the same as in Case 2, i.e.
n

∑

k=1

hkLk. Late holding cost is incurred when

the supply unit is on-hand at any stage except stage 1. Hence, the total late

holding cost incurred is

n
∑

k=2

h′

k[ui(k−1) − uik − lk]

=
n

∑

k=2

n
∑

m=k

hm[ui(k−1) − uik − lk]

=
n

∑

m=2

hm

m
∑

k=2

[ui(k−1) − uik − lk]

=
n

∑

m=2

hm(ui1 + L1 − uim − Lm)

The sum of pipeline cost and late holding cost for unit i is

n
∑

k=1

hkLk +
n

∑

m=2

hm(ui1 + L1 − uim − Lm)

= h1L1 +
n

∑

m=2

hm(ui1 + L1 − uim)

=
n

∑

m=1

hm(ui1 + L1 − uim)
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Again, it is the same as the total echelon holding cost according to the con-

ventional cost accounting scheme and we proved the equivalence of the two

accounting schemes.

3.3 Decision-Based Costs Allocation

Among the four types of costs, the pipeline cost is inevitable and hence independent

of the policy. The early holding cost is incurred when we order the units before the

critical period. On the other hand, the late holding and backorder costs are incurred

when we order the units after the critical period. Therefore, the costs assigned to

the ordering decision of size Qk(τ) at stage k at period τ include two types of costs,

which will be discussed in the following two subsections:

• The early holding costs incurred by the units that have been ordered, defined

as marginal early holding cost ;

• The late holding and backorder costs incurred by the units that have not yet

been ordered, defined as marginal late holding and backorder cost.

3.3.1 Marginal Early Holding Costs

For any supply unit i that is first ordered by stage k at period τ , if the corresponding

demand unit arrives after period Lk +τ , then an early holding cost of hk(Ti−Lk−τ)+

is assigned to the ordering decision. In other words, at any period t ≥ Lk + τ , if the

demand unit has not arrived and the supply unit is within the ordering decision

of stage k at period τ , then an early holding cost of hk is assigned to the ordering

decision. To be specific, for each t > Lk +τ , supply unit i contributes an early holding

cost of hk to the ordering decision if and only if it satisfies the following conditions:

1. The demand unit i arrives after period t;
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2. The supply unit i has been ordered at the end of period τ at stage k;

3. The supply unit i has not been ordered at the beginning of period τ at stage k.

From the definition of echelon inventory, we can see the number of units that meet

condition 2 is Xk(τ) + Qk(τ) and the number of units that fail condition 3 is Xk(τ).

Note that any unit that fails condition 3 will necessarily satisfy condition 2. The

number of units that meet both condition 1 and 2 is (Xk(τ) + Qk(τ) − D[τ,t])
+ and

the number of units that meet condition 1 but fail condition 3 is (Xk(τ) − D[τ,t])
+.

The total number of units that meet all three conditions is obtained by subtracting

the above two,

(Xk(τ) + Qk(τ) − D[τ,t])
+ − (Xk(τ) − D[τ,t])

+ = (Qk(τ) − (D[τ,t] − Xk(τ))+)+.

Therefore, the expected marginal early holding cost for the ordering decision is

hkHCk(τ) where

HCk(τ) =
∞
∑

t=Lk+τ

E[(Qk(τ) − (D[τ,t] − Xk(τ))+)+]

3.3.2 Marginal Late Holding and Backorder Costs

Marginal late holding and backorder costs are possible future costs incurred by each

unit i that is not ordered at period τ . If the demand unit i arrives after period Lk +τ ,

at period τ it is still prior to the critical period and hence no late holding or backorder

costs caused by the decision. Otherwise if Ti ≤ Lk + τ , the decision of not ordering

unit i will keep the supply unit at stage k + 1 from period τ to period τ + 1 and

the supply unit cannot meet the demand on time. Hence, a late holding cost of h′
k+1

is assigned to the ordering decision. In addition, the supply unit has not arrived at

stage 1 by period Lk + τ and a backorder cost of π is considered as a result of the

ordering decision. Therefore, a total cost of h′
k+1 +π is assigned to the decision if and

only if unit i satisfies the following conditions:

4. The supply unit i is on-hand at stage k + 1 at the beginning of period τ ;
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5. Stage k is not ordering unit i at period τ ;

6. The arrival period of demand unit i satisfies Ti ≤ Lk + τ .

Observe that any unit that fails condition 4 will automatically satisfy condition 5. The

total number of units satisfying condition 5 and 6 is (D[τ,Lk+τ ] − (Xk(τ) + Qk(τ)))+.

Similarly, the total number of units that meet condition 6 but fail condition 4 is

(D[τ,Lk+τ ] − NIk+1(τ))+. The total number of units that meet all three conditions is

(D[τ,Lk+τ ] − (Xk(τ) + Qk(τ)))+ − (D[τ,Lk+τ ] − NIk+1(τ))+

Therefore, the expected marginal late holding and backorder cost for the ordering

decision is (h′
k+1 + π)BCk(τ) where

BCk(τ) = E[(D[τ,Lk+τ ] − (Xk(τ) + Qk(τ)))+ − (D[τ,Lk+τ ] − NIk+1(τ))+]
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Chapter 4

Cost Balancing Policies

4.1 Dual-Balancing Policies

The dual-balancing policy is based on the marginal cost accounting scheme and aims

to balance the effects of ordering too early versus ordering too late. To be specific,

the ordering size is determined so that the conditional expected marginal early hold-

ing cost caused by the units that have been ordered, and the conditional expected

marginal late holding and backorder cost caused by the units that have not yet been

ordered can be balanced. In our model, the demands are i.i.d. and the horizon is in-

finite. Hence, we may assume without loss of generality that current ordering period

is 1. For ease of exposition, we omit τ in all denotations. Also, we change the deno-

tation of marginal costs as functions of the order size, the echelon inventory position

and the echelon net inventory as follows:

HCk(Qk, Xk) =
∞
∑

t=Lk+1

E[(Qk − (D[1,t+1] − Xk)
+)+]

and

BCk(Qk, Xk, NIk+1) = E[(D[1,Lk+1] − (Xk + Qk))
+ − (D[1,Lk+1] − NIk+1)

+].

In the marginal cost accounting scheme, we assign to each ordering decision all
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the costs that are made inevitable after the decision is made. These costs may be

incurred in current period or in the future, but independent of past orders or the stage

at which decision is made. Hence, the ordering decision made at each time period is

made separately at each stage. In general, we will discuss the ordering rules at period

1 at stage k for k = 1, ..., n.

Suppose the demand of some unit i has arrived but the corresponding supply

unit is still on-hand at some stage k 6= 1 or in transit. It is clear that at this point

the corresponding supply unit should be ordered immediately by each stage k to

avoid extra costs. We call this an immediate order, and denote the total quantity of

immediate orders in stage k by Q̄k, for k = 1, ..., n. When the demand unit has not

yet arrived by current period, we will then decide whether to order the supply unit

according to the specific policy. The order made in stage k after the immediate orders

are decided is called a regular order, denoted by Q̃k = Qk − Q̄k. Let X̃k = Xk + Q̄k be

the echelon inventory position after the immediate orders are placed, but before the

regular orders are placed. Then the regular order size will be determined based on

the current echelon inventory position X̃k and the on-hand inventory at stage k + 1

of NIk+1 − X̃k units.

For the supply units in the immediate orders, the corresponding demand units have

already arrived and hence no early holding cost is caused by the ordering decision.

Since we order without any delay, there is no late holding cost associated with the

ordering decision. The incurred pipeline costs are inevitable and hence no costs

assigned to the decision for each unit of immediate orders. The formula for the

expected marginal early holding costs still holds for the regular orders. That is, the

expected marginal early holding cost assigned to the regular order is hkHCk(Q̃k, X̃k)

where

HCk(Q̃k, X̃k) =
∞
∑

t=Lk+1

E[(Q̃k − (D[1,t] − X̃k)
+)+

Also, since Q̃k +X̃k = Qk +Xk, the marginal late holding and backorder cost assigned
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to the regular order is (h′
k+1 + π)BCk where

BCk(Q̃k, X̃k, NIk+1) = E[(D[1,Lk+1] − (X̃k + Q̃k))
+ − (D[1,Lk+1] − NIk+1)

+]

Denote f(β, y), F (β, y) by the pdf and cdf of Poisson distribution with parameter

β evaluated at y, respectively. Hence, the cost functions involve the random vari-

able D[0,t] following a Poisson distribution with parameter λt and the derivations are

presented as follows.

HCk(Q̃k, X̃k) =
∞
∑

t=Lk+1

E[(Q̃k − (D[1,t] − X̃k)
+)+]

=
∞
∑

t=Lk+1

∞
∑

y=0

(Q̃k − (y − X̃k)
+)+f(λt, y)

=
∞
∑

t=Lk+1

[
X̃k
∑

y=0

Q̃kf(λt, y) +
X̃k+Q̃k

∑

y=X̃k+1

(Q̃k + X̃k − y)f(λt, y)]

From the definition of Poisson distribution, we have

F (λt, y) =
y

∑

j=0

f(λt, j)

and

yf(λt, y) = ye−λt (λt)y

y!
= λte−λt (λt)y−1

(y − 1)!
= λtf(λt, y − 1).

The expected marginal early holding cost becomes

∞
∑

t=Lk+1

[Q̃kF (λt, X̃k) + (Q̃k + X̃k)
X̃k+Q̃k

∑

y=X̃k+1

f(λt, y) −
X̃k+Q̃k

∑

y=X̃k+1

λtf(λt, y − 1)]

=
∞
∑

t=Lk+1

[(X̃k + Q̃k)F (λt, X̃k + Q̃k) − X̃kF (λt, X̃k)]

−
∞
∑

t=Lk+1

λt[F (λt, X̃k + Q̃k − 1) − F (λt, X̃k − 1)]
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Similarly, the expected marginal late holding and backorder cost is

BCk(Q̃k, X̃k, NIk+1)

= E[(D[1,Lk+1] − (X̃k + Q̃k))
+ − (D[1,Lk+1] − NIk+1)

+]

=
∞
∑

y=0

[(y − (X̃k + Q̃k))
+ − (y − NIk+1)

+]f(λ(Lk + 1), y)

=
NIk+1
∑

y=X̃k+Q̃k+1

(y − X̃k − Q̃k)f(λ(Lk + 1), y)

+
∞
∑

y=NIk+1+1

(NIk+1 − X̃k − Q̃k)f(λ(1 + Lk), y)

=
NIk+1
∑

y=X̃k+Q̃k+1

λLkf(λ(Lk + 1), y − 1) − (X̃k + Q̃k)
NIk+1
∑

y=X̃k+Q̃k+1

f(λ(Lk + 1), y)

+ (NIk+1 − X̃k − Q̃k)[1 − F (λ(Lk + 1), NIk+1)]

= λLk[F (λ(Lk + 1), NIk+1 − 1) − F (λ(Lk + 1), X̃k + Q̃k − 1)]

− (X̃k + Q̃k)[1 − F (λ(Lk + 1), X̃k + Q̃k)] + NIk+1[1 − F (λ(Lk + 1), NIk+1)]

Note that the marginal early holding cost is 0 for order size Qk = 0 and increases

with the size of order. The marginal late holding and backorder cost is 0 for order

size Qk = NIk+1 − Xk and decreases with the size of order. There must exist an

order size Q∗
k such that the two opposing functions can be balanced and hence the

balancing order size is well-defined. Since demand follows a Poisson distribution, by

the matching of demand and supply unit, we may assume that the supply units are

ordered in integer units, i.e., the order sizes are all integers. The two cost functions are

well-defined with integer value of order sizes and we expand the domain for any value

of order sizes by interpolating piecewise linear extensions of the integer values. It is

clear that the extended functions preserve the properties of monotonicity. However,

the order size of Q∗
k that balances the two functions is not necessarily an integer.

Hence, for our infinite horizon model, we adopt a randomized balancing policy with

two consecutive integers Ql
k and Qu

k = Ql
k +1 such that Ql

k < Q∗
k < Qu

k . In particular,

Q∗
k = δQl

k + (1 − δ)Qu
k for some 0 < δ < 1. The randomized balancing policy then

makes an order size of Ql
k with probability δ and Qu

k with probability 1−δ. The exact
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value of δ is hence determined by balancing the expected marginal early holding cost

δhkHCk(Q
l
k, X̃k) + (1 − δ)hkHCk(Q

u
k , X̃k)

and the expected marginal late holding and backorder cost

δ(π + h′

k+1)BCk(Q
l
k, X̃k, NIk+1) + (1 − δ)(π + h′

k+1)BCk(Q
u
k , X̃k, NIk+1).

4.2 Modified Cost Balancing Policies

Based on the idea of dual-balancing policy discussed in the previous section, we next

propose two modified cost balancing policies that perform better empirically. In

Chapter 6, the three balancing policies will be tested and compared over a set of

computational experiments.

4.2.1 Parameterized Balancing Policy

A parameterized balancing policy is defined as a policy which makes an order size of

Q∗
k such that hkHCk(Q

∗
k, X̃k) = γ(π + h′

k+1)BCk(Q
∗
k, X̃k, NIk+1). The constant γ is

called the balancing ratio. Specifically, for γ = 1, we get the dual-balancing policy

discussed in the previous section. This modification method was originated from [3]

in which the parameterized balancing policy was defined in a single-stage system.

Define C(γ) as a function of the balancing ratio γ and it takes the value of the

long-run expected average cost of γ-balancing policy. Based on empirical study on the

function, we assume that there exists a local minimum γ∗ in the subdomain of [1,∞] .

Consider a 4-stage serial network with demand following a Poisson distribution with

parameter λ = 4. The unit echelon holding cost and unit backorder cost are h =

[0.25 0.25 0.25 0.25] and π = 9, respectively. The transportation time between

every two consecutive stages is just one time period, i.e. lk = 1 for k = 1, 2, 3, 4. First,

we find that C(11) > C(1) and suggest that the local minimu is within the range of

[1, 11]. To show its existence, we plot the function C(γ) numerically on the subdomain
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of (1, 11). The subdomain is divided into small intervals, each of length 0.1. Hence,

we have sample points γ = 1 + 0.1i, i = 0, ..., 100 and the long-run expected cost is

approximated as the average cost of the first 10,000 periods. As illustrated in Figure

4-1, we can see clearly the existence of a local minimum. For all the experiments to
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Figure 4-1: The long-run expected cost function C(γ) on the balancing ratio γ

be taken in Chapter 6, we first establish the existence of such a local minimum and

then find the exact value using bisection search, as described in Section 5.3.

4.2.2 Dual-Balancing Policy with Bounds

We can also modify the dual-balancing policy with the interval-constrained bounding

technique, which was first developed in [3] for the single-stage inventory model. In

this thesis, we use the same technique in the multi-echelon inventory model with the

bounds of the optimal echelon base-stock level: whenever the after-order inventory

position falls out of the bounds, the ordering decisions are modified correspondingly.

To be specific, denote the lower bound and the upper bound of the optimal echelon

base-stock level at stage k by sl
k and su

k , respectively. The ordering decision at any

period at stage k is made in the following procedure:

An order size Qk is determined according to the dual-balancing policy as discussed

in Section 4.1. If Qk ≤ sl
k−Xk and the on-hand inventory Ik+1 at the preceding stage

is positive, we change the order size to min(sl
k−Xk, Ik+1); If order size Qk ≥ su

k −Xk,
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we reduce the order size to su
k −Xk. In all other cases, the order size just remains as

Qk.

With the constraint of bounds, we keep the echelon inventory level in the range of

[sl
k, s

u
k ] as close as possible. The performance of the dual-balancing policy with bounds

can be better or worse than the dual-balancing policy, depending on the value of the

bounds. In this thesis, we adopt the bounds on the optimal echelon base-stock level

developed by Shang and Song [6].

It is well known that an echelon base-stock policy s = (s1, ..., sn), where sj is the

echelon base-stock inventory position for stage j, j = 1, ..., n, is optimal for the system

we study (for detailed proofs, refer to Chen and Zheng [12]). According to the policy,

whenever the echelon inventory position at any stage k falls below sk, an order will be

placed to bring up the position to sk. Otherwise, we do not make any order. It has

been proven in [6] that the optimal base-stock level s can be found through minimizing

the following n nested convex functions recursively with C0(x) = (π+h′
1)max {0,−x}

and for j = 1, ..., n:

Ĉj(x) = hjx + Cj−1(x),

Cj(y) = E[Ĉj(y − D[0,lk])],

s∗j = argmin {Cj(y)} ,

Cj(x) = Cj(min
{

s∗j , x
}

).

However, the simple form does not guarantee an easy computational procedure to

obtain the optimal base-stock levels and the optimal expected cost. Instead Shang

and Song developed an upper bound and a lower bound on the average total echelon

cost Cj(y) for each stage j, assuming all downstream stages follow the optimal policy.

The bounding functions can be obtained by solving 2n seperate newsvendor-type

problems. Minimizing these functions, they derived upper and lower bounds for the

optiaml echelon base-stock level. Denote the total leadtime demand of stages 1 to k

by D̃k =
k

∑

j=1

D[0,Lj ] and its cdf by Gk(·). The lower and upper bounds of the optimal

43



base-stock level are

sl
k = G−1

k (
π +

∑n
j=k+1 hj

π +
∑n

j=1 hj

)

and

su
k = G−1

k (
π +

∑n
j=k+1 hj

π +
∑n

j=k hj

)

respectively. The simple average of the bounds form a heuristic base-stock policy that

performs surprisingly well on some instances, with average error of 0.24% and max

error of less than 1.5%.

Since the optimal base-stock level is within the bounds, we can modify the dual-

balancing orders so that the order size is close to the range of the optimal order size

and the resulting average cost may be closer to the optimal cost. As an attempt to

improve the performance of the dual-balancing policy, the echelon inventory position

after orders are placed is constrained by the upper and lower bounds. Moreover, we

also implement the base-stock policy with base-stock level sk =
sl
k
+su

k

2
for each stage

k and compare its performance with all the other balancing policies.

Next we show how to adopt the results of Shang and Song to our setting. In

our model (with discrete time) the inbound and outbound shipments occur at the

beginning of the period and the costs are accounted at the end of the period. In this

case, we need to add one more period in calculating D̃k. Therefore, function Gk(·),

the cdf of D̃k, is the cdf of Poisson distribution with parameter λ(1 +
∑k

j=1 lj). The

bounds sl
k and su

k are purely dependent on demand distribution, unit holding cost

and unit backorder cost, which is easy to compute. Since the order sizes are bounded

above by the on-hand inventory at the preceding stage, it is not always possible to

keep the echelon inventory position after ordering in the range of [sl
k, s

u
k ].

As we will show through numerical experiments in later chapters, the bound-

ing behavior improves the performance of the dual-balancing policy we discussed in

Section 4.1.
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Chapter 5

Numerical Implementation

The purpose of the thesis is to evaluate the performance of the dual-balancing policy

and several variants of this policy discussed in Section 4.2. through extensive numer-

ical experiments. In this chapter, we will illustrate the implementation procedure of

the dual-balancing policies.

5.1 Computation of Cost Formulas

The decision at stage k at any period with order size Qk is assigned a marginal early

holding cost of hkHCk(Q̃k, X̃k) where

HCk(Q̃k, X̃k) =
∞
∑

t=Lk+1

[(X̃k + Q̃k)F (λt, X̃k + Q̃k) − X̃kF (λt, X̃k)]

−
∞
∑

t=Lk+1

λt[F (λt, X̃k + Q̃k − 1) − F (λt, X̃k − 1)]

Since X̃k, Q̃k are given, let’s define the following function on the integers:

H(L) =
∞
∑

t=L

[(X̃k + Q̃k)F (λt, X̃k + Q̃k) − X̃kF (λt, X̃k)]

−
∞
∑

t=L

λt[F (λt, X̃k + Q̃k − 1) − F (λt, X̃k − 1)]
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Hence, the marginal early holding cost is just hkH(Lk + 1). However, it is com-

putationally demanding to exactly compute the value of H(Lk + 1) because of the

infinite sum. Instead, we manage to find an integer L∗ such that hkH(L∗) ≤ 10−3.

Therefore, hk[H(Lk + 1) − H(L∗)] becomes a reasonable approximation of the value

of hkH(Lk + 1). It only involves finite sum and is hence computable. Next we will

prove the existence of L∗ and show how to find its value.

Note that H(L) ≤ (X̃k + Q̃k)
∑

∞

t=L F (λt, X̃k + Q̃k). Define the function of t as

u(t) = F (λt, X̃k + Q̃k) and it is decreasing with t. Therefore, the sum of u(t) for all

t ≥ Lk can be represented by the area of the shaded region in Figure 5-1, which is

less than the area under the function u(t) in the interval [L−1,∞]. This implies that

Figure 5-1: Graphical Representation

H(L) ≤ (X̃k + Q̃k)
∫

∞

L−1
F (λt, X̃k + Q̃k)dt

= (X̃k + Q̃k)
X̃k+Q̃k

∑

j=0

∫

∞

L−1
f(λt, j)dt

where f(β, y) is the pdf of Poisson distribution with parameter β evaluated at y.
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Define function v(j) =
∫

∞

L−1 f(λt, j)dt. Integrating by parts, we get

v(j) =
∫

∞

L−1
e−λt (λt)j

j!
dt

=
e−λ(L−1)

λ

(λ(L − 1))j

j!
+

∫

∞

L−1
e−λt (λt)j−1

(j − 1)!
dt

=
f(λ(L − 1), j)

λ
+ v(j − 1)

Using this recursive equation and v(0) =
∫

∞

L−1 e−λtdt = f(λ(L−1),0)
λ

, we obtain that

v(j) = F (λ(L−1),j)
λ

and hence

H(L) ≤ (X̃k + Q̃k)
X̃k+Q̃k

∑

j=0

∫

∞

L−1
f(λt, j)dt

= (X̃k + Q̃k)
X̃k+Q̃k

∑

j=0

F (λ(L − 1), j)

λ

≤ (X̃k + Q̃k)(X̃k + Q̃k + 1)
F (λ(L − 1), X̃k + Q̃k)

λ

Since the value of F (λ(L− 1), X̃k + Q̃k) decreases with the value of L and converges

to 0 as L tends to infinity, there must exist an integer L∗ such that

hk(X̃k + Q̃k)(X̃k + Q̃k + 1)
F (λ(L∗ − 1), X̃k + Q̃k)

λ
≤ 10−3

The exact value of L∗ can be found using bisection search on the decreasing function

F (λ(L − 1), X̃k + Q̃k).

As a result, the approximation of the marginal early holding cost becomes hkHCk

where

HCk(Q̃k, X̃k) =
L∗

∑

t=Lk+1

[(X̃k + Q̃k)F (λt, X̃k + Q̃k) − X̃kF (λt, X̃k)]

−
L∗

∑

t=Lk+1

λt[F (λt, X̃k + Q̃k − 1) − F (λt, X̃k − 1)]

On the other hand, the marginal late holding and backorder cost can be computed
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easily as (h′
k+1 + π)BCk where

BCk(Q̃k, X̃k, NIk+1) = λLk[F (λ(Lk + 1), NIk+1 − 1) − F (λ(Lk + 1), X̃k + Q̃k − 1)]

−(X̃k + Q̃k)[1 − F (λ(Lk + 1), X̃k + Q̃k)] + NIk+1[1 − F (λ(Lk + 1), NIk+1)]

5.2 Balancing Order Sizes

Figure 5-2: Decision of Order Size

The order size Q∗
k that balances the two opposing costs is obtained from two

consecutive integers Ql
k and Qu

k and a probability value δ such that

δhkHCk(Q
l
k, X̃k) + (1 − δ)hkHCk(Q

u
k , X̃k)

and

δ(π + h′

k+1)BCk(Q
l
k, X̃k, NIk+1) + (1 − δ)(π + h′

k+1)BCk(Q
u
k , X̃k, NIk+1)

can be balanced. As illustrated in Figure 5-2, we can find Qu
k as the first integer such

that

hkHCk(Q
u
k , X̃k) ≥ γ(h′

k+1 + π)BCk(Q
u
k , X̃k, NIk+1)

and Ql
k is just Qu

k − 1. This search method is executable if the order size at any

stage is bounded above. For any stage k 6= n, the order size is bounded above
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by the on-hand inventory at the preceding stage, i.e. Q̃k ≤ NIk+1 − Xk. Stage n

orders from an external supplier with infinite capacity but empirically the order size

is a finite number. We may choose an upper bound such that if stage k makes an

order size of the upper bound, the expected marginal early holding cost incurred

is always less than the expected marginal late holding and backorder cost incurred

given any echelon inventory. Given the optimal base-stock level sn, we tried the upper

bound of sn, 2sn, 4sn, until we found that 4sn can meet the requirement and it is used

throughout all the experiments.

5.3 Local Minimum Balancing Ratio

In general, for each of the experiments to be tested, we follow these steps to establish

the existence of local minimum and finally find its exact value:

Step 1 Find the smallest integer j such that C(1 + 2j) > C(1) and the initial guess of

the range where the local minimum reside in is (1, 2j);

Step 2 Divide the subdomain into small intervals, each of length 0.1 and compute the

average cost of the first 10,000 periods following the γ-balancing policy for each

sample point γ;

Step 3 Plot the function C(γ) on the subdomain (1, 2j), if a local minimum can be

observed, continue to next step; otherwise, extend the subdomain and go back

to step 2;

Step 4 Use bisection search to find the exact value of the local minimum γ∗ on the

subdomain.
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Chapter 6

Experimental Results

The goal of this thesis is to evaluate the empirical performance of the cost balancing

policies in the periodic-reviewed serial network. Instead of applying the exact optimal

base-stock policy, we adopt the approximately optimal policy obtained from Shang

and Song [6], denoted by APPROX. The policy adopts an echelon base-stock level

which equals the average of the lower bound and the upper bound of the corresponding

optimal echelon base-stock level. It was shown in [6] that the approximately optimal

policy produces the true optimal solution in 12 out of 32 experiments; the average

error and the maximum error compared to the optimal base-stock policy are 0.116%

and 0.557%, respectively. In our experiments, the approximately optimal policy is

only considered as optimal in the base case. In all the other scenarios, the approx-

imately optimal policy is not necessarily optimal but we still use it as a benchmark

to evaluate the performance of the cost balancing policies. All policies considered

and their short-hand names are listed in Table 6.1. Here the balancing ratio γ∗ is

computed using the method as described in Section 5.3.

Policy Name Description
APPROX approximately optimal policy based on [6]
DB dual-balancing policy
DBBound dual-balancing policy with bounds
B(γ∗) γ∗-balancing policy
BBound(γ

∗) γ∗-balancing policy with bounds

Table 6.1: Policies considered
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In all the experiments, we consider a simulated horizon of T = 10, 000 periods and

the long-run expected average cost is approximated by the average cost within this

time horizon. Following a specific policy, denote the total cost incurred in period t as

C
Policy
t and the computational time for the decision at stage k as τ

Policy
kt . The average

total cost, denoted as CPolicy, and the average computational time for each decision,

denoted as τPolicy, can be computed as

CPolicy =
1

10000

10000
∑

t=1

C
Policy
t , τPolicy =

1

10000

10000
∑

t=1

1

n

n
∑

k=1

τ
Policy
k t.

We use the approximately optimal policy as a benchmark and the accuracy of all

the other policies is based on the error of the given policy against the approximately

optimal policy. Specifically, we compute

ErrorPolicy =
CPolicy − CApprox

CApprox
.

n = 4 n = 5
DB 8.55% 9.83%

DBBound 0.23% 0.80%
B(γ∗) 4.93% 7.75%

BBound(γ
∗) 1.17% 0.90%

Table 6.2: Errors of the cost balancing policies in the base cases with n-stages

The Base Case Let’s first consider two simple serial networks, one with 4 stages

and another with 5 stages. In both systems, the per-unit backorder cost is π = 9 and

the demand rate is λ = 4. Both systems have the same lead times at all stages. In

particular, lk = 1 for k = 1, 2, 3, 4 in the 4-stage system and lk = 1 for k = 1, 2, 3, 4, 5

in the 5-stage system. The per-unit echelon holding cost at each stage is also set

at the same value of 0.25. The dual-balancing policy performs surprisingly good in

both cases, with an error of 8.55% in the 4-stage system and 9.83% in the 5-stage

system. With the constraint of bounds, the errors are reduced to 0.23% and 0.80%

respectively. We can also see that, as shown in Table 6.2, the performance of the

other two cost balancing policies is much better than the dual-balancing policy. It is
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then possible that as we modify the system parameters, the performance of the cost

balancing policies can be closer to the approximately optimal policy or even better

than that. Hence, in the next section we explore the performance of the policies by

variating the system parameters.

6.1 Experiment Design

There are several parameters involved in the system, including the number of stages

n, the per-unit echelon holding cost h, the per unit backorder cost π, the leadtime

l and the demand rate λ. The experiment design is oriented around the Base Case

discussed in the previous section and five sets of scenarios, each of which expands

the Base Case in one dimension. In each set of the scenarios we vary specific system

parameters. The first two sets of scenarios study the effect of the per-unit holding

cost h and the per-unit backorder cost π. The third set of scenarios studies the effect

of demand rate λ. Then we consider a set of scenarios when the lead times at different

stages vary. Moreover, we study the effect of the per-unit backorder cost with long

lead times in the last scenario. Next we describe the manner in which the parameters

of the Base Case are varied, in each of the five sets of scenarios.

Holding Cost Scenarios In the base case, we have flat per-unit echelon holding

cost at all stages. To study the effect of the per-unit echelon holding cost at some

stage on the whole system, we increase the per-unit echelon holding cost to 10 for

one stage in one scenario. Table 6.3 shows the variation scheme for the two serial

networks.

Backorder Cost Scenarios In the base case, the per-unit backorder cost is set at

π = 9. Our sensitivity analysis takes in a full range of π = 5, 9, 29, 49, 99 to test the

performance of the cost balancing policies when the backordering cost is a lot higher

than the echelon holding cost for each unit. Given the same system parameters and

echelon inventory, with higher per-unit backorder cost, the balancing order size may

increase and yet it is constrained by the on-hand inventory available at the preceding

stage.
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Scenarios for h in 4-stage system

Flat 0.25 0.25 0.25 0.25
H1 2.5 0.25 0.25 0.25
H2 0.25 2.5 0.25 0.25
H3 0.25 0.25 2.5 0.25
H4 0.25 0.25 0.25 2.5
Scenarios for h in 5-stage system

Flat 0.25 0.25 0.25 0.25 0.25
H1 2.5 0.25 0.25 0.25 0.25
H2 0.25 2.5 0.25 0.25 0.25
H3 0.25 0.25 2.5 0.25 0.25
H4 0.25 0.25 0.25 2.5 0.25
H5 0.25 0.25 0.25 0.25 2.5

Table 6.3: Holding Cost Scenarios Scheme

Demand Scenarios The demand at the end of each period follows a Poisson dis-

tribution. Its expectation and variation are both set at λ = 4 in the base case.

By varying this parameter, we study the performance of the policies under both ex-

tremely small demand and extremely large demand. In particular, experiments are

taken on λ = 1, 4, 8, 16, 32.

Lead Time Scenarios We assume the same lead time at all stages in the base case

while it is not practical in the real case. Hence, we take several considerations in the

sensitivity analysis, as listed in Table 6.4.

Scenarios for l in 4-stage system

Flat 1 1 1 1
Lead1 10 1 1 1
Lead2 1 10 1 1
Lead3 1 1 10 1
Lead4 1 1 1 10
Scenarios for l in 5-stage system

Flat 1 1 1 1 1
Lead1 10 1 1 1 1
Lead2 1 10 1 1 1
Lead3 1 1 10 1 1
Lead4 1 1 1 10 1
Lead5 1 1 1 1 10

Table 6.4: Lead Time Scenarios Scheme

54



Backorder Cost with Long Lead Time Scenarios In this scenario, we want to study

the effect of a combination of long lead time and high backorder cost on the perfor-

mance of the cost balancing policies. The lead time at all stages are assumed to be

10 instead of 1 and we take the backorder cost as π = 5, 9, 29, 49, 99.

6.2 Sensitivity Analysis

Holding Cost Effect As we increase the per-unit echelon holding cost in the 4-stage

system, the error of the dual-balancing policy has reduced from 8.55% to the least

of 2.82% and the most of 4.46%. The increment in per-unit echelon holding cost

decreases the balancinng order size and also decreases the long-run expected average

cost, which implies that in some periods we may order too much according to the

dual-balancing policy. Hence, with the constraint of bounds, we see a significant

improvement in the overall performance. The dual-balancing policy with bounds

results in less than 1% of error in all the scenarios and only 0.02% in the last scenario,

which shows almost the same performance as the approximately optimal policy. On

the other hand, when we apply the balancing ratio γ∗, the expected average cost

is always closer to the approximately optimal policy than that of the original dual-

balancing policy with the balancing ratio of 1 (see Table 6.5). The constraint of

bounds also reduces the error of the γ∗-balancing policy on an average of 2.11%.

Comparing the different scenarios for the γ∗-balancing policy, the worst performance

appears in the Flat scenario when the per-unit echelon holding cost at all stages are

the same. Similar trends can also be observed in the 5-stage system, as illustrated in

Table 6.6.

Scenarios Flat H1 H2 H3 H4

DB 8.55% 4.46% 2.82% 3.30% 2.85%
DBBound 0.23% 0.65% 0.42% 0.10% 0.02%
B(γ∗) 4.93% 3.06% 2.23% 3.06% 2.06%

BBound(γ
∗) 1.17% 0.86% 1.72% 1.06% 0.02%

Table 6.5: Error of policies in holding cost scenarios for 4-stage system
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Scenarios Flat H1 H2 H3 H4 H5

DB 9.83% 3.44% 3.66% 4.45% 4.00% 2.30%
DBBound 0.80% 0.55% 0.45% 0.41% 0.19% 0.23%
B(γ∗) 7.75% 3.39% 3.19% 3.91% 3.07% 2.05%

BBound(γ
∗) 0.90% 1.90% 2.11% 1.23% 0.91% 0.90%

Table 6.6: Error of policies in holding cost scenarios for 5-stage system

Backorder Cost Effect As the per-unit backorder cost increases, the balancing or-

ders are increasing, which shows an opposite effect of the per-unit echelon holding

cost. The empirical performance again reveals that the errors of the dual-balancing

policy and the γ∗-balancing policy increase almost linearly with the per-unit backo-

rder cost in both the 4-stage and the 5-stage system (see Figure 6-1). In the 4-stage

system, the errors of the γ-balancing policy is about half of the errors of the dual-

balancing policy in all the scenarios. The constraint of bounds on the dual-balancing

policy again improves the performance, but is not consistently good in all the scenar-

ios in the 4-stage system, as shown in Table 6.7. With the per-unit backorder cost

of 49, the dual-balancing policy with bounds shows an error of 2.29% while in the

other scenarios the errors are all less than 1%. However, when the cost increases to

99, the error becomes -1.46%, which shows a better performance than the approxi-

mately optimal policy. On the other hand, when there are five stages in the system,

the dual-balancing policy with bounds performs consistently good with an average

error of 0.60%, as shown in Table 6.8. The γ∗-balancing policy with bounds shows

a lot better performance than the dual-balancing policy or the γ∗-balancing policy.

However, it has similar performance as the dual-balancing policy with bounds, re-

sulting in an average error of 0.34% and 0.76% in the 4-stage and 5-stage systems,

respectively. Hence, we may predict that as the per-unit backorder cost increases, the

dual-balancing policy and the γ∗-balancing policy will become much less accurate but

with the constraint of bounds the performance will still remain consistently good.

Demand Effect Similarly to the previous sets of scenarios, we did not observe any

obvious effect of the demand rate λ on the two cost balancing policies with bounds,

as shown in Table 6.9 and 6.10. These two policies perform consistently good with
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Figure 6-1: Error of policies in backorder cost scenarios for n-stage system

Scenarios π = 5 π = 9 π = 29 π = 49 π = 99
DB 7.03% 8.55% 13.05% 15.01% 19.73%

DBBound 0.16% 0.23% -0.24% 2.29% -1.46%
B(γ∗) 4.98% 4.93% 6.09% 8.58% 9.79%

BBound(γ
∗) 1.76% 1.17% -0.27% 0.33% -1.30%

Table 6.7: Error of policies in backorder cost scenarios in 4-stage system

Scenarios π = 5 π = 9 π = 29 π = 49 π = 99
DB 6.17% 9.83% 13.58% 15.05% 20.07%

DBBound 0.49% 0.80% 0.17% 0.62% 0.90%
B(γ∗) 5.38% 7.75% 8.69% 10.11% 13.07%

BBound(γ
∗) 2.02% 0.90% 0.29% 0.64% -0.06%

Table 6.8: Error of policies in backorder cost scenarios in 5-stage system
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Figure 6-2: Error of policies in demand scenarios for n-stage system
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Scenarios λ = 1 λ = 4 λ = 8 λ = 16 λ = 32
DB 9.26% 8.55% 7.42% 4.21% 3.48%

DBBound -1.09% 0.23% 1.33% -0.16% 0.16%
B(γ∗) 8.01% 4.93% 3.71% 1.86% 1.64%

BBound(γ
∗) -0.55% 1.17% 0.50% 0.29% 0.87%

Table 6.9: Error of policies in demand scenarios in 4-stage system

Scenarios λ = 1 λ = 4 λ = 8 λ = 16 λ = 32
DB 15.66% 9.83% 4.73% 4.13% 4.04%

DBBound 1.02% 0.80% -0.44% 0.00% 0.20%
B(γ∗) 12.67% 7.75% 3.34% 2.28% 1.82%

BBound(γ
∗) 0.96% 0.90% 1.73% 1.03% 1.07%

Table 6.10: Error of policies in demand scenarios in 5-stage system

errors less than 2% in all the scenarios and there are several cases when the error

becomes negative. Specifically, in the 4-stage system, the dual-balancing policy with

bounds has a long-run expected average cost 1.09% less than that of the approximately

optimal policy. The γ∗-balancing policy with bounds does not perform any better

than the dual-balancing policy with bounds except in the case of 5-stage system with

λ = 1 where the error of the policy is 0.96% and the error of the dual-balancing policy

with bounds is 1.02%. Since the constraint of bounds is implemented after we have

computed the balancing order size which is not the same for the policy with balancing

ratio 1 and γ∗, the overall performance of the two cost balancing policies with bounds

is not comparable. Without the constraint of bounds, the dual-balancing policy and

the γ∗-balancing policy are significantly affected by the demand rate λ. As shown in

Figure 6-2, the errors of these two policies decrease sharply at small λ but remains

consistent after some critical points. If we can further increase the demand rate,

the computational time may be much longer but it is also possible that all the cost

balancing policies will show very small errors or even negative ones.

Lead Time Effect The lead time at all stages are assumed to be at the same value

in the base case and the long-run expected average cost of the dual-balancing policy

in the 4-stage system is 8.55% larger than that of the approximately optimal policy.

As the lead time at the lowest stage increases to ten periods, the error is reduced down

to only 4.43%. In the other scenarios, we also observe an average decrease of 0.77% in
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the error of the dual-balancing policy(see Table 6.11). Hence, the performance of the

dual-balancing policy might be better with longer lead times with different values at

the stages. The constraint of bounds improves the performance of the dual-balancing

policy in all the scenarios and the dual-balancing policy with bounds has an error

within 1% in all the scenarios in the 4-stage system. Another modified cost balancing

policy, the γ∗-balancing policy provides an average of 2.89% decrease in the error of

the dual-balancing policy. But it is no better than the dual-balancing policy with

bounds in all the scenarios. Among all the scenarios, the γ∗-balancing policy has

the worst performance in the Flat scenario when the lead time at all stages are the

same. This trend has also been observed for the dual-balancing policy. Hence, for

the cost balancing policies without bounds, the variation of the lead time does not

only change the ordering sizes at each period but also improves the accuracy.

Scenarios Flat Lead1 Lead2 Lead3 Lead4

DB 8.55% 4.43% 7.30% 7.92% 6.07%
DBBound 0.23% -0.71% 0.59% 0.84% 0.90%

B(γ∗) 4.93% 2.25% 3.28% 2.27% 3.07%
BBound(γ

∗) 1.17% 1.14% 0.83% 0.58% -0.06%

Table 6.11: Error of policies in different scenarios of lead time for 4-stage system

Scenarios Flat Lead1 Lead2 Lead3 Lead4 Lead5

DB 9.83% 5.47% 3.45% 4.46% 7.42% 6.87%
DBBound 0.80% -0.17% -0.55% 0.14% 1.77% 0.91%

B(γ∗) 7.75% 3.08% 2.55% 2.68% 3.62% 4.55%
BBound(γ

∗) 0.90% 1.24% 0.09% 0.83% 1.00% 0.38%

Table 6.12: Error of policies in different scenarios of lead time for 5-stage system

Backorder Cost with Long Lead Time Effect From the previous experiments, we

have found that the increase of the per-unit backorder cost will result in worse per-

formance of the dual-balancing policy and the γ∗-balancing policy but has little effect

on the cost balancing policies with bounds. As the lead time becomes longer, the two

policies without bounds show better performance and the bounded balancing policies

remains consistently good in accuracy. In this set of scenarios, we increase the lead

time at all stages to 10 and test the performance with high per-unit backorder cost.
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In the 4-stage system, with π = 29, the errors of the cost balancing policies are on

average 2.21% lower than those in the base case. When the per-unit backorder cost

has increased to 99, the cost balancing policies show different levels of accuracy. In

particular, the dual-balancing policy has a decrease of 0.98% in error. In contrast,

the error of the γ∗-balancing policy increases from 4.93% to 6.31% and the two cost

balancing policies with bounds also results in a larger error (see Table 6.13). Hence,

in the 4-stage system, the combined effect of the two system errors does depend on

the extend to which each parameter is modified. On the other hand, the experiments

taken on 5-stage system shows that all the policies are performing better than they

do in the base case.

Scenarios π = 5 π = 9 π = 29 π = 49 π = 99
DB 4.03% 4.94% 5.28% 5.38% 7.57%

DBBound 0.89% 0.16% -1.76% -0.64% 1.43%
B(γ∗) 3.61% 3.86% 4.31% 5.24% 6.31%

BBound(γ
∗) 1.16% -0.32% -1.79% 0.61% 1.98%

Table 6.13: Errors of Policies in backorder cost with long lead time scenario for 4-stage
system

Scenarios π = 5 π = 9 π = 29 π = 49 π = 99
DB 5.32% 5.61% 6.78% 7.56% 8.21%

DBBound 0.52% 0.45% -0.17% -1.81% -0.42%
B(γ∗) 4.33% 5.31% 6.20% 6.81% 7.18%

BBound(γ
∗) 0.37% 0.31% -0.11% -1.80% 0.44%

Table 6.14: Errors of Policies in backorder cost with long lead time scenario for 5-stage
system

Computational Time Here we consider another aspect of the performance of the

cost balancing policies, that is, the computational time taken per decision making.

As illustrated in Figure 6-3(a), the computational time increases linearly with the

demand rate λ in both systems. The effect of the per-unit backorder cost on the

compuational time for each decision is slightly different. In the 4-stage system, the

computational time is consistent as the per-unit backorder cost increases. As the

number of stages increases to 5, the compuational time remains consistent for small

π but becomes extremely large as π has increased to 99. The extra long time may
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be due to the bisection search for the balancing order size since the large value of π

expands the range of the search process.
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Figure 6-3: Computational time of dual-balancing orders for n-stage system

6.3 Robust Analysis

In this section, we study the performance of the policies over all the 52 scenarios.

First, we compute the times each policy is the best among all the policies. The ap-

proximately optimal policy is dominating in 36 cases but there are 11 cases when the

dual-balancing policy with bounds over performs and another 5 cases when the γ∗-

balancing policy with bounds results in the best. Unfortunately we do not observe any

case when the balancing policy or the γ∗-balancing policy show better performance

than the approximately optimal policy. In Section 6.4, we will show some further ex-

amples in which all the policies considered are more accurate than the approximately

optimal policy.

APPROX DB DBBound B(γ∗) BBound(γ
∗)

n = 4 16 - 5 - 4
n = 5 20 - 6 - 1

Table 6.15: Number of times each policy has the least total cost in an n-stage system

Next we compare the improvement of the three types of modification on the dual-

balancing policy, which are the constraint of bounds, the local minimum balancing
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ratio γ∗ and the combination of both. The improvement is expressed as the difference

between the error of the dual-balancing policy and the modified cost balancing policy.

The constraint of bounds shows an average of 7.40% and a maximum of 21.20%

improvement on the dual-balancing policy. The dual-balancing policy with bounds

has an error greater than 1% in only five out of the 52 cases, which is very close

to the approximately optimal policy. Changing the balancing ratio also improves

the performance of the dual-balancing policy but the maximum decrease in error is

just 9.94%, which is not as effective as the constraint of bounds. The combination

of both the bounds and the balancing ratio shows equivalent improvement on the

dual-balancing policy as the constraint of bounds only, with an average of 6.93% and

a maximum of 21.03% decrease in the error. Hence, there are two practical methods

to improve the performance of the dual-balancing policy, namely, the constraint of

bounds and the combination of the bounds and the balancing ratio.

average min max
Bound 7.40% 2.08% 21.20%
Ratio 2.77% 0.05% 9.94%

Bound&Ratio 6.93% 1.10% 21.03%

Table 6.16: Improvement after modification on the dual-balancing policy

6.4 Dominating Cases

In the previous sensitivity analysis, we find several cases when the performance of

some of the cost balancing policies was better than the approximately optimal policy.

For example, the long-run expected average cost according to the dual-balancing

policy with bounds is 0.71% less than that according to the approximately optimal

policy when we increase the lead time at stage 1 in the base case from 1 to 10 in the 4-

stage system. It is then possible that as we modify the system paramters furthermore,

the approximately optimal policy may be dominated by some of the cost balancing

policies. That is, the cost balancing policies are closer to the optimal policy than the

approximately optimal policy.
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It has been found that the error of the cost balancing policies without bounds

decreases with the demand rate λ and increases with the per-unit backorder cost

π. Hence, in this section, we set the parameters at λ = 32 and π = 5. Consider

the 5-stage system with unit echelon holding cost h = [0.25 0.25 0.25 0.25 2.5].

The lead time at each stage is just one period. We increase the lead time at stage

2 from 1 period up to 70 periods to explore the evolution of the performance of the

cost balancing policies.

The errors of the dual-balancing policy and the γ∗-balancing policy are decreasing

sharply as the lead time increases. When the lead time at stage two is 10 periods,

we observe only one negative error among the cost balancing policies. That is, the

dual-balancing policy with bounds shows an improvement of 0.55% over the approx-

imately optimal policy (see Table 6.17). But as the lead time has increased to 30

periods, all the cost balancing policies show a lower long-term expected average cost

than the approximately optimal policy, with the maximum improvement of 1.54%.

Moreover, in the case when the lead time is 50 periods, the cost balancing policies

dominate the approximately optimal policy for at least 2%. Hence, we see a better

performance of the cost balancing policies compared to the approximately optimal

policy with long lead time at stage 2 as the lead time increases. With extremely

long lead times (50 or 70 periods), the cost balancing policies show consistent dom-

inance of 2-3% over the approximately optimal policy. Lastly, we consider the case

of l = [6 10 14 18 22], when the total lead time is 70 periods and the lead time

at every stage is different from each other. The dominance over approximately opti-

mal policy is again observed but is on average 0.52% less than those in the case of

l = [1 70 1 1 1].
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lead time Error of Policies
l1 l2 l3 l4 l5 DB DBBound B(γ∗) BBound(γ

∗)
1 1 1 1 1 9.83% 0.80% 7.75% 0.90%
1 10 1 1 1 3.45% -0.55% 2.55% 0.09%
1 30 1 1 1 -0.11% -1.54% -0.31% -1.33%
1 50 1 1 1 -2.13% -2.99% -2.26% -3.01%
1 70 1 1 1 -2.08% -3.00% -2.17% -3.12%
6 10 14 18 22 -1.54% -2.39% -1.77% -2.60%

Table 6.17: Error of policies, for 5-stage system with λ = 32, π = 5 and h =
[0.25 0.25 0.25 0.25 2.5]
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Chapter 7

Conclusion

We consider a periodic-reviewed serial network with n stages and an external supplier

with infinite capacity. The demands in each period are independently distributed

Poisson random variables and unsatisfied demands are backlogged until the supplies

arrive to meet the demands. The objective of the inventory problem is to minimize

the long-run expected cost including the holding cost for each unit staying in the

system and the backorder cost for each backlogged demand unit. The echelon base-

stock policies are known to be optimal, but it can be hard to compute the optimal

base-stock levels. The dual-balancing policy aims to choose an order quantity which

makes these two cost functions equal. It can be further modified with the constraint

of additional bounds on the echelon inventory level, different balancing ratio, or a

combination of both.

In this thesis, we study the performance of the balancing policies through ex-

tensive numerical experiments. The long-run expected cost is approximated by the

average cost in the first 10,000 periods. We adopt the upper and lower bounds on the

optimal echelon inventory base level developed by Shang and Song [6] in two ways.

First, the average of the bounds is considered as an approximation of the optimal

echelon inventory base level. Moreover, we modify the dual-balancing policy with the

constrain of these two bounds. The accuracy of all the balancing policies is evaluated

in terms of the error against the approximatly optimal policy and the efficiency of the

balancing policies is evaluated in terms of the computational time for each decision.
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The dual-balancing has a worst-case guarantee of 2 but the numerical results show

surprisingly good performance. The modification of different parameters has great

impact on the performance of the balancing policies. The errors of the balancing

policies without bounds are increasing with the per-unit backorder cost but decreasing

with the demand parameter. As the per-unit echelon holding cost or the lead time

increases at some stage, the errors decreases accordingly depending on that stage. On

the other hand, the performance of the bounded balancing policies are more consistent

under different parameters. In terms of the efficiency, the computational time is

monotone increasing with the per-unit backorder cost and the demand parameter.

The constrain of bounds on the dual-balancing policy makes large improvement in the

accuracy without extending the computational time. In some cases, the combination

of adding bounds and modifying balancing ratio shows the least cost among all the

policies. We also observe several cases when some of the balancing policies obviously

dominate the approximately optimal policy.
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