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Exploring the regulatory roles of microRNAs in 
mammalian development 

 
By 

 
Grace Xinying Zheng 

Abstract 
microRNAs (miRNAs) are ~22-nt long short RNAs that regulate gene expression in 

organisms ranging from plants to animals. In mammals, miRNAs post-transcriptionally repress 
gene expression by primarily binding to the 3′ untranslated region (3′ UTR) of target mRNAs. 
Although hundreds of miRNAs have been discovered, targets of most miRNAs and the method 
by which they affect their biological function remain elusive. To better understand the role of 
miRNAs in fundamental cellular processes, we characterized enriched miRNA populations in 
three distinct murine developmental programs, T lymphocytes, embryonic stem cells, and the 
placenta.  

We started exploring the role of miRNAs in T lymphocytes by globally characterizing 
short RNA expression during key developmental stages of T lymphocytes. Our results showed 
that a distinct set of miRNAs is enriched in each stage. In particular, miR-181 is elevated at the 
double positive (DP) stage, when thymocytes expressing both CD4 and CD8 undergo positive 
and negative selection. We found that miR-181 can repress the expression of Bcl-2, CD69, and 
the T cell receptor, all of which are involved in positive selection. 

Analysis of short RNAs in T lymphocytes also revealed a novel miRNA cluster, the 
Sfmbt2 miRNA cluster, named as such since it maps to an intron of the Sfmbt2 gene, a Polycomb 
Group gene. Instead of studying this cluster in T lymphocytes, we decided to use embryonic stem 
(ES) cells as this cluster is also expressed in ES cells and the cells are more conducive to lab 
experimentation. This cluster contains several miRNA families, and we addressed the function of 
one miRNA family, miR-467a, as it shares target specificity with other highly abundant miRNAs 
in ES cells. Gain and loss of function assays showed that this family of miRNAs can promote cell 
survival by advancing the G1 to S phase transition. In addition, they target certain proapoptotic 
factors to buffer ES cells from apoptosis, especially in the context of genotoxic stress. 

The Sfmbt2 cluster is a mouse-specific miRNA cluster, and individual members have 
been uniquely amplified in the Sfmbt2 locus. We developed a method to explore the impact of 
species-specific miRNAs on the evolution of 3′ UTRs, and found that target sites of many 
miRNAs show positive selection. In particular, mouse target sites have evolved to specifically 
gain binding sites (mouse-specific targets) for some Sfmbt2 miRNAs, several of which are 
enriched in the placenta. These mouse-specific targets are enriched in pathways regulating cell 
survival, implicating the Sfmbt2 miRNA cluster as a possible promoter to placental growth.  

Our studies in T lymphocytes, ES cells and the placenta have revealed important roles of 
miRNAs in shaping 3′ UTR evolution, and mammalian development. Several novel miRNA 
targets we uncovered are important regulators of differentiation, cell cycle, and apoptosis. 
Understanding their functions will not only shed light on their roles in normal physiology, but 
also generate useful insights that can be applied to cancer and reprogramming.  
 
Thesis Supervisors:  
Phillip A. Sharp, Institute Professor of Biology  
Christopher B. Burge, Whitehead Career Development Associate Professor of Biology
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Short RNAs participate in almost every aspect of eukaryotic biology through 

translational repression, mRNA degradation and chromatin modification. miRNAs are a 

class of short RNAs that regulate gene expression in organisms ranging from plants to 

mammals. To date, hundreds of miRNAs have been identified, and they are shown to 

regulate a diverse array of cellular functions, such as differentiation, proliferation, 

apoptosis, and metabolism, by post-transcriptionally regulating gene expression. In 

Chapter 1, we review the key findings in miRNA biogenesis, mechanisms and principles 

of miRNA targeting, and focus on the important role of miRNAs in ES cells. At the end of 

the chapter we also include an introduction on T lymphocyte and placental development 

to provide appropriate background for the research described in the thesis. 
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Discovery of miRNA genes  
 

Since the discovery of RNA inteference (RNAi), efforts to identify endogenous 

small RNAs have led to the discovery of hundreds of miRNAs in plants and animals 

(Bartel 2004). Over 400 miRNAs have been confidently identified in humans, a number 

that approaches 2% of protein coding genes (Landgraf et al. 2007). To date, three types 

of approaches have been used to identify miRNA genes: genetic screening, short RNA 

cloning, and bioinformatics. 

The first miRNAs, lin-4 and let-7, were discovered through genetic screens, as 

their mutations led to a defect in the timing of C. elegans development (Lee et al. 1993; 

Reinhart et al. 2000). Genetic screens have revealed more miRNAs in several model 

organisms, notably bantam in Drosophila, and lsy-6 in C. elegans (Brennecke et al. 

2003; Johnston and Hobert 2003).  

Meanwhile, massive cloning efforts have taken center stage in uncovering 

miRNAs as well as other classes of short RNAs. To clone endogenous small RNAs, 

size-fractionated RNA is ligated to 5′ and 3′ adaptor molecules, then reverse transcribed 

and amplified by PCR to construct the cDNA library for sequencing (Kim and Nam 

2006). The recent introduction of deep sequencing technology has enabled 

simultaneous sequencing of up to millions of DNA molecules (Shendure and Ji 2008). 

After sequencing, raw sequence reads are filtered based on quality, and mapped to 

various non-coding databases as well as genomic sequences. This led to the discovery 

of not only miRNAs, but also piRNAs (Aravin et al. 2006; Girard et al. 2006; Grivna et al. 

2006; Lau et al. 2006; Watanabe et al. 2006), endo-siRNAs (Tam et al. 2008; Watanabe 

et al. 2008; Lau et al. 2009), and TSSa-RNAs (Core et al. 2008; Preker et al. 2008; Seila 

et al. 2008), small RNAs that overlap with transcription start sites in mammalian cells.  

Bioinformatics has helped identify novel miRNAs by detecting sequence 
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conservation and predicting hairpin structures (Bartel 2004). The first miRNA search 

algorithm was miRScan (Lim et al. 2003b), which searched for miRNA-like features and 

conservation patterns in hairpin sequences that showed homology in two nematode 

species. The method was also extended to successfully identify miRNAs in vertebrates 

(Lim et al. 2003a). Through comparative analysis of the human, mouse, rat and dog 

genomes, Xie et. al. catalogued common regulatory motifs in promoters and 3′ UTRs 

(Xie et al. 2005). Many of the motifs in 3′ UTRs are associated with miRNAs, leading 

them to predict 129 novel miRNAs, many of which have subsequently been validated. 

Berezikov et. al. used the characteristic conservation profile around miRNA genes (high 

conservation in the stem region relative to flanking sequences) to discover novel 

miRNAs through cross-species comparison (Berezikov et al. 2005). Bentwich et. al. used 

an integrative approach to combine bioinformatics predictions with microarray analysis 

and sequence-directed cloning (Bentwich et al. 2005). They identified 89 novel human 

miRNAs, of which the majority can be mapped to two nonconserved clusters. One of 

them is expressed only from chromosome 19 in the placenta, whereas the other is found 

on chromosome X, and has been implicated in regulating testis development and 

spermatogenesis (Zhang et al. 2007).  

Genomic organization of miRNAs 
 

miRNAs are derived from hairpin precursors that are encoded in the genome 

(Kim et al. 2009). Approximately 80% of miRNA genes are found in intronic regions of 

protein coding and non-coding transcriptional units, and the rest are distributed in exonic 

and intergenic regions (Kim et al. 2009). About half of known miRNAs are found in 

clusters, and they are transcribed as polycistronic primary transcripts (Kim et al. 2009). 

However, not all miRNAs in the same cluster are expressed at the same level, 

suggesting that miRNAs may be post-transcriptionally processed on an individual basis 
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(Calabrese et al. 2007; Neilson et al. 2007; Babiarz et al. 2008; Ventura et al. 2008).  

Members of miRNA clusters tend to have similar sequences, which allow them to 

regulate a common set of transcripts (Ambros 2004; Bartel 2004). An example of a 

functionally related cluster is the miR-290-295 cluster, which is specifically expressed in 

ES cells (Houbaviy et al. 2003). This cluster’s role in maintaining stem cell pluripotency 

and development will be discussed in detail in the section “miRNAs in ES cells”.  

Evolution of miRNAs 
 

miRNA creation and expansion have been linked to major developmental 

innovations. Hertel and colleagues have documented three episodes of miRNA creation 

that coincide with metazoan evolution: the advent of bilaterians, the rise of vertebrates, 

and the emergence of placental mammals (Hertel et al. 2006). About 30 miRNAs, 

including let-7 and miR-1, are shared among bilaterians (Hertel et al. 2006; Niwa and 

Slack 2007). Higher number of miRNAs in an organism is generally associated with a 

more complex body plan and development. For example, about 800 miRNAs have been 

identified in primates, and about half of them are primate-specific (Bentwich et al. 2005). 

Three mechanisms have been proposed to explain the evolution of animal 

miRNAs (Shabalina and Koonin 2008). First, many miRNAs appear to be derived from 

repeats and transposons, which comprise an especially large fraction of mammalian 

genomes. About 20% of human miRNAs share sequences with transposable elements, 

and a recent systematic analysis revealed that 55 miRNAs originated from LINE and 

SINE elements (Aravin et al. 2001; Smalheiser and Torvik 2006; Piriyapongsa et al. 

2007). Second, many clustered miRNAs are thought to have evolved through duplication 

of an existing miRNA followed by mutations in the target recognition region (Shabalina 

and Koonin 2008). Last, some miRNAs could arise from random hairpin structures that 

are embedded in the transcribed part of genomes. Genome-wide bioinformatics screens 



Chapter 1: Introduction 
 

 15 

showed that the human genome encodes millions of potential hairpins (Bentwich et al. 

2005). New miRNAs with target specificities can emerge from the pool of hairpin 

transcripts via random mutations. miRNAs that confer beneficial regulations to their 

target genes can then be maintained through purifying selection (Liu et al. 2008; 

Shabalina and Koonin 2008).  

Biogenesis of miRNAs 
 

Most miRNA genes are transcribed by RNA polymerase II to generate primary 

transcripts (pri-miRNAs) that are several kilobases long, and are 5′ capped and 3′ 

polyadenylated (Cai et al. 2004; Lee et al. 2004; Kim et al. 2009). A typical mammalian 

primary miRNA (pri-miRNA) contains a stem of ~33 bp, a terminal loop and two single-

stranded flanking regions (ssRNA). The stem and ssRNA segments are recognized by 

DGCR8, a protein that contains double-stranded RNA (dsRNA) binding domains. The 

stem is cleaved ~11 bp away from the ssRNA-dsRNA junctions by DROSHA, an RNAse 

III type protein (Lee et al. 2002; Lee et al. 2003; Zeng and Cullen 2005; Han et al. 2006). 

Recent evidence suggests that DROSHA-mediated cleavage of pri-miRNA and splicing 

can occur co-transcriptionally and are highly coordinated (Kim and Kim 2007; Morlando 

et al. 2008; Pawlicki and Steitz 2008). Pri-miRNA processing does not inhibit splicing, 

and in many cases precedes the splicing of the host intron.  

There is also a small group of miRNA genes, mirtrons, that are embedded in 

short introns, and their biogenesis is independent of Drosha (Berezikov et al. 2007; 

Okamura et al. 2007; Ruby et al. 2007; Babiarz et al. 2008). After splicing, the intron can 

form a hairpin resembling a miRNA precursor (pre-miRNA), whose 5′ and 3′ ends are 

trimmed by exonucleases (Kim et al. 2009). Pre-miRNAs are then exported from the 

nucleus by exportin 5 with Ran-GTP (Yi et al. 2003; Lund et al. 2004). 

Once in the cytoplasm, pre-miRNAs are cleaved near the terminal loop by 
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DICER, another RNAse III enzyme (Bernstein et al. 2001; Grishok et al. 2001; 

Hutvagner et al. 2001; Ketting et al. 2001; Knight and Bass 2001; Yi et al. 2003; Lund et 

al. 2004). DICER is characterized by an amino-terminal DEXD/H-box domain, a DUF283 

domain, a PAZ domain, and two RNase III domains as well as a dsRNA-binding domain. 

The PAZ domain binds to the 3′ end of pre-miRNA, and active sites at each of the 

RNaseIII domains cleave one of the two strands, generating a miRNA duplex (mature 

miRNAs) with 5′ phosphates and 2-nt 3′ overhang (Song et al. 2003; Yan et al. 2003; 

Lingel et al. 2004; Ma et al. 2004; Du et al. 2008). In human cells, DICER interacts with 

two double-stranded RNA-binding domain proteins TRBP and PACT, which enhance 

DICER-mediated cleavage of pre-miRNAs (Chendrimada et al. 2005; Haase et al. 2005; 

Lee et al. 2006). The ends of mature miRNAs are often heterogeneous, which could be 

the result of imprecise cleavage by DROSHA or DICER (Aravin and Tuschl 2005; Ruby 

et al. 2006; Neilson et al. 2007; Ruby et al. 2007; Azuma-Mukai et al. 2008; Seitz et al. 

2008). Variations at 5′ ends change miRNA seeds (see below), which affect target 

specificity of miRNAs. Thus it is not surprising that 5′ ends show less variability than 3′ 

ends, which often contain additional untemplated nucleotides with a bias for adenosine 

or uracil (Aravin and Tuschl 2005; Ruby et al. 2006; Neilson et al. 2007; Ruby et al. 

2007).  

After Dicer cleavage, the miRNA duplex is loaded into the effector miRNA-

containing ribonucleoprotein complex (miRNP) with the help of DICER, TRBP, and 

Argonaute proteins (described in the section under “Mechanisms of miRNA-directed 

silencing”) (Chendrimada et al. 2005; Gregory et al. 2005; Maniataki and Mourelatos 

2005; MacRae et al. 2008). The double-stranded duplex must be unwound, and studies 

indicate that the strand with relatively unstable base pairing at the 5′ end in the duplex is 

preferentially loaded into miRNP (Aza-Blanc et al. 2003; Khvorova et al. 2003; Schwarz 

et al. 2003). This strand is called the guide strand, as it will guide miRNP to mRNA 
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targets. The other strand is called the passenger strand, and is released from miRNP 

and subsequently degraded. In the case where there is extensive complementarity along 

the hairpin stem of the miRNA duplex, Argonaute can cleave the passenger strand 

(Matranga et al. 2005; Miyoshi et al. 2005; Leuschner et al. 2006; Diederichs and Haber 

2007). However most miRNA duplexes contain mismatches, and human Argonautes 1 

and 2 were found capable of performing multiple rounds of strand dissociation (Gregory 

et al. 2005; Maniataki and Mourelatos 2005; MacRae et al. 2008; Kawamata et al. 2009; 

Wang et al. 2009).  

Regulation of miRNA biogenesis 
 

Regulation of miRNA biogenesis occurs at the level of transcription, editing, and 

processing by DROSHA and DICER. The transcription of miRNAs is controlled by 

transcription factors that regulate the production of pri-miRNAs in specific cell types 

during development or in response to different environmental cues. For example, key ES 

cell transcription factors such as SOX2 and NANOG are associated with promoters of 

miRNA genes that are preferentially expressed in ES cells (Marson et al. 2008). 

Following the onset of DNA damage, P53 activates the transcription of pri-miR-34, and 

expression of miR-34 family can induce cell cycle arrest (He et al. 2007). In addition, 

methylation of promoter sequences can silence expression of miRNA genes. 

Hypermethylation of tumor suppressor miRNA genes have been observed in metastatic 

cancer cells (Lujambio et al. 2008).  

RNA editing by adenosine deaminases acting on RNA (ADARs) can change 

sequences of pri-miRNAs, which can affect their further processing as well as target 

recognition abilities. ADAR editing of pri-miR-142 prevents its processing by DROSHA, 

and leads to decreased expression of mature miR-142-5p and miR-142-3p in 

hematopoietic tissues (Yang et al. 2006; Neilson et al. 2007).  
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Processing by RNaseIII enzymes and their auxiliary proteins can be regulated for 

individual miRNAs. For example, hnRNPA1 binding to the loop region of pri-miR-18a 

facilitates its processing, but not other miRNAs that belong to the same miR-17-92 

cluster (Michlewski et al. 2008). Arsenate-resistance protein 2 (ARS2) is expressed by 

proliferating haematopoietic cells and interacts with the nuclear cap-binding complex to 

promote processing of pri-miRNA transcripts (Gruber et al. 2009). In addition, Erk 

activation can phosphorylate TRBP, which enhances the stability of TRBP as well as 

Dicer (Paroo et al. 2009). This leads to increased expression of growth-promoting 

miRNAs as well as downregulation of the let-7 family, which suppresses cell growth.  

LIN28 can affect the biogenesis of let-7 genes in multiple ways. Pri-let-7 is 

expressed in both undifferentiated and differentiated ES cells, but mature let-7 is only 

detected in differentiated cells. LIN28 can prevent DROSHA processing of pri-let-7 by 

binding to conserved bases in its terminal loop (Newman et al. 2008; Viswanathan et al. 

2008). In addition, LIN28 can bind to pre-let-7 in the cytoplasm, and prevent its cleavage 

by DICER (Rybak et al. 2008). Moreover, LIN28 can induce uridylation at the 3′ end of 

pre-let-7, leading to its degradation by nucleases (Heo et al. 2008; Hagan et al. 2009). 

Interestingly, mature let-7 can also target Lin28 post-transcriptionally (Wu and Belasco 

2005; Kumar et al. 2007; Hagan et al. 2009), and the interplay between let-7 and Lin28 

is important in the regulation of stem cell differentiation (Melton et al. 2010).  

In contrast to our knowledge about the biogenesis of miRNAs, very little is known 

about the half-life and degradation of individual miRNAs. Mature miRNAs bound to 

AGO2 are relatively stable, where most of them have a half-life greater than 14 hours 

(Lee et al. 2003; Hwang et al. 2007). However, some miRNAs display faster degradation 

kinetics (Hwang et al. 2007; Pedersen et al. 2007), suggesting specific mechanisms may 

control individual miRNA turnover.  
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Mechanisms of miRNA-directed silencing 

Argonautes and GW182 proteins 

 
Argonaute proteins (AGOs) associate with miRNAs and are core components of 

miRNPs that repress protein translation and/or trigger degradation of target mRNAs. 

AGOs are multidomain proteins that contain an N-terminal domain, a PAZ domain, a 

PIWI domain, and a MID (middle) domain (Carthew and Sontheimer 2009). The PAZ 

domain can recognize 3′ dinucleotide termini of ssRNAs, suggesting that the domain is 

important in guide strand binding (Song et al. 2003; Yan et al. 2003; Lingel et al. 2004). 

The 5′ phosphate of the guide strand is buried in a phosphate-binding pocket at the 

interface between the MID domain and the PIWI domain. The 5′ nucleotide of the guide 

strand is distorted and does not base pair with the target strand (Ma et al. 2005; Parker 

et al. 2005). Nucleotides 2-8, which are critical for target recognition, are arranged in a 

geometry resembling an A form helix which favors Watson-Crick base pairing with their 

mRNA targets (Mallory et al. 2004; Ma et al. 2005; Parker et al. 2005). The PIWI domain 

adopts an RNase H-like fold that can induce endonucleolytic cleavage of the mRNA 

target when its pairing is nearly completely complementary to the entire guide strand 

(Song et al. 2004; Parker et al. 2005). However, such interactions are very rare between 

mammalian miRNAs and their targets. In humans, all four Agos contribute to miRNA 

directed silencing, but only AGO2 demonstrates endonucleolytic activity (Liu et al. 2004; 

Meister et al. 2004b; Su et al. 2009).  

Because of their importance in miRNA-directed silencing, it is not surprising that 

many pathways exist to regulate the stability and activity of Agos. For example, Ago2 

can be hydroxylated at proline 700 (Qi et al. 2008), and phosphorylated at Serine 387 

via the p38 pathway (Zeng et al. 2008). Both modifications stabilize Ago2, and enhance 
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its localization to P bodies (see section “P bodies and stress granules”) (Qi et al. 2008; 

Zeng et al. 2008). In addition, mouse LIN41 acts as an E3 ubiquitin ligase to facilitate 

Ago2 turnover, which affects global miRNA activity in stem cells (Rybak et al. 2008). 

Besides Argonautes, genetic screens and biochemical purifications identified 

GW182 among other proteins that are required for miRNA expression and function. 

Depletion of GW182 relieves miRNA directed repression (Rehwinkel et al. 2005; Behm-

Ansmant et al. 2006a; Behm-Ansmant et al. 2006b; Eulalio et al. 2008; Eulalio et al. 

2009a; Eulalio et al. 2009b; Eulalio et al. 2009c). In addition, tethering of an mRNA 

reporter directly to GW182 can induce silencing of the reporter independently of AGOs, 

suggesting that GW182 functions in the same pathway, but downstream of AGOs 

(Behm-Ansmant et al. 2006a; Behm-Ansmant et al. 2006b). GW182 is enriched in 

glycine and tryptophan repeats, which are critical for interacting with AGOs (Liu et al. 

2005b; Meister et al. 2005; Behm-Ansmant et al. 2006a; Till et al. 2007).   

Translational inhibition by miRNAs  

Eukaryotic translation of mRNAs consists of three steps: initiation, elongation and 

termination. The mechanisms by which miRNP regulates translation have been a subject 

of debate. Depending on the experimental system used, translation inhibition can 

happen at initiation as well as post-initiation steps (Filipowicz et al. 2008; Carthew and 

Sontheimer 2009). Currently there are three models to account for translation inhibition 

at initiation. The first two involve regulations at the 5′ cap and poly-A binding steps of the 

initiation process. AGO2 was shown to bind to the 5′ cap, and compete with eIF4E at the 

start of translation (Humphreys et al. 2005; Pillai et al. 2005; Kiriakidou et al. 2007; 

Zdanowicz et al. 2009; Djuranovic et al. 2010). In addition, miRNP can promote mRNA 

deadenylation, which prevents proper circularization of the mRNA (Behm-Ansmant et al. 

2006a; Giraldez et al. 2006; Wu et al. 2006; Wakiyama et al. 2007), a process that is 
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important for translation initiation. The last model suggests that AGO2 can interact with 

eIF6 in vitro, and block the joining of 60S to 40S ribosomal subunits (Sanvito et al. 1999; 

Chendrimada et al. 2007).  

Another line of evidence suggests that miRNAs can repress translation after the 

initiation step (Kim et al. 2004; Nelson et al. 2004; Maroney et al. 2006; Lytle et al. 2007; 

Vasudevan and Steitz 2007). Petersen et. al. showed IRES-containing reporters can be 

repressed, and the repressed mRNAs are associated with active polysomes (Petersen 

et al. 2006). When they inhibited translation initiation with a drug, they observed 

ribosomal drop-off in a miRNA dependent manner, suggesting miRNAs can promote 

premature ribosome dissociation from mRNAs (Petersen et al. 2006).  

Degradation of mRNAs by miRNAs  

Despite the focus of miRNA-directed translation inhibition by early studies, recent 

evidence shows that an increase in miRNA abundance is associated with a reduction of 

mRNAs that contain partial miRNA complementary sites (Bagga et al. 2005; Krutzfeldt et 

al. 2005; Lim et al. 2005; Behm-Ansmant et al. 2006a; Giraldez et al. 2006; Wu et al. 

2006). Bagga et. al. used Northern analysis to show that let-7 can decrease mRNA 

levels of its target lin-41 (Bagga et al. 2005). Lin-4 also had similar effects on mRNA 

level of its targets lin-14 and lin-28 (Bagga et al. 2005; Ding and Grosshans 2009). 

Moreover, transcriptomic studies suggest that miRNAs can regulate the stability of a 

large number of mRNAs. After over-expressing miRNAs in HeLa cells, Lim et. al. 

observed downregulation of sets of mRNAs that preferentially displayed miRNA binding 

sites in their 3′ UTRs (Lim et al. 2005). Zebrafish miR-430 promotes clearance of 

hundreds of maternal mRNAs by inducing their deadenylation at the onset of zygotic 

transcription (Giraldez et al. 2006).  

Mechanistic studies initially performed in Drosophila S cells demonstrate that 
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GW182 is required for mRNA decay (Behm-Ansmant et al. 2006a). Knockdown or 

depletion of GW182 led to upregulation of miRNA targets at the mRNA level (Behm-

Ansmant et al. 2006a). The upregulation is also dependent on deadenylation (CCR4-

NOT1) and decapping (DCP1 and DCP2) complexes (Behm-Ansmant et al. 2006a; 

Eulalio et al. 2007c). Depletion of the components of the CCR4-NOT1 complexes, as 

well as knock-down of DCP1 andDCP2 prevented miRNA-mediated mRNA 

downregulation (Rehwinkel et al. 2005; Behm-Ansmant et al. 2006a; Chu and Rana 

2006; Eulalio et al. 2007c). These and experiments in C. elegans and mammalian cells 

suggest a model in which GW182 first recruits the deadenylase and decapping 

complexes to target mRNAs. The target mRNAs can then be subsequently degraded by 

exosomes (3′-5′ exonuclease) or XRN1 (after the removal of the 5′ cap) (Behm-Ansmant 

et al. 2006a; Wu et al. 2006; Eulalio et al. 2007c).  

Altogether, miRNPs have been shown to elicit translational repression, mRNA 

decay, or both. Translational repression can take place independently of target 

deadenylation, as mRNAs without polyA tails are still repressed by miRNAs (Pillai et al. 

2005; Giraldez et al. 2006; Wu et al. 2006; Eulalio et al. 2008; Eulalio et al. 2009b). 

These targets show only degradation at the protein level (Baek et al. 2008; Selbach et 

al. 2008). Likewise, mRNA decay is not dependent on translation, as it can still occur 

when translation is inhibited by cycloheximide (Eulalio et al. 2007c; Wakiyama et al. 

2007). Nevertheless, translational repression is often linked to mRNA decay. Recent 

proteomic experiments showed that many translationally repressed genes also displayed 

detectable mRNA destabilization (Baek et al. 2008; Selbach et al. 2008). In fact, mRNA 

destabilization comprised the major component of repression for a certain set of highly 

repressed targets (Baek et al. 2008; Selbach et al. 2008).  
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P bodies and stress granules 

P-bodies are discrete cytoplasmic foci enriched in proteins that participate in 

miRNA-directed mRNA degradation and translational repression (Filipowicz et al. 2008; 

Carthew and Sontheimer 2009). The core P-body components include enzymes 

responsible for decapping, deadenylation, and degradation, and they interact directly or 

indirectly with AGOs and Gw182 proteins (Anderson and Kedersha 2006; Eulalio et al. 

2007a; Parker and Sheth 2007). Although depletion of decapping enzymes leads to 

ineffective inhibition of target mRNAs, P-bodies are not essential for this process 

(Jakymiw et al. 2005; Liu et al. 2005b; Meister et al. 2005). Knocking down components 

of P bodies has no effect on miRNA activities, suggesting that the formation of P-bodies 

is a consequence rather than the cause of silencing (Pillai et al. 2005; Eulalio et al. 

2007b).  

The structures of P-bodies are dynamic, and their sizes change in response to 

translational status of the cell (Anderson and Kedersha 2006; Eulalio et al. 2007a; 

Parker and Sheth 2007). A global translation initiation block leads to an increase in the 

size of P-bodies (Anderson and Kedersha 2006; Eulalio et al. 2007a; Parker and Sheth 

2007). In contrast, inhibition of miRNA biogenesis or activity results in dispersal of visible 

P-bodies, suggesting that functional miRNA pathways are essential for the formation of 

large P-body aggregates (Pauley et al. 2006; Eulalio et al. 2007b).  

Another type of mRNA-containing cytoplasmic aggregates is stress granules 

(SG), which accumulate in response to various stress conditions (Anderson and 

Kedersha 2006). Leung et. al. showed that miRNA mimics and the repressed reporter 

mRNAs accumulate in SGs upon stress (Leung et al. 2006). Moreover, the localization 

of Ago proteins to SGs but not P-bodies is miRNA-dependent, and the exchange of 

AGOs at SGs is much faster than P-bodies (Leung et al. 2006).  
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Principles of miRNA-mRNA interactions 
 

Since the first discovery of miRNA target lin-14 in the early 1990s, genetic, 

biochemical, and bioinformatics analyses have revealed many functional target sites, 

most of which are in the 3′ UTRs of mRNAs (Bartel 2009; Carthew and Sontheimer 

2009). The 5′ end of miRNA is critical in determining target specificity, and bases 2-7 of 

the miRNA are referred to as the miRNA seed. Comparative genomic analysis revealed 

that the 5′ region of miRNAs is the most conserved portion of miRNAs (Lewis et al. 2003; 

Lim et al. 2003a; Lewis et al. 2005; Chen and Rajewsky 2006). Furthermore, seed 

binding sites in the 3′ UTRs of mRNAs tend to be more highly conserved than expected 

by chance (Lewis et al. 2003; Lim et al. 2003a; Lewis et al. 2005). In addition, reporter 

assays showed that pairing to the miRNA 5′ region is sufficient to effect repression, and 

mutations that disrupt the binding between the seed and target site relieve reporter 

repression (Lai 2002; Doench and Sharp 2004; Brennecke et al. 2005b; Kloosterman 

and Plasterk 2006). Recent large-scale transcriptomic and proteomic studies also 

demonstrated that a high proportion of transcripts downregulated in response to miRNA 

overexpression contain sequences complementary to the seed region (Lim et al. 2005; 

Baek et al. 2008; Selbach et al. 2008).  

Although the presence of a 6-mer seed binding site is important, additional 

matches to the 5′ end of the miRNA can improve target specificity. Analyses of transcript 

expression before and after the addition of a miRNA revealed that mRNAs that 

contained a seed match flanked by a Watson-Crick match to miRNA base 8 (M8 7mer) 

exhibited enhanced downregulation (Grimson et al. 2007; Nielsen et al. 2007). The 

presence of an adenosine at position 1 of the mRNA target site (A1 7mer) also led to 

more mRNA reduction (Grimson et al. 2007; Nielsen et al. 2007). Moreover, mRNAs that 

have a M8 7mer as well as an A1 7mer site (M8-A1 8mer) exhibited the greatest mRNA 
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downregulation (Grimson et al. 2007; Nielsen et al. 2007). 

While “seed only” type targets represent the vast majority of all conserved 

miRNA targets, there is another class of targets that have weak 5′ base-pairing (single-

nucleotide bulge or mismatch) with the miRNA and depend on strong compensatory 

pairing to the 3′ end of the miRNA (Bartel 2009). Some notable examples include the let-

7 binding sites in lin-41, miR-2 sites in Grim and Sickle, and miR-196 site in Hoxb8 

(Reinhart et al. 2000; Lewis et al. 2003; Stark et al. 2003; Yekta et al. 2004). It has been 

speculated that 3′ pairing confers target specificity to miRNAs in the same family, which 

share a common seed region, but have different 3′ ends (Brennecke et al. 2005b; Bartel 

2009).  

The context of the miRNA binding site is also important in determining target 

specificity. Increased AU content near the seed match, additional pairing to miRNA 

nucleotides 13-16, close proximity of another miRNA binding site, positioning of the 

miRNA binding site away from the center of long UTRs but at least 15-nt away from the 

stop codon, are all associated with increased mRNA downregulation (Grimson et al. 

2007; Nielsen et al. 2007). These context features can increase accessibility and affinity 

of miRNA binding sites, resulting in more favorable interaction between silencing 

complexes (Grimson et al. 2007). 

These and previous observations have been extended to predict mRNA targets 

of miRNAs (Bartel 2009), and more recent analysis suggests that over half of human 

genes are conserved miRNA targets (Friedman et al. 2009). In addition to conserved 

sites, many mRNAs have non-conserved binding sites for each miRNA. While most of 

the mRNAs with non-conserved sites are expressed in tissues where the miRNA is 

absent, some are co-expressed with the miRNA, suggesting that they can represent 

important species-specific targets (Farh et al. 2005; Stark et al. 2005).  

Predicted targets of miRNAs can be supported by comparing the activity of a 
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reporter in systems that exhibit different expression levels of miRNAs. One commonly 

used reporter is the luciferase reporter, which has the coding sequence of luciferase 

fused to the 3′ UTR of the target gene (Elbashir et al. 2001). Luciferase reporters of true 

targets will have a higher activity in the system where the miRNA is expressed at a lower 

level. Several ways exist to manipulate miRNA expression in different experimental 

systems. Firstly, miRNA overexpression can be achieved through expressing miRNA 

hairpin and flanking sequences (Chen et al. 2004), or transient transfection of miRNA 

mimics and small interfering RNAs (siRNAs). Secondly, miRNAs can be depleted with 

the use of chemically modified antisense oligonucleotides, or miRNA sponges 

(Hutvagner et al. 2004; Meister et al. 2004a; Krutzfeldt et al. 2005; Orom et al. 2006; 

Ebert et al. 2007). Lastly, the entire mature miRNA repertoire can be depleted by 

knocking out DGCR8 or Dicer, whose gene products are important for the maturation of 

miRNAs. Dgcr8 null mouse ES cells (mESC), Dicer null mESCs and Dicer null mouse 

embryonic fibroblasts (mEF) have all been successfully generated, and they provide an 

alternative to dissect miRNA functions (Kanellopoulou et al. 2005; Murchison et al. 2005; 

Calabrese et al. 2007; Nielsen et al. 2007; Wang et al. 2007).  

Besides 3′ UTR targets, targets have been found in the coding sequence (CDS) 

or 5′ UTR of mRNAs. Comparative genomics analyses detected a significant signal 

above background in conserved miRNA seed matches in the CDS of mRNAs (Lewis et 

al. 2003; Brennecke et al. 2005b; Lewis et al. 2005). A handful of targets have been 

validated experimentally; they include Nanog, Oct4, and Sox2 (targeted by miR-134, 

miR-296, and miR-470), Dnmt3b (targeted by miR-148), and p16 (targeted by miR-24) 

(Lytle et al. 2007; Baek et al. 2008; Duursma et al. 2008; Selbach et al. 2008; Tay et al. 

2008). In addition, proteomic studies have revealed miRNA binding sites in the CDS, 

although they are generally less effective than sites in 3′ UTRs (Baek et al. 2008; 

Selbach et al. 2008). More recently, an effort to identify miRNA binding sites in RNAs 
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that crosslink to AGO2 also uncovered prevalent miRNA binding sites in CDS, 

suggesting that CDS targets may be more widespread than previously considered 

(Leung et al. 2006).  

Roles of miRNAs in mammalian development 
 

miRNAs exert vast impact on global expression and evolution of mammalian 

mRNAs. To date, around 400 miRNA genes have been cloned from humans, and more 

than 50% of human genes contain conserved miRNA binding sites (Bartel 2009). 

Systematic analyses of mRNA and miRNA expression profiles show that conserved 

targets of tissue-specific miRNAs are frequently expressed at lower levels than other 

tissues, and nonconserved targets are usually not expressed in the same tissue as the 

miRNA, suggesting that miRNAs facilitate state transitions and help maintain cell identity 

(Farh et al. 2005). A handful of targets whose activity can be strongly repressed by a 

miRNA to an inconsequential level are referred as “switch targets”, in contrast to the vast 

majority of targets, “fine-tuning targets”, whose expression is only moderately dampened 

by the miRNA (Bartel and Chen 2004). In addition, ubiquitously expressed genes and 

tissue specific genes tend to have shorter 3′ UTRs so that they can avoid being targeted 

by miRNAs (anti-targets) (Farh et al. 2005; Stark et al. 2005). Additionally, proliferating 

cells are associated with widespread 3′ UTR shortening, further supporting the global 

impact of miRNA on 3′ UTR evolution (Sandberg et al. 2008; Mayr and Bartel 2009).  

Since the identification of the first miRNAs in regulating the developmental timing 

of C. elegans, miRNAs have been implicated in fundamental cellular processes (Lee et 

al. 1993; Wightman et al. 1993). A close link exists between deregulation of normal 

cellular processes and tumorigenesis, and a growing body of evidence indicates that 

altered expression of miRNAs is involved in the pathogenesis of cancers (Croce and 

Calin 2005; Johnson et al. 2005; Lu et al. 2005; Costinean et al. 2006; Esquela-Kerscher 



Chapter 1: Introduction 
 

 28 

and Slack 2006; Hammond 2006; Voorhoeve et al. 2006; Kumar et al. 2007; Mayr et al. 

2007). miR-15a and miR-16 can function as tumor suppressor genes by targeting Bcl-2, 

an oncogene that inhibits apoptosis (Cimmino et al. 2005). They map to a region of 

chromosome 13 that is commonly lost in patients with chronic lymphocytic leukemia 

(Calin et al. 2002). Subsequent expression profiling of different types of tumors revealed 

many more miRNAs that might function as tumor suppressors or oncogenes by targeting 

transcription factors, epigenetic machinery as well as existing tumor suppressors and 

oncogenes (Calin et al. 2004; Esquela-Kerscher and Slack 2006; Volinia et al. 2006; 

Chin et al. 2008; Croce 2009).  

The global functional role of miRNAs in development can be inferred from 

animals that lack DICER, DGCR8, and AGO2, as all of them are important in the 

maturation and activity of miRNAs. Loss of Dicer leads to lethality early in development 

and depletion of stem cells in Dicer null embryos (Bernstein et al. 2003; Kanellopoulou et 

al. 2005). Tissue specific deletion of Dicer resulted in defects such as limb 

morphogenesis, lung development, and incomplete embryonic myogenesis (Harfe et al. 

2005; Harris et al. 2006; O'Rourke et al. 2007). Similarly, Dgcr8 null and Ago2 null 

embryos show severe developmental delays and defects (Liu et al. 2004; Morita et al. 

2007; Wang et al. 2007).  

The role of individual miRNAs in mammalian development has been gradually 

revealed through expression profiling experiments and genetic studies. For example, 

miR-1 is highly expressed in cardiac and skeletal muscle cells in mouse (Zhao et al. 

2005b). Overexpression of miR-1 in myoblasts promoted differentiation while reducing 

cell proliferation (Zhao et al. 2007). Deletion of miR-1-2, one of the two genes encoding 

miR-1 in the mouse genome, resulted in animals with defects in ventricular septum and 

cardiac rhythm disturbances (Zhao et al. 2007). Here we will focus our discussion on 

developmental roles of miRNAs in mouse ES cells. 
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miRNAs in ES cells 

ES cells are derived from the inner cell mass of the blastocyst-stage embryo 

(Figure 1). During gastrulation, ES cells rapidly differentiate into the three primary germ 

layers of the developing fetus. However, ES cells can be cultured in vitro, and their 

capacity for self-renewal and differentiation potential can be maintained in the presence 

of the cytokine, leukemia inhibitory factor (Smith et al. 1988; Williams et al. 1988). 

Cultured ES cells can be injected into blastocysts and contribute to all tissues of the 

organism except those of trophectoderm or primitive endoderm lineages (Beddington 

and Robertson 1989). 

The self-renewing capacity of ES cells is controlled by both intercellular and 

intracellular mechanisms (Lin 2002). Intense investigation revealed a multitude of 

intracellular mechanisms to regulate gene expression at epigenetic, transcriptional, 

translational and post-translational levels. Two homeodomain transcription factors, 

OCT4 and NANOG, were the first proteins identified as essential for maintaining 

pluripotency in ES cells (Nichols et al. 1998; Chambers et al. 2003; Mitsui et al. 2003). 

Later, genome-wide binding sites of transcription factors revealed that OCT4, NANOG, 

and SOX2 share a substantial fraction of their target genes (Boyer et al. 2005; Loh et al. 

2006). While some target genes encode key transcription factors for differentiation and 

development which are transcriptionally inactive, another set of active target genes are 

involved in the maintenance of pluripotency (Boyer et al. 2005). Interestingly, these three 

factors control one another’s transcription in a large regulatory circuit consisting of 

specialized autoregulatory and feedforward loops (Boyer et al. 2005).  

The ability to self-renew is inherently linked to the ability of cells to remain in a 

proliferative state. ES cells have an unusual cell cycle structure and rapid rate of cell 

division (Savatier et al. 1994; Stead et al. 2002). The cell cycle structure of mESCs 
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consists of a truncated G1 phase and a prolonged S phase, which explain why ES cells 

can divide approximately every 8-10 hours (Savatier et al. 1994; Stead et al. 2002). In 

contrast to cyclin expression patterns in regular mammalian cells, mESCs express 

elevated levels of all cyclins, which remain almost the same throughout the cell cycle 

(Savatier et al. 1994; Faast et al. 2004). Additionally, Cdk inhibitory genes such as the 

Ink family, p21, p27, and p57 have low expression levels which lead to the 

hyperphosphorylation of pRb and inactivation of the G1-S checkpoint (Savatier et al. 

1994; Savatier et al. 1996; Faast et al. 2004). 

The important role of miRNAs in ES cell regulation can be inferred from 

experiments that study the loss of Dicer and Dgcr8 in ES cells. Although Dicer-null ES 

cells are viable, they proliferate more slowly than WT ES cells (Kanellopoulou et al. 

2005; Murchison et al. 2005). While the null cells express about the same level of Oct4 

as the WT cells, they cannot differentiate in vitro. Markers characteristic of endodermal 

(Hnf4) and mesodermal (Brachyury, Bmp4, and Gata1) lineages cannot be detected 

(Kanellopoulou et al. 2005; Murchison et al. 2005). Dgcr8 knockout ES cells displayed 

similar growth and differentiation defects, although they do express some markers of 

differentiation, and embryoid bodies can continue to grow and differentiate after 16 days 

of being cultured (Wang et al. 2007).  

miRNA expression profiles in mouse ES cells revealed that ES cells express a 

unique set of miRNAs, and that these miRNAs are downregulated as ES cells 

differentiate into embryoid bodies, providing further support that miRNAs play an 

important role in maintaining pluripotency of ES cells (Houbaviy et al. 2003; Suh et al. 

2004; Houbaviy et al. 2005; Landgraf et al. 2007; Babiarz et al. 2008; Ciaudo et al. 

2009). Members of miR-302 and miR-290-295 clusters along with their homologs are 

among the best characterized miRNAs in ES cells, and have been linked to regulating 

ES cell lineage maintenance, differentiation, and proliferation capacity. Benetti et. al. and 
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Sinkkonen et. al. both showed that mESC specific miR-290-295 cluster can target Rbl2, 

which control the expression of Dnmt1, Dnmt3a, and Dnmt3b. This suggests that the 

miRNA cluster plays a role in regulating de novo DNA methylation. (Benetti et al. 2008; 

Sinkkonen et al. 2008). miR-302 has been shown to control germ layer specification by 

inhibiting lefty, an inhibitor of the Nodal pathway (Rosa et al. 2009). In addition, Melton 

et. al. showed that the miR-290-295 cluster can indirectly increase the expression of 

Lin28 and c-Myc to maintain mESCs in their self-renewing state (Melton et al. 2010). 

Lastly, miR-290-295, miR-302, and miR-372 have been found to accelerate cell 

proliferation by promoting G1 to S phase transition through targets such as p21 and 

Lats2 (Voorhoeve et al. 2006; Wang et al. 2007; Card et al. 2008; Lee et al. 2008).  

Recent studies have also linked ES cell specific transcription factors to miRNAs. 

Chip-seq data showed that NANOG, OCT4 and SOX2 bind to promoter regions of miR-

290-295, miR-302, and other highly expressed miRNAs (Card et al. 2008; Marson et al. 

2008). In addition, Polycomb Group protein SUZ12 occupies promoters of tissue specific 

miRNAs that are silenced in ES cells (Card et al. 2008; Marson et al. 2008). 

Interestingly, miRNAs can also control the expression of Nanog, Oct4 and Sox2. Upon 

retinoid-acid-induced differentiation, miR-134, miR-296, and miR-470 have been 

reported to repress the expression of each transcription factor by targeting its coding 

region, further illustrating the important interplay between miRNAs and transcription 

factors in regulating ES cell self-renewal and differentiation (Tay et al. 2008). 

The abilities of ES cells to self-renewal and rapid division make them an 

important system to dissect the function of miRNAs. Understanding how miRNAs control 

their pluripotency potential and proliferation will not only help us better understand key 

aspects of mammalian development, but also provide insights that can be applied to 

reprogramming and cancer. In this thesis, we will focus on the role of miRNAs in 

regulating ES cell survival. 
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T lymphocyte development  
 

T lymphocytes are part of the adaptive immune system that recognizes and 

eliminates specific foreign antigens. T lymphocytes arise in the bone marrow, and 

migrate to the thymus gland to mature into CD4 or CD8 T cells (Figure 2). Mature T cells 

express a unique antigen-binding molecule, the T-cell receptor (TCR) on their 

membrane, and can only recognize antigen that is bound to cell membrane proteins 

called major histocompatibility complex (MHC) molecules. T cells that recognize self-

MHC molecules are selected for survival during positive selection (Starr et al. 2003). 

However, T cells that react too strongly with self-MHC are eliminated through negative 

selection (Starr et al. 2003).  

Maturation of T cells consists of six major steps (Figure 2). Thymocytes early in 

development lack detectable CD4 and CD8, and are referred to as double negative 

(DN). DN T cells can be subdivided into four subsets (DN1-4) characterized by the 

presence or absence of cell surface molecules in addition to CD4 and CD8, such as 

CD44, an adhesion molecule, and CD24, the alpha chain of the Il-2 receptor. The cells 

that enter the thymus, DN1, are capable of giving rise to all subsets of T cells, and are 

phenotypically CD44hi, and CD25-. Once DN1 cells encounter the thymic environment, 

they begin to proliferate and express CD25, becoming CD44low, and CD25+. They are 

called DN2 cells, where rearrangement of genes for the TCR chains begins. As cells 

progress to DN3, the expression of CD44 is turned off and cells stop proliferating to start 

TCR β chain rearrangement. Upon its completion, the DN3 cells quickly progress to 

DN4, where the level of CD25 decreases.  

Both CD4 and CD8 receptors are expressed in the double positive (DP) stage, 

where rapid cell division increases the diversity of the T-cell repertoire. After the rapid 

proliferation, TCR α chain rearrangement starts, which is then followed by positive and 
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negative selection. Cells that fail to make productive TCR gene arrangement or thymic 

selection are eliminated by apoptosis. The 2% that survive will develop into immature 

CD4 or CD8 thymocytes. These single-positive cells undergo additional negative 

selection and migrate to the medulla, where they pass from the thymus into the 

circulatory system.  

Individual cell populations along the developmental series of T lymphocytes are 

enriched for cells undergoing fundamental cellular processes such as proliferation, 

differentiation, and apoptosis. Additionally, cells can be distinguished and easily isolated 

by their unique set of surface markers, making them an ideal experimental system to 

study the role of miRNAs in development.  

Placental development 
 

Mouse placental development begins in the blastocyst when the trophectoderm 

layer is set aside from the inner cell mass at embryonic day 3.5 (Cross et al. 1994) 

(Figure 1). The placenta provides the fetus with nutrients, allows for gas and waste 

exchange, and protects the fetus from the maternal immune system as well as 

environmental stress (Sood et al. 2006).  

Imprinted gene expression has been observed in the placenta, and linked to 

placental function (Kaneko-Ishino et al. 2003). Gynogenetic (two maternal/no paternal 

genomes) and androgenetic (two paternal/no maternal genomes) embryos both exhibit 

defects in trophoblast development (McGrath and Solter 1984). Gynogenetic embryos 

have very few trophoblast cells while androgenetic embryos are characterized by a mass 

of hypertrophic trophoblast (McGrath and Solter 1984). This observation is consistent 

with the parent-offspring conflict hypothesis that has been proposed to explain the 

evolution and maintenance of imprinting in mammals (Moore and Haig 1991). Paternally 

expressed genes are proposed to increase embryonic growth, thereby maximizing the 
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competitiveness of individual offspring bearing a particular paternal genome (Moore and 

Haig 1991). Maternally expressed genes are proposed to suppress fetal growth (Moore 

and Haig 1991). This would allow a more equal distribution of maternal resources to all 

offspring and increase transmission of the maternal genome to multiple offspring, which 

may have different paternal genomes (Moore and Haig 1991).  

To date, over 50 imprinted genes have been discovered, and ~20% of these 

genes show placenta-specific imprinting (Wagschal and Feil 2006). Interestingly, most of 

them are expressed only from the maternal allele (Wagschal and Feil 2006). Many are 

involved in cellular proliferation and growth, although their precise roles in placental 

development and function remain largely unknown (Tycko and Morison 2002). 

Two experimental systems have been used to study trophoblast differentiation 

and placental function. Culture conditions have been established for trophoblast stem 

cells (Quinn et al. 2006). In addition, cells from choriocarcinoma, a malignant cancer of 

the placenta, have been derived and cultured in labs (Pattillo and Gey 1968).  



Chapter 1: Introduction 
 

 35 

 Figure 1. Differentiation of totipotent cells.  
 
ES cells are derived from the inner cell mass (ICM) of the blastocyst-stage embryo. ES cells can 
be cultured in vitro, and their capacity for self-renewal and differentiation potential can be 
maintained in the presence of the cytokine, leukemia inhibitory factor  (Smith et al. 1988; 
Williams et al. 1988) Cultured ES cells can be injected into blastocysts and differentiate into three 
germ layers. Transcription factors (Nanog, Oct4, and Sox2) and miRNAs (miR-290-295 and 
miR-302 clusters) are essential for maintaining pluripotency in ES cells. The outer layer of the 
blastocyst, termed the trophectoderm, gives rise to trophoblast stem (TS) cells in vitro and 
populate the major structures of the placenta in vivo.  
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 Figure 2. T lymphocyte development. 
 
T lymphocytes arise in the bone marrow, and migrate to the thymus gland to mature into CD4 or 
CD8 T cells. DN1 stage of development is a mix of lymphoid and myeloid progenitor cells. T 
lineage commitment is fixed upon rearrangement of the genetic locus encoding the β chain of the 
T cell receptor (TCR) at the DN3 stage. Cells that successfully rearrange this locus proceed to the 
DN4 stage. Following the DN4 stage, cells start expressing the CD4 and CD8 coreceptors to 
become DP cells, where the thymocytes rearrange the α chain of the TCR and undergo positive 
and negative selection. Those cells that are positively selected mature to CD4 SP or CD8 SP T 
lymphocytes and migrate to the circulatory system.  
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The material presented in this chapter was adapted, with permission, from the following 
publication: 
 
Joel R. Neilson, Grace X.Y. Zheng, Christopher B. Burge and Philip A. Sharp (2007). 
Dynamic regulation of miRNA expression in ordered stages of cellular development. 
Genes Dev. 21, 578-589. 
 
 
Experimental contributions: 
 

Joel R. Neilson cloned the short RNAs and performed most of the experiments in the 
chapter. Grace X.Y. Zheng performed all the bioinformatics analysis. 
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Abstract 
 

Short RNA expression in several distinct stages of T lymphocyte development 

was comprehensively profiled.  The total number of miRNAs expressed per cell at 

different stages of development varies over nearly an order of magnitude in parallel with 

changes in total cellular RNA content, suggesting that global miRNA levels are 

coregulated with the translational capacity of the cell.  However, individual miRNAs were 

dynamically regulated during T cell development, with at least one miRNA or miRNA 

family overrepresented at each developmental stage.  MiRNA regulation in this 

developmental pathway is characterized by analog rather than switch-like behavior, with 

temporal enrichments at distinct stages of development observed against a background 

of constant, basal expression of the miRNA. Enrichments of these miRNAs are 

temporally correlated with depletions of the transcript levels of predicted targets, and 

have specific functional consequences.  MiR-181a, which is specifically enriched at the 

CD4+CD8+ (DP) stage of thymocyte development, can represses the expression of Bcl-

2, CD69, and the T cell receptor, all of which are coordinately involved in positive 

selection. 
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Introduction 
 

Short RNAs are known to control gene expression at several different levels in 

organisms ranging from yeast to plants to mammals (Kloosterman and Plasterk 2006). In 

mammals, the best-characterized class of short RNA species is the microRNA (miRNA) 

class.  These 22 nucleotide RNA species repress gene expression at the level of 

translation by binding to the 3′ untranslated region (3′ UTR) of target mRNAs.  The 

precise mechanisms of this repression are probably multifold (Bagga et al. 2005; Pillai et 

al. 2005; Giraldez et al. 2006; Leung et al. 2006; Petersen et al. 2006). 

Both bioinformatic and in vitro experimental data indicate that miRNA:mRNA 

recognition is predominantly mediated by an interaction between the 5′ end of a miRNA 

and a complementary sequence in the mRNA target (Doench and Sharp 2004; 

Brennecke et al. 2005b; Lim et al. 2005). Bases 2-7 or 2-8 of the miRNA are primary 

contributors to target specificity and are referred to as the miRNA “seed” region (Doench 

and Sharp 2004; Brennecke et al. 2005b).  Genomic experiments examining the effects 

of transfection of individual miRNAs in HeLa cells have demonstrated that a high 

proportion of the transcripts downregulated in response to a transfection of a miRNA 

contain sequences complementary to the seed region (Lim et al. 2005).  Based on these 

observations, it is thought that miRNA family members that share common seed 

sequences have similar target specificity.  These observations have been extended to 

predict mRNA targets of miRNAs (Lewis et al. 2003; Lewis et al. 2005) and to 

demonstrate a general reduction in the transcript levels of these targets in tissues where 

these miRNAs are expressed (Farh et al. 2005; Krutzfeldt et al. 2005). 

The number of described mammalian miRNAs continues to increase through 

direct cloning efforts and bioinformatic prediction.  Expression of several individual 

miRNAs such as miR-142 (lymphoid), miR-223 (myeloid), miR-1 (muscle), and miR-9 
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(neuronal), is largely restricted to single tissues or organ systems, consistent with these 

miRNAs having a role in the developmental specification of these cells (Lagos-Quintana 

et al. 2002; Chen et al. 2004).  However, a large number of miRNAs exhibit a more wide-

ranging pattern of expression, consistent with these regulators being involved in events 

such as growth and homeostasis.  A systematic understanding of the roles of miRNAs in 

such events is incomplete as few direct studies of changes in mRNA and miRNA 

expression over the course of a single developmental pathway have been conducted.  

Specific expression of individual miRNAs in several compartments of the 

mammalian hematopoietic system has been well described (Chen et al. 2004; Monticelli 

et al. 2005).  However, a close examination of the dynamic regulation of miRNAs and 

the consequences of this regulation on global gene expression during sequential stages 

of development of a single cell lineage has not been performed.  T lymphocyte 

development in the thymus has been extensively characterized (Starr et al. 2003).  The 

DN1 stage of development is a mix of lymphoid and myeloid progenitor cells (Porritt et 

al. 2004).  T lineage commitment is fixed upon rearrangment of the genetic locus 

encoding the beta chain of the antigen receptor at the DN3 stage; cells that successfully 

rearrange this locus proceed to the highly proliferative DN4 stage.  Following the DN4 

stage, expression of the CD4 and CD8 co-receptors defines the DP stage of thymocyte 

development, at which point the thymocytes rearrange the alpha chain of the T cell 

receptor and undergo positive and negative selection.  Those cells that are positively 

selected mature to CD4 SP (helper) or CD8 SP (killer) T lymphocytes and egress the 

thymus to the periphery. Importantly, individual cell populations along this developmental 

series are enriched for cells undergoing fundamental cellular processes such as 

proliferation, differentiation, and apoptosis.  Dynamic regulation of individual miRNAs 

within these stages might be expected to influence these processes without perhaps 

being critical for development of the T lineage per se.   
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Here we describe discovery-compatible profiling and quantitative measurement 

of short RNA expression from several ordered stages of T lymphocyte development. The 

pool of miRNAs at a given developmental stage correlates closely with the cytoplasmic 

volume as indicated by amount of total RNA.  Although nearly all miRNAs that we 

observe in this process are constitutively expressed, specific miRNAs are enriched at 

distinct stages of thymocyte development.  These enrichments can be correlated with 

depletion of predicted targets of the miRNAs at the genomic level and bear functional 

consequences; in reporter assays, the DP-enriched miR-181a confers repression 

through the 3′ UTR elements of three predicted targets (CD69, Bcl-2, and the T cell 

receptor) known to be regulated at this stage of development. 

Results 

Short RNA Profiling Using Low Nanogram Amounts of Total RNA  

 
We directly cloned short RNAs from developing thymocytes to enable profiling of 

known miRNAs while allowing for the discovery of additional small RNA species of 

potential interest.  This involved developing a variation of existing protocols (Lagos-

Quintana et al. 2001; Lau et al. 2001) to allow cloning of short RNA species from low 

nanogram amounts of total RNA (Figure 1).   

We collected and analyzed 10,533 short RNA clones comprised of 3445 non-

redundant sequences from six stages of T lymphocyte development, each sorted to 

>95% purity (Table 1, Figure 2).  The sequences ranged in length from 16 to 33 

nucleotides.  Each sequence in the library was assigned a cloning frequency from each 

cell type.  957 of the sequences were observed only once, suggesting that the library is 

not close to saturation.  The library was searched using the BLAST algorithm against full 

length miRNA hairpins in mirBase (Release 8.1), tRNA and NONCODE databases (Liu 
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et al. 2005a), and the mouse genome (mm8). While 67% of the clones matched 

precisely to sequences in above databases, an additional 19% of the distinct sequences 

could be annotated if we allowed a single internal mismatch or up to three mismatches 

at the end of the sequence.  We also noticed that over 80% of the clones annotated as 

mismatches using the above criteria fell into the category of 3′ end-mismatches with a 

bias for adenosine or uracil in these positions.  This pattern could reflect biases in the 

cloning procedures or might reflect nucleotide modification or addition in vivo following 

processing by Drosha or Dicer.  Indeed, similar observations have been reported in 

cloning efforts by other groups (Aravin and Tuschl 2005).  Because of this, we elected to 

include these sequences in our analysis and were thus able to annotate 9092 (86.3%) of 

the clones using the above criteria.   

As expected, the majority of clones were miRNAs.  The average percentage of 

clones representing miRNA sequences from each cell type was 68%, ranging from a low 

of 56% in DN3 cells to a high of 82% in DP thymocytes (Table 1).   The relative 

representation of individual sequence classes within each cell type varied similarly.  

Sequences corresponding to genomic regions annotated as repeats or to which ESTs 

have been mapped were generally the second most abundant classes, observed with an 

average cloning frequency of 12%.  The third tier of abundance consisted of sequences 

associated with tRNAs or un-annotated regions of the genome, with average cloning 

frequencies of 6.6%.  An exception was noted in the highly proliferative DN4 population, 

where tRNA-associated sequences were only exceeded in abundance by miRNAs.  

Sequences corresponding to ribosomal RNA, “other” non-tRNA and non-ribosomal 

ncRNA classes, CpG islands, and the RefSeq “Known Gene” category constituted the 

fourth tier of abundance with an average cloning frequency of 1.9%. The vast majority of 

clones associated with ncRNA loci corresponded to the sense strand of the specific 

ncRNAs.  Interestingly, although 319 clones overlapped RefSeq “Known” genes, only 



Chapter 2: Dynamic regulation of miRNA expression in ordered stages of cellular development 

 43 

36% of these clones mapped to these annotations in the sense orientation.  Fully half of 

the clones overlapping annotated genes mapped antisense to the protein-coding region 

of the gene.  The remaining 14%, while associated with RefSeq genes, mapped to more 

than one region of the genome, so the precise location from which these sequences 

originated, and the strand polarity associated with these sequences, could not be 

determined. 

Quantitative Validation of Clone Representation  

We profiled short RNA cloning frequency from two independent preparations of 

DN4 thymocytes and observed a high degree of similarity (Pearson correlation co-

efficient = 0.925). This high degree of similarity demonstrated that the short RNA 

profiling method was reproducible. To determine whether the profile of short RNAs 

accurately reflected their relative abundance in the cell, a quantitative solution-

hybridization based Trilogy® assay (Neely et al. 2006) was used to directly measure the 

abundance of seventeen individual miRNAs in the DP thymocyte population (Table 1,  

Figure 3).  Reassuringly, there was a high degree of correlation between the calculated 

number of copies per cell and relative cloning frequency of each of these miRNAs 

(Pearson coefficient = 0.974).  Surprisingly, this quantification revealed that miRNAs are 

expressed at much lower levels in DP thymocytes than in other mammalian cells in 

which miRNA expression has been directly quantitated.  For example, miR-181a, the 

miRNA cloned with the highest frequency in this cell type, was expressed at roughly 810 

copies per cell as compared to the up to 50,000 copies per cell reported for miRNAs in 

HeLa cells (Lim et al. 2003b).   

To determine that the changes in cloning frequency of individual miRNAs 

throughout thymocyte development reflected the relative abundance of these miRNAs at 

each stage, we used the Trilogy® assay to calculate the copy number of each of 3-5 
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miRNAs independently for each cell stage except DN1 (the scarcity of these cells did not 

permit isolation of sufficient RNA to perform the Trilogy assay).  The copy number for 

each miRNA in each of the cell types was independently determined and plotted against 

the cloning frequency of the miRNA (Figure 4).  We observed generally high correlations 

between miRNA copy number measured by Trilogy assay and cloning frequency in each 

cell type, allowing the copy number of each miRNA species (and of the overall miRNA 

pool) to be estimated for each cell.  

Surprisingly, there was a marked change in per-cell RNA levels during T 

lymphocyte development.  In fact, the per-cell total RNA fluctuates by nearly an order of 

magnitude during this process, from a maximum of 6.8 pg/cell in highly proliferative DN4 

thymocytes to a minimum of 0.7 pg/cell in DP thymocytes undergoing selection. The 

calculated miRNA pool was also highly dynamic throughout T lymphocyte development, 

ranging from about 5000 copies per cell in DP thymocytes to 33000 copies per cell in 

DN4 thymocytes. However, the estimated size of the miRNA pools covaried closely with 

changes in total RNA level at the various stages of T cell development (Figure 4, Figure 

5).  This covariation is reflected in a remarkably constant value for calculated number of 

miRNAs per fg of cellular RNA.  Indeed, although the per-cell RNA and miRNA pool vary 

by 10- and 7-fold, respectively, the calculated miRNAs:total RNA ratio slowly and 

steadily increased by a factor of two between the immature DN3 and mature SP stages.  

In sum, these results strongly suggest that the total pool of miRNAs is tightly regulated 

relative to the levels of ribosomal and messenger RNA. 

Dynamic Regulation of miRNA Species During Thymocyte Development 

The possibility that each stage of T cell development might have a signature 

miRNA pattern was next investigated.  We tested whether the ontogeny relationships of 

the developing thymocytes to one another could be predicted with the miRNA signature 
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of these cells. We performed hierarchical clustering of the cloning frequency of miRNAs 

to infer cell lineage relationships. A ranked correlation coefficient was calculated for all 

pairwise cell type combinations and used as a similarity matrix to generate a rooted tree  

(Figure 6A).  A second rooted tree was generated using mRNA array data from Hoffman 

and colleaugues, who clustered the same cell types (Hoffmann et al. 2003)  (Figure 6B).  

A multiscale bootstrapping method was used to analyze the clustering in each case 

(Suzuki and Shimodaira 2006).  The two dendrograms revealed strikingly similar 

clustering patterns. The immature DN3 and DN4 cells clustered together, the mature 

CD4 and CD8 SP cells clustered together, and DP thymocytes fell at an intermediate 

position.  The DN1 population (which contains several different cell types) clustered in 

the same location in both dendrograms.  These data suggest that the miRNA profile 

reflects the developmental relationships between individual cells to a similar degree as 

the mRNA profile. 

Examination of the libraries indicated that the vast majority of the 136 known 

miRNAs that were cloned in this analysis were present at every stage of thymocyte 

development.  However, there were a number of cases in which an individual miRNA’s 

expression was significantly higher in one cell type than in others by Chi square analysis 

of the frequency data set.  The relative abundance of 21 individual miRNAs varied 

among the six cell populations in a statistically significant fashion (Figure 6C).  

Statistically significant changes were heavily biased towards overrepresentation, with 

twenty events in which miRNAs were significantly enriched in a specific cell type 

compared to five events in which miRNAs were significantly depleted.  Three of the five 

depletions observed (miR-15b, miR-16, and miR-181a) were at the DN1 stage, 

suggesting upregulation of these miRNAs upon commitment to the T lineage.  The other 

two depletions were striking in that they occurred at intermediate stages of T lymphocyte 

development.  Most striking was miR-142-3p, which was downregulated over six fold at 
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the DN3 stage relative to the temporally adjacent DN1 and DN4 stages.  The 

uniqueness of this event in regards to global miRNA expression patterns led us to 

examine it more closely. 

Expression of the miR-142 primary transcript (pri-miR-142) was first examined.  

Surprisingly, qRT-PCR analysis of this transcript revealed that there was no significant 

reduction in relative expression between the DN1 and DN3 stages (Figure 6D). Editing 

of the pri-miR-142 transcript by the p110 isoform of adenosine deaminase 1 (ADAR1) 

has been shown to inhibit processing of this transcript to the pre-miRNA hairpin by the 

Drosha enzyme (Yang et al. 2006).  Since ADAR activity has been demonstrated in rat 

thymus (Paul and Bass 1998; Yang et al. 2003), we wondered whether we could 

attribute the specific downregulation of miR-142-3p at the DN3 stage to the activity of 

this enzyme.  Quantitative RT-PCR analysis demonstrated an increase in expression of 

ADAR1p110 between the DN1 and DN3 stages of development, concomitant with a 

decrease in expression of ADAR1p150 and ADAR2 (Figure 6E). Strikingly, although pre-

miR-142 expression was apparently reduced at the DN4 stage, we noticed an increase 

in miR-142 expression at this stage consistent with a re-upregulation of ADAR2 at this 

stage. Later increases in miR-142 expression correlated with an increase in pri-miR142 

expression and/or a higher relative expression of ADAR2 or ADAR1p150 relative to the 

ADARp110 isoform.   

The miRNA expression dynamics during T lymphocyte development are largely 

consistent with a mode of expression in which basally expressed miRNAs are 

specifically enriched at given stages.  In contrast, stage-specific depletion is much more 

rare, and in the case examined appears to be controlled at the post-transcriptional level. 
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Genomic Signatures of miRNA Families at Individual Stages of Thymocyte 
Development  

Several studies have reported that mRNAs containing seed matches to tissue-

specific miRNAs tend to be expressed at lower levels in the tissue(s) where the miRNA 

is expressed than in other tissues (Brennecke et al. 2005a; Farh et al. 2005; Krutzfeldt et 

al. 2005; Stark et al. 2005).  We analyzed the relationship between stage-specific 

enrichment of miRNAs during T lymphocyte development and mRNA expression in 

these stages using the microarray data of Hoffman et al (Hoffmann et al. 2003).   

 The mRNA array data were normalized to reflect the level of relative expression 

of a transcript in a particular stage as compared to the mean expression of all six stages 

examined. In this representation, one might expect that genes whose mRNA levels 

changed most between stages would be enriched for large-scale differences controlled 

at the level of transcription, obscuring the more subtle effects that have been observed 

for miRNAs in a global analysis.  We therefore eliminated the five percent of genes 

exhibiting the greatest degree of enrichment and the five percent of genes exhibiting the 

greatest degree of depletion at each stage, examining the cumulative distribution of the 

remaining 90% of transcripts at each stage using a non-parametric Kolmogrov-Smirnov 

(KS) statistic. The hypothesis that relative expression of genes with UTR elements 

harboring seed matches was increased or decreased in each cell type was tested. 

The largest enrichment in cloning frequency observed was for miR-181a at the 

DP stage of thymocyte maturation; we chose this miRNA for a preliminary analysis. The 

most significant depletion of predicted miR-181 family targets at the DP stage was 

observed when targets were defined as all transcripts harboring a sequence 

corresponding to positions 2-8 of the miR-181 family seed and compared to a set of 

control targets harboring a similar numbers of seed matches to a control sequence (p = 

0.003, Figure 7A).  Interestingly, there was also a significant enrichment of predicted 
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miR-181a targets at the DN3 stage, with no enrichment or depletion occurring at the 

DN1, DN4, CD4 SP, or CD8 SP stages. 

We extended our analysis to other miRNA families that were statistically enriched 

or depleted at various stages of thymocyte development, using the same target definition 

for the broader analysis.  Again, the aggregate expression of all miRNA family members 

in a given cell type (e.g. summing the expression of miR-15a, miR-15b, and miR-16, all 

of which share a common seed) was considered rather than the abundance of individual 

statistically enriched or depleted miRNAs.  Of 91 seed families tested, 20 were 

demonstrated to vary significantly over the course of thymocyte development (Figure 

7B). 

When requiring a p value of less than 0.05 in the KS test, 26 enrichments or 

depletions were observed in a set of 120 comparisons (20 miRNA family aggregates in 

six stages) (Figure 7B).  These enrichment and depletion events were identified for 

fourteen of twenty significantly changed miRNA families, with depletion of seed match-

containing transcripts for at least one significantly enriched miRNA family in each cell 

type. (Figure 7B).  Relative miRNA expression was ranked in each cell stage and 

enrichment and depletion events were examined in regards to these levels.  Fully 50% of 

target depletion events were observed at the stage at which the miRNA was most highly 

expressed, while no enrichment events were observed at this stage (Figure 7C). 

Surprisingly, the majority of enrichment events for predicted targets were observed at 

the stage in which the miRNA was expressed at the second highest level.  We took 

advantage of the temporal arrangement of the various thymocyte developmental stages 

to address this observation. 

The general pattern of expression of miRNA families mirrored that of individual 

miRNAs, characterized by constitutive expression with significant enrichments at a 

single stage of thymocte development. Examination of the enrichment and depletion of 
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predicted targets revealed an overrepresentation of depletion events at the cell stages 

prior to, at, or following which the highest miRNA expression was observed (Figure 7D).  

Closer examination of these adjacent stages revealed that target enrichment only 

occurred prior to, but never at or following the cell stage with the highest level of miRNA 

expression (Figure 7E).  

The observed patterns of miRNA expression are consistent with three modes of 

activity.  In the first case, (miR-181 family) depletion of predicted targets is observed at 

the stage where the miRNA is acutely enriched.  In the second (miR-25,92 family), a 

more gradual upregulation of the miRNA results in  depletion of predicted targets prior to 

the maximal expression of the miRNA.  In the final case, enrichment of miR-142-5p at 

the DN1 and DN4 stages appears to hold predicted miR-142-5p targets at a background 

level, with depletion of this miRNA at DN3 allowing enrichment of predicted targets at 

this stage. Importantly, all three of these potential modes of action are consistent with 

negative effects on transcript expression at stages of high miRNA expression.  We 

wondered whether these global effects could be correlated with the regulation of genes 

known to be involved in thymocyte maturation at specific stages.    

miR-181a Represses Expression of Genes with Roles in Thymocyte 
Maturation Through Their 3′ UTR Elements 

We focused again on the miR-181 family; this family of miRNAs is strikingly 

upregulated at the DP stage of thymocyte development, and might thus be expected to 

most dramatically impact gene expression at this stage.  MiR-181 has been reported to 

be highly expressed in thymocytes (Chen et al. 2004); however, the developmental 

specificity of this expression has not been described.  The Targetscan 3.0 server (Lewis 

et al. 2005) was used to identify candidate targets of the miR-181 family that might play 

a role in the processes of positive or negative selection characteristic of this stage of T 
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cell development.  Notably, CD69 and Bcl-2 are predicted targets of the miR-181a 

family. Bcl-2 is known to be selectively downregulated at the DP stage of thymocyte 

development (Gratiot-Deans et al. 1993), but expression levels of this gene are restored 

following positive selection to the CD4 or CD8 SP stage.  CD69 expression is increased 

on DP cells that have undergone positive or negative selection; this marker has been 

shown to appear on the surface of stimulated T cells less than thirty minutes following 

stimulation (Hara et al. 1986).  Interestingly, surface expression of the antigen receptor 

is also increased in DP thymocytes following positive selection; this is known to occur 

post-transcriptionally (Bonifacino et al. 1990; Maguire et al. 1990).  Although neither the 

alpha nor the beta chain of T cell receptor is a predicted miRNA target on the 

Targetscan server, we noticed a seed match to the miR-181 family in the 3′ UTR of the 

TCRα transcript.  The precise location of this seed match is conserved to rat, and the 

human TCRα UTR features a miR-181 seed match nearby.  We wondered whether miR-

181 might control expression of Bcl-2, CD69, the TCRα chain, and other genes with 

known or putative roles in positive selection through interactions with the 3′ UTR 

elements of their transcripts 

The 3′ UTR elements of several predicted targets of miR-181a were fused to a 

luciferase reporter, and we examined the ability of a synthetic miR-181a siRNA duplex to 

repress the expression of these constructs in HeLa cells.  Relative to transfection of a 

control siRNA, miR-181a significantly downregulated reporters fused to the 3′ UTRs of 

the TCRα chain, CD69, and Bcl2 (Figure 8).  The downregulation of Bcl-2 was 

marginally enhanced but not dependent upon the presence of the AU-rich stability 

element (ARE) in the 3′ UTR of this gene.  Expression of reporters fused to the predicted 

miR-181 targets TOX, Runx1, EGR1, Bcl2AF1, and FoxP1 were not significantly 

downregulated by transfection of synthetic miR-181a (Figure 8), even though each of 
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these genes is a predicted target of the miR-181 family and contain similar seed 

matches.  We concluded that miR-181a is able to selectively repress the expression of a 

reporter gene fused to the 3′ UTR elements of the Bcl-2, TCRα, or CD69 genes. 

Dysregulation of miR-181a Targets in Dicer-deficient DP Thymocytes 

The finding that miR-181a was able to directly repress the expression of a 

reporter gene fused to the 3′ UTR elements of CD69, Bcl-2, or the TCR α-chain 

suggested that the expression of these genes would increase if miR-181a levels were 

decreased in DP thymocytes.  Thus, expression of these genes in Dicer-deficient DP 

thymocytes was examined.  An lck-cre transgene (Hennet et al. 1995) was crossed into 

the floxed Dicer background (Harfe et al. 2005) to effect recombination of Dcrf alleles at 

the DN3 stage of thymocyte development. 

The overall pattern of CD69 expression was conserved in Dicer-deficient DP 

thymocytes. However, these cells exhibited a reproducibly higher median fluorescence 

intensity when compared to sex-matched littermate controls harboring a functional allele 

of Dicer (Figure 9A). Similarly, the T cell receptor (TCR) was expressed at a higher level 

in Dicer-deficient cells (Figure 9B).  Interestingly, the relative increases in expression of 

CD69 and the TCR in Dicer-deficient DP thymocytes observed in vivo correlated with the 

relative repression observed in the above 3′ UTR assays.  

Finally, Bcl-2 expression in Dicer-deficient DP thymocytes was examined. Dicer-

deficient DP thymocytes expressed levels of Bcl-2 protein markedly lower than those 

observed in control cells.  Consistent with a previous study (Cobb et al. 2005), Dicer-

deficient thymocytes were more apoptotic than control cells. We suggest that loss of 

Dicer function induces a transcriptional program in DP thymocytes that obscures any 

specific effect of miR-181a on levels of Bcl-2 protein expression.  
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Modulation of Potential miR-181a Targets by Transfection of Nucleic Acids 
into Dicer-deficient DP Thymocytes 

The increased expression of CD69 and the TCR in Dicer-deficient DP 

thymocytes is consistent with the regulation of these gene products by miR-181a and 

miR-181b, both of which are specifically upregulated at the DP stage.  However, Dicer 

deletion would be expected to reduce the levels of all miRNAs.  Thus, the increase in 

expression of CD69 and the TCR in DP thymocytes might be due to reasons other than 

the reduction in levels of the miR-181a family.  To demonstrate direct regulation of CD69 

and the TCR in DP thymocytes by the miR-181 family Dicer-deficient DP thymocytes 

were isolated from mice and cotransfected with miR-181a or control siRNAs in addition 

to a GFP marker plasmid.  There was a reproducible reduction in the surface levels of 

CD69 in GFP positive thymocytes when compared to GFP positive thymocytes that had 

been transfected with a control siRNA duplex (Figure 9C and D; Figure 10).  A similar 

repression of the TCR complex was not observed within the time frame of the 

experiment, potentially due to the fact that the fully assembled T cell receptor has an 

exceptionally long half-life (Minami et al. 1987).  We concluded that in Dicer-deficient DP 

cells, specific introduction of miR-181a is able to repress CD69 expression.  The reporter 

assays demonstrate that miR-181a is able to effect this repression directly through the 3′ 

UTR elements of these genes.  Thus, it is likely that miR-181 family members directly 

regulate the levels of CD69 and the TCR through their 3′ UTR elements at the DP stage 

of thymocyte development.   

Discussion 
 

We quantitatively profiled short RNA species from sequential stages of 

development of a single mammalian cell lineage, documenting dynamic regulation of 

individual miRNAs and miRNA families during this process.  This regulation is correlated 
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to changes in gene expression at the genomic level in the processes of lineage 

commitment, stepwise maturation, and the developmental decision to mature to one of 

two related but highly different cell types.  The functional significance of these dynamics 

is demonstrated in the context of miR-181a and its predicted targets. 

The degree of variation in the total miRNA pool and total cellular RNA content 

across the T lymphocyte developmental progression is striking.  The miRNA pool varies 

per cell from a minimum of 5,000 molecules per cell in DP thymocytes to 33,000 

molecules per cell in DN4 cells.  At the same time, total RNA content ranges from a low 

of 0.7 pg of RNA per cell in DP thymocytes to a maximum of 6.8 pg of RNA per cell in 

DN4 thymocytes. The major changes that we observe in per-cell miRNA pool and total 

RNA content stand in stark contrast to the constant, progressive increase in the ratio of 

the total miRNA pool to the total RNA pool.  This progressive increase is consistent with 

previous studies in which overall miRNA levels are correlated to the level of 

differentiation of a cell (Lu et al. 2005), but our data also suggest that global miRNA 

levels are tightly coupled to cytoplasmic volume and/or ribosomal content.  Cells that are 

rapidly proliferating (e.g. DN4 cells) are likely to be more transcriptionally and 

translationally active.  The corresponding increase in the number of transcripts and level 

of translation would necessitate an increase in miRNA levels to maintain the same 

degree of control of the transcriptome. Although the absolute copy number of miR-181a 

is lower in DP cells than at any other developmental stage, it represents a higher fraction 

of the miRNA pool. It is only in the context of relative concentration that miR-181a 

mediates its biological effect at the DP stage of development.  Thus, the concentration of 

an individual miRNA in relation to its targets is likely to be more important than its 

absolute copy number.  

In relative terms, the vast majority of short RNAs were expressed at constant 

levels throughout thymocyte development.  Of 136 miRNAs that were observed in the 
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study, only 21 were observed to vary by cell type. Consideration of the aggregate 

expression of miRNA family members yielded largely consistent observations in regards 

to miRNA expression dynamics.  However, there were instances in which the aggregate 

miRNA family revealed additional enrichment (miR-23) or changed the stage at which 

significance was observed (miR-15 family). The significantly changed miRNAs and 

miRNA families were continually expressed throughout thymocyte development, with 

transitory enrichments at specific cell stages. Curiously, while a high level of enrichment 

for at least one miRNA or miRNA family was observed at each distinct stage of 

thymocyte development, the reverse pattern of specific depletion at a single stage was 

much more rare.  A major depletion in the cloning frequency of both products of the miR-

142 gene at the DN3 stage is one exception (Figure 6, Figure 7).  The relative 

expression of various ADAR family members at and adjacent to this developmental 

stage coupled with the lack of transcriptional downregulation of pre-miR-142 at the DN3 

stage suggest a model in which ADAR2 and/or ADAR1p150 compete with ADAR1p110 

to inhibit editing of pri-miR-142, ensuring proper maturation of the mature miR-142 

miRNAs.  Indeed, the perturbed pri-miR-142 editing patterns described in ADAR null 

mutants are consistent with this model (Yang et al. 2006). This may partially explain why 

this miRNA is an exception to the rule of basal expression with stage-specific enrichment 

observed for other miRNA species. 

Statistically significant changes in the relative levels of expression of predicted 

mRNA targets were observed for 14 of 20 dynamically regulated miRNA families and for 

at least one miRNA family in each developmental stage examined. Consistent with a role 

in directly repressing the levels of proteins encoded by target mRNAs or reinforcing 

transcriptional downregulations, in most cases underrepresentation of predicted targets 

was observed around local maxima in miRNA family expression. This strong correlation 

indicates that regulation by miRNAs is a characteristic of many intermediate 
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developmental stages, and not solely of mature, differentiated cells or “one-way” 

developmental specification.  

The dispensability of the RNAi pathway for thymocyte maturation has been 

suggested by conditional deletion of Dicer in the T lineage (Cobb et al. 2005; Muljo et al. 

2005). However, it is unclear from these studies whether individual cells had completely 

lost Dicer activity and miRNA function at the point that positive selection and lineage 

choice occurred.  Indeed, even using the early-acting lck-cre transgene, DP cells exhibit 

detectable levels of mature miRNAs (Cobb et al. 2005).  The 10-fold reduction in 

thymocyte number in these mice at stages immediately following deletion of the floxed 

locus (Cobb et al. 2005), coupled with a marked increase in apoptosis of Dicer-deficient 

thymocytes both in vivo and ex vivo (Cobb et al. 2005), leads us to believe that 

elimination of Dicer is quite deleterious, manifesting after Dicer protein, and the miRNA 

pool have been depleted.  Indeed, peripheral T cells in lck-cre Dicerf/f mice are enriched 

for non-recombined alleles of Dicerf. 

In any case, it is clear that even individual miRNAs can influence hematopoietic 

development. Mice reconstituted with cells transduced with a miR-181a overexpression 

vector exhibit a paucity of T lymphocytes (Chen et al. 2004).  While this was interpreted 

as a facilitated commitment to the B lineage, the results of this study provide an 

alternative explanation.  Disruption of CD69 signaling has been shown to negatively 

impact the egress of lymphocytes from lymphoid organs, including the thymus 

(Nakayama et al. 2002; Alfonso et al. 2006; Shiow et al. 2006).  Forced expression of 

miR-181 past the DP stage of thymocyte development would be expected to decrease 

CD69 levels on positively selected thymocytes, resulting in retention of these cells in the 

thymus and an apparent decrease in peripheral T cells.  Our data in regards to miR-

181a’s effect on the expression of Bcl-2 and the TCR in vivo are less complete.  

However, the effects of forced expression of miR-181 on these gene products would 
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further exacerbate the phenotype resulting from lowered CD69 expression.  Reduced 

expression of the TCR would be expected to shift the threshold for positive and negative 

selection, while an inability to increase Bcl2 expression upon positive selection would 

result in cell death. Recent work by Li and colleagues suggest that miR-181 can 

increase the sensitivity of DP cells to stimulation of the T-cell receptor (TCR) (Li et al. 

2007). Blocking miR-181 in DP cells suppresses both positive and negative selection. 

miR-181 represses the expression of a group of protein phosphatases, which are 

negative regulators of two TCR signaling molecules, Lck and Erk (Li et al. 2007). Thus 

the expression of miR-181 in DP cells increases the basal phosphorylation levels of Lck 

and Erk, reduces their activation threshold, and enhances TCR signaling strength (Li et 

al. 2007). 

Returning to the more global observations of this study, the lower relative degree 

of enrichment or depletion of predicted targets and subtle effects on gene expression in 

this study, (particularly in regards to similar computational studies) at first seem 

unremarkable. However, other studies have compared gene expression profiles in 

tissues specifically expressing a given miRNA or from cell lines in which an ectopic 

miRNA is introduced. This analysis stands in stark contrast for the reason that nearly 

every miRNA that we observe is expressed throughout T lymphocyte development, with 

graded increases or decreases at specific times during this process.  This pattern of 

constant expression with transient enrichment is not consistent with the “switch like” 

function that has been attributed to miRNAs with known developmental roles (Reinhart 

et al. 2000; Fazi et al. 2005; Giraldez et al. 2006), and suggests two things:  First, any 

individual miRNA would be expected to exert some level of post-transcriptional control at 

all times, with more or less robust effects during times of significant enrichment or 

depletion, respectively. It follows that these miRNAs would not be expected to 

dramatically effect gene activation and repression, instead exerting most of their effects 
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to modulate gene expression at an intermediate level.  Second, the role of individual 

miRNAs and miRNA families extends beyond the temporal window of their first 

expression, continuing to play an active role in fundamental processes in subsequent 

cell stages.  
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Methods 

Mice 

C57/BL6 mice were from Taconic or Jackson labs.  The Dicerf/f mouse has been 

described (Harfe et al. 2005).  The lck-cre transgenic mouse was from the Jackson 

laboratories.  All mice were housed, handled, and euthanized in accordance with federal 

and institutional guidelines. 

Thymocyte and RNA isolation 

Thymocytes were isolated from female mice aged 5-10 weeks and stained with 

antibodies from BD-Pharmingen.  Populations were designated as follows: CD4SP - 

CD4+CD8+TCRhi, CD8SP - CD8+CD4-TCRhi, DP - CD4+CD8+TCRmed/lo, DN - CD4-CD8-

CD19-GR1-γδ-TER-119-CD11b-DX5-.  DN cells were further divided as follows: DN1 - 

CD44+CD25-, DN3 - CD44-CD25+, DN4 - CD25-CD44-.  Cells were sorted to > 95% 

purity and processed using Ambion’s miRVana kit as per manufacturer’s instructions to 

isolate both short and long fractions of RNA.  For preparation of bulk DP cell RNA in the 

direct quantification experiments, we used a one step positive selection with biotinylated 

anti-CD8 and anti-biotin magnetic beads (Miltenyi). This routinely resulted in purities of 

greater than 95%. 

Short RNA Cloning 

Short RNAs were cloned essentially as described (Lagos-Quintana et al. 2001; Lau et al. 

2001).  We cloned directly from the short RNA fraction eluted from miRvana columns.  

There was no gel isolation between the 5′ and 3′ adapter ligations steps.  Following RT 

(Superscript III, InVitrogen) and ten cycles of PCR amplification with AmpliTaq Gold 
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(Perkin Elmer), we digested our amplifications with the appropriate enzyme (Stu I or Pvu 

II, both from NEB) and gel isolated from a denaturing polyacrylamide gel using a 10 bp 

ladder (In vitrogen) and SyBR Gold (Molecular Probes).  After the first round of 

amplification, we switched to Pfu Turbo, iterating amplification, digestion, and gel 

isolation until cloneable product could be identified.  For this study, we amplified various 

libraries anywhere from 30 to 38 cycles in total.  Bioinformatic extraction of individual 

short RNA clones from sequence reads was as described (Houbaviy et al. 2003).  

3′linkers: Stu: 5′-CCTGTATCTGTGTATGGddC-3′; Pvu:5′-CTGG-TATCTGTGTATGGddC-3′.  

5′ linkers: Stu: 5′-ACCACAGAGAAACCGrArGrG-3′; Pvu: 5′-

ACCACAGAGAAACCGrCrArG-3′.  3′RTprime/PCRoligos: Stu: 5′-GACTAGCTTGGTGCC-

ATACACAGATACAGG-3′; Pvu: 5′-GACTAGCTTGGTGCCATACACAGATACCAG-3′.  5′ 

PCR oligos: Stu: 5′-GAGCCAACAGGCACCACAGAGAAACCGAGG-3′; Pvu: 5′-GAGCCA-

ACAGGCACCACAGAGAAACCGCAG-3′.  A detailed protocol is available on request. 

Direct miRNA quantitation and calculation of miRNA copy number per cell 

Thymocytes were sorted to >95% purity, directly counted in a hemacytometer, and lysed 

in Trizol.  Five fmol of miR-196a was spiked into each lysis and later detected as a 

recovery control. Initial experiments in DP thymocytes were performed without a 

recovery control.  In later experiments, the average recovery for four independent 

isolations of DP thymocytes was calculated, and data from earlier DP quantitations was 

normalized to this value.   RNA was processed as per manufacturer’s instructions, 

quantitated on a Nanodrop spectrophotometer, and assayed using the Trilogy Assay 

(U.S. Genomics) essentially as described (Neely et al. 2006).  The molarity of a given 

miRNA in each sample was determined by fitting the coincident events in the RNA 

sample to a curve generated with a synthetic miRNA template in a complex background.  
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Phylogenetic Analysis 

We used the complete linkage method of hierarchical clustering in the R software 

package to generate rooted trees from miRNA and mRNA expression data.  To eliminate 

noise, we omitted miRNAs cloned less than five times overall and set mRNA array 

values less than log2(20) to log2(20). Significance of clustering was analyzed with the 

Pvclust package (Suzuki and Shimodaira 2006). 

qRT-PCR Analysis of ADAR Expression 

RNA was extracted with Trizol, DNAse-I digested, and reverse-transcribed using the 

SuperScript III kit. Quantitative Real-Time PCR was performed using a SYBR-Green kit 

(Applied Biosystems) on a ABI 7500 instrument using the following oligos: A1LF 5′-

GACTAC-GCGTTGGGACTAGC-3′; A1LR 5′-TGCTGAAGCTGGAAACTCCT -3′; A1SF 

5′-CTTGCC-GGCACTATGTCTC-3′; A1SR 5′-TGCTGAAGCTGGAAACTCCT-3′; AB1F 

5′-CCAGTCAA-GAAGCCCTCAAA-3′; AB1R 5′-GCGGTACTTGGAGTGACCAT-3′.  

Changes in relative expression of ADARp110 and ADARp150 were similar whether TBP 

or Tubulin were used as a control.  The pri-miR-142 oligos have been described (Yang 

et al. 2006). 

Luciferase assays 

HeLa Cells were transfected at 80% confluency in 24 well plates with 100 nM siRNA, 

100 ng of pGL3, 700 ng of Renilla/UTR reporter.  Cells were split 1:3 4-6 hours after 

transfection and assayed at 48h in a Dual Luciferase Assay (Promega). All results were 

normalized to the effect of siRNAs on pRL-TK-RenCX6X (Doench et al. 2003).  Si181a 

is the predicted post-Dicer processing product of the miR-181a pre-miRNA hairpin. 

UTRs were amplified with the following oligos and subcloned into the Not I and Xho I 
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sites of pRL-TK-CX6x: ToxF 5′-AGCTAGCTCGAGCATGTGAGCTTGTGG- GTCAC-3′, 

ToxR 5′-ATGCATGCGGCCGC- AGCACTTAGCTAGCGCGTTC-3′, RunxF 5′-

AGCTAGCTCGAGTGCATCTGGGTGGTCA- TTTA-3′, RunxR 5′-

ATGCATGCGGCCGCT- TGGATCTTTGGGGTACAGC-3′, CD69F 5′-

AGCTAGCTCGAGACTGTGCCATAGCACC-ACAG-3′, CD69R 5′-

ATGCATGCGGCCGCA- CAGCTTAAACTTTATAGTGGGTTTT-3′, EGRF 5′-

AGCTAGCTCGAGCATCTGTGCCAT- GGATTTTG-3′, EGRR 5′-

ATGCATGCGGCCGCTATCCCATGGGCAATAGAGC-3′, Foxp1F 5′-

AGCTAGCTCGAGAGACCGAAGATTGGGGAAAA-3′, Foxp1R 5′-ATGCATGCGGCC- 

GCTG AGGTCAGAACTTAAA 5′-ATG-3′, Bcl2af1F 5′-AGCTAGCTCGAGGCAAACATA-

AGGAGGACAGCTT-3′, Bcl2af1R 5′-ATGCATGCGGCCGCAGGGGAGCATCATGCAA- 

TAC-3′, TcrbF 5′-AGCTAGCTCGAGTATGCATCCTGAGCCGTTCT-3′, TcrbR 5′-

ATGCA-TGCGGCCGCCTCCATGTTTTTATTGATTTAGTCTG-3′, TcraF2 5′-

AGCTAGCTCGAG-GCAAGACTGACAGAGCCTGA-3′, TcraR2 5′-

ATGCATGCGGCCGCGAATCACCTTTAA-TGATGTCATGG-3′. 

Transfection of DP thymocytes 

Whole thymocytes were isolated and nucleofected using the Primary T cell 

Nucleofection Kit (Amaxa) and program X-001. 5X106 cells were nucleofected with a 1.5-

3 µg of siRNA duplexes and 1 ug pMaxGFP.  Levels of surface markers were monitored 

at 12-16h post-nucleofection. 
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Table 1. Short RNA cloning statistic.  
 
The number of clones falling into a particular annotation class is listed for each cell type.  The 
representation of the class within the library derived from an individual cell type is listed in 
parentheses.  Column totals do not reflect the sum of annotated clones or percentages in a given 
cell type due to overlap among the Known Gene, EST Repeat, and CpG classes in the UCSC 
annotation database. miRNA# denotes any fragment of a miRNA hairpin other than the mature 
miRNA, e.g. the miRNA* strand or loop. 
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Table 2. Calculation of copy numbers of individual miRNAs in 
CD4+CD8+ thymocytes. 
 
miRNAs were quantitated by solution hybridization and direct detection using a U.S. Genomics 
Trilogy platform. In each individual experiment, a standard curve was plotted from triplicate 
standards of known concentration of a synthetic target in a complex background. Values obtained 
for triplicate samples of DP thymocyte RNA were fitted to this curve to determine moles per 
microgram, and then molecules per cell. In later experiments, we performed a recovery control by 
detecting a synehttic miR-196a that had been “spiked” into the Trizol during cell lysis. The 
average recovery from these latter experiments (~75%) was used to estimate the recovery of 
earlier RNA isolations, and initial measurements were scaled by this factor. The plot of copy 
number per cell vs. frequency of cloning in DP thymocytes in Figure 4 is a graphical 
representation of the above analysis. The data represent 43 individual experiments performed in 
triplicate from any one of seven distinct preparations of DP total RNA. Results of two 
independent measurements of miR-16 and miR-21 in Hela cells are also shown. 
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Figure 1. Modified cloning protocol.  
 
(A) In order to generate short RNA libraries from limiting (ng) amounts of total RNA, we 
redesigned linker sets with “blunt-cutter” restriction half sites at their termini, such that ligation 
of a 5′ linker to a 3′ linker would result in a cleavable product. An iterated process of PCR 
amplification and enzyme digestion was used to obtain clonable product. This parallel strategy 
also offsets insert loss by single enzyme digestion and reduces library bias stemming from T4 
RNA ligase end specificity. In addition, the two libraries can be compared prior to pooling for 
consistency. (B) Linker design and digestion schematics. 
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Figure 2. Processing and annotation flowchart for cloned 
sequences. 
 
Cloning and sequencing of cDNA clones from six stages of T lymphocyte development yielded a 
total of 10533 clones ranging in length from 16 to 33 nucleotides. We used BLASTN to query 
these clones against miRNA mirBase (Release 8.1) (Griffiths-Jones 2006), Rfam (Griffiths-Jones 
et al. 2005), the NONCODE database  (Liu et al. 2005a), and the mouse genome (mm8 
assembly). In total, we were able to map 9092 (86.3%) of the clones to sequences in the above 
databases.  Roughly two-thirds of these clones (67.3%) match precisely, whereas the balance of 
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of clones align to known sequences when up to 3 mismatches are allowed. The proportion of 
sequences not matching precisely is higher than what one would expect by chance, assuming a 
sequence of 22 nucleotides long, and overestimating the polymerase error rate at one percent.  We 
elected to include sequences in our analysis aligning with one mismatch anywhere in the 
sequence or any sequence having up to three mismatches at the end. The latter concession 
allowed automated identification of clones derived from tRNA species, which are post-
transcriptionally modified with a 3′ CCA motif.  In addition, the majority of mismatches observed 
in miRNA species appeared to be base additions to the 3′ end, with a bias towards an adenosine 
or uracil.  This observation has been previously described (Aravin and Tuschl 2005), and is 
suggestive of post-Dicer modification of miRNA species.  We did not observe a bias in 
composition of the internal mismatches that would suggest known modes of RNA editing. The 
miRNA# class is composed of any fragment of a known miRNA hairpin except the mature 
miRNA (e.g. loop, *strand). The 1441 clones not aligning to the mouse genome according to our 
criteria and excluded from the above analysis were queried against the genomes of 369 bacterial 
species (downloaded from NCBI), Bos taurus (bosTau2 assembly) and Homo sapiens (hg18 
assembly) to check for potential contamination introduced by cloning vehicles, bovine serum and 
human contact. In addition, we queried the sequence against one mammalian (Canis familiaris) 
and one non-mammalian (Gallus gallus) species as specificity controls.   
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Figure 3. Schematic of longitudinal miRNA quantitation 
experiments. 
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Figure 4. Absolute copy numbers of miRNAs in Thymocyte 
populations.  
 
(A) Individual miRNAs were quantitated using the US Genomics Trilogy and Trilogy 2020 
instruments. Measured values were fitted to a standard curve generated with synthetic miRNA to 
determine molarity. We used this information along with cell counts and recovery controls to 
calculate the copy number per cell for individual miRNAs in each cell type. (B) Measured pg 
total RNA per cell. (C) Calculated miRNA pool per cell. For each cell type, we used the average 
of the constants calculated for each data point in (A). (D) Calculated miRNAs/fg total RNA for 
each cell type. For correct propagation of error, error bars in (A) and (D) represent the SEM. 
Error bars in (B) and (C) represent the SD. 
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Figure 5. Measurements of total RNA content per cell.  
 
Rooted trees were generated from miRNA and mRNA expression data derived from each 
thymocyte population. Values were derived from cell counts, total RNA quantification, and 
measurement of the concentration of individual miRNAs in each cell type normalized to a 
recovery control.  The calculated miRNA pool represents an estimate based on the average of 
constants relating miRNA copy number to cloning frequency. We were not able to obtain enough 
DN1 cells to perform miRNA quantitation analysis. 
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Figure 6. miRNA expression is dynamically regulated during 
thymocyte development.  
 
(A) Relationship of cells determined by Spearman correlation of miRNA profiles. (B) 
Relationship of cells determined by Spearman correlation of mRNA profiles (Hoffmann et al. 
2003). Values at branch points in (A) and (B) denote multiscale bootstrapping significance 
values. (C) Heat map representing relative expression of the 21 miRNAs that were identified as 
enriched or depleted during thymocyte development by the Chi square test. Asterisks reflect 
statistically significant enrichment or depletion. (D) qRT-PCR analysis of pri-miR-142 in 
thymocyte populations.  (E) qRT-PCR analysis of ADAR family members in thymocyte 
populations. 
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Figure 7. Genomic signatures in response to changes in miRNA 
family member expression.  
 
(A) Cumulative distribution plots of predicted target expression for miR-181 family members 
versus control heptamers at each stage of thymocyte development. (B) Chi square analysis of 
aggregate expression of miRNA family members. Arrows indicate significant (p < 0.05) 
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enrichment (up) or depletion (Lu et al.) of targets relative to control heptamers. Asterisks reflect 
statistically significant enrichment or depletion of the indicated miRNA family.  (C) Enrichments, 
depletions, and no change of predicted targets at each miRNA expression ranking level for the 20 
miRNA families shown.  (D) Temporal analysis of enrichments and depletions during thymocyte 
development relative to stage of maximum miRNA family aggregate expression. Significance of 
these enrichments when compared to 1000 randomizations of the data set is shown. 
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Figure 8. Repression of predicted miR-181a target UTRs in a 
reporter assay.  
 
The 3′ UTR elements of several genes identified by the Targetscan 3.0 server (Lewis et al. 2005) 
as potential miR-181a targets were tested in a dual-luciferase assay.  An alignment of the 
conserved seed matches are indicated for each predicted target. Graphs indicate expression of the 
construct in HeLa cells transfected with a control siRNA duplex versus a miR-181a duplex 
normalized to the effect of each siRNA on a control UTR in a dual luciferase assay.  Results are 
representative of a minimum of three independent experiments performed in triplicate, Error bars 
represend one SD. 
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Figure 9. Dysregulation of CD69 and the TCR in Dicer-deficient 
DP thymocytes.  
 
CD69 (A) and TCR (B) staining on electronically gated DP thymocytes from lck-cre+ and control 
Dicerf/f mice. Derepression was normalized via median fluorescence intensity (bar graphs). (C) 
CD69 levels on GFPhi and GFPneg Dicerf/f DP thymocytes transfected with a miR-181a or control 
siRNA. (D) As in C, examining lck-cre+ Dicerf/f DP thymocytes. Median fluorescence intensities 
for each parameter are provided in Figure 10. Results are representative of a minimum of three 
individual experiments. 



Chapter 2: Dynamic regulation of miRNA expression in ordered stages of cellular development 

 77 

 

Figure 10. CD69 expression is inversely correlated with GFP 
intensity in Dicer-deficient and control DP thymocytes 
transfected with miR-181a.  
 
(A) Representative gating of forward- and side-scatter gated GFP negative, low, and high 
populations in Dcrf/f thymocytes transfected with control or miR-181a or control siRNAs are 
shown. The CD69 staining profiles of DP thymocytes from each population are overlaid to the 
right. (B) Analysis of transfected lck-cre+ Dcrf/f DP thymocytes as in (A). (C) Normalized median 
fluorescence intensity of populations transfected with si-miR-181a in (A) and (B). The values for 
each parameter are set relative to the same populations in cells transfected with the control 
siRNA. 
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CHAPTER 3: Multiple abundant miRNA families 
collaborate to buffer embryonic stem cells from 

apoptosis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The material presented in this chapter was adapted, with permission, from the following 
manuscript: 
 
Grace X.Y. Zheng, Arvind Ravi, Christopher B. Burge and Philip A. Sharp. Multiple 
abundant miRNA families collaborate to buffer embryonic stem cells from apoptosis. (in 
preparation) 
 
 
Experimental contributions: 
 

Arvind Ravi cloned all the luciferase constructs, and performed all the luciferase assays. 
Grace Zheng performed all the bioinformatics analysis and conducted the cell cycle and 
apoptosis experiments.  
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Abstract 
 

MicroRNAs are an important class of short RNAs that play critical roles in post-

transcriptional gene regulation.  Generated by cleavage of longer hairpin transcripts by 

the enzyme DICER, they are emerging as key regulators of various mammalian cell 

types, including embryonic stem cells (ESCs).  In order to better understand their 

functions, we attempted to identify targets of the most highly expressed of these 

noncoding RNAs in mouse ESCs, which share the common seed “AAGUGC”, 

nucleotides 2-7 of the miRNA, and include members of the miR-290-295 cluster, the 

miR-302 cluster, and the miR-467 family.  After identifying potential targets by combining 

bioinfomatic predictions with experimental microarray data from both Dicer null (Dcr KO) 

and miR-290-295 cluster null (295 KO) mouse ESCs, an unbiased gene ontology search 

suggested that these miRNAs modulate key players in apoptosis.  We confirmed this 

prediction by validating two targets – Caspase 2 and Ei24 – both involved in the 

mitochondrial apoptosis pathway.  Notably, their corresponding AAGUGC miRNAs were 

protective against apoptosis when transfected into Dcr KO and 295 KO in a state-

specific manner, specifically following exposure to doxorubicin or gamma irradiation.  

These data implicate AAGUGC miRNAs as buffers of a critical ESC decision point 

between DNA repair and cell death. 
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Introduction 
 

miRNAs are endogenous ~22nt RNAs that regulate gene expression post-

transcriptionally. In animals, the ability of miRNAs to accomplish this regulation depends 

on complementarity between mature miRNA sequences and their mRNA targets.  Most 

commonly, partial binding of miRNAs leads to destabilization of mRNA transcripts and/or 

inhibition of productive translation, although in some cases perfect (or near perfect) 

complementarity instead leads to target cleavage.  Both in vitro experiments and 

bioinformatics have shown that matches for positions 2-7 of the miRNA, referred to as 

the miRNA “seed,” are generally required for effective miRNA-directed mRNA 

downregulation (Behm-Ansmant et al. 2006b; Bartel 2009).   

Since the discovery of the first miRNA gene in the early 1990s, hundreds of 

miRNAs have been identified across various mammalian cell types through cloning and 

bioinformatics (Bartel 2009). The roles of miRNAs in mESCs have been of particular 

interest in recent years, as this knowledge may shed light on key aspects of mammalian 

development as well as generate useful insights that can be applied to reprogramming 

and cancer, both of which recapitulate aspects of an ES expression state (Ben-Porath et 

al. 2008; Lin et al. 2008; Bosnali et al. 2009; Judson et al. 2009). In addition, mESCs can 

survive in the absence of Dicer, and serve as a unique model system for dissecting 

miRNA functions (Kanellopoulou et al. 2005; Murchison et al. 2005). 

Recent studies have linked several miRNAs to ES cell lineage maintenance, 

differentiation, and proliferation capacity. Benetti et. al. (Benetti et al. 2008) and 

Sinkkonen et. al. (Sinkkonen et al. 2008) both showed that mESC specific miR-290-295 

cluster can target Rbl2, which control Dnmt expression, suggesting that the miRNA 

cluster plays a role in regulating de novo DNA methylation. miR-302 has been shown to 

control germ layer specification by inhibiting lefty, an inhibitor of the Nodal pathway 
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(Rosa et al. 2009). In addition, Melton et. al. showed that miR-290-295 cluster can 

indirectly increase the expression of Lin28 and c-Myc to maintain mESCs in their self-

renewing state (Lee et al. 2008). Lastly, miR-290-295, miR-302, and miR-372, have 

been found to accelerate cell proliferation by promoting G1 to S phase transition through 

targets such as p21 and Lats2 (Voorhoeve et al. 2006; Card et al. 2008; Wang et al. 

2008).  

Overlapping roles for the miR-290-295 cluster and the miR-302 cluster are not 

surprising, given their common seed AAGUGC (Table 1). However, other related 

miRNAs include rodent specific miR-467a, c, and d, which have been cloned from T 

cells (Neilson et al. 2007) as well as ES cells (Mineno et al. 2006; Landgraf et al. 2007), 

remain largely uncharacterized.  We will refer to these families collectively as the 

“AAGUGC miRNAs” to emphasize the commonality of their seed sequence.  Members of 

the miR-17-92 cluster also share this hexamer, though it corresponds to positions 3-8 

rather than 2-7 of the mature sequence. Because this shift is expected to significantly 

reduce the activities of the miR-17-92 family in regulation of the AAGUGC seed targets 

(Figure 1), we will not include the family in our study. 

Several large-scale sequencing datasets (Mineno et al. 2006; Calabrese et al. 

2007; Landgraf et al. 2007; Babiarz et al. 2008; Leung et al. 2010) have revealed that 

AAGUGC miRNAs constitute the most highly expressed miRNAs in ES cells (Table 1), 

underscoring their important regulatory roles in this cell type. Although a subset of 

targets of AAGUGC miRNAs has been identified, we hypothesized that an unbiased 

approach might uncover novel roles of these miRNAs in ES cells. To this end, we 

attempted to identify endogenous targets by combining existing target prediction data 

with microarrays of mESCs before and after miRNA loss (Calabrese et al. 2007), as well 

as before and after specific deletion of the miR-290-295 cluster (Jaenisch 2008).  Initial 

analysis using this data suggested strong enrichment of targets involved in apoptosis, a 
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phenotype has to date not been linked to specific miRNAs in ES cells. Through gain and 

loss of function studies, we show that AAGUGC miRNAs can protect ES cells from 

apoptosis, especially during exposure to genotoxic stress. We validated 2 candidate 

targets, Casp2 and Ei24, and propose that the anti-apoptotic property of these miRNAs 

is mediated in part by the repression of these target genes.  

Results 

Predicted targets of AAGUGC containing miRNAs are enriched in pathways 
regulating apoptosis.  

To better understand the roles of AAGUGC miRNAs, we attempted to identify 

their endogenous targets by combining existing target prediction data with microarrays of 

mESCs before and after miRNA loss. Using a previously characterized floxed Dicer 

mESC line (Harfe et al. 2005; Calabrese and Sharp 2006; Leung et al. 2006), we 

compared wild type samples to those 5 days after Dicer deletion, having confirmed that 

a majority of miRNAs was lost by this time. In both cases, we calculated a cumulative 

density function (cdf) plot comparing expression differences for the set of all potential 

7mer or 8mer targets (ie, transcripts containing at least an A1-7 or m2-8 match) for 

miRNAs with the seed AAGUGC, shown in Table 1.  Relative to a control set of genes 

(“control”) that lacked the AAGUGC binding sites, but were matched for 3′ UTR length, 

dinucleotide composition, and expression level, the AAGUGC target set (“target”) was 

more derepressed upon Dicer loss (Figure 2A).  Conserved AAGUGC target genes 

(“conserved_target”) as predicted by Targetscan 5.1 (Friedman et al. 2009) showed an 

even larger derepression, suggesting further enrichment of genuine targets in this set 

(Figure 2A). 

We next performed Gene Ontology Analysis on this candidate set.  Of all ES-

expressed genes (defined as WT expression ≥ 16 on the microarray), we looked for GO 
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category enrichment in the genes that increase on Dicer loss (defined as an 1.2 fold 

upregulation in Dicer KO cells). From this analysis, top statistically significant categories 

include regulation of apoptosis, regulation of cell cycle, and regulation of transcription. 

We further refined our candidate list using array data of a specific miR-290-295 cluster 

deletion (miR-290-295 KO) ES line, which also showed cdf plot signature changes for 

AAGUGC containing seeds (Jaenisch 2008).  In all, 806 candidates were identified as 

Targetscan-predicted AAGUGC targets that showed an 1.2 fold upregulation in knockout 

populations from both datasets (Figure 2B). 

To validate some of predicted targets, we picked several candidate genes based 

on the degree of upregulation in Dcr KO and miR-290-295 KO ES lines, as well as their 

functional annotations. Their 3′ UTRs were cloned into luciferase constructs, and 

expression level ratios between Dicer WT and Dcr KO cells were evaluated (Figure 3A).  

All candidates tested displayed at least mild repression relative to a control construct 

lacking miRNA target sites, as did the previously identified miR-295 targets, Lats2 and 

p21 (Wang et al. 2008).  Additional transfection studies confirmed that repression could 

be conferred specifically by either of two representative AAGUGC miRNAs, miR-295 or 

miR-467a, in a Dcr KO background (Figure 3B). 

Caspase 2 and Ei24, key apoptotic mediators, are direct targets of both the 
miR-290 and miR-467 families. 

We chose to further characterize the most downregulated target, Caspase 2, as it 

suggested a novel link between embryonic stem cell-specific microRNAs and cell 

survival.  An initiator of apoptosis in response to genotoxic stress (Li and Yuan 2008), 

Caspase 2 has four AAGUGC binding sites in its 3′UTR, though much of the repression 

can be conferred by the first two sites alone (Figure 4B).  RT-PCR demonstrated an 

approximately five-fold increase in Caspase 2 transcript levels in Dcr KO cells, 
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suggesting that miRNAs may significantly destabilize this transcript (Figure 5C).  

Transfection of either miR-295 or miR-467a strongly repressed an intact Caspase 2 

reporter in these cells, but not a reporter in which the four target sites were mutated 

(Figure 4A).  In support of these reporter data, a decrease in endogenous Caspase 2 

protein on transfection of these two miRNAs was also observed (Figure 5A). 

Given the extent to which Caspase 2 is regulated by miR-295 and miR-467a, we 

decided to test whether AAGUGC miRNAs regulate other proapoptotic factors.  Bim, a 

BH3 only Bcl-2 family protein previously identified as a target of the miR-17-92 cluster 

(Ventura et al. 2008), has potentially 3 AAGUGC target sites. Therefore, we additionally 

designed luciferase reporters for it as well as Ei24/PIG8, a direct p53 transcriptional 

target that binds Bcl-2 (Gu et al. 2000; Zhao et al. 2005a), and contains one 7mer miR-

295 site.  While Bim reporter was not repressed in WT mESCs, Ei24 reporter displayed 

a two-fold repression. More specifically, Ei24 appeared to be more responsive to miR-

295 than miR-467a, as the transfection of miR-295 in Dcr KO cells led to greater 

repression of the Ei24 reporter (Figure 4A).  The luciferase data were additionally 

supported by RT-PCR data showing decreased levels of Ei24 in WT relative to Dcr KO 

cells (RT-PCR was performed in place of Western Blot due to the lack of a good 

antibody against Ei24) (Figure 5C). 

To determine the extent to which the miR 290-295 cluster alone contributes to 

repression of these targets, we additionally examined our reporter constructs in the miR-

290-295 KO line relative to its wild-type counterpart.  The repression observed on both 

Casp2 and Ei24 reporters was approximately half as seen in the Dcr WT and KO 

systems (Figure 4C). This suggests that the miR-467 and miR-302 families of miRNAs 

incompletely compensate for miR-290-295 cluster loss, despite having many overlapping 

seeds (Figure 4C).  As before, exogenous miR-295 or miR-467a could repress protein 

levels for both targets in the miR-290-295 KO line (Figure 5B). 
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AAGUGC containing miRNAs buffer ES cells against genotoxic stress. 

Since two of our validated targets are key players in cell death, we wondered if 

miRNAs with the seed AAGUGC are involved in regulating apoptosis of mESCs. We 

compared the apoptosis rate of WT and Dcr KO ES cells in a 24-hr period by staining 

them with antibodies against cleaved Caspase-3 (Casp3), and analyzing them by flow 

cytometry. Neither cell types exhibited substantial apoptosis, although Dcr KO ES cells 

showed higher apoptosis rate than WT ES cells. (Figure 6A).  As embryonic stem cells 

are highly sensitive to DNA damage (Tichy and Stambrook 2008), we hypothesized that 

AAGUGC miRNAs may be more protective against apoptosis in the context of genotoxic 

stress. To test this, we examined the effect of overexpressing miR-295 and miR-467 in 

cells exposed to either doxorubicin treatment, or gamma-irradiation. Doxorubicin inhibits 

topoisomerase II, and produces double stranded breaks. Gamma irradiation induces 

DNA damage, and activates ATM and p53 in a manner similar to doxorubicin. Both 

sources of stress activate intrinsic apoptosis pathways, and result in the cleavage of 

Casp3. Both Dcr KO and WT ES cells showed minimal response immediately after 5Gy-

gamma radiation or 100nM doxorubicin treatment (Figure 6A). However, there was a 

significant difference in their responses 24 hours after the treatment. While 5% of WT 

cells became apoptotic, more than 25% of Dcr KO population exhibited Casp3 activity 

(Figure 6A). Similar results were seen with using AnnexinV as a marker, a 

complementary assay for detecting early apoptosis (Figure 12).  

In order to examine if the phenotype is specific to miRNAs with the AAGUGC 

seed, we transfected miR-295 and miR-467 into Dcr KO cells respectively, and 

quantified their apoptosis rate immediately, and then 24 hours after radiation. Overall, 

there were very small differences between Dcr KO cells transfected with miR-467 or 

miR-295 and a pool of control siRNAs immediately following radiation. However, there 
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was a stark difference in cells’ response to apoptosis 24 hours after the treatment.  

Relative to control siRNAs, the overexpression of miR-467 or miR-295 drastically 

decreased the apoptosis response of Dcr KO cells to radiation treatment (Figure 6B). 

The reduction in apoptosis is AAGUGC seed specific, as siRNAs with changes in the 

seed region failed to rescue Dcr KO ES cells from apoptosis (Figure 6B).  

Next we wanted to see if any of the targets we validated were responsible for 

AAGUGC miRNA specific apoptosis regulation. We applied siRNAs specific to each 

target, and quantified the apoptosis rate 24 hours after exposing cells to radiation. A 

higher level of apoptosis was observed with the transfection of Bim, Casp2, and Ei24 

siRNAs immediately after treatment (Figure 6C). Although Bim is not targeted by the 

AAGUGC miRNA family, we thought to use Bim siRNA as a positive control, as Bim, a 

pro-apoptotic factor, is important in inducing cell death in mESCs (Su et al. 2009). We 

believed that this was primarily due to the toxicity elicited upon siRNAs transfection. In 

order to account for differences in transfection-specific toxicity, we decided to look at the 

difference in Casp3 activation between 0 and 24hr timepoints (although the general 

trends remain unchanged). After the transfection of Bim, Casp2, or Ei24 siRNAs, Dcr KO 

cells exhibited a decrease of 5 to 10% in Casp3 activation 24 hours after radiation, a 

level similar to miR-467a overexpression in Dcr KO cells (Figure 6D). In addition, the 

combination of the three siRNAs (BCEsiRNAs) reduced the difference in apoptosis rate 

even further to almost the same level seen in the WT ES cells (Figure 6C and D).  

A similar set of apoptosis responses was observed when cells were treated with 

100nM doxorubicin (Figure 7A). Transfection of miR-467a or siRNAs against the target 

genes led to the reduction of apoptosis in Dcr KO cells (Figure 7B). However, 

transfection of miR-295 was not as effective as miR-467a in protecting Dcr KO cells from 

doxorubicin-induced apoptosis as it was with gamma-radiation (Figure 7B). Notably, the 

8th nucleotide of miR-295 seed is different from that of miR-467. It is possible that miR-
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467 regulates a slightly different set of targets or has an increased affinity for a subset of 

common targets, and is therefore more effective in suppressing doxorubicin-induced 

apoptosis. To test this, we repeated the assays with miR-290-3p, a miRNA in the miR-

290 cluster that has the same 7-mer seed as miR-467. Interestingly, miR-290-3p is 

equally as effective as miR-467 in buffering Dcr KO cells from doxorubicin-induced 

apoptosis, suggesting that the 8th nucleotide is critical in silencing targets that are in the 

doxorubin-induced cell death pathways (Figure 7B). It is also important to note that 

doxorubicin treatment did not affect the expression of mature AAGUGC miRNA family in 

WT mESCs (Figure 8). 

Deletion of miRNAs containing AAGUGC seed makes cells more 
susceptible to apoptosis upon DNA damage.  

We exploited miR-290-295 cluster KO ES cells to assess if the loss of the 

majority of the miRNAs with the AAGUGC seed can make cells more susceptible to 

apoptosis upon exposure to DNA damaging agents. Northern blot analysis revealed that 

the deletion of the miR-290-295 cluster not only results in the loss of the cluster, but also 

reduces the expression of the miR-302 and miR-467 clusters. Interestingly, the 

expression of let-7, a marker of ES cell differentiation, also increased in miR-290-295 

KO cells, suggesting that some of the miR-290-295 cluster KO ES cells may be 

undergoing differentiation (Figure 9). We irradiated miR-290-295 KO and WT ES cells, 

and measured the cleaved caspase-3 activity 0 and 24 hours after the treatment. As 

expected, miR-290-295 KO cells are much more sensitive to radiation than their WT 

counterpart (Figure 10A). Overexpression of either of the two of the miRNAs in the 

cluster, miR-290-3p, and miR-295, as well as miR-467, significantly reduced the rate of 

apoptosis (Figure 10B). In addition, knocking down each of the 2 identified apoptosis 

targets, Casp2, and Ei24, can partially rescue cells from apoptosis caused by radiation 



Chapter 3: Multiple abundant miRNA families collaborate to buffer embryonic stem cells from apoptosis 

 - 88 - 

(Figure 10B). A similar set of observations was made with doxorubicin treatment, with 

the exception of miR-295, which did not have a protective effect (consistent with our 

observation in Dcr KO ES cells) (Figure 11).  

Discussion 
 

We provide the first demonstration of a group of miRNAs in ES cells controlling 

the induction of cell death. We have shown that miRNAs with the hexamer seed 

AAGUGC can suppress apoptosis of mESCs through target genes that are key players 

in cell death.  

We propose that AAGUGC miRNAs affect their anti-apoptotic response by down-

regulating the expression of Caspase 2 and Ei24, proapoptotic factors that are direct 

targets of the miRNAs. Although the exact mechanisms are still emerging, Caspase 2 

and Ei24 are involved in pathways that converge at the mitochondria, and ultimately lead 

to the release of cytochrome c, formation of apoptosome, and activation of effector 

caspases (Jin and El-Deiry 2005). EI24 resides in the ER, and can bind to Bcl-2 to 

initiate ER-stress induced apoptosis (Gu et al. 2000). Caspase 2, one of the most 

conserved caspases, has also been linked to DNA damage and ER stress response 

(Krumschnabel et al. 2009). Mouse oocytes that lack Caspase 2 were found to be 

resistant to cell death following exposure to chemotherapeutic drugs (Bergeron et al. 

1998). This phenotype is reminiscent of the genotoxic-stress induced apoptosis, 

response of WT mESCs, and KO mESCs when transfected with Caspase 2 siRNAs. 

Our results showed that while downregulation of one of the three targets can 

partially reduce the rate of stress-induced apoptosis of KO mESCs, a simultaneous 

reduction of all the targets was able to suppress apoptosis to the same extent seen with 

overexpression of AAGUGC seed containing miRNAs in Dcr KO mESCs. This suggests 

that multiple apoptosis pathways are activated in mESCs upon exposure to genotoxic 
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stress, and that this family of miRNAs controls most if not all of key players. The intricate 

network of apoptosis pathways not only underscores the importance of apoptosis 

regulation in mESCs, but also implies that there could be more miRNA target genes 

involved in suppressing apoptosis of mESCs.  

miRNAs have the ability to confer robustness upon biological systems (Hornstein 

and Shomron 2006). Because miRNAs can fine-tune gene expression post-

transcriptionally, they can correct leaky transcription of target genes and promote rapid 

developmental transitions. Often, these roles are related to their position within feed-

forward networks, where they stabilize gene expression (Hornstein and Shomron 2006; 

Tsang et al. 2007). In particular, this stabilization can help buffer cells from 

environmental stress. For instance, a direct experimental link between miRNAs and 

robustness was first provided by Li and colleagues (Li et al. 2009), who demonstrated 

that miR-7 was necessary for the proper development of Drosophila sensory organs 

specifically under conditions of temperature fluctuations.  

Our results provide another example of how miRNAs can protect ES cells from 

genotoxic stress. It is intriguing that AAGUGC miRNAs suppress apoptosis of ES cells 

following exposure to DNA damaging agents. Intuitively, we would expect ES cells to 

readily induce apoptosis in the event of genotoxic stress, as any change in their DNA 

can be quickly amplified in other cell types. When the genome of a mESC is damaged, it 

has several options: DNA repair, apoptosis, and differentiation (Cervantes et al. 2002). 

ES cells are quick in eliciting DNA repair response, especially homologous 

recombination-mediated repair and mismatch repair (Tichy and Stambrook 2008). They 

also readily undergo apoptosis to eliminate cells with damaged DNAs (Cervantes et al. 

2002). In addition, some studies suggest that DNA damage can cause downregulation of 

Nanog, and induce differentiation of ES cells into other cell types that are no longer 

pluripotent (Lin et al. 2005; Fujita et al. 2008). Thus, it is important to control the 
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induction of cell death in the reproductive capacity of an organism. Interestingly, the anti-

apoptotic role of AAGUGC miRNAs may not be limited to ESCs, as the miR-467 family is 

also upregulated in the transition from Double Positive to Single Positive thymocytes, a 

time when apoptosis must be tightly calibrated for cells to escape negative selection 

(Neilson et al. 2007). 

In addition to identifying this novel anti-apoptotic phenotype, we were able to 

confirm the results of other groups linking AAGUGC miRNAs to more rapid cell cycle 

progression (Wang et al. 2008; Wang and Blelloch 2009), with miR-467 overexpression 

in Dcr KO cells accelerating the G1/S transition similarly to previous reports for miR-295 

(Figure 13).  Thus, we can broadly identify these miRNAs as pro-proliferative, a feature 

that likely extends to humans as well given the high expression of the homologous 

clusters in human ESCs (Landgraf et al. 2007; Bar et al. 2008).  Physiologically, the 

rapid rodent-specific expansion of the miR-467 family may further increase the effective 

dosage of this seed. This change may have important consequences for the 

reproductive differences between rodents and humans, which in part depend on cellular 

decisions between survival and death; tolerating higher rates of mutational stress may 

allow rodents to maintain greater fecundity. Caspase 2, which has already been 

implicated in the reproductive axis as Casp2 null mice harbor an excess of oocytes, is 

likely differentially regulated by miRNAs in these species as well.  Of the four sites we 

identified in the Caspase 2 mouse 3′UTR, one was conserved in rat and none were 

conserved in human (Targetscan 5.1). 

Beyond these roles in normal physiology, the proliferative effects of AAGUGC 

miRNAs also appear to have important consequences for cancer, which often share the 

rapid growth pattern of ESCs.  For instance, the miR-467 family and the miR-302 cluster 

have been cloned from neuroblastoma and teratocarcinoma cell lines (Landgraf et al. 

2007) respectively. We hypothesize that these miRNAs may be serving similar roles to 
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promote rapid growth and survival in physiological as well as neoplastic contexts. 
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Methods 

ES Cell Culture 

Feeder-free Dicer1f/f and Dicer1-/- mouse embryonic stem cells (mESCs) were 

generated and maintained on gelatin as described previously (Calabrese et al. 2007).  

mESCs cells containing a floxed and excised miR-290 cluster were generated in a 

similar manner (Jaenisch 2008). 

Oligos and siRNAs used in all the experiments 

 
siRNA Sequence (5′ →  3′ unless otherwise noted) 

miR-295 5′- AAAGUGCUACUACUUUUGAGUCU -3′ 
3′- UCUUUCACGAUGAUGAAAACUCA -3′ 

miR-295 
seed mutant 

5′- AAAGACGUACUACUUUUGAGUCU -3′ 
3′- UCUUUCUGCAUGAUGAAAACUCA -3′ 

miR-467a 5′- UAAGUGCCUGCAUGUAUAUGCG -3′ 
3′- GCAUUCACGGACGUACAUAUAC -5′ 

miR-467a 
seed mutant 

5′- UAAGACGCUGCAUGUAUAUGCG -3′ 
3′- GCAUUCUGCGACGUACAUAUAC -5′ 

miR-290-3p 5′- AAAGUGCCGCCUAGUUUUAAGCCC -3′ 
3′- CCUUUCACGGCGGAUCAAAAUUCG -5′ 

Control siRNA (from Dharmacon, Accell Non-targeting pool) 
si-p21 (from Dharmacon, Smartpool) 
si-bim (from Dharmacon, Smartpool) 
si-casp2 (from Dharmacon, Smartpool) 
si-ei24 (from Dharmacon, Smartpool) 
RT-PCR 
Primers 

 

Casp2 Forward GCAGGGTCACTTGGAAGACT 
Casp2 Reverse GAAGACAGGGAGGACCATCA 
Ei24 Forward TCTCTTCCCCATCCATCTT 
Ei24 Reverse TAACGTAACGACACTCCTTTC 
β-actin Forward GACGAGGCCCAGAGCAAGAGAGG 
β-actin Reverse GGTGTTGAAGGTCTCAAACATG 
3′UTR Primers  
Isgf3g Forward AATAACTCGAGCGCGTCTCCATGGAAATAGA 
Isgf3g Reverse AATAAGGGCCCTTTAATTTGGAGCTCACATTTCT 
Casp2 Forward AATAACTCGAGCCGCCTGCTATTCCTGCT 
Casp2 Reverse AATAAGGGCCCTCAACATTTATTTGGCACCTG 
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Pax6 Forward AATAACTCGAGAGAGAGAAGGAGAGAGCATGTG 
Pax6 Reverse AATAAGGGCCCAAATCATTCTGAGGATTTCTAGGG 
p21 Forward AATAACTCGAGCCTCTTCTGCTGTGGGTCA 
p21 Reverse AATAAGCGGCCGCAATCATCGAGAAGTATTTATTGAGC 
Thbs1 Forward AATAACTCGAGTCATCAGCTGCCAATCATAA 
Thbs1 Reverse AATAAGGGCCCTTCCATATGATTTATTGTTGTTCCTT 
Itgav Forward AATAACTCGAGCCACTTCTGTCCGCTCCA 
Itgav Reverse AATAAGGGCCCGAAGTCAACTGTAGTGTAATGTGTACC 
Irak3 Forward AATAACTCGAGATCCACCAGAAGATCAAGCAA 
Irak3 Reverse AATAAGCGGCCGCTTTTATATAACAATTGGAATGCCACAG 
Lats2 Forward AAACTCGAGCGAGGAAACCCAAAATGAGA 
Lats2 Reverse AAAGGGCCCTCCAACAAAACACCACAAATG 
Mutagenic 
Primers 

 

Ei24 Site 1 GACCAGAGTTTTCCAGCTGTTTTTTTACGTCTTGCCAGCTCCTGT 
Bim Site 1 GACCAGAGTTTTCCAGCTGTTTTTTTACGTCTTGCCAGCTCCTGT 
Bim Site 2 AGCTTCCATTATGCCGAGTAAACGTCTTGTCTTCCACAAGATGTCT 
Bim Site 3 CACAGCCTGGTGGAGGACGTCTTTCTAACCTGTGGAG 
Casp2 Site 1 CCTTACTGTGGCTTCTGCATCGTCTTACACTGTACTTGACGGC 
Casp2 Site 2 GTACCATATGTGATATAACCTAGAACGTCTTGTCTCTGCTCTTATGAAACTTG 
Casp2 Site 3 GTGCTTACTGCAGGCTGTAATGCGTCTTTTGCTTGTTTCACTTGTTC 
Casp2 Site 4 CTTACTTACTGATATCCAGTAACTGCGTCTTACTAGGTCTTCATGAATGTTTC 
Northern LNA 
Oligos  
Let-7g AACTGTACAAACTACTACCTCA 
miR-16 GCCAATATTTACGTGCTGCTA 
miR-295 AGACTCAAAAGTAGTAGCACTTT 
miR-302d CACTCAAACATGGAAGCACTTA 
miR-467a-5p CGCATATACATGCAGGCACTTA 
2x-reporter 
oligos Subscript 2 means the sequence in the bracket was present twice. 

2x-bulged  
miR-20a  

Forward: TCGAG(CTACCTGCACTAAAGCACTTTA)2GGGCC  
Reverse: C(TAAAGTGCGGATAGTGCAGGTAG) 2C 

2x-bulged 
miR467 

Forward: TCGAG(CATATACATGCAGGCACTTA)2GGGCC 
Reverse: C(TAAGTGCCTTATGGTATATG)2C 

 

Generation of luciferase constructs, mESC transfection, and luciferase 
assays 

MicroRNA mediated repression of each candidate gene was tested by cloning PCR 

amplified products corresponding to the entire 3′UTR (or in the case of Bim, 2kb 

containing the 3 AAGUGC hexamer binding sites) into the 3′ UTR of a pRL-CMV Renilla 

luciferase reporter as described previously (Doench and Sharp 2004).  Nucleotides 5-7 
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of Casp2, Bim, and Ei24 binding sites were mutated by Quickchange site-directed 

mutagenesis.  

 

Digests were performed using either XhoI or SalI to give the 5′ site and ApaI or NotI to 

give the 3′ site.  Firefly luciferase (pGL3) was used as a transfection control.  Data 

shown are summaries of three or more independent trials. 

 

24 hours before transfection 1e5 mESC cells were plated/well of gelatinized 24-well 

plate. Cells were transfected with 2µl Lipofectamine 2000 (Invitrogen), 0.1µg of CMV-

GFP plasmid (Invitrogen), 0.7µg of pWS (carrier plasmid), and 50nM of siRNAs in 300µl 

of Opti-MEM (Invitrogen). 4 hours after transfection, transfection mix was removed from 

cells and replaced with ESC media.  

 

24 hours after transfection, cells were lysed with 1X Passive Lysis Buffer (Promega) and 

Dual luciferase was measured using Dual Luciferase reporter assay system (Promega) 

according to manufacturer’s instructions. 

Northern Blot analysis 

Total RNA was isolated from Dcr-/- and Dcr+/+ ES cells using Trizol (Invitrogen), following 

the standard protocol. Approximately 50µg of each RNA was loaded onto a 15% 

denaturing MOPS gel, according to the Northern Blot protocol outlined previously (Seila 

et al. 2008). Membrane probed with Gln-tRNA was exposed to phosphoimager for 6 

hours before being scanned. The rest was exposed to phosphoimager for 1 day before 

being scanned. Prior to hybridizing with a different probe, membranes were stripped by 
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incubating the membrane in boiling 0.1% SDS for 30 minutes and loss of signal was 

confirmed prior to rehybridization.  

Western Blot analysis 

24 hours after transfection with short RNAs, Dicer1-/-, Dicerflox/flox, miR290-295-/-, or 

miR290-295flox/flox cells were lysed in RIPA buffer (1% NP40, 0.5% sodium deoxycholate, 

0.1% SDS, in pH 7.4 PBS) containing protease inhibitors.  30–50 µg lysate was loaded 

onto 8-12% Bis-Tris gels (Invitrogen) and wet-transferred at 4°C to Westran PVDF 

membranes for 2h at 70V.  After 1 hr blocking at room temperature in 5% milk-TBST, 

membranes were probed overnight at 4°C with 1:2000 mouse anti-vinculin (Santa Cruz 

Biotechnology), 1:200 rat anti-Caspase 2 (Millipore, 10C6), 1:200 goat anti-Ei24 (Santa 

Cruz, H-20), or 1:200 rabbit anti-Bim (Assay Designs, AAP-330).  After 2x 10 min. TBST 

washes, membranes were probed for 1hr at room temperature with 1:2000 

corresponding hRP-conjugated secondary, washed an additional 2x 10 min. in TBST, 

and visualized using Wester Lightning Plus ECL (PerkinElmer).  

RT-PCR 

Trizol (Qiagen) was used to extract RNA from Dicer1flox/flox and Dicer1-/- cells.  A 

Superscript III kit (Invitrogen) was used to reverse transcribe 1 µg RNA following DNAse 

treatment with the Turbo-DNA free kit (Ambion), and real time PCR was performed with 

the primer sequences listed, using beta actin for normalization. 

Transfection and BrdU assays 

24 hours before transfection 1e5 mESC cells were plated/well of gelatinized 24-well 

plate. Cells were transfected with 2µl Lipofectamine 2000 (Invitrogen), 0.1µg of CMV-
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GFP plasmid (Invitrogen), 0.7µg of pWS (carrier plasmid), and 50nM of siRNAs in 300µl 

of Opti-MEM (Invitrogen). 4 hours after transfection, transfection mix was removed from 

cells and replaced with ESC media.  

 

24 hours after transfection, cells were pulsed labeled with BrdU for 10 min. APC BrdU 

Flow Kit (BD Biosciences) was used to analyze cell cycle profile. Only GFP positive cells 

were used in our data analysis. 

Transfection and Casp3 assays 

24 hours before transfection 2e5 mESC cells were plated/well of gelatinized 12-well 

plates. Cells were transfected with 4µl Lipofectamine 2000 (Invitrogen), 0.2µg pCAGGS-

mCherry plasmid, 1.4µg of pWS, and 50nM of siRNA in 600µl of Opti-MEM (Invitrogen). 

4 hours after transfection, transfection mix was removed from cells and replaced with 

ESC media.  

 

24 hours after transfection, cells were exposed to 5-Gy gamma radiation or 100nM 

doxorubicin. Immediately after exposure, one plate of cells were trypsinized and fixed 

with 1x BD Perm buffer. Cells were stained with Rabbit Anti-Casp3 antibody (BD 

Biosciences) at 1:100 for 20 min at room temperature. Following washing, cells were 

incubated with Alexa-488-conjugated secondary antibody (diluted 1:250) (Invitrogen) for 

60 min at room temperature, washed, and resuspended in BD FACS buffer containing 

1:5000 Hoechst stain. 24 hours after the treatment, another plate of cells was trypsinized 

and treated with the same protocol for FACS analysis.  
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Casp3 assays were also performed on Dcr KO and WT mESCS without transfection. 24 

hours before collecting cells for 0hr time point for Casp3 assay, 2e5 mESC were 

plated/well of gelatinized 6-well plates. In the context of genotoxic stress, 4e5 mESCs 

were plated/well of gelatilized 6-well plates. 24 hours after plating, cells were treated with 

5-Gy radiation or 100nM doxorubicin. Casp3 assays were performed at 0hr and 24hr 

after the treatment following the same protocol described above. 

AnnexinV assays 

4E5 mESCs were plated/well of gelatinized 6-well plates. 24 hours after plating, cells 

were exposed to 100nM doxorubicin. Cells were trypsinized 0hr and 24hr after the 

treatment for Annexin V detection, following Annexin V-FITC apoptosis detection kit (BD 

Biosciences).  

Microarray analysis  

Microarray analysis was performed 5 days following transfection of Dicer1flox/flox wild-type 

cells with either GFP alone or GFP and cre recombinase, and data was analyzed using 

biological triplicates.  Microarrays for the miR290-295 cluster deletion were performed on 

two deletion and two wild-type lines independently derived.   Spot replicates were 

condensed using geometric means. 

 

The log fold change (LFC) value for WT/Dcr_KO was defined as the difference between 

the mean log expression in WT cells and the mean log expression in Dcr-/- cells. The 

conserved set of targets were downloaded from TargetScanMouse5.1 website 

(http://www.targetscan.org/mmu_50/). To identify targets predicted for the AAGUGC 

seed family, we looked at all miRNAs that contain AAGUGC in their seed region. More 
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specifically, they include “miR-291b-3p/519a/519b-3p/519c-3p”, “miR-290-3p/292-

3p/467a”, “miR-467cd”, “miR-106/302”, and “miR-467b”. We excluded all the targets of 

“miR-302ac/520f”, as well as T1A 7mer targets of “miR-467b”, as they do not contain the 

6mer match to AAGUGC. Targets with top 25% of branch length scores were considered 

“conserved”.  

Gene Ontology analysis 

Gene Set Analysis Toolkit (http://bioinfo.vanderbilt.edu/webgestalt/) was used to perform 

GO analysis. Targets and controls were generated as described in the text. 

Statistical analyses 

All test statistics were calculated using R (http://www.r-project.org). The Wilcoxon rank 

sum test was used because it does not assume normality of the underlying distributions. 

T-tests and Kolmogorov–Smirnov (KS) test using these data gave generally similar 

results. 
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Table 1. Description of miRNAs in the AAGUGC family.  
 
Sequences and cloning statistics of miRNAs in the AAGUGC family are listed. The hexamer 
seed is highlighted in red. ES cell lines from Leung et. al. were used for all the experiments 
described in the chapter.  
 

 

Leung et. al. 

(a)

Babiarz et. al. 

(b)

Ciaudo et. 

al. (c)

miR-290-3p  AAAGTGCCGCCTAGTTTTAAGCC 0.01 6.31 0.03

miR-291a-3p  AAAGTGCTTCCACTTTGTGTG 1.28 8.36 16.71

miR-291b-3p  AAAGTGCATCCATTTTGTTTG 0.03 0.88 0.00

miR-292-3p  AAAGTGCCGCCAGGTTTTGAGTG 2.66 12.47 10.10

miR-294  AAAGTGCTTCCCTTTTGTGTG 13.56 10.82 12.72

miR-295  AAAGTGCTACTACTTTTGAGTC 25.01 13.70 8.89

miR-302a  TAAGTGCTTCCATGTTTTGGTG 1.55 0.14 0.04

miR-302b  TAAGTGCTTCCATGTTTTAGTA 1.27 0.16 0.00

miR-302d  TAAGTGCTTCCATGTTTGAGTG 1.63 0.32 0.02

miR-467a  TAAGTGCCTGCATGTATATGC 0.00 0.08 0.33

miR-467c  TAAGTGCGTGCATGTATATGT 0.68 0.00 0.03

miR-467d  TAAGTGCGCGCATGTATATGC 0.21 0.00 0.36

AAGUGC miRNA family / total miRNA reads 47.89 53.23 49.22

(a) A. Leung, A. Young, AJ Bhukar, G. Zheng, A. Boson, and P.A. Sharp. 2010. Submitted.

(b) J.E. Barbiarz, J.G. Ruby, Y. Wang, D.P. Bartel, and R. Blelloch. Genes Dev, 2008. 22 (20).

miR-467 

cluster
chr2

(c) C. Ciaudo et. al., Plos Genetics 5, 2009, e1000620. 

% cloned in different ES cell lines

miR-290-295 

cluster
chr7

miR-302 

cluster
chr3

Cluster Chr miRNA Sequence
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Figure 1. Repressive effect of miR-467a-5p and miR-20a on their 
control reporter constructs.  
 
Luciferase assays of miR-20a and miR-467a-5p reporters with two bulged binding sites in Dcr 
KO ES cells. Luciferase activity of the reporter was normalized to a reporter with no binding site 
to miRNAs. 20nM of si-20a and si-467a-5p were transfected 24 hours before the reading of 
luciferase activity. n=2, and results are shown as mean ± S.E.M. P-values were results of t-tests, * 
denotes p ≤ 0.05, and ** denotes p ≤ 0.01.  
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Figure 2. mRNA targets of AAGUGC miRNAs show decreased 
stability in Dcr KO cells and their luciferase targets can be 
repressed.  
 
(A) CDFs (cumulative distribution functions) of log2 fold change (LFC) in mRNA expression 
between the wild type (WT) and Dcr KO ES cells (the left panel), and the wild type and 290-295 
KO ES cells (the right panel), are plotted. Plots include conserved_target (green line), all 
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predicted AAGUGC target (red), and Control mRNAs (blue). All predicted AAGUGC targets 
include ~3000 predicted TargetScan targets that contain a 7-mer or 8-mer match to AAGUGC in 
their 3′ UTRs. Conserved target set contains ~500 top 10% of all predicted AAGUGC targets that 
were ranked by branch length scores. The Control mRNA set was selected to match the predicted 
targets in seed match type and count. Targets are depressed in both Dcr KO as well as 295 KO 
mESCs (p < 2.2e-16 and p < 2.2e-16 by rank sum test respectively). (B) Venn diagram of 
microarray and target prediction data used to generate AAGUGC seed candidates. AAGUGC = 
genes with at least an A1-7 or M2-8 match to the AAGUGC seed; 295 KO = genes showed a 1.2 
fold upregulation on miR290-295 cluster loss.  Dcr KO = genes showed a 1.2 fold upregulation 
on Dicer loss. Only ES-expressed genes (i.e., genes with an expression of at least 16 in the wild-
type arrays) were considered for analysis. 
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Figure 3. Repression of predicted AAGUGC miRNA targets in WT 
and Dcr KO ES cells.  
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(A) Activity of luciferase reporters of predicted AAGUGC miRNA targets were assayed in WT 
and Dcr KO ES cells. Luciferase reporters contain full length 3′ UTRs of predicted targets. 
Relative luciferase activity is the ratio of the reporter’s activity in WT ES cells and Dcr KO ES 
cells. (B) Activity of luciferase reporters of predicted AAGUGC miRNA targets were assayed in 
WT, Dcr KO ES cells, as well as in Dcr KO ES cells after over expression of 20nM of miR-295 
or 20nM of miR-467. n≥3, and results are shown as mean ± S.E.M. P-values were results of t-
tests, * denotes p ≤ 0.05, and ** denotes p ≤ 0.01.  
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Figure 4. Repression of Casp2 and Ei24 by AAGUGC miRNAs.  
 
(A) Luciferase reporters with full length Casp2 3′ UTR, Ei24 3′ UTR, as well as their seed mutant 
versions were assayed in WT and Dcr KO ES cells. Casp2:4M has all 4 AAGUGC seed binding 
sites mutated, and Ei24:1M has 1 AAGUGC seed binding site mutated. 20nM of miR-295 and 
miR-467a-5p were transfected in Dcr KO ES cells to test if the repression of luciferase reporters 
is specifically due to AAGUGC miRNAs. (B) Casp2 luciferase reporters bearing different 
combinations of AAGUGC seed binding sites mutations were tested in WT and Dcr KO ES cells. 
Casp2:2, 2nd AAGUGC binding site was mutated; Casp2:3,4, 3rd and 4th binding sites were 
mutated; Casp2: 2,3,4, 2nd, 3rd, and 4th binding sites were mutated; Casp2:1,2, 1st and 2nd binding 
sites were mutated; Casp2: 1,2,3,4, all binding sites were mutated. (C) Luciferase reporters with 
full length Casp2 3′ UTR, Ei24 3′ UTR, as well as their seed mutant versions were assayed in WT 
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and miR-290-295 KO ES cells. n≥3, and results are shown as mean ± S.E.M. P-values were 
results of t-tests, * denotes p ≤ 0.05, and ** denotes p ≤ 0.01. 



Chapter 3: Multiple abundant miRNA families collaborate to buffer embryonic stem cells from apoptosis 

 - 107 - 

 

Figure 5. Repression of Casp2 and Ei24 in WT ES cells, as well 
as miR-290-295 KO ES cells.  
 
(A) Western blot of Casp2 in WT and Dcr KO ES cells. 50nM of miR-295, miR-467a-5p, Bim 
siRNA, Casp2 siRNA as well as Ei24 siRNA were transfected into Dcr KO ES cells, and Casp2 
protein expression was assayed 24 hours after the transfection. (B) Western blot of Casp2 in WT 
and miR-290-295 KO ES cells. (C) RT-PCR of Casp2 and Ei24 in WT and Dcr KO ES cells. n=3 
for Casp2, and n=1 for Ei24. 
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Figure 6. AAGUGC miRNAs protect ES cells from radiation-
induced apoptosis. 
 
(A) The percentage of cleaved Casp3 in WT and Dcr KO ES cells under normal culturing 
conditions (0 and 24 hours after plating) and after exposure to 5-Gy radiation (0 and 24 hours 
after radiation treatment). Cleaved Caspase-3 was assayed by flow cytometry, and was used to 
estimate apoptosis response. Apoptosis rate of Dcr KO cells was shown in black bars, and that of 
WT cells was shown in white bars. (B) Dcr KO cells were treated with 5-Gy radiation 24 hours 
after transfection of 50nM of miR-467a or miR-295. Caspase-3 activity was assayed 0 and 24hr 
after the treatment. Transfection of seed mutants and control siRNAs (50nM) into Dcr KO cells, 
and overexpression of control siRNAs (50nM) into WT cells served as controls. (C) Dcr KO cells 
were treated with 5-Gy radiation 24 hours after transfection of 50nM siRNAs against Bim, Casp2, 
and Ei24, or a combination of the three. Caspase-3 activity was assayed 0 and 24hr after the 
treatment. (D) Results of B and C were summarized here, where the difference in apoptosis rate 
between 0 and 24hr time points was shown. n ≥ 3 for all experiments. Results are shown as mean 
± S.E.M. (standard error of the mean). P-values were results of Mann-Whitney tests, * denotes p 
≤ 0.05, and ** denotes p ≤ 0.01.  
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Figure 7. AAGUGC miRNAs protect ES cells from doxorubicin-
induced apoptosis. 
 
(A) The percentage of cleaved Casp3 in WT and Dcr KO ES cells under normal culturing 
conditions (0 and 24 hours after plating) and after exposure to 100nM doxorubicin (0 and 24 
hours after radiation treatment). Cleaved Caspase-3 was assayed by flow cytometry, and was used 
to estimate apoptosis response. Apoptosis rate of Dcr KO cells was shown in black bars, and that 
of WT cells was shown in white bars. (B) Cells were transfected with 50nM siRNAs as shown, 
and difference in apoptosis response of WT and Dcr KO ES cells 24 hours after exposure to 
100nM doxorubicin was plotted. n ≥ 3 for all experiments. Results are shown as mean ± S.E.M. 
(standard error of the mean). P-values were results of Mann-Whitney tests, * denotes p ≤ 0.05, 
and ** denotes p ≤ 0.01.  
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Figure 8. Expression of AAGUGC miRNA family stays the same 
before and after doxorubicin treatment. 
 
Northern analysis for miR-295, miR-302d, and miR-467a-5p in Dcr KO ES cells, WT ES cells, 
and WT ES cells 6 hours after 2uM doxorubicin treatment.  
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Figure 9. Expression of AAGUGC miRNAs in 295 KO ES cells 
before and after genotoxic stress. 
 
(A) Northern analysis of miR-295, miR-302d, and miR-467a-5p in WT ES cells and miR-290 KO 
ES cells. Gln tRNA was probed as a loading control, whereas miR-16 and let-7g were probed as 
negative controls. (B) Northern analysis of miR-295, miR-302d, and miR467a-5p in miR-295 KO 
ES cells before and after stress. Lane 1, no stress; 2, 6 hours after 5-Gy radiation; 3, 6 hours after 
2uM doxorobucin; 4, 12 hours after 2uM doxorubicin.  
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Figure 10. AAGUGC miRNAs protect ES cells from radiation-
induced apoptosis. 
 
(A) The percentage of cleaved Casp3 in WT and miR-290-295 KO ES cells under normal 
culturing conditions (0 and 24 hours after plating) and after exposure to 5-Gy radiation (0 and 24 
hours after radiation treatment). Cleaved Caspase-3 was assayed by flow cytometry, and was used 
to estimate apoptosis response. Apoptosis of KO cells was shown in black bars, and that of WT 
cells was shown in white bars. (B) Cells were transfected with 50nM siRNAs as shown, and 
difference in apoptosis response of WT and 295KO ES cells 24 hours after exposure to 5-Gy 
radiation was plotted. n ≥ 3 for all experiments. Results are shown as mean ± S.E.M. (standard 
error of the mean). P-values were results of Mann-Whitney tests, and * denotes p ≤ 0.05.  
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Figure 11. AAGUGC miRNAs protect ES cells from doxorubicin-
induced apoptosis. 
 
(A) The percentage of cleaved Casp3 in WT and miR-290-295 KO ES cells under normal 
culturing conditions (0 and 24 hours after plating) and after exposure to 100nM doxorubicin (0 
and 24 hours after radiation treatment). Cleaved Caspase-3 was assayed by flow cytometry, and 
was used to estimate apoptosis response. Apoptosis of KO cells was shown in black bars, and that 
of WT cells was shown in white bars. (B) Cells were transfected with 50nM siRNAs as shown, 
and difference in apoptosis response of WT and KO ES cells 24 hours after exposure to 100nM 
doxorubicin was plotted. n ≥ 3 for all experiments. Results are shown as mean ± S.E.M. (standard 
error of the mean). P-values were results of Mann-Whitney tests, * denotes p ≤ 0.05, and ** 
denotes p ≤ 0.01.  
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Figure 12. Comparison of WT and Dcr KO cells’ apoptosis 
response to stress with AnnexinV assay.  
 
AnnexinV positive cells were assayed by flow cytometry immediately or 24hr after exposure to 
100nM doxorubicin. n=2. Results are shown as mean ± S.E.M. (standard error of the mean). 
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Figure 13. AAGUGC miRNAs can promote G1 to S phase 
transition of Dcr KO ES cells. 
 
Dcr KO ES cells were transfected with 50 nM of miR-295, miR-467, and other siRNAs as shown. 
24 hours after the transfection, cells were incubated with BrdU for 10 min, and BrdU positive 
cells were analyzed with flow cytometry. Assays with miR-295 seed mutant, miR-467 seed 
mutant, and control siRNAs serve as negative controls. Results are percentages in each stage of 
the cell cycle and are shown as mean ± S.E.M. (standard error of the mean). n ≥ 3 for miR-295, 
miR-467, and ctl transfections. n = 2 for miR-295 seed mutant, miR-467 seed mutant, and p21 
siRNA transfections. P-values were results of Mann-Whitney tests, and * denotes p ≤ 0.05.  
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CHAPTER 4: Characterization of the Sfmbt2 miRNA 
cluster and its function in murine placental development 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The work included in the chapter is a preliminary characterization of the Sfmbt2 cluster. 
Much of the analysis on the evolutionary impact of species-specific miRNAs is ongoing, 
and needs to be extended before final conclusions can be reached. In this chapter, we 
will point out limitations of the study, and propose directions that need to be explored in 
the future. 
 
 
 
Experimental contributions: 
 

Arvind Ravi cloned all the luciferase constructs, and performed all the luciferase assays. 
Arvind Ravi and Grace Zheng discussed all the computational analysis, and Grace 
Zheng performed all the computational analysis.  
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Abstract 
 

miRNAs are endogenous ~22nt RNAs that post transcriptionally regulate gene 

expression and control fundamental cellular processes. While targets and functions of 

some well conserved miRNAs have been characterized through comparative genomic 

analysis, studies about species-specific miRNAs have proved challenging. Here we 

characterized a novel, mouse-specific miRNA cluster that is upregulated in murine 

placenta. Placental-expressed, mouse-specific targets of the cluster are enriched in 

pathways regulating growth and apoptosis, suggesting they play an important role in 

promoting placental growth. In addition, we compared mouse and human 3′ UTRs to 

show that many target sites of the cluster show positive selection. We have begun to 

extend this analysis to other species-specific miRNAs. 
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Introduction 
 

miRNAs are key regulators of gene expression, and play important roles in 

development, cell growth, differentiation, and metabolism (Bartel 2009). Hundreds of 

miRNAs have been identified in mammals, and approximately 50% of known miRNAs 

are found in clusters, transcribed as polycistronic primary transcripts (Kim et al. 2009). 

While many miRNA clusters are conserved, recent efforts in large-scale sequencing 

have uncovered poorly conserved miRNA clusters that have tissue-specific expression 

(Zhang et al. 2008).  

The Sfmbt2 miRNA cluster maps to chromosome 2 of the mouse genome. The 

Sfmbt2 cluster is localized in an intron of Sfmbt2 (Figure 1A), a poorly characterized 

Polycomb Group gene. Although the coding region of the Sfmbt2 gene is highly 

conserved among vertebrates, the intron which harbors the miRNA cluster bears little 

similarity to the equivalent intron outside of rodent species. Five of the 42 mouse Sfmbt2 

miRNAs can be mapped to the homologous intron in rat, but none can be aligned to the 

corresponding intron in human. Expression of the Sfmbt2 cluster was initially detected in 

murine T cells, and subsequently cloned from mouse ES cells (Table 1).  

We are interested in further characterizing the Sfmbt2 cluster in the placenta for 

two reasons. First, the host gene, Sfmbt2, was recently identified as an imprinted gene 

expressed preferentially from the paternal allele in early embryos and in later stage 

extraembryonic tissues (Kuzmin et al. 2008). Imprinted gene expression has been 

observed in the placenta, and linked to placental functions (Kaneko-Ishino et al. 2003). 

Paternally expressed genes are proposed to increase embryonic growth, while 

maternally expressed genes are proposed to suppress fetal growth (Moore and Haig 

1991). Consistent with this theory, Cattanach et. al. showed that paternal duplication of 

proximal chromosome 2 (which includes the Sfmbt2 gene) resulted in placental growth 
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enhancement, whereas maternal disomy resulted in fetal and placental growth reduction, 

implicating Sfmbt2 as a candidate for the placental growth effect (Cattanach et al. 2004). 

Secondly, a survey of miRNA expression across many mouse tissues revealed that the 

Sfmbt2 miRNA cluster is upregulated in the placenta relative to other tissues (Landgraf 

et al. 2007). Interestingly, we have identified one of the miRNA families in the cluster, 

miR-467a, as a miRNA family promoting proliferation because it advances the G1 to S 

phase transition and suppresses apoptosis (see Chapter 3). This is consistent with the 

hypothesized pro-growth role of the Sfmbt2 miRNAs as a maternally imprinted placental 

regulator.  

In this study we investigated the possible role of Sfmbt2 miRNA cluster in 

contributing to murine placental growth. We first characterized the Sfmbt2 miRNA cluster 

and confirmed its expression in murine placenta. Mouse-specific targets of the Sfmbt2 

miRNA cluster are enriched in pathways regulating cell survival, implicating the Sfmbt2 

miRNA cluster as a possible promoter to placental growth. While many genes are 

subject to selection during evolution to enrich for or avoid miRNA binding sites by 

changes in 3′ UTR length and in site density (Farh et al. 2005; Stark et al. 2005), it is 

unclear if recently evolved and species-specific miRNAs have similar effects on their 

target genes. We therefore explored the impact of the Sfmbt2 miRNA cluster and other 

species-specific miRNAs on shaping the evolution of 3′ UTRs. Sequence comparison 

between mouse and human 3′ UTRs revealed that target sites of many human or 

mouse-specific miRNAs might be under positive selection.  

Results 

Expression of repeat-derived Sfmbt2 miRNA cluster is upregulated in 
murine placenta. 

The Sfmbt2 miRNAs collectively map to intron 9 of the Sfmbt2 gene, with some 
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of the individual miRNAs also mapping to other sites in the mouse genome (Figure 1A). 

The intron spans 50kb, and largely consists of simple repeats and B4 SINE repeat 

elements. The miRNA cluster can be classified into four groups based on their sequence 

similarities: miR-297s, miR-466s, miR-467s, and miR-669s. While the seed regions of 

miR-297s, miR-466s, and miR-467s are well conserved within each group, there is little 

similarity among the 5′ ends of sequences in the miR-669 family (Figure 2). This 

observation suggests that each miRNA precursor in the miR-669 family could have 

multiple stem-pairing configurations, resulting in different mature miRNA sequences. 

miR-297s are mapped to two ends of the intron, and miRNAs from miR-466s, miR-467s 

and miR-669s are part of a 2kb region that tiles across the intron 12 times (Figure 1A).  

Short RNA sequencing data from ES cells revealed that the Sfmbt2 miRNA 

cluster consists of 42 miRNAs (Table 1). Although most datasets suggest the miRNA 

cluster is expressed at low levels in ES cells, Calabrese et. al. showed that the cluster 

represents ~30% of expressed miRNAs in ES cells (Calabrese et al. 2007; Babiarz et al. 

2008; Ciaudo et al. 2009; Leung et al. 2010). A closer comparison of the miRNA 

expression profile in ES cells between Calabrese et. al. and other studies revealed that 

the Sfmbt2 cluster’s upregulation is accompanied by a downregulation of miR-290-295 

miRNA cluster in Calabrese et. al. (Calabrese et al. 2007; Babiarz et al. 2008; Ciaudo et 

al. 2009; Leung et al. 2010). This suggests that the ES cells used by Calabrese et. al. 

may be more differentiated towards the trophoblast lineage.  

The cluster contains 25 miRNA seeds, defined as nucleotides 2-7 of the mature 

miRNA sequence, and the majority are not found in human miRNAs. One exception is 

the miR-467a family of miRNAs, which shares the seed AAGUGC with other conserved 

miRNA clusters, such as the miR-290-295 and miR-302 clusters. Their function to 

promote cell growth in mouse ES cells has been examined in Chapter 3. The potential 

functions of other miRNA seeds in the Sfmbt2 cluster remain unclear. 
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Publicly available microarray results show that the relative expression of the 

Sfmbt2 gene in the placenta is two fold higher than in ES cells (Wu et al. 2009). To test if 

the same expression trend would be observed with the miRNA cluster, Northern Blot 

analysis was performed on placental RNA obtained from day 11.5 (d11.5) and day 13.5 

(d13.5) embryos, along with RNA obtained from wild type (WT) and Dcr knockout (KO) 

ES cells (Figure 1B). Expression of the three Sfmbt2 miRNAs probed was quantified to 

be five fold higher in the placenta than in WT ES cells. Mature Sfmbt2 miRNAs are 

absent from Dcr KO ES cells, confirming that their expression is dependent on Dicer, an 

RNase III enzyme required to process miRNA precursors to mature miRNAs (Figure 1B). 

Published microarray data also show that the relative expression of host gene Sfmbt2 is 

1.5 fold higher at d11.5 than d13.5 (Lee et al. 2009). However, our Northern analysis 

was not sensitive enough to detect a similar expression difference of the Sfmbt2 

miRNAs between the two timepoints. qRT-PCR or short RNA sequencing from the 

placenta will need to be performed to further examine the difference in the Sfmbt2 

miRNA expression between d11.5 and d13.5. The data will also allow us to assess the 

relative abundance of individual Sfmbt2 miRNAs in the placenta.  

Predicted targets of Sfmbt2 miRNAs are enriched in pathways regulating 
cell growth and apoptosis. 

To better understand the roles of Sfmbt2 miRNAs in placental development, we 

attempted to identify their endogenous targets by combining the predicted target dataset 

with microarrays of murine placenta at d11.5 and d13.5. The expression of host gene 

Sfmbt2 showed a 1.5 fold increase at d11.5 (relative to d13.5) (Lee et al. 2009). Despite 

the small change, we hypothesized that predicted targets of Sfmbt2 miRNAs may be 

more destabilized at d11.5. When comparing the gene expression profiles at d11.5 and 

d13.5, predicted targets (defined as mRNAs that have at least a A1-7mer or M8-7mer 
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match) of 13 Sfmbt2 miRNAs showed a significant decrease in expression at d11.5 

compared to control genes matched for 3′ UTR length and dinucleotide composition 

(Figure 3 and Table 2). 

Since most Sfmbt2 miRNA seeds are mouse-specific, we wondered if their 

mouse-specific targets also displayed a decrease in expression at d11.5. We selected 

mRNAs that contained the Sfmbt2 miRNA target sites exclusively in mouse, but not in 

orthologous positions in dog or human. To focus on potentially real mouse-specific 

targets, we required the mutation rate at each of the target sites to be significantly higher 

than that of adjacent regions (defined as the 80-nt 3′ UTR sequences upstream and 

downstream) (See the next section and Methods for more details of the analysis). We 

found that mouse-specific targets of 12 Sfmbt2 miRNAs were derepressed in the 

comparison between d13.5 and d11.5 relative to a control set (generated as above), and 

five of them showed even greater derepression than all predicted targets (Figure 3 and 

Table 2). 

We next performed gene ontology (GO) analysis on mouse-specific Sfmbt2 

targets. Of all genes expressed in the placenta (defined as expression at d11.5 ≥ 8), we 

looked for GO category enrichment in 330 upregulated targets (defined by a 1.2 fold 

increase in expression at d13.5 relative to d11.5). The top statistically significant 

categories were regulation of cell proliferation, negative regulation of cellular processes, 

and establishment of localization (p = 1.1e-4, 8.3e-6, and 1.8e-5 respectively). Pathway 

enrichment (KEGG) analysis also revealed that upregulated targets were enriched in 

pathways that regulate cell survival, such as MAPK signaling pathways, tumorigenesis, 

and apoptosis (p= 3.9e-12, 7.2e-12, and 1.4e-6 respectively). Interestingly, many 

upregulated targets overlap with validated AAGUGC miRNA targets (such as P21, 

Lats2, and Casp2) that have been shown to regulate cell cycle and apoptosis of ES cells 

(Chapter 3).  



Chapter 4: Characterization of the Sfmbt2 miRNA cluster and its function in murine placental development 

 - 123 - 

To validate predictions of mouse-specific targets, we picked several candidate 

genes based on the degree of downregulation at d11.5 (relative to d13.5), as well as 

their functional annotations. The candidate genes’ 3′ UTRs were cloned into luciferase 

constructs, and expression level was evaluated in Dcr KO ES cells, before and after the 

transfection of specific Sfmbt2 miRNAs. Dcr KO ES cells lack mature miRNAs, which 

allowed us to test the specificity of Sfmbt2 targets by expressing exogenous miRNAs. 

Luciferase reporter of Dedd2, a proapoptotic factor, contained a binding site for miR-

297a-5p, and a binding site for miR-466a-5p. Our preliminary analysis showed that 

Dedd2 reporter was repressed 1.5-fold by miR-297a-5p and miR-466a-5p respectively. 

We are actively cloning and testing other luciferase constructs (Figure 4).  

Target sites of many species-specific miRNAs are positively selected to 
lose binding sites in their 3’ UTRs. 

As evolutionary variations in miRNA genes contribute to the generation of new 

regulatory specificities, the unique presence of the Sfmbt2 miRNA cluster in rodents has 

prompted us to look for potential mouse 3′ UTRs that responded to the creation of the 

cluster (Bartel 2009). We hypothesized that comparative analysis of 3′ UTRs would 

reveal two groups of variants: A) mRNAs that gained binding sites to Sfmbt2 miRNAs in 

their 3′ UTRs for downregulation; B) mRNAs that were selected to lose target sites to 

Sfmbt2 miRNAs to maintain expression levels in certain cellular states.  

We tested for the presence of each group by analyzing aligned 3′ UTRs from 

mouse and human in two steps. For group A, if the Sfmbt2 miRNA targets are under 

positive selection for site gain, then we would expect more sites gained in mouse 3′ 

UTRs than control heptamers, and higher variation at the binding site than their adjacent 

sequences. Accordingly, in Step I, we counted the number of times a Sfmbt2 miRNA 

binding site (M8-7mer match) is present in a mouse 3′ UTR, but absent in its human 
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counterpart, and calculated the fraction of seed sites gained in mouse (relative to 

human) (Figure 5A). To assess if the fraction was higher than what we would expect by 

chance, we performed the same analysis with control heptamers of similar composition. 

miRNA target sites with a significantly higher fraction of sites gained in mouse relative to 

control heptamers were considered for further analysis in Step II, where the variation at 

the miRNA binding site was compared to that of adjacent sequences (defined as the 80-

nt 3′ UTR sequences upstream and downstream) (Figure 5B and C). Of the 25 Sfmbt2 

miRNA seeds, target sites of four seeds showed a significant gain signal in mouse (Step 

I). They are miR-297a-5p, miR-466a-5p, miR-466k, and miR-466l-5p, all of which 

displayed a distinctly higher mutation rate at the miRNA binding sites than flanking 

sequences (Step II). 

We tested for group B in a similar manner, but looking for sites lost in mouse 

instead. Therefore we first counted the number of times a Sfmbt2 miRNA binding site is 

present in human, but absent in mouse 3′ UTRs (Step I). We then focused on target 

sites with a significant loss signal, and compared their variation to adjacent sequences 

(Step II). Overall, we found that binding sites of miR-297a-5p and miR-466a-5p showed 

significant loss signals in mouse. Combined results from groups A and B showed that 

four out of 25 Sfmbt2 miRNA seed binding sites displayed positive selection in mouse 

when compared to human 3′ UTRs.  

We then extended the analysis to other miRNA seeds in the human and mouse 

genomes to test if their target sites are also under positive selection. Since the Sfmbt2 

cluster is mouse-specific, we focused on human or mouse-specific miRNAs. Out of 595 

human-specific miRNA seeds, we found 32 seeds (5.38%) whose target sites showed 

significant loss signals (Table 3 and Table 5). This ratio is significantly higher than that of 

shuffled control heptamers (2.12%, p= 0.0005 by Chi-square test) (Table 3), suggesting 

that the positive selection signals from targets of 32 human-specific miRNAs are 
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statistically significant (Table 5).  

Our method also revealed that target sites of seven out of 201 (3.48%) mouse-

specific miRNA seeds showed significant loss signals (Table 3). However, this ratio is 

not significantly different from that of shuffled control heptamers (p=0.21 by Chi-square 

test). Similarly, while we detected gain signals from target sites of 23 human or mouse-

specific miRNAs, it is possible that many of them are false positives (p=0.38 and p=0.21 

for human and mouse-specific miRNA targets by Chi-square tests respectively). The 

results of our analysis may be updated as miRNA and 3′ UTR sequences of mouse and 

human become better annotated. Furthermore, we are actively refining the two-step 

procedure used to detect positive selection signals among miRNA targets. Improved 

sensitivity of our method may reveal more miRNA target sites that are under positive 

selection.  

Discussion 
 

Here we provided a preliminary characterization of a novel murine-specific 

miRNA cluster, the Sfmbt2 cluster, and investigated its function in regulating placental 

development. The cluster is upregulated in the placenta, and some mRNAs appear to 

have evolved binding sites for this cluster after the divergence of mouse from human or 

dog. Collectively these mRNAs are enriched in pathways that regulate cell proliferation 

and apoptosis, suggesting that the Sfmbt2 cluster promotes murine placental growth. 

Our method also allowed us to detect a total of 32 human-specific miRNAs whose 

targets have been positively selected to lose miRNA binding sites since the divergence 

of human from mouse or dog.  

The host Sfmbt2 gene is imprinted in the placenta, and has been implicated in 

promoting placental growth (Kuzmin et al. 2008). We suggest that the Sfmbt2 miRNA 

cluster within an intron of this gene might facilitate this role. However, more genetic 
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evidence and biochemical assays will be needed to delineate the specific functions of 

the miRNA cluster and the host gene. SFMBT2 is a PolyComb Group protein, and has 

been shown to interact with YY1 (Yy1 is the mammalian ortholog of Pho, an important 

component of Drosophila Pho-RC complex) in vitro (Kuzmin et al. 2008). It would not be 

surprising if SFMBT2 regulates the transcription of target genes with YY1 to promote 

placental growth, in parallel with the proposed miRNA regulation from its intron. In fact, 

functional interactions between intronic miRNAs and their host genes have been recently 

demonstrated in tumorigenesis. MCM7 and its intronic cluster, miR-106b~25, cooperate 

to drive transformation, while overexpression of either individual gene is not sufficient to 

do so (Poliseno et al.).  

miRNA creation and expansion have been linked to major developmental 

innovations  (Lee et al. 2007). Hertel et. al. observed that tandem duplications of 

miRNAs are strongly overrepresented in the vertebrate ancestor, and at the origin of 

placental mammals (Hertel et al. 2006). One notable example is the creation of 

paternally-imprinted miR-134 cluster (located at the mouse Dlkl-Gtl2 domain in eutherian 

mammals (Seitz et al. 2004). Here we reported a maternally-imprinted miRNA cluster 

that appears to have arisen through de novo creation after the separation of primates 

and rodents, and undergone expansion through tandem duplication in mouse. Evidence 

from previous studies on the Sfmbt2 host gene as well as our study on the miRNA 

cluster suggests that the miRNA cluster contributes to placental growth in mouse. The 

speculated role of the Sfmbt2 cluster is consistent with the parent-offspring conflict 

hypothesis that has been proposed to explain the evolution and maintenance of 

imprinting in mammals (Moore and Haig 1991). Paternally expressed genes are 

proposed to increase embryonic growth, thereby maximizing the competitiveness of 

individual offspring bearing a particular paternal genome (Moore and Haig 1991). 

Maternally expressed genes are proposed to suppress fetal growth (Moore and Haig 
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1991). This would allow a more equal distribution of maternal resources to all offspring 

and increase transmission of the maternal genome to multiple offspring (Moore and Haig 

1991). 

We speculate that the unique creation of the miRNA cluster is linked to the heavy 

reproductive demand on mouse. Murine gestation time is ~19-21 d and average litter 

sizes are in the range of 12 (in contrast to humans, who have a gestation time of ~9 

months and largely singleton pregnancies) (Knox and Baker 2008). Thus it is not 

surprising that the mouse genome has evolved to ensure successful pregnancy and full 

development of fetuses within a short period. In fact, mouse mature placenta is 

dramatically enriched for rodent-specific genes, including prolactin-like hormones and 

pregnancy-specific glycoproteins (Knox and Baker 2008).  

Besides mouse, human and all other eutherians’ placenta have evolved to 

facilitate the broad range of reproductive strategies displayed by respective species 

(Knox and Baker 2008). Studies have shown that the human placenta is enriched for 

primate-specific genes, including a miRNA cluster that is exclusively expressed in the 

placenta (Bentwich et al. 2005; Knox and Baker 2008). This miRNA cluster (Chr19 

miRNA cluster) consists of over 50 miRNAs, and is found on human chromosome 19, 

downstream of an imprinted gene Znf331, and upstream of the miR-371-372 cluster. 

Members of the miR-371-372 cluster have been linked to promoting tumorigenesis, and 

its mouse homolog miR-290-295 cluster can promote proliferation and suppress 

apoptosis (Voorhoeve et al. 2006; Wang and Blelloch 2009). Interestingly, several 

miRNAs from the Chr19 miRNA cluster share a seed sequence with the miR-372 and 

miR-295 family, suggesting that this novel miRNA cluster may be involved in growth 

regulation and human placental development.  

Not only do miRNAs contribute to early mammalian development, they also 

influence the evolution of 3′ UTRs. Genes are under evolutionary pressure to maintain or 
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avoid miRNA complementary sites in their 3′ UTRs (Farh et al. 2005; Stark et al. 2005). 

Additionally, recent evidence suggests that proliferating cells tend to shorten their 3′ 

UTRs to escape global miRNA regulation (Sandberg et al. 2008; Mayr and Bartel 2009). 

Evolving miRNA-mRNA 3′ UTR interactions have also been linked to phenotypic 

variation among species. For example, Texel sheep have evolved to acquire a miR-1 

and miR-126 binding site in the 3′ UTR of the myostatin gene (Gdf8), whose repression 

leads to the muscular hypertrophy of Texel sheep (Clop et al. 2006). While previous 

studies have all focused on the interactions between conserved miRNAs and their 

conserved targets (and anti-targets, mRNAs that lack conserved binding sites), our study 

suggests for the first time that species-specific miRNA target sites can be positively 

selected. In particular, our analysis suggests that 3′ UTRs of human genes have 

undergone selection to avoid regulation by some of human-specific miRNAs. As miRNA 

and 3′ UTR sequences of more species become available and better annotated, we 

speculate that our methods will reveal more miRNA target sites that are under positive 

selection. Such method would become an invaluable tool to understand regulatory roles 

of miRNAs on species-specific developmental processes. 
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Methods 

ES Cell Culture 

Feeder-free Dicer1-/- mouse embryonic stem cells (mESCs) were generated and 

maintained on gelatin as described previously (Leung et al. 2010).   

Oligos and siRNAs used in all the experiments 

 
siRNA Sequence (5’ → 3’ unless otherwise noted) 

miR-297a-5p 5’- AUGUAUGUGUGCAUGUGCAUGU -3’ 
3’- UGUACAUACACACGUACACGUA -3’ 

miR-466a-5p 5’- UAUGUGUGUGUACAUGUACAUAU -3’ 
3’- UAAUACACACACAUGUACAUGUA -3’ 

Control siRNA (from Dharmacon, Accell Non-targeting pool) 
3’UTR 
Primers 

 

Dedd2 Forward AATAACTCGAGGGGAGGCATAACCCCCTGC 
Dedd2 Reverse AATAAGGGCCCCCCACCTGTGCCCTTTCCA 
Northern LNA 
Oligos  
miR-297-5p ACATGCACATGCACACATACAT 
miR-466a-5p ATGTACATGTACACACACATA 
miR-467a-5p CGCATATACATGCAGGCACTTA 
 

Generation of luciferase constructs, mESC transfection, and luciferase 
assays 

MicroRNA mediated repression of each candidate gene was tested by cloning PCR 

amplified products corresponding to the full length of 3′ UTR that contained the miRNA 

binding sites into the 3′ UTR of a pRL-CMV Renilla luciferase reporter as described 

previously (Doench and Sharp 2004).  
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Digests were performed using either XhoI or SalI to give the 5′ site and ApaI or NotI to 

give the 3′ site.  Firefly luciferase (pGL3) was used as a transfection control.   

 

24 hours before transfection 1e5 mESC cells were plated/well of gelatinized 24-well 

plate. Cells were transfected with 2µl Lipofectamine 2000 (Invitrogen), 0.1µg of CMV-

GFP plasmid (Invitrogen), 0.7µg of pWS (carrier plasmid), and 50nM of siRNAs in 300µl 

of Opti-MEM (Invitrogen). 4 hours after transfection, transfection mix was removed from 

cells and replaced with ESC media.  

 

24 hours after transfection, cells were lysed with 1X Passive Lysis Buffer (Promega) and 

Dual luciferase was measured using Dual Luciferase reporter assay system (Promega) 

according to manufacturer’s instructions. 

Northern Blot analysis 

Total placental RNA from d11.5 and d13.5 was obtained from Lee’s lab. Approximately 

36µg of each RNA was loaded onto a 12% denaturing UREA gel, according to the 

Northern Blot protocol outlined previously (Calabrese et al. 2007). Membrane probed 

with Gln-tRNA was exposed to phosphoimager for 3 hours before being scanned; miR-

297a-5p membrane was exposed for 16 hours; miR-466a-5p 24 hours; and miR-467a-5p 

24 hours. Prior to hybridizing with a different probe, membranes were stripped by 

incubating the membrane in boiling 0.1% SDS for 30 minutes and loss of signal was 

confirmed prior to rehybridization. 
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Microarray analysis  

Microarray data was obtained from and processed according to Lee et. al. (Lee et al. 

2009). The log2 fold change (LFC) value for d11.5/d13.5 was defined as the difference 

between the mean log expression in d11.5 cells and the mean log expression in d13.5 

cells. Targets of a Sfmbt2 miRNA were selected based on at least one match to a T1-A 

or M2-8 7mer of the mature miRNA sequence. A target was defined as mouse-specific if 

the orthologous heptamer binding site in human has mutated, and if the mutation rate is 

significantly higher than that of flanking sequences. Controls were selected to match 

targets in 3′ UTR length and composition, and did not overlap with target sets. 

Bioinformatics analysis 

Sfmbt2 miRNAs were aligned against mouse (mm9), human (hg18), and rat (rn4) 

genomes by running BLAST analysis. The genomic sequences were downloaded from 

UCSC database (http://genome.ucsc.edu/).  

 

Human and dog mature miRNA sequences were obtained from miRBase Release 15 

(Griffiths-Jones et al. 2008). Mouse mature miRNA sequences were obtained from 

Chiang et. al. (Chiang et al.). miRNA seeds were defined as nucleotides 2-8 of the 

mature sequence. A miRNA seed was considered shared between mouse and human if 

it existed in both human and mouse. However, a miRNA seed was defined as mouse 

specific if it existed in mouse, but not in dog or human. Likewise, a miRNA seed was 

defined as human specific if it existed in human, but not in dog or mouse.  

Sfmbt2 miRNA precursors coordinates were obtained from mirBase (release 15) 

(Griffiths-Jones et al. 2008), and sequences were extracted from mm9. ClustalW was 

used to obtain multiple sequence alignments among precursors (Larkin et al. 2007). 
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Analysis of positive and purifying selection on human and mouse 3′ UTRs 

Aligned human, mouse, and dog 3′ UTRs were obtained from TargetScan 5.1 (Friedman 

et al. 2009). 17840 3′ UTRs were used for the analysis. In Step I, the control distribution 

for group A (or group B) was generated from heptamers that had a similar number of site 

matches in mouse (or human) as the heptamer of interest (for example, a miRNA seed). 

In Step II, the mutation rate of each heptamer binding site was calculated as the fraction 

of mismatched nucleotides in a 7-nt window. T test was used to check if the mutation 

rate around the seed binding site was significantly higher than that of neighboring 

sequences. The mutation around the seed binding site was calculated as the average of 

the mutation rates of 7 heptamers around the seed binding site (the seed binding site, as 

well as three heptamers upstream and downstream). The mutation rate of neighboring 

sequences was calculated as the average of the mutation rates of the rest of heptamers 

in the 80-nt window.  

Gene Ontology analysis 

Gene Set Analysis Toolkit (http://bioinfo.vanderbilt.edu/webgestalt/) was used to perform 

GO analysis. Sfmbt2 targets and mouse specific targets were generated as described in 

the text. Control genes were defined as all genes that are expressed in the mouse 

placenta (detected by the microarray anaysis). 

Statistical analysis 

All test statistics were calculated using R (http://www.r-project.org). The Wilcoxon rank 

sum test was used because it does not assume normality of the underlying distributions. 

T-tests and Kolmogorov–Smirnov (KS) test using these data gave generally similar 
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results. Chi-square test was used in positive and purifying selection analyses (Steps I 

and II) to check if a specific category was over-represented relative to the control. 
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Table 1. Description of the Sfmbt2 miRNA cluster. 
 
Sequences and cloning statistics of Sfmbt2 miRNAs in mouse ES cells are listed. The cloning 
statistics were taken from previous studies in mouse ES cells. ES cells from Leung et. al. were 
used for experiments presented in the chapter. 
 

 

Calabrese et. al. 

(a)

Leung et. al. 

(b)

Babiarz et. al. 

(c)

Ciaudo et. al. 

(d)

miR-297a AUGUAUGUGUGCAUGUGCAUGU 22 UGUAUG 0.8743 0.0003 0.0318 0.0087

miR-297b-5p AUGUAUGUGUGCAUGAACAUGU 22 UGUAUG 1.6289 0.0013 0.0164 0.0000

miR-297c AUGUAUGUGUGCAUGUACAUG 21 UGUAUG 1.3791 0.0000 0.0000 0.0000

miR-467a-5p UAAGUGCCUGCAUGUAUAUGCG 22 AAGUGC 4.8136 0.0000 0.0761 0.3291

miR-467b GUAAGUGCCUGCAUGUAUAU 20 UAAGUG 0.2295 0.0000 0.0642 0.0532

miR-467c UAAGUGCGUGCAUGUAUAUGU 21 AAGUGC 0.5354 0.6753 0.0000 0.0310

miR-467d UAAGUGCGCGCAUGUAUAUGC 21 AAGUGC 0.4091 0.2147 0.0000 0.3605

miR-467e AUAAGUGUGAGCAUGUAUAUG 21 UAAGUG 0.4555 0.8718 0.0000 0.0705

miR-467a-3p AUAUACAUACACACACCUACAC 22 UAUACA 5.1394 0.0000 0.0761 0.0199

miR-467b* AUAUACAUACACACACCAACAC 22 UAUACA 0.0070 0.0000 0.0642 0.0000

miR-467e* AUAUACAUACACACACCUAUA 21 UAUACA 0.4856 0.0000 0.0000 0.0000

miR-466a-5p UAUGUGUGUGUACAUGUACAU 21 AUGUGU 0.2457 0.0008 0.0645 0.0000

miR-466b-5p GAUGUGUGUGUACAUGUACAU 21 AUGUGU 0.0765 0.0002 0.0000 0.0000

miR-466c-5p GAUGUGUGUGUGCAUGUACAU 21 AUGUGU 0.2098 0.0000 0.0000 0.0000

miR-466d-5p UGUGUGUGCGUACAUGUACAU 21 GUGUGU 0.0035 0.0000 0.0000 0.0074

miR-466e-5p GAUGUGUGUGUACAUGUACAU 21 AUGUGU 0.0765 0.0000 0.0000 0.0000

miR-466f-5p UACGUGUGUGUGCAUGUGCAUG 22 ACGUGU 0.0000 0.0000 0.0000 0.020

miR-466h UGUGUGCAUGUGCUUGUGUGU 24 GUGUGC 0.0598 0.0000 0.0000 0.0000

hp2288 GUGUGCAUGUGGAUGUAUGU 20 UGUGCA 0.0133 0.0000 0.0000 0.0000

miR-466a-3p UAUACAUACACGCACACAUAAG 22 AUACAU 1.0639 0.0000 0.0645 0.0099

miR-466b-3p UAUACAUACACGCACACAUAAGA 23 AUACAU 2.1641 0.0000 0.0000 0.0099

miR-466b-3-3p AAUACAUACACGCACACAUAAG 22 AUACAU 0.0070 0.0121 0.0000 0.0000

miR-466d-3p UAUACAUACACGCACACAUA 20 AUACAU 2.1208 0.0000 0.0000 0.0050

miR-466f-3p CAUACACACACACAUACACA 20 AUACAC 0.0127 0.0000 0.0000 0.1683

miR-466g AUACAGACACAUGCACACAC 20 UACAGA 0.0603 0.0005 0.0000 0.0000

miR-466l UAUAAAUACAUGCACACAUAUU 22 AUAAAU 0.0399 0.0042 0.0000 0.0000

hp2090 UACAUACACACAUACACACGCA 22 ACAUAC 0.0565 0.0000 0.0000 0.0000

miR-297a* UAUACAUACACACAUACCCAU 21 AUACAU 1.7557 0.0000 0.0000 0.0000

miR-669a-5p AGUUGUGUGUGCAUGUUCAUGU 22 GUUGUG 0.3488 0.0000 0.1318 0.2117

miR-669b-5p AGUUUUGUGUGCAUGUGCAUGU 22 GUUUUG 0.1928 0.0000 0.0554 0.8918

miR-669c-5p AUAGUUGUGUGUGGAUGUGUGU 22 UAGUUG 0.0931 0.2609 0.3251 0.0756

miR-669d ACUUGUGUGUGCAUGUAUAUGU 22 CUUGUG      0.6050 0.0000 0.0000 0.0000

miR-669e UGUCUUGUGUGUGCAUGUUCAU 22 GUCUUG 0.1363 0.0000 0.0000 0.0000

miR-669g UGCAUUGUAUGUGUUGACAUGAU 23 GCAUUG 0.0033 0.0000 0.0000 0.0000

miR-669h AUGCAUGGGUGUAUAGUUGAGUGC 24 UGCAUG 0.0432 0.0000 0.0000 0.0000

miR-669a-3p ACAUAACAUACACACACACGUAU 23 CAUAAC 4.4878 0.0000 0.1318 0.0730

miR-669b-3p AUAUACAUACACACAAACAUAU 22 UAUACA 0.2959 0.0000 0.0554 0.0000

miR-669f CAUAUACAUACACACACACGUAU 23 AUAUAC 0.5053 0.0002 0.0000 0.0000

miR-669i UGCAUAUACACACAUGCAUAC 21 GCAUAU 0.0332 0.0000 0.0000 0.0000

miR-669j UGCAUAUACUCACAUGCAAACA 22 GCAUAU 0.0199 0.0000 0.0000 0.0000

miR-669k UAUGCAUAUACACGCAUGCAA 21 AUGCAU 0.0266 0.0000 0.0000 0.0000

hp2252 UAUGCAUAUACACACAUGUACA 22 AUGCAU 0.0066 0.0000 0.0000 0.0000

30.7213 2.0424 1.1576 2.3451

(a) J. M. Calabrese, A. C. Seila, G. W. Yeo, and P. A. Sharp, Proc Natl Acad Sci, 2007. 104 (46). 

(b) A. Leung, A. Young, AJ Bhukar, G. Zheng, A. Boson, and P.A. Sharp. 2010. Submitted.

(c) J.E. Barbiarz, J.G. Ruby, Y. Wang, D.P. Bartel, and R. Blelloch. Genes Dev, 2008. 22 (20).

(d) C. Ciaudo et. al., Plos Genetics 5, 2009, e1000620. 

sfmbt2 miRNA cluster / total miRNA reads (%)

Id Sequence Length Seed

% cloned in different ES cell lines
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Table 2. Target statistics of Sfmbt2 miRNAs. 
 
LFC of predicted targets (between d11.5 and d13.5) of each Sfmbt2 miRNA were compared to 
those of controls by Wilcoxon test (p1), and LFCs of mouse specific Sfmbt2 miRNA targets were 
compared to those of controls by Wilcoxon test (p2). “total targets” – number of all predicted 
targets of  a specific Sfmbt2 miRNA seed; “mouse specific targets” – number of mouse specific 
targets of a Sfmbt2 miRNA seed. 
 

 

miRNA seed miRNA p1 p2
total 

targets

mouse 

specific 

targets

CUUGUGU miR-669d 0.00002 0.01846 921 399

UAUACAU miR-467a-3p/467b*/467e*/669b-3p 0.00005 0.00181 1407 519

GUGUGCA miR-466hj 0.00044 0.00134 1196 526

GUCUUGU miR-669e 0.00066 0.12920 678 258

AUGCAUA miR-669h-3p/669k 0.00108 0.00642 865 239

UGUAUGU miR-297a/297b-5p/297c 0.00147 0.02438 1033 553

AAGUGCC miR-467a 0.00219 0.06870 781 239

GCAUUGU miR-669g 0.00347 0.01990 578 212

GUGUGUG miR-466d-5p/466k 0.00607 0.11072 1616 977

AUAUACA miR-669f 0.01177 0.04886 2014 659

UAAGUGU miR-467e 0.01722 0.00427 731 328

UAGUUGU miR-669c 0.03293 0.70988 489 202

GUUUUGU miR-669b 0.04674 0.00062 1329 615

GCAUAUA miR-669ij 0.08557 0.38816 636 213

ACGUGUG miR-466f-5p 0.10080 0.32340 365 202

UGCAUGG miR-669h-5p 0.11350 0.07416 854 359

UAAGUGC miR-467b 0.11701 0.07844 627 173

AUACAUA
miR-297b-3p/466a-3p/466b-3-3p/466c-

3p/466d-3p/466e-3p/467g
0.14642 0.03100 1548 665

AUACACA miR-466f-3p 0.17663 0.00965 1908 850

AAGUGCG miR-467c/d 0.22560 0.35483 165 62

AUAAAUA miR-466l 0.22908 0.05234 2832 500

UGUGCAU hp2288 0.24434 0.00252 1080 432

CAUAACA miR-669a-3p 0.27217 0.15256 849 357

AUGUGUG miR466a-5p/466b-5p/466c-5p/466e-5p 0.32233 0.55551 1237 688

GUUGUGU miR-669a 0.32867 0.56666 596 292

ACAUACA hp2090 0.37034 0.30598 1827 887

UACAGAC miR-466g 0.49446 0.87167 977 304
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Table 3. Summary statistics of positive selection signals 
detected from heptamer binding sites in mouse and human 3′ 
UTRs.  
 
The analysis was performed in two steps, and each step consisted of two tests. Here we explained 
the details of the analysis by searching for targets that have specifically gained binding sites to a 
mouse-specific miRNA seed. The same analysis can be extended to other human or mouse-
specific miRNA seeds to look for gain or loss signals in target 3’ UTRs.  
 
In Step I, we compared mouse to human 3′ UTRs to check if the mouse-specific miRNA seed is 
preferentially gained in mouse 3’ UTRs. First, we calculated the fraction of the seed site gained in 
mouse. Then we compare the fraction to that of control heptamers. The seed sites that displayed a 
significantly higher fraction of site gain than heptamer controls were considered significant 
(p≤0.05). In Step II, we compared mouse to human 3′ UTRs to find the variation at the target site 
as well as variations along its 80-nt flanking sequences. The percentage of nucleotides changed 
(% mutation) was calculated for the miRNA seed, as well as for heptamers that were 40-nt 
upstream, and 40-nt downstream. If the mutation rate at the miRNA binding site was much higher 
than those of adjacent heptamers, target sites of the miRNA seed was considered to be under 
positive selection for site gain (p≤0.05).  
 
“count” represents the number of heptamers that were significant in each test. “total” represents 
the total number of possible heptamers in the specific test category. P-values were the result of 
Chi-square tests. Numbers colored in red represent the ratios that were significantly higher than 
the controls (the ratios from “all heptamers” categories). There are 16384 total heptamers, and 
1117 distinct M2-8 miRNA seeds in mouse and human miRNAs combined. There are 796 mouse 
or human specific miRNAs (dog miRNAs were used as an outgroup).  
 

 

count total
count/total 

(%)
p count total

count/total 

(%)
p

all heptamers 765 16384 4.67 all heptamers 347 16384 2.12

human-

specific 

miRNA seeds

38 595 6.39 0.077

human-

specific 

miRNA seeds

16 595 2.69 0.38

mouse-

specific 

miRNA seeds

13 201 6.47 0.31

mouse-

specific 

miRNA seeds

7 201 3.48 0.21

human + 

mouse 

summary

51 796 6.41 0.036

human + 

mouse 

summary

23 796 2.89 0.16

count total
count/total 

(%)
p count total

count/total 

(%)
p

all heptamers 765 16384 4.67 all heptamers 347 16384 2.12

human-

specific 

miRNA seeds

49 595 8.24 0.001

human-

specific 

miRNA seeds

32 595 5.38 0.0005

mouse-

specific 

miRNA seeds

12 201 5.97 0.39

mouse-

specific 

miRNA seeds

7 201 3.48 0.21

human + 

mouse 

summary

61 796 7.66 0.001

human + 

mouse 

summary

39 796 4.90 0.001

gain events

Step I

loss events

gain events

loss events

Step II
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Table 4. Target sites of 32 human species-specific miRNAs are 
under positive selection for site loss. 
 

 

miRNA seed miRNA
direction of target site 

selection

CAUAGCC hsa-miR-103-as site loss in human

GGAUGGU hsa-miR-1193 site loss in human

GGAUGAG hsa-miR-1255a hsa-miR-1255b site loss in human

GGGUGGU hsa-miR-1293 site loss in human

CAUGGGU hsa-miR-1308 site loss in human

AUAGGGA hsa-miR-135a* site loss in human

UGUAGGG hsa-miR-135b* site loss in human

UGUGUGG hsa-miR-147 site loss in human

CCCCACA hsa-miR-1975 site loss in human

GACAGCG hsa-miR-2277 site loss in human

GGGUAGA hsa-miR-3132 site loss in human

UAGGGAG hsa-miR-3162 site loss in human

AGGACUG hsa-miR-3169 site loss in human

UGGGGUU hsa-miR-3170 site loss in human

AGUGAGU hsa-miR-3174 site loss in human

GAAGAAG hsa-miR-3185 site loss in human

GGGACUG hsa-miR-3199 site loss in human

GGGUGGA hsa-miR-363* site loss in human

UAGGAGG hsa-miR-4266 site loss in human

UAGGGGG hsa-miR-4278 site loss in human

CCCCACU hsa-miR-4286 site loss in human

CCCACUA hsa-miR-4301 site loss in human

GGGUAAG hsa-miR-555 site loss in human

GAGUGUG hsa-miR-574-5p site loss in human

ACACGGG hsa-miR-602 site loss in human

GGGGUGG hsa-miR-608 site loss in human

GGGUGUU hsa-miR-609 site loss in human

GGGGGAA hsa-miR-625 site loss in human

GCUGUCU hsa-miR-626 site loss in human

GGUUGGG hsa-miR-92a-1* site loss in human

GGUGGGG hsa-miR-92a-2* site loss in human

UGACUGU hsa-miR-943 site loss in human
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 Figure 1. Genomic structure of the Sfmbt2 miRNA cluster and 
its expression in placenta. 
 
(A) Precursors of Sfmbt2 miRNAs were mapped to the 9th intron of the Sfmbt2 gene by BLAST. 
The intron spans from 10.39Mbp to 10.44Mbp on Chromosome 2. The Sfmbt2 miRNAs were 
color coded, and * refers to miRNAs with both 5′ and 3′ sequences mapped to the locus. (B) 
Northern blot analysis of miR-467a-5p, miR-297a-5p, and miR-466a-5p in placental and ES cells. 
Gln tRNA was probed as a loading control. Lane 1, placental d11.5; 2, placental d13.5; 3, WT ES 
cells; 4, KO ES cells.  
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 Figure 2. Multiple sequence alignments of Sfmbt2 miRNAs. 
 
Precursors of Sfmbt2 miRNAs were aligned with ClustalW. Alignments of mature sequences and  
% conservation calculated along the mature sequences were shown for each miRNA family found 
in Sfmbt2 miRNA cluster. (A) miR-297 and miR-467 families. (B) miR-466 families. (C) miR-
669 families. 
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Figure 3. Predicted targets of Sfmbt2 miRNAs show decreased 
stability in d13.5 placenta. 
 
Representative CDFs (cumulative distribution functions) of log2 fold change (LFC) in 
mRNA expression between d11.5 and d13.5 placenta cells are plotted for two miRNA 
target sets that showed the most significant difference between “all targets” and 
“control” (A) and “mouse targets” and “control” (B). (A) “all targets” (green) include 
399 predicted targets of miR-669d, and “mouse targets” (red) include 921 mouse 
specific targets. The control mRNA (blue) was selected to match the predicted targets in 
di-nucleotide composition and 3′ UTR length. “all targets” and “mouse targets” are both 
de-repressed in d13.5 placental cells (p= 2.0e-5 and p=1.85e-2 by rank sum test 
respectively). (B) CDFs were plotted for 1080 predicted targets and 432 mouse specific 
targets of hp2288, an unannotated miRNA from the Sfmbt2 cluster. Although “all 
targets” are not derepressed relative to the control mRNAs at d13.5, “mouse specific” 
targets are (p=2.52e-3 by rank sum test). 
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Figure 4. Repression of Dedd2 by two of Sfmbt2 miRNAs. 
 
Luciferase reporter with full length Dedd2 3’ UTR was assayed in Dcr KO ES cells. 20nM of 
control siRNA, miR-297a-5p, and miR-466a-5p were transfected in Dcr KO ES cells. n=3 and 
results are shown as mean ± S.E.M.  
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Figure 5. Illustration of the positive selection analysis for site 
gain of a mouse-specific miRNA. 
 
(A) A flow chart of the analysis. The analysis was divided into 2 steps. In Step I, the fraction of 
sites gained in mouse was calculated for the mouse-specific miRNA.  Then the fraction was 
compared to those of control heptamers. If the fraction of the sites gained for the mouse-specific 
miRNA was significantly higher than that of controls, the miRNA seed was considered for Step II 
of the analysis, where the mutation rate at the miRNA binding sites was compared to those of 
adjacent sequences. Targets were considered to be positively selected for site gain if the mutation 
rate at the miRNA binding site is significantly higher than those of adjacent sequences. (B) 
Histogram of the fraction of sites gained in mouse for control heptamers. The blue arrow points at 
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the fraction of sites gained for the miRNA seed of interest. (C) Mutation rates of the miRNA 
binding site and its flanking sequences. % mutation = fraction of mismatched nucleotides in the 
7-nt window. “0” - the miRNA binding site, “40” – 40-nt downstream of the miRNA binding site, 
“-40” – 40-nt upstream of the miRNA binding site.  
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Appendix: Exploring miRNA targets that are under purifying 
selection 
 

Comparative genomic analysis revealed that the 5′ region of miRNAs is the most 

conserved portion of miRNAs (Lewis et al. 2003; Lim et al. 2003a; Lewis et al. 2005; 

Chen and Rajewsky 2006). Seed binding sites in the 3′ UTRs tend to be more highly 

conserved than expected by chance (Lewis et al. 2003; Lim et al. 2003a; Lewis et al. 

2005). As a proof of principle, we extended our method to look for purifying signals of 

miRNA target sites in two steps. If target sites of a miRNA are under purifying selection, 

then we would expect more sites maintained between human and mouse 3′ UTRs, and 

lower variation at the binding site than their adjacent sequences. Accordingly, in Step I, 

we counted the number of times a miRNA binding site (M8-7mer match) is present in the 

human 3′ UTR, but absent in its mouse counterpart (Figure 1). The fraction of sites 

gained in human was calculated, and compared to that of controls. Target sites that 

showed a conservation signal should have a significantly lower number of sites gained in 

human than expected. In Step II, we focused only on miRNAs target sites with significant 

conservation signals, and assessed their variation relative to adjacent sequences 

(defined as the 80-nt UTR sequences upstream and downstream) (Figure 1). Of the 

1117 miRNA seeds, target sites of 71 (6.36%) of them showed a significant conservation 

signal between human and mouse. This is significantly higher than the proportion of 

control heptamers with conserved target sites (2.56%, p=0.00050 by Chi-squareTest) 

(Table 1). Furthermore, target sites of almost 20% of conserved miRNAs (defined as 

shared between mouse and human) are under purifying selection, a result that is 

consistent with results from previous studies (Lewis et al. 2003; Lim et al. 2003a; Lewis 

et al. 2005; Friedman et al. 2009) (Table 1). 
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Table 1. Summary statistics of purifying selection signals detected from 
heptamer binding sites in mouse and human 3′ UTRs. 

The analysis was performed in two steps. In Step I, we compard human to mouse 3′ UTRs to find 
heptamers that showed significant conservation signals between human and mouse. In Step II, we 
compared human to mouse 3′ UTRs to find the variation at the target site as well as variations 
along its 80-nt flanking sequences. The percentage of nucleotides changed (% mutation) was 
calculated for the heptamer, as well as for heptamers that were 40-nt upstream, and 40-nt 
downstream. If the mutation rate of the heptamer was much lower than those adjacent heptamers, 
the heptamer was considered to be under purifying selection (p≤0.05).  
 
“count” represents the number of heptamers that were significant in each test. “total” represents 
the total number of possible heptamers in the specific test category. Numbers colored in red 
represent the ratios that were significantly higher than the controls (the ratios from “all 
heptamers” categories). There are 16384 total heptamers, and 1117 distinct M2-8 miRNA seeds 
in mouse and human miRNAs combined. 218 are shared between mouse and human. 
 

 

count total
count/total 

(%)
count total

count/total 

(%)

all heptamers 788 16384 4.81 all heptamers 419 16384 2.56

all miR seeds 98 1117 8.77 all miR seeds 71 1117 6.36

miR seeds 

shared by 

human and 

mouse

54 218 24.77

miR seeds 

shared by 

human and 

mouse

43 218 19.72

Step I Step II

purifying selection purifying selection
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Figure 2. Illustration of the purifying selection analysis. 

The analysis was divided into 2 steps. In Step I, the fraction of sites gained in human was 
calculated for each heptamer. If the heptamer gained fewer sites in human than expected 
(p≤0.05), it was considered for further analysis in Step II, where the mutation rate of the miRNA 
binding sites was compared to those of heptamers in the neighboring 80-nt sequence. (A) 
Histogram of the fraction of sites gained for control heptamers. The red arrow points at the 
fraction of sites gained for the miRNA seed of interest. (B) Mutation rates of the miRNA binding 
site and its flanking sequences. % mutation = fraction of mismatched nucleotides in the 7-nt 
window. “0” - the miRNA binding site, “40” – 40-nt downstream of the miRNA binding site, “-
40” – 40-nt upstream of the miRNA binding site.  
. 
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miRNAs are key modulators of animal development. In this thesis, we have 

studied the regulatory roles of miRNAs in the development of murine T lymphocytes, ES 

cells and the placenta. In each chapter, we focused on miRNAs characterized by 

enriched expression during development. Cloning microRNAs from various stages of T 

cell development revealed variable expression of miRNAs during this process. miR-181 

was significantly enriched at the CD4+CD8+ (DP) stage of T lymphocytes. We identified 

several targets that implicated miR-181 in the process of thymocyte positive selection. In 

ES cells, we focused on a family of miRNAs sharing the AAGUGC seed sequence. This 

family, the most abundant in embryonic stem cells, impacted ES cell division in the G1 to 

S phase transition and suppressed apoptosis. Lastly, we characterized a mouse-specific 

Sfmbt2 miRNA cluster and speculated in regards to its role in promoting placental 

growth. While these studies were undertaken in three distinct developmental systems, 

they only scratch the surface in understanding the complex developmental networks that 

are regulated by miRNAs.  
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miRNAs in T lymphocyte development 
 

Cloning statistics of short RNAs in T cells have shown that the expression of 

miR-181 is elevated at least 10-fold at the DP stage, when thymocytes undergo positive 

and negative selection to become mature T cells. Studies from our and other labs 

suggest that miR-181 can enhance TCR signaling strength (Li et al. 2007; Neilson et al. 

2007). However, our current understanding of miR-181’s role in T cell development is 

likely incomplete. Firstly, while we are able to associate the functions of a few validated 

targets of miR-181 to TCR signaling, we do not know the effects of the remaining targets 

in vivo. Secondly, it is not clear the extent to which miR-181 influences the expression of 

these targets, and the relative importance of each target in T cell maturation. It is also 

possible that miR-181 regulates additional targets since T cells express more than 40 

tyrosine phosphatases and other negative regulators of TCR signaling (Mustelin et al. 

2005). Finally, besides TCR signaling, miR-181a may play a role in other pathways such 

as the costimulatory pathways suggested by Li et. al. (Li et al. 2007). All three questions 

can be addressed by creating a conditional knockout of miR-181 in the T cell lineage, or 

a miR-181 knockout mouse. The miR-181 knockout mouse will also allow us to examine 

its role in B lymphoid cells. miR-181 is highly expressed in B lymphoid cells, and its 

overexpression can bias haematopoietic cell development towards the B cell lineage 

(Chen et al. 2004). 

While miR-181a is upregulated more than 10-fold in DP cells, the mechanism of 

upregulation remains unknown. It is known that miR-181a and miR-181b are located in 

tandem on chromosome 2 and they exhibit coordinate upregulation in DP cells. These 

facts suggest that the mechanism of regulation is more likely transcriptional than post-

transcriptional. It has been proposed that the miR-181 family is transcriptionally 

regulated by MYCN in glioblastoma (Nicoloso and Calin 2008). Understanding how miR-
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181 expression is transcriptionally regulated has the potential to not only lend more 

insight into its role in T cell development, but also its role in oncogenesis as 

overexpression of miR-181 has been detected in breast, pancreas, and prostate cancers 

(Calin and Croce 2006). 

Beyond our observations regarding miR-181, our short RNA sequencing data 

throughout T cell development raises several interesting questions that might be better 

addressed through deep sequencing of short RNAs in T cells. First of all, many of 

noncoding short RNA sequences mapped to genomic regions annotated as repeats or to 

which ESTs have been mapped. Additionally, among the clones that overlapped RefSeq 

“known” genes, less than half of the clones mapped to these annotations in the sense 

orientation. Fully half of the clones overlapping annotated genes mapped antisense to 

the protein-coding region of the gene. It is curious what these noncoding RNAs are, and 

we speculate that some of these clones may be endo-siRNAs, which have been 

detected in mouse oocytes and ES cells (Babiarz et al. 2008; Tam et al. 2008; 

Watanabe et al. 2008). The precursors of mouse endo-siRNAs are transcripts that 

contain long hairpin structures or dsRNAs that are derived from sense-antisense pairs 

(Tam et al. 2008; Watanabe et al. 2008). Increased depth of coverage in these libraries 

might determine whether any of the non-coding short RNAs cluster in the genome, and if 

their genomic sequences can form hairpin-like structures.  

Secondly, deep sequencing might help us to better understand whether the 

process of active RNA editing impacts miRNA function in T cells. In Chapter 2, we 

attributed the decreased expression of miR-142 at DN3 to ADAR editing. However, we 

were not able to observe ADAR-edited sequences in our cloning data.  While this is in 

part due to the observation that endogenous ADAR editing sites were often outside the 

mature miRNA, increased depth of coverage would also allow comprehensive profiling of 

precursor and mature miRNA sequences at the DN3 stage of thymocyte development.  
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Lastly, deep sequencing might enable us to uncover other miRNAs and 

noncoding RNAs playing important roles in T cell development. We first cloned miRNAs 

from the Sfmbt2 cluster in developing T lymphocytes, and the expression of members of 

this cluster were found to be specifically elevated in mature CD4 and CD8 cells. 

However, the relative expression of Sfmbt2-derived miRNA sequences uncovered in T 

cells is greatly underrepresented relative to their cloning statistics in ES cells, making it 

difficult to know whether their presence is simply a result of stochastic processes, or 

signals their functional importance in T cells. Deep sequencing data will allow us to 

ascertain a non-random presence, and provide a better direction for future investigation 

of the role of the Sfmbt2 miRNA cluster in T cells. 

miRNAs in ES cells 
 

Our functional assays on Dcr KO and WT ES cells suggest that AAGUGC 

miRNAs are involved in buffering ES cells from apoptosis, especially when cells are 

subjected to genotoxic stress. This is consistent with miRNAs’ ability to confer 

robustness upon biological systems. Recent additional work from our lab provides more 

experimental evidence in multiple systems that demonstrate the central role of miRNAs 

in apoptosis regulation. Upon oxidative stress, Dicer null Sarcoma cells show a much 

stronger Caspase 3 activation than their wild type counterparts (Figure 1) (Arvind Ravi, 

unpublished data). Interestingly, sarcoma cells express a very different set of miRNAs 

from ES cells, suggesting that miRNAs can control the induction of programmed cell 

death in a cell-autonomous manner. Our preliminary data suggested that ES cells 

undergo apoptosis in a p53-dependent manner. However, the sarcoma cells under study 

lack p53 function, implying that miRNAs can control multiple signaling pathways 

activated by different stress stimuli. Identification of downstream signaling networks 

upon Caspase 3 activation in ES and Sarcoma cells will help us better understand the 
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role of miRNAs in regulating stress and apoptosis.  

Our work has also shown that AAGUGC miRNAs can affect apoptosis by 

downregulating the expression of certain proapoptotic factors (Casp2 and Ei24) that are 

direct targets of the miRNAs. Recent studies suggest an interesting link between 

apoptosis and ES cell differentiation. Upon DNA damage, induced P53 was found to 

suppress Nanog transcription, and induce differentiation (Lin et al. 2005). Additionally, 

activated Casp3 can induce the cleavage of NANOG protein (Larsen et al. ; Fujita et al. 

2008). These observations present an alternative for ES cells to maintain genetic 

stability by differentiating into other cell types. However, future studies will need to 

address how cells decide to undergo apoptosis or differentiation upon DNA damage.  

miRNAs in placental development 
 

The Sfmbt2 miRNA cluster is a maternally-imprinted, mouse-specific miRNA 

cluster that has affected the evolution of mouse 3′ UTRs. Many mRNAs that have been 

positively selected to gain target sites to this cluster are enriched in pathways regulating 

cell growth and apoptosis, suggesting that the miRNA cluster can promote murine 

placental growth. However, our study opens up more questions on the role of the Sfmbt2 

miRNA cluster in placental development. 

Although we have tested a few mouse-specific Sfmbt2 miRNA targets in Dcr KO 

ES cells, further experiments are required to demonstrate their relevance in regulating 

placental growth. First, target repression by Sfmbt2 miRNAs needs to be confirmed in 

trophoblast stem cells or choriocarcinoma cell lines. Since our preliminary data suggest 

that mouse-specific target sites confer weak repression, it will be useful to focus on 

mRNAs that have multiple miRNA binding sites with favorable 3′ UTR context. Gain and 

loss of function experiments can then be performed in cell cultures to address their 

potential function in promoting cell proliferation and suppressing apoptosis.  
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Sfmbt2 has been implicated in promoting placental growth, because paternal 

duplication of Sfmbt2-containing regions enhanced placental growth, while maternal 

duplication reduced placental growth (Cattanach et al. 2004). It will be important to 

establish a direct functional link between the Sfmbt2 gene and placental growth. To this 

end, we have obtained insertional gene trap mutants from the Bay Genomics consortium 

to disrupt the expression of the Sfmbt2 locus. To parse the function of the miRNA cluster 

from the Sfmbt2 gene, we utilized two types of insertion. An insertion upstream of the 

cluster should disrupt the function of the gene and the miRNA cluster, while an insertion 

downstream of the cluster should only disrupt the gene, leaving the expression of the 

miRNA cluster intact. Preliminary evidence showed that while the loss of the gene alone 

did not have any observable developmental defect, loss of the gene and the miRNA 

cluster resulted in abnormal blastocysts resembling the Cdx2 knockout phenotype (Joel 

Neilson, unpublished data). Cdx2 is a key transcription factor required for the 

establishment of a functional trophectoderm. This suggests a link between the Sfmbt2 

locus and trophoblast development (Beck et al. 1995; Strumpf et al. 2005). It will be 

interesting to further characterize the insertional mutants to ascertain the effect and 

relative contribution of the Sfmbt2 gene and miRNA cluster in placental development.  

Noncoding RNAs (ncRNAs) are often associated with imprinted gene clusters. In 

addition to the Sfmbt2 miRNA cluster, another large imprinted miRNA cluster has been 

identified at the Dlk1-Gtl2 domain, a well known maternally imprinted locus that includes 

growth-promoting genes such as Peg10 (Seitz et al. 2004). Interestingly, the miRNA 

cluster is transcribed from the antisense strand, and is only expressed from the maternal 

allele. Several members of the cluster can bind to Peg11 mRNA (another maternally 

imprinted gene) and induce its cleavage (Davis et al. 2005). This observation, along with 

other examples (such as the interaction between Igf2 and Igf2R) is consistent with the 

parent-conflict theory, which states that positive growth effects from paternally 
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expressed genes are usually suppressed by maternally expressed imprinted genes 

(Moore and Haig 1991; Reik et al. 2003). These examples raise an interesting possibility 

that a maternally imprinted Sfmbt2 locus could be targeted by a paternally imprinted 

gene to balance out its growth-promoting effect in placenta. Most placenta-imprinted 

genes are paternally-imprinted, and they will serve as a good starting point to look for 

the proposed interactions (Wagschal and Feil 2006).  

The placenta is a hallmark of mammalian development (Jaenisch 1997). It is 

designed uniquely to provide the fetus with nutrients, gas and waste exchange, and 

protection from the maternal immune system and environmental stress (Sood et al. 

2006). Since miRNAs play an important role in maintaining homeostasis and buffer cells 

from aberrant environmental stimuli, we would expect miRNAs to be a central player in 

placental development. However, our current understanding of miRNAs’ role in the 

placenta is in its infancy. There is a lack of functional studies on placental miRNAs 

(Maccani and Marsit 2009). In addition, existing miRNA expression data has been 

generated from mature placenta, which provides a starting point for understanding their 

role in placental development (Landgraf et al. 2007). A comprehensive set of miRNA 

(and other short RNAs) expression profiles at key developmental time points of the 

placenta would add another dimension of information about gene expression.  

Such a comprehensive set of miRNA expression profiles, combined with other 

datasets can greatly facilitate our understanding of placental function. This combination 

of data can be used to address several outstanding questions. First of all, we can use 

miRNA data to better understand the expression dynamics of the Sfmbt2 cluster and its 

role throughout placental development. By examining the expression level of individual 

miRNAs, we can begin to tease out the relative contribution of members of the cluster, 

and look into differential regulation of the individual miRNA expression. The analysis can 

be extended to other miRNA clusters expressed in the placenta. Additionally, we can 
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focus on miRNAs that show enriched or dynamic expression during placental 

development, and use transcriptomic data to explore their functions. Secondly, ncRNAs 

have been implicated in eigenetic regulation, which is prevalent in the placenta (Maltepe 

et al.; Maccani and Marsit 2009). The deep sequencing data of short RNAs, coupled with 

methylation and chromatin immunoprecipitation data would enable us to explore the role 

of short RNAs in regulating DNA methylation and histone modifications.  

It will also be interesting to extend the study of miRNAs and other short RNAs to 

human placenta, which will allow us to understand human placental development, and 

gain insight into mechanisms that affect immediate and long-term health of the fetus. 

Given the vast difference between murine and primate reproductive strategies, we would 

expect to uncover many primate-specific miRNAs that play important roles in their 

placental development. In fact, a primate-specific miRNA cluster was found to be 

uniquely expressed in the placenta (Bentwich et al. 2005). The availability of 

transcriptomic and noncoding RNA data during human placental development would 

greatly facilitate our understanding of their functions. 

In addition to the primate-specific cluster and the Sfmbt2 miRNA cluster 

discussed above, an increasing number of species-specific miRNAs have been revealed 

by deep sequencing studies. Our analysis in Chapter 4 revealed that targets of 32 

human-specific miRNAs have evolved to preferentially lose binding sites. While some of 

these miRNAs are likely to have important functions, the challenge will be to identify a 

developing system in which the miRNAs are relevant. This task will become increasingly 

easier as short RNAs are sequenced in multiple organisms across multiple tissues. 

Overall, miRNAs are key players in all aspects of mammalian development. They 

have also been shown to be involved in tumorigenesis and many developmental defects 

(Stefani and Slack 2008). Since there is a close link between deregulation of normal 

developmental processes and pathogenesis, our understanding of the regulatory roles of 
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miRNAs in developmental networks will generate useful insights that can be applied to 

the treatment of diseases. 
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Figure 1. Caspase 3 activation in Mouse Sarcoma and ES cells 
before and after stress induction.  
 
(A) The percentage of cleaved Casp3 in WT (blue) and Dicer null (red) Sarcoma cells under 
normal culturing conditions (left) and 19 hours after 25nM Sodium Arsenite treatment (right). (B) 
The percentage of cleaved Casp3 in WT (blue) and Dicer null (red) ES cells under normal 
culturing conditions (left) and 24 hours after 100nM doxorubicin treatment (right).
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