Exploring the regulatory roles of microRNAs in
mammalian development

by
Grace Xinying Zheng

B.Sc. University of British Columbia
Vancouver, Canada, 2004

SUBMITTED TO THE PROGRAM OF COMPUTATIONAL AND SYSTEMS BIOLOGY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTORATE OF PHILOSOPHY
AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
MAY 2010

© 2010 Massachusetts Institute of Technology
All rights reserved

Signature of AUTNOT. ... ...
Grace X.Y. Zheng
Computational and Systems Biology

May 21, 2010

Certified DY ..o
Phillip A. Sharp

Institute Professor of Biology

Thesis Supervisor

Certified DY ..o

Christopher B. Burge
Whitehead Career Development Associate Professor of Biology
Thesis Supervisor

ACCEPEEA DY .. e a———
Christopher B. Burge

Whitehead Career Development Associate Professor of Biology

Chair, CSB Graduate Committee



Exploring the regulatory roles of microRNAs in
mammalian development

By

Grace Xinying Zheng

Abstract

microRNAs (miRNAs) are ~22-nt long short RNAs that regulate gene expression in
organisms ranging from plants to animals. In mammals, miRNAs post-transcriptionally repress
gene expression by primarily binding to the 3’ untranslated region (3" UTR) of target mRNAs.
Although hundreds of miRNAs have been discovered, targets of most miRNAs and the method
by which they affect their biological function remain elusive. To better understand the role of
miRNAs in fundamental cellular processes, we characterized enriched miRNA populations in
three distinct murine developmental programs, T lymphocytes, embryonic stem cells, and the
placenta.

We started exploring the role of miRNAs in T lymphocytes by globally characterizing
short RNA expression during key developmental stages of T lymphocytes. Our results showed
that a distinct set of miRNAs is enriched in each stage. In particular, miR-181 is elevated at the
double positive (DP) stage, when thymocytes expressing both CD4 and CD8 undergo positive
and negative selection. We found that miR-181 can repress the expression of Bcl-2, CD69, and
the T cell receptor, all of which are involved in positive selection.

Analysis of short RNAs in T lymphocytes also revealed a novel miRNA cluster, the
Sfmbt2 miRNA cluster, named as such since it maps to an intron of the Sfmbt2 gene, a Polycomb
Group gene. Instead of studying this cluster in T lymphocytes, we decided to use embryonic stem
(ES) cells as this cluster is also expressed in ES cells and the cells are more conducive to lab
experimentation. This cluster contains several miRNA families, and we addressed the function of
one miRNA family, miR-467a, as it shares target specificity with other highly abundant miRNAs
in ES cells. Gain and loss of function assays showed that this family of miRNAs can promote cell
survival by advancing the G1 to S phase transition. In addition, they target certain proapoptotic
factors to buffer ES cells from apoptosis, especially in the context of genotoxic stress.

The Sfimbt2 cluster is a mouse-specific miRNA cluster, and individual members have
been uniquely amplified in the Sfmbt2 locus. We developed a method to explore the impact of
species-specific miRNAs on the evolution of 3’ UTRs, and found that target sites of many
miRNAs show positive selection. In particular, mouse target sites have evolved to specifically
gain binding sites (mouse-specific targets) for some Sfmbt2 miRNAs, several of which are
enriched in the placenta. These mouse-specific targets are enriched in pathways regulating cell
survival, implicating the Sfmbt2 miRNA cluster as a possible promoter to placental growth.

Our studies in T lymphocytes, ES cells and the placenta have revealed important roles of
miRNAs in shaping 3’ UTR evolution, and mammalian development. Several novel miRNA
targets we uncovered are important regulators of differentiation, cell cycle, and apoptosis.
Understanding their functions will not only shed light on their roles in normal physiology, but
also generate useful insights that can be applied to cancer and reprogramming.
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Christopher B. Burge, Whitehead Career Development Associate Professor of Biology
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Chapter 1: Introduction

Short RNAs participate in almost every aspect of eukaryotic biology through
translational repression, mRNA degradation and chromatin modification. miRNAs are a
class of short RNAs that regulate gene expression in organisms ranging from plants to
mammals. To date, hundreds of miRNAs have been identified, and they are shown to
regulate a diverse array of cellular functions, such as differentiation, proliferation,
apoptosis, and metabolism, by post-transcriptionally regulating gene expression. In
Chapter 1, we review the key findings in miRNA biogenesis, mechanisms and principles
of miRNA targeting, and focus on the important role of miRNAs in ES cells. At the end of
the chapter we also include an introduction on T lymphocyte and placental development

to provide appropriate background for the research described in the thesis.
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Chapter 1: Introduction

Discovery of miRNA genes

Since the discovery of RNA inteference (RNAI), efforts to identify endogenous
small RNAs have led to the discovery of hundreds of miRNAs in plants and animals
(Bartel 2004). Over 400 miRNAs have been confidently identified in humans, a number
that approaches 2% of protein coding genes (Landgraf et al. 2007). To date, three types
of approaches have been used to identify miRNA genes: genetic screening, short RNA
cloning, and bioinformatics.

The first miRNAs, lin-4 and let-7, were discovered through genetic screens, as
their mutations led to a defect in the timing of C. elegans development (Lee et al. 1993;
Reinhart et al. 2000). Genetic screens have revealed more miRNAs in several model
organisms, notably bantam in Drosophila, and Isy-6 in C. elegans (Brennecke et al.
2003; Johnston and Hobert 2003).

Meanwhile, massive cloning efforts have taken center stage in uncovering
mMiRNAs as well as other classes of short RNAs. To clone endogenous small RNAs,
size-fractionated RNA is ligated to 5’ and 3' adaptor molecules, then reverse transcribed
and amplified by PCR to construct the cDNA library for sequencing (Kim and Nam
2006). The recent introduction of deep sequencing technology has enabled
simultaneous sequencing of up to millions of DNA molecules (Shendure and Ji 2008).
After sequencing, raw sequence reads are filtered based on quality, and mapped to
various non-coding databases as well as genomic sequences. This led to the discovery
of not only miRNAs, but also piRNAs (Aravin et al. 2006; Girard et al. 2006; Grivna et al.
2006; Lau et al. 2006; Watanabe et al. 2006), endo-siRNAs (Tam et al. 2008; Watanabe
et al. 2008; Lau et al. 2009), and TSSa-RNAs (Core et al. 2008; Preker et al. 2008; Seila
et al. 2008), small RNAs that overlap with transcription start sites in mammalian cells.

Bioinformatics has helped identify novel miRNAs by detecting sequence

12



Chapter 1: Introduction

conservation and predicting hairpin structures (Bartel 2004). The first miRNA search
algorithm was miRScan (Lim et al. 2003b), which searched for miRNA-like features and
conservation patterns in hairpin sequences that showed homology in two nematode
species. The method was also extended to successfully identify miRNAs in vertebrates
(Lim et al. 2003a). Through comparative analysis of the human, mouse, rat and dog
genomes, Xie et. al. catalogued common regulatory motifs in promoters and 3' UTRs
(Xie et al. 2005). Many of the motifs in 3' UTRs are associated with miRNAs, leading
them to predict 129 novel miRNAs, many of which have subsequently been validated.
Berezikov et. al. used the characteristic conservation profile around miRNA genes (high
conservation in the stem region relative to flanking sequences) to discover novel
miRNAs through cross-species comparison (Berezikov et al. 2005). Bentwich et. al. used
an integrative approach to combine bioinformatics predictions with microarray analysis
and sequence-directed cloning (Bentwich et al. 2005). They identified 89 novel human
miRNAs, of which the majority can be mapped to two nonconserved clusters. One of
them is expressed only from chromosome 19 in the placenta, whereas the other is found
on chromosome X, and has been implicated in regulating testis development and

spermatogenesis (Zhang et al. 2007).

Genomic organization of miRNAs

miRNAs are derived from hairpin precursors that are encoded in the genome
(Kim et al. 2009). Approximately 80% of miRNA genes are found in intronic regions of
protein coding and non-coding transcriptional units, and the rest are distributed in exonic
and intergenic regions (Kim et al. 2009). About half of known miRNAs are found in
clusters, and they are transcribed as polycistronic primary transcripts (Kim et al. 2009).
However, not all miRNAs in the same cluster are expressed at the same level,

suggesting that miRNAs may be post-transcriptionally processed on an individual basis
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Chapter 1: Introduction

(Calabrese et al. 2007; Neilson et al. 2007; Babiarz et al. 2008; Ventura et al. 2008).
Members of miRNA clusters tend to have similar sequences, which allow them to
regulate a common set of transcripts (Ambros 2004; Bartel 2004). An example of a
functionally related cluster is the miR-290-295 cluster, which is specifically expressed in
ES cells (Houbaviy et al. 2003). This cluster’s role in maintaining stem cell pluripotency

and development will be discussed in detail in the section “miRNAs in ES cells”.

Evolution of miRNAs

mMiRNA creation and expansion have been linked to major developmental
innovations. Hertel and colleagues have documented three episodes of miRNA creation
that coincide with metazoan evolution: the advent of bilaterians, the rise of vertebrates,
and the emergence of placental mammals (Hertel et al. 2006). About 30 miRNAs,
including let-7 and miR-1, are shared among bilaterians (Hertel et al. 2006; Niwa and
Slack 2007). Higher number of miRNAs in an organism is generally associated with a
more complex body plan and development. For example, about 800 miRNAs have been
identified in primates, and about half of them are primate-specific (Bentwich et al. 2005).

Three mechanisms have been proposed to explain the evolution of animal
mMiRNAs (Shabalina and Koonin 2008). First, many miRNAs appear to be derived from
repeats and transposons, which comprise an especially large fraction of mammalian
genomes. About 20% of human miRNAs share sequences with transposable elements,
and a recent systematic analysis revealed that 55 miRNAs originated from LINE and
SINE elements (Aravin et al. 2001; Smalheiser and Torvik 2006; Piriyapongsa et al.
2007). Second, many clustered miRNAs are thought to have evolved through duplication
of an existing miRNA followed by mutations in the target recognition region (Shabalina
and Koonin 2008). Last, some miRNAs could arise from random hairpin structures that

are embedded in the transcribed part of genomes. Genome-wide bioinformatics screens
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Chapter 1: Introduction

showed that the human genome encodes millions of potential hairpins (Bentwich et al.
2005). New miRNAs with target specificities can emerge from the pool of hairpin
transcripts via random mutations. miRNAs that confer beneficial regulations to their
target genes can then be maintained through purifying selection (Liu et al. 2008;

Shabalina and Koonin 2008).

Biogenesis of miRNAs

Most miRNA genes are transcribed by RNA polymerase Il to generate primary
transcripts (pri-miRNAs) that are several kilobases long, and are 5' capped and 3’
polyadenylated (Cai et al. 2004; Lee et al. 2004; Kim et al. 2009). A typical mammalian
primary miRNA (pri-miRNA) contains a stem of ~33 bp, a terminal loop and two single-
stranded flanking regions (ssRNA). The stem and ssRNA segments are recognized by
DGCRS, a protein that contains double-stranded RNA (dsRNA) binding domains. The
stem is cleaved ~11 bp away from the ssRNA-dsRNA junctions by DROSHA, an RNAse
Il type protein (Lee et al. 2002; Lee et al. 2003; Zeng and Cullen 2005; Han et al. 2006).
Recent evidence suggests that DROSHA-mediated cleavage of pri-miRNA and splicing
can occur co-transcriptionally and are highly coordinated (Kim and Kim 2007; Morlando
et al. 2008; Pawlicki and Steitz 2008). Pri-miRNA processing does not inhibit splicing,
and in many cases precedes the splicing of the host intron.

There is also a small group of miRNA genes, mirtrons, that are embedded in
short introns, and their biogenesis is independent of Drosha (Berezikov et al. 2007;
Okamura et al. 2007; Ruby et al. 2007; Babiarz et al. 2008). After splicing, the intron can
form a hairpin resembling a miRNA precursor (pre-miRNA), whose 5' and 3' ends are
trimmed by exonucleases (Kim et al. 2009). Pre-miRNAs are then exported from the
nucleus by exportin 5 with Ran-GTP (Yi et al. 2003; Lund et al. 2004).

Once in the cytoplasm, pre-miRNAs are cleaved near the terminal loop by
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Chapter 1: Introduction

DICER, another RNAse Ill enzyme (Bernstein et al. 2001; Grishok et al. 2001;
Hutvagner et al. 2001; Ketting et al. 2001; Knight and Bass 2001; Yi et al. 2003; Lund et
al. 2004). DICER is characterized by an amino-terminal DEXD/H-box domain, a DUF283
domain, a PAZ domain, and two RNase Il domains as well as a dsRNA-binding domain.
The PAZ domain binds to the 3' end of pre-miRNA, and active sites at each of the
RNaselll domains cleave one of the two strands, generating a miRNA duplex (mature
miRNAs) with 5' phosphates and 2-nt 3' overhang (Song et al. 2003; Yan et al. 2003;
Lingel et al. 2004; Ma et al. 2004; Du et al. 2008). In human cells, DICER interacts with
two double-stranded RNA-binding domain proteins TRBP and PACT, which enhance
DICER-mediated cleavage of pre-miRNAs (Chendrimada et al. 2005; Haase et al. 2005;
Lee et al. 2006). The ends of mature miRNAs are often heterogeneous, which could be
the result of imprecise cleavage by DROSHA or DICER (Aravin and Tuschl 2005; Ruby
et al. 2006; Neilson et al. 2007; Ruby et al. 2007; Azuma-Mukai et al. 2008; Seitz et al.
2008). Variations at 5’ ends change miRNA seeds (see below), which affect target
specificity of miRNAs. Thus it is not surprising that 5' ends show less variability than 3’
ends, which often contain additional untemplated nucleotides with a bias for adenosine
or uracil (Aravin and Tuschl 2005; Ruby et al. 2006; Neilson et al. 2007; Ruby et al.
2007).

After Dicer cleavage, the miRNA duplex is loaded into the effector miRNA-
containing ribonucleoprotein complex (miRNP) with the help of DICER, TRBP, and
Argonaute proteins (described in the section under “Mechanisms of miRNA-directed
silencing”) (Chendrimada et al. 2005; Gregory et al. 2005; Maniataki and Mourelatos
2005; MacRae et al. 2008). The double-stranded duplex must be unwound, and studies
indicate that the strand with relatively unstable base pairing at the 5' end in the duplex is
preferentially loaded into miRNP (Aza-Blanc et al. 2003; Khvorova et al. 2003; Schwarz

et al. 2003). This strand is called the guide strand, as it will guide miRNP to mRNA
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targets. The other strand is called the passenger strand, and is released from miRNP
and subsequently degraded. In the case where there is extensive complementarity along
the hairpin stem of the miRNA duplex, Argonaute can cleave the passenger strand
(Matranga et al. 2005; Miyoshi et al. 2005; Leuschner et al. 2006; Diederichs and Haber
2007). However most miRNA duplexes contain mismatches, and human Argonautes 1
and 2 were found capable of performing multiple rounds of strand dissociation (Gregory
et al. 2005; Maniataki and Mourelatos 2005; MacRae et al. 2008; Kawamata et al. 2009;

Wang et al. 2009).

Regulation of miRNA biogenesis

Regulation of miRNA biogenesis occurs at the level of transcription, editing, and
processing by DROSHA and DICER. The transcription of miRNAs is controlled by
transcription factors that regulate the production of pri-miRNAs in specific cell types
during development or in response to different environmental cues. For example, key ES
cell transcription factors such as SOX2 and NANOG are associated with promoters of
mMiRNA genes that are preferentially expressed in ES cells (Marson et al. 2008).
Following the onset of DNA damage, P53 activates the transcription of pri-miR-34, and
expression of miR-34 family can induce cell cycle arrest (He et al. 2007). In addition,
methylation of promoter sequences can silence expression of miRNA genes.
Hypermethylation of tumor suppressor miRNA genes have been observed in metastatic
cancer cells (Lujambio et al. 2008).

RNA editing by adenosine deaminases acting on RNA (ADARs) can change
sequences of pri-miRNAs, which can affect their further processing as well as target
recognition abilities. ADAR editing of pri-miR-142 prevents its processing by DROSHA,
and leads to decreased expression of mature miR-142-5p and miR-142-3p in

hematopoietic tissues (Yang et al. 2006; Neilson et al. 2007).
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Processing by RNaselll enzymes and their auxiliary proteins can be regulated for
individual miRNAs. For example, hnRNPA1 binding to the loop region of pri-miR-18a
facilitates its processing, but not other miRNAs that belong to the same miR-17-92
cluster (Michlewski et al. 2008). Arsenate-resistance protein 2 (ARS2) is expressed by
proliferating haematopoietic cells and interacts with the nuclear cap-binding complex to
promote processing of pri-miRNA transcripts (Gruber et al. 2009). In addition, Erk
activation can phosphorylate TRBP, which enhances the stability of TRBP as well as
Dicer (Paroo et al. 2009). This leads to increased expression of growth-promoting
miRNAs as well as downregulation of the let-7 family, which suppresses cell growth.

LIN28 can affect the biogenesis of let-7 genes in multiple ways. Pri-let-7 is
expressed in both undifferentiated and differentiated ES cells, but mature let-7 is only
detected in differentiated cells. LIN28 can prevent DROSHA processing of pri-let-7 by
binding to conserved bases in its terminal loop (Newman et al. 2008; Viswanathan et al.
2008). In addition, LIN28 can bind to pre-let-7 in the cytoplasm, and prevent its cleavage
by DICER (Rybak et al. 2008). Moreover, LIN28 can induce uridylation at the 3' end of
pre-let-7, leading to its degradation by nucleases (Heo et al. 2008; Hagan et al. 2009).
Interestingly, mature let-7 can also target Lin28 post-transcriptionally (Wu and Belasco
2005; Kumar et al. 2007; Hagan et al. 2009), and the interplay between let-7 and Lin28
is important in the regulation of stem cell differentiation (Melton et al. 2010).

In contrast to our knowledge about the biogenesis of miRNAs, very little is known
about the half-life and degradation of individual miRNAs. Mature miRNAs bound to
AGO?2 are relatively stable, where most of them have a half-life greater than 14 hours
(Lee et al. 2003; Hwang et al. 2007). However, some miRNAs display faster degradation
kinetics (Hwang et al. 2007; Pedersen et al. 2007), suggesting specific mechanisms may

control individual miRNA turnover.
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Mechanisms of miRNA-directed silencing

Argonautes and GW182 proteins

Argonaute proteins (AGOs) associate with miRNAs and are core components of
mMiRNPs that repress protein translation and/or trigger degradation of target mRNAs.
AGOs are multidomain proteins that contain an N-terminal domain, a PAZ domain, a
PIWI domain, and a MID (middle) domain (Carthew and Sontheimer 2009). The PAZ
domain can recognize 3’ dinucleotide termini of ssRNAs, suggesting that the domain is
important in guide strand binding (Song et al. 2003; Yan et al. 2003; Lingel et al. 2004).
The 5' phosphate of the guide strand is buried in a phosphate-binding pocket at the
interface between the MID domain and the PIWI domain. The 5" nucleotide of the guide
strand is distorted and does not base pair with the target strand (Ma et al. 2005; Parker
et al. 2005). Nucleotides 2-8, which are critical for target recognition, are arranged in a
geometry resembling an A form helix which favors Watson-Crick base pairing with their
MRNA targets (Mallory et al. 2004; Ma et al. 2005; Parker et al. 2005). The PIWI domain
adopts an RNase H-like fold that can induce endonucleolytic cleavage of the mRNA
target when its pairing is nearly completely complementary to the entire guide strand
(Song et al. 2004; Parker et al. 2005). However, such interactions are very rare between
mammalian miRNAs and their targets. In humans, all four Agos contribute to miRNA
directed silencing, but only AGO2 demonstrates endonucleolytic activity (Liu et al. 2004;
Meister et al. 2004b; Su et al. 2009).

Because of their importance in miRNA-directed silencing, it is not surprising that
many pathways exist to regulate the stability and activity of Agos. For example, Ago2
can be hydroxylated at proline 700 (Qi et al. 2008), and phosphorylated at Serine 387

via the p38 pathway (Zeng et al. 2008). Both modifications stabilize Ago2, and enhance
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its localization to P bodies (see section “P bodies and stress granules”) (Qi et al. 2008;
Zeng et al. 2008). In addition, mouse LIN41 acts as an E3 ubiquitin ligase to facilitate
Ago?2 turnover, which affects global miRNA activity in stem cells (Rybak et al. 2008).
Besides Argonautes, genetic screens and biochemical purifications identified
GW182 among other proteins that are required for miRNA expression and function.
Depletion of GW182 relieves miRNA directed repression (Rehwinkel et al. 2005; Behm-
Ansmant et al. 2006a; Behm-Ansmant et al. 2006b; Eulalio et al. 2008; Eulalio et al.
2009a; Eulalio et al. 2009b; Eulalio et al. 2009c¢). In addition, tethering of an mRNA
reporter directly to GW182 can induce silencing of the reporter independently of AGOs,
suggesting that GW182 functions in the same pathway, but downstream of AGOs
(Behm-Ansmant et al. 2006a; Behm-Ansmant et al. 2006b). GW182 is enriched in
glycine and tryptophan repeats, which are critical for interacting with AGOs (Liu et al.

2005b; Meister et al. 2005; Behm-Ansmant et al. 2006a; Till et al. 2007).

Translational inhibition by miRNAs

Eukaryotic translation of mRNAs consists of three steps: initiation, elongation and
termination. The mechanisms by which miRNP regulates translation have been a subject
of debate. Depending on the experimental system used, translation inhibition can
happen at initiation as well as post-initiation steps (Filipowicz et al. 2008; Carthew and
Sontheimer 2009). Currently there are three models to account for translation inhibition
at initiation. The first two involve regulations at the 5’ cap and poly-A binding steps of the
initiation process. AGO2 was shown to bind to the 5’ cap, and compete with elF4E at the
start of translation (Humphreys et al. 2005; Pillai et al. 2005; Kiriakidou et al. 2007;
Zdanowicz et al. 2009; Djuranovic et al. 2010). In addition, miRNP can promote mRNA
deadenylation, which prevents proper circularization of the mRNA (Behm-Ansmant et al.

2006a; Giraldez et al. 2006; Wu et al. 2006; Wakiyama et al. 2007), a process that is
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important for translation initiation. The last model suggests that AGO2 can interact with
elF6 in vitro, and block the joining of 60S to 40S ribosomal subunits (Sanvito et al. 1999;
Chendrimada et al. 2007).

Another line of evidence suggests that miRNAs can repress translation after the
initiation step (Kim et al. 2004; Nelson et al. 2004; Maroney et al. 2006; Lytle et al. 2007;
Vasudevan and Steitz 2007). Petersen et. al. showed IRES-containing reporters can be
repressed, and the repressed mRNAs are associated with active polysomes (Petersen
et al. 2006). When they inhibited translation initiation with a drug, they observed
ribosomal drop-off in a miRNA dependent manner, suggesting miRNAs can promote

premature ribosome dissociation from mRNAs (Petersen et al. 2006).

Degradation of mRNAs by miRNAs

Despite the focus of miRNA-directed translation inhibition by early studies, recent
evidence shows that an increase in miRNA abundance is associated with a reduction of
mRNAs that contain partial miRNA complementary sites (Bagga et al. 2005; Krutzfeldt et
al. 2005; Lim et al. 2005; Behm-Ansmant et al. 2006a; Giraldez et al. 2006; Wu et al.
2006). Bagga et. al. used Northern analysis to show that /et-7 can decrease mRNA
levels of its target lin-41 (Bagga et al. 2005). Lin-4 also had similar effects on mRNA
level of its targets lin-14 and lin-28 (Bagga et al. 2005; Ding and Grosshans 2009).
Moreover, transcriptomic studies suggest that miRNAs can regulate the stability of a
large number of mMRNAs. After over-expressing miRNAs in HelLa cells, Lim et. al.
observed downregulation of sets of mMRNAs that preferentially displayed miRNA binding
sites in their 3' UTRs (Lim et al. 2005). Zebrafish miR-430 promotes clearance of
hundreds of maternal mRNAs by inducing their deadenylation at the onset of zygotic
transcription (Giraldez et al. 2006).

Mechanistic studies initially performed in Drosophila S cells demonstrate that

21



Chapter 1: Introduction

GW182 is required for mMRNA decay (Behm-Ansmant et al. 2006a). Knockdown or
depletion of GW182 led to upregulation of miRNA targets at the mRNA level (Behm-
Ansmant et al. 2006a). The upregulation is also dependent on deadenylation (CCR4-
NOT1) and decapping (DCP1 and DCP2) complexes (Behm-Ansmant et al. 2006a;
Eulalio et al. 2007c). Depletion of the components of the CCR4-NOT1 complexes, as
well as knock-down of DCP1 andDCP2 prevented miRNA-mediated mRNA
downregulation (Rehwinkel et al. 2005; Behm-Ansmant et al. 2006a; Chu and Rana
2006; Eulalio et al. 2007c). These and experiments in C. elegans and mammalian cells
suggest a model in which GW182 first recruits the deadenylase and decapping
complexes to target mMRNAs. The target mMRNAs can then be subsequently degraded by
exosomes (3'-5' exonuclease) or XRN1 (after the removal of the 5’ cap) (Behm-Ansmant
et al. 2006a; Wu et al. 2006; Eulalio et al. 2007c).

Altogether, miRNPs have been shown to elicit translational repression, mMRNA
decay, or both. Translational repression can take place independently of target
deadenylation, as mRNAs without polyA tails are still repressed by miRNAs (Pillai et al.
2005; Giraldez et al. 2006; Wu et al. 2006; Eulalio et al. 2008; Eulalio et al. 2009b).
These targets show only degradation at the protein level (Baek et al. 2008; Selbach et
al. 2008). Likewise, mRNA decay is not dependent on translation, as it can still occur
when translation is inhibited by cycloheximide (Eulalio et al. 2007¢; Wakiyama et al.
2007). Nevertheless, translational repression is often linked to mRNA decay. Recent
proteomic experiments showed that many translationally repressed genes also displayed
detectable mMRNA destabilization (Baek et al. 2008; Selbach et al. 2008). In fact, mMRNA
destabilization comprised the major component of repression for a certain set of highly

repressed targets (Baek et al. 2008; Selbach et al. 2008).
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P bodies and stress granules

P-bodies are discrete cytoplasmic foci enriched in proteins that participate in
miRNA-directed mRNA degradation and translational repression (Filipowicz et al. 2008;
Carthew and Sontheimer 2009). The core P-body components include enzymes
responsible for decapping, deadenylation, and degradation, and they interact directly or
indirectly with AGOs and Gw182 proteins (Anderson and Kedersha 2006; Eulalio et al.
2007a; Parker and Sheth 2007). Although depletion of decapping enzymes leads to
ineffective inhibition of target MRNASs, P-bodies are not essential for this process
(Jakymiw et al. 2005; Liu et al. 2005b; Meister et al. 2005). Knocking down components
of P bodies has no effect on miRNA activities, suggesting that the formation of P-bodies
is a consequence rather than the cause of silencing (Pillai et al. 2005; Eulalio et al.
2007b).

The structures of P-bodies are dynamic, and their sizes change in response to
translational status of the cell (Anderson and Kedersha 2006; Eulalio et al. 20073;
Parker and Sheth 2007). A global translation initiation block leads to an increase in the
size of P-bodies (Anderson and Kedersha 2006; Eulalio et al. 2007a; Parker and Sheth
2007). In contrast, inhibition of miRNA biogenesis or activity results in dispersal of visible
P-bodies, suggesting that functional miRNA pathways are essential for the formation of
large P-body aggregates (Pauley et al. 2006; Eulalio et al. 2007b).

Another type of mRNA-containing cytoplasmic aggregates is stress granules
(SG), which accumulate in response to various stress conditions (Anderson and
Kedersha 2006). Leung et. al. showed that miRNA mimics and the repressed reporter
MRNAs accumulate in SGs upon stress (Leung et al. 2006). Moreover, the localization
of Ago proteins to SGs but not P-bodies is miRNA-dependent, and the exchange of

AGOs at SGs is much faster than P-bodies (Leung et al. 2006).
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Principles of mMiRNA-mRNA interactions

Since the first discovery of miRNA target lin-14 in the early 1990s, genetic,
biochemical, and bioinformatics analyses have revealed many functional target sites,
most of which are in the 3' UTRs of mMRNAs (Bartel 2009; Carthew and Sontheimer
2009). The 5' end of miRNA is critical in determining target specificity, and bases 2-7 of
the miRNA are referred to as the miRNA seed. Comparative genomic analysis revealed
that the 5' region of miRNAs is the most conserved portion of mMiRNAs (Lewis et al. 2003;
Lim et al. 2003a; Lewis et al. 2005; Chen and Rajewsky 2006). Furthermore, seed
binding sites in the 3' UTRs of mMRNAs tend to be more highly conserved than expected
by chance (Lewis et al. 2003; Lim et al. 2003a; Lewis et al. 2005). In addition, reporter
assays showed that pairing to the miRNA 5’ region is sufficient to effect repression, and
mutations that disrupt the binding between the seed and target site relieve reporter
repression (Lai 2002; Doench and Sharp 2004; Brennecke et al. 2005b; Kloosterman
and Plasterk 2006). Recent large-scale transcriptomic and proteomic studies also
demonstrated that a high proportion of transcripts downregulated in response to miRNA
overexpression contain sequences complementary to the seed region (Lim et al. 2005;
Baek et al. 2008; Selbach et al. 2008).

Although the presence of a 6-mer seed binding site is important, additional
matches to the 5' end of the miRNA can improve target specificity. Analyses of transcript
expression before and after the addition of a miRNA revealed that mRNAs that
contained a seed match flanked by a Watson-Crick match to miRNA base 8 (M8 7mer)
exhibited enhanced downregulation (Grimson et al. 2007; Nielsen et al. 2007). The
presence of an adenosine at position 1 of the mRNA target site (A1 7mer) also led to
more mRNA reduction (Grimson et al. 2007; Nielsen et al. 2007). Moreover, mRNAs that

have a M8 7mer as well as an A1 7mer site (M8-A1 8mer) exhibited the greatest mRNA
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downregulation (Grimson et al. 2007; Nielsen et al. 2007).

While “seed only” type targets represent the vast majority of all conserved
mMiRNA targets, there is another class of targets that have weak 5’ base-pairing (single-
nucleotide bulge or mismatch) with the miRNA and depend on strong compensatory
pairing to the 3’ end of the miRNA (Bartel 2009). Some notable examples include the let-
7 binding sites in lin-41, miR-2 sites in Grim and Sickle, and miR-196 site in Hoxb8
(Reinhart et al. 2000; Lewis et al. 2003; Stark et al. 2003; Yekta et al. 2004). It has been
speculated that 3' pairing confers target specificity to miRNAs in the same family, which
share a common seed region, but have different 3' ends (Brennecke et al. 2005b; Bartel
2009).

The context of the miRNA binding site is also important in determining target
specificity. Increased AU content near the seed match, additional pairing to miRNA
nucleotides 13-16, close proximity of another miRNA binding site, positioning of the
miRNA binding site away from the center of long UTRs but at least 15-nt away from the
stop codon, are all associated with increased mRNA downregulation (Grimson et al.
2007; Nielsen et al. 2007). These context features can increase accessibility and affinity
of miRNA binding sites, resulting in more favorable interaction between silencing
complexes (Grimson et al. 2007).

These and previous observations have been extended to predict mRNA targets
of miRNAs (Bartel 2009), and more recent analysis suggests that over half of human
genes are conserved miRNA targets (Friedman et al. 2009). In addition to conserved
sites, many mRNAs have non-conserved binding sites for each miRNA. While most of
the mRNAs with non-conserved sites are expressed in tissues where the miRNA is
absent, some are co-expressed with the miRNA, suggesting that they can represent
important species-specific targets (Farh et al. 2005; Stark et al. 2005).

Predicted targets of miRNAs can be supported by comparing the activity of a
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reporter in systems that exhibit different expression levels of miRNAs. One commonly
used reporter is the luciferase reporter, which has the coding sequence of luciferase
fused to the 3' UTR of the target gene (Elbashir et al. 2001). Luciferase reporters of true
targets will have a higher activity in the system where the miRNA is expressed at a lower
level. Several ways exist to manipulate miRNA expression in different experimental
systems. Firstly, miRNA overexpression can be achieved through expressing miRNA
hairpin and flanking sequences (Chen et al. 2004), or transient transfection of miRNA
mimics and small interfering RNAs (siRNAs). Secondly, miRNAs can be depleted with
the use of chemically modified antisense oligonucleotides, or miRNA sponges
(Hutvagner et al. 2004; Meister et al. 2004a; Krutzfeldt et al. 2005; Orom et al. 2006;
Ebert et al. 2007). Lastly, the entire mature miRNA repertoire can be depleted by
knocking out DGCRS8 or Dicer, whose gene products are important for the maturation of
miRNAs. Dgcr8 null mouse ES cells (mESC), Dicer null mMESCs and Dicer null mouse
embryonic fibroblasts (mEF) have all been successfully generated, and they provide an
alternative to dissect miRNA functions (Kanellopoulou et al. 2005; Murchison et al. 2005;
Calabrese et al. 2007; Nielsen et al. 2007; Wang et al. 2007).

Besides 3' UTR targets, targets have been found in the coding sequence (CDS)
or 5' UTR of mRNAs. Comparative genomics analyses detected a significant signal
above background in conserved miRNA seed matches in the CDS of mRNAs (Lewis et
al. 2003; Brennecke et al. 2005b; Lewis et al. 2005). A handful of targets have been
validated experimentally; they include Nanog, Oct4, and Sox2 (targeted by miR-134,
miR-296, and miR-470), Dnmt3b (targeted by miR-148), and p16 (targeted by miR-24)
(Lytle et al. 2007; Baek et al. 2008; Duursma et al. 2008; Selbach et al. 2008; Tay et al.
2008). In addition, proteomic studies have revealed miRNA binding sites in the CDS,
although they are generally less effective than sites in 3' UTRs (Baek et al. 2008;

Selbach et al. 2008). More recently, an effort to identify miRNA binding sites in RNAs
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that crosslink to AGO2 also uncovered prevalent miRNA binding sites in CDS,
suggesting that CDS targets may be more widespread than previously considered

(Leung et al. 2006).

Roles of miRNAs in mammalian development

miRNAs exert vast impact on global expression and evolution of mammalian
mRNAs. To date, around 400 miRNA genes have been cloned from humans, and more
than 50% of human genes contain conserved miRNA binding sites (Bartel 2009).
Systematic analyses of mMRNA and miRNA expression profiles show that conserved
targets of tissue-specific miRNAs are frequently expressed at lower levels than other
tissues, and nonconserved targets are usually not expressed in the same tissue as the
mMiRNA, suggesting that miRNAs facilitate state transitions and help maintain cell identity
(Farh et al. 2005). A handful of targets whose activity can be strongly repressed by a
miRNA to an inconsequential level are referred as “switch targets”, in contrast to the vast
majority of targets, “fine-tuning targets”, whose expression is only moderately dampened
by the miRNA (Bartel and Chen 2004). In addition, ubiquitously expressed genes and
tissue specific genes tend to have shorter 3' UTRs so that they can avoid being targeted
by miRNAs (anti-targets) (Farh et al. 2005; Stark et al. 2005). Additionally, proliferating
cells are associated with widespread 3' UTR shortening, further supporting the global
impact of miRNA on 3' UTR evolution (Sandberg et al. 2008; Mayr and Bartel 2009).

Since the identification of the first miRNAs in regulating the developmental timing
of C. elegans, miRNAs have been implicated in fundamental cellular processes (Lee et
al. 1993; Wightman et al. 1993). A close link exists between deregulation of normal
cellular processes and tumorigenesis, and a growing body of evidence indicates that
altered expression of miRNAs is involved in the pathogenesis of cancers (Croce and

Calin 2005; Johnson et al. 2005; Lu et al. 2005; Costinean et al. 2006; Esquela-Kerscher
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and Slack 2006; Hammond 2006; Voorhoeve et al. 2006; Kumar et al. 2007; Mayr et al.
2007). miR-15a and miR-16 can function as tumor suppressor genes by targeting Bcl-2,
an oncogene that inhibits apoptosis (Cimmino et al. 2005). They map to a region of
chromosome 13 that is commonly lost in patients with chronic lymphocytic leukemia
(Calin et al. 2002). Subsequent expression profiling of different types of tumors revealed
many more miRNAs that might function as tumor suppressors or oncogenes by targeting
transcription factors, epigenetic machinery as well as existing tumor suppressors and
oncogenes (Calin et al. 2004; Esquela-Kerscher and Slack 2006; Volinia et al. 2006;
Chin et al. 2008; Croce 2009).

The global functional role of miRNAs in development can be inferred from
animals that lack DICER, DGCRS8, and AGO2, as all of them are important in the
maturation and activity of miRNAs. Loss of Dicer leads to lethality early in development
and depletion of stem cells in Dicer null embryos (Bernstein et al. 2003; Kanellopoulou et
al. 2005). Tissue specific deletion of Dicer resulted in defects such as limb
morphogenesis, lung development, and incomplete embryonic myogenesis (Harfe et al.
2005; Harris et al. 2006; O'Rourke et al. 2007). Similarly, Dgcr8 null and Ago2 null
embryos show severe developmental delays and defects (Liu et al. 2004; Morita et al.
2007; Wang et al. 2007).

The role of individual miRNAs in mammalian development has been gradually
revealed through expression profiling experiments and genetic studies. For example,
miR-1 is highly expressed in cardiac and skeletal muscle cells in mouse (Zhao et al.
2005b). Overexpression of miR-1 in myoblasts promoted differentiation while reducing
cell proliferation (Zhao et al. 2007). Deletion of miR-1-2, one of the two genes encoding
miR-1 in the mouse genome, resulted in animals with defects in ventricular septum and
cardiac rhythm disturbances (Zhao et al. 2007). Here we will focus our discussion on

developmental roles of miRNAs in mouse ES cells.
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miRNAs in ES cells

ES cells are derived from the inner cell mass of the blastocyst-stage embryo
(Figure 1). During gastrulation, ES cells rapidly differentiate into the three primary germ
layers of the developing fetus. However, ES cells can be cultured in vitro, and their
capacity for self-renewal and differentiation potential can be maintained in the presence
of the cytokine, leukemia inhibitory factor (Smith et al. 1988; Williams et al. 1988).
Cultured ES cells can be injected into blastocysts and contribute to all tissues of the
organism except those of trophectoderm or primitive endoderm lineages (Beddington
and Robertson 1989).

The self-renewing capacity of ES cells is controlled by both intercellular and
intracellular mechanisms (Lin 2002). Intense investigation revealed a multitude of
intracellular mechanisms to regulate gene expression at epigenetic, transcriptional,
translational and post-translational levels. Two homeodomain transcription factors,
OCT4 and NANOG, were the first proteins identified as essential for maintaining
pluripotency in ES cells (Nichols et al. 1998; Chambers et al. 2003; Mitsui et al. 2003).
Later, genome-wide binding sites of transcription factors revealed that OCT4, NANOG,
and SOX2 share a substantial fraction of their target genes (Boyer et al. 2005; Loh et al.
2006). While some target genes encode key transcription factors for differentiation and
development which are transcriptionally inactive, another set of active target genes are
involved in the maintenance of pluripotency (Boyer et al. 2005). Interestingly, these three
factors control one another’s transcription in a large regulatory circuit consisting of
specialized autoregulatory and feedforward loops (Boyer et al. 2005).

The ability to self-renew is inherently linked to the ability of cells to remainin a
proliferative state. ES cells have an unusual cell cycle structure and rapid rate of cell

division (Savatier et al. 1994; Stead et al. 2002). The cell cycle structure of mMESCs

29



Chapter 1: Introduction

consists of a truncated G1 phase and a prolonged S phase, which explain why ES cells
can divide approximately every 8-10 hours (Savatier et al. 1994; Stead et al. 2002). In
contrast to cyclin expression patterns in regular mammalian cells, mMESCs express
elevated levels of all cyclins, which remain almost the same throughout the cell cycle
(Savatier et al. 1994; Faast et al. 2004). Additionally, Cdk inhibitory genes such as the
Ink family, p21, p27, and p57 have low expression levels which lead to the
hyperphosphorylation of pRb and inactivation of the G1-S checkpoint (Savatier et al.
1994; Savatier et al. 1996; Faast et al. 2004).

The important role of miRNAs in ES cell regulation can be inferred from
experiments that study the loss of Dicer and Dgcr8 in ES cells. Although Dicer-null ES
cells are viable, they proliferate more slowly than WT ES cells (Kanellopoulou et al.
2005; Murchison et al. 2005). While the null cells express about the same level of Oct4
as the WT cells, they cannot differentiate in vitro. Markers characteristic of endodermal
(Hnf4) and mesodermal (Brachyury, Bmp4, and Gata1) lineages cannot be detected
(Kanellopoulou et al. 2005; Murchison et al. 2005). Dgcr8 knockout ES cells displayed
similar growth and differentiation defects, although they do express some markers of
differentiation, and embryoid bodies can continue to grow and differentiate after 16 days
of being cultured (Wang et al. 2007).

mMiRNA expression profiles in mouse ES cells revealed that ES cells express a
unique set of MiRNAs, and that these miRNAs are downregulated as ES cells
differentiate into embryoid bodies, providing further support that miRNAs play an
important role in maintaining pluripotency of ES cells (Houbaviy et al. 2003; Suh et al.
2004; Houbaviy et al. 2005; Landgraf et al. 2007; Babiarz et al. 2008; Ciaudo et al.
2009). Members of miR-302 and miR-290-295 clusters along with their homologs are
among the best characterized miRNAs in ES cells, and have been linked to regulating

ES cell lineage maintenance, differentiation, and proliferation capacity. Benetti et. al. and
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Sinkkonen et. al. both showed that mESC specific miR-290-295 cluster can target Rbl2,
which control the expression of Dnmt1, Dnmt3a, and Dnmt3b. This suggests that the
miRNA cluster plays a role in regulating de novo DNA methylation. (Benetti et al. 2008;
Sinkkonen et al. 2008). miR-302 has been shown to control germ layer specification by
inhibiting lefty, an inhibitor of the Nodal pathway (Rosa et al. 2009). In addition, Melton
et. al. showed that the miR-290-295 cluster can indirectly increase the expression of
Lin28 and c-Myc to maintain mESCs in their self-renewing state (Melton et al. 2010).
Lastly, miR-290-295, miR-302, and miR-372 have been found to accelerate cell
proliferation by promoting G1 to S phase transition through targets such as p21 and
Lats2 (Voorhoeve et al. 2006; Wang et al. 2007; Card et al. 2008; Lee et al. 2008).

Recent studies have also linked ES cell specific transcription factors to miRNAs.
Chip-seq data showed that NANOG, OCT4 and SOX2 bind to promoter regions of miR-
290-295, miR-302, and other highly expressed miRNAs (Card et al. 2008; Marson et al.
2008). In addition, Polycomb Group protein SUZ12 occupies promoters of tissue specific
miRNAs that are silenced in ES cells (Card et al. 2008; Marson et al. 2008).
Interestingly, miRNAs can also control the expression of Nanog, Oct4 and Sox2. Upon
retinoid-acid-induced differentiation, miR-134, miR-296, and miR-470 have been
reported to repress the expression of each transcription factor by targeting its coding
region, further illustrating the important interplay between miRNAs and transcription
factors in regulating ES cell self-renewal and differentiation (Tay et al. 2008).

The abilities of ES cells to self-renewal and rapid division make them an
important system to dissect the function of miRNAs. Understanding how miRNAs control
their pluripotency potential and proliferation will not only help us better understand key
aspects of mammalian development, but also provide insights that can be applied to
reprogramming and cancer. In this thesis, we will focus on the role of miRNAs in

regulating ES cell survival.
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T lymphocyte development

T lymphocytes are part of the adaptive immune system that recognizes and
eliminates specific foreign antigens. T lymphocytes arise in the bone marrow, and
migrate to the thymus gland to mature into CD4 or CD8 T cells (Figure 2). Mature T cells
express a unique antigen-binding molecule, the T-cell receptor (TCR) on their
membrane, and can only recognize antigen that is bound to cell membrane proteins
called major histocompatibility complex (MHC) molecules. T cells that recognize self-
MHC molecules are selected for survival during positive selection (Starr et al. 2003).
However, T cells that react too strongly with self-MHC are eliminated through negative
selection (Starr et al. 2003).

Maturation of T cells consists of six major steps (Figure 2). Thymocytes early in
development lack detectable CD4 and CD8, and are referred to as double negative
(DN). DN T cells can be subdivided into four subsets (DN1-4) characterized by the
presence or absence of cell surface molecules in addition to CD4 and CD8, such as
CD44, an adhesion molecule, and CD24, the alpha chain of the II-2 receptor. The cells
that enter the thymus, DN1, are capable of giving rise to all subsets of T cells, and are
phenotypically CD44" and CD25". Once DN1 cells encounter the thymic environment,
they begin to proliferate and express CD25, becoming CD44"", and CD25"*. They are
called DN2 cells, where rearrangement of genes for the TCR chains begins. As cells
progress to DN3, the expression of CD44 is turned off and cells stop proliferating to start
TCR B chain rearrangement. Upon its completion, the DN3 cells quickly progress to
DN4, where the level of CD25 decreases.

Both CD4 and CD8 receptors are expressed in the double positive (DP) stage,
where rapid cell division increases the diversity of the T-cell repertoire. After the rapid

proliferation, TCR a chain rearrangement starts, which is then followed by positive and
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negative selection. Cells that fail to make productive TCR gene arrangement or thymic
selection are eliminated by apoptosis. The 2% that survive will develop into immature
CD4 or CD8 thymocytes. These single-positive cells undergo additional negative
selection and migrate to the medulla, where they pass from the thymus into the
circulatory system.

Individual cell populations along the developmental series of T lymphocytes are
enriched for cells undergoing fundamental cellular processes such as proliferation,
differentiation, and apoptosis. Additionally, cells can be distinguished and easily isolated
by their unique set of surface markers, making them an ideal experimental system to

study the role of miRNAs in development.

Placental development

Mouse placental development begins in the blastocyst when the trophectoderm
layer is set aside from the inner cell mass at embryonic day 3.5 (Cross et al. 1994)
(Figure 1). The placenta provides the fetus with nutrients, allows for gas and waste
exchange, and protects the fetus from the maternal immune system as well as
environmental stress (Sood et al. 2006).

Imprinted gene expression has been observed in the placenta, and linked to
placental function (Kaneko-Ishino et al. 2003). Gynogenetic (two maternal/no paternal
genomes) and androgenetic (two paternal/no maternal genomes) embryos both exhibit
defects in trophoblast development (McGrath and Solter 1984). Gynogenetic embryos
have very few trophoblast cells while androgenetic embryos are characterized by a mass
of hypertrophic trophoblast (McGrath and Solter 1984). This observation is consistent
with the parent-offspring conflict hypothesis that has been proposed to explain the
evolution and maintenance of imprinting in mammals (Moore and Haig 1991). Paternally

expressed genes are proposed to increase embryonic growth, thereby maximizing the
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competitiveness of individual offspring bearing a particular paternal genome (Moore and
Haig 1991). Maternally expressed genes are proposed to suppress fetal growth (Moore
and Haig 1991). This would allow a more equal distribution of maternal resources to all

offspring and increase transmission of the maternal genome to multiple offspring, which
may have different paternal genomes (Moore and Haig 1991).

To date, over 50 imprinted genes have been discovered, and ~20% of these
genes show placenta-specific imprinting (Wagschal and Feil 2006). Interestingly, most of
them are expressed only from the maternal allele (Wagschal and Feil 2006). Many are
involved in cellular proliferation and growth, although their precise roles in placental
development and function remain largely unknown (Tycko and Morison 2002).

Two experimental systems have been used to study trophoblast differentiation
and placental function. Culture conditions have been established for trophoblast stem
cells (Quinn et al. 2006). In addition, cells from choriocarcinoma, a malignant cancer of

the placenta, have been derived and cultured in labs (Pattillo and Gey 1968).
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Figure 1. Differentiation of totipotent cells.

ES cells are derived from the inner cell mass (ICM) of the blastocyst-stage embryo. ES cells can
be cultured in vitro, and their capacity for self-renewal and differentiation potential can be
maintained in the presence of the cytokine, leukemia inhibitory factor (Smith et al. 1988;
Williams et al. 1988) Cultured ES cells can be injected into blastocysts and differentiate into three
germ layers. Transcription factors (Nanog, Oct4, and Sox2) and miRNAs (miR-290-295 and
miR-302 clusters) are essential for maintaining pluripotency in ES cells. The outer layer of the
blastocyst, termed the trophectoderm, gives rise to trophoblast stem (TS) cells in vitro and
populate the major structures of the placenta in vivo.

35



Chapter 1: Introduction

gg sg: CcD4*
TCRB chain TCRo. chain CcD8"
rearrangement rearrangement CD3hi
@ O O*O ’ U
\ }
DN1 DN3* CcD4
cDs*
cD4” CcD4” CD4” CDh4" cD4* cD3hi
CcD8” CcD8"” cD8" CD8" cDs8*
CD3" D3 CD3" D3 cp3 CD8 SP
CD44hi CD44hi CD44' CD44- cD44”
CD25" CD25* CD25* CD25" CD25"

;;% = wired for apoptosis
< = proliferation

*Commitment to o T lineage
#Positive and negative selection

Figure 2. T lymphocyte development.

T lymphocytes arise in the bone marrow, and migrate to the thymus gland to mature into CD4 or
CD8 T cells. DN1 stage of development is a mix of lymphoid and myeloid progenitor cells. T
lineage commitment is fixed upon rearrangement of the genetic locus encoding the § chain of the
T cell receptor (TCR) at the DN3 stage. Cells that successfully rearrange this locus proceed to the
DN4 stage. Following the DN4 stage, cells start expressing the CD4 and CD8 coreceptors to
become DP cells, where the thymocytes rearrange the a chain of the TCR and undergo positive
and negative selection. Those cells that are positively selected mature to CD4 SP or CD8 SP T
lymphocytes and migrate to the circulatory system.
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CHAPTER 2: Dynamic regulation of miRNA expression
in ordered stages of cellular development

The material presented in this chapter was adapted, with permission, from the following
publication:

Joel R. Neilson, Grace X.Y. Zheng, Christopher B. Burge and Philip A. Sharp (2007).

Dynamic regulation of miRNA expression in ordered stages of cellular development.
Genes Dev. 21, 578-589.

Experimental contributions:

Joel R. Neilson cloned the short RNAs and performed most of the experiments in the
chapter. Grace X.Y. Zheng performed all the bioinformatics analysis.
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Abstract

Short RNA expression in several distinct stages of T lymphocyte development
was comprehensively profiled. The total number of miRNAs expressed per cell at
different stages of development varies over nearly an order of magnitude in parallel with
changes in total cellular RNA content, suggesting that global miRNA levels are
coregulated with the translational capacity of the cell. However, individual miRNAs were
dynamically regulated during T cell development, with at least one miRNA or miRNA
family overrepresented at each developmental stage. MiRNA regulation in this
developmental pathway is characterized by analog rather than switch-like behavior, with
temporal enrichments at distinct stages of development observed against a background
of constant, basal expression of the miRNA. Enrichments of these miRNAs are
temporally correlated with depletions of the transcript levels of predicted targets, and
have specific functional consequences. MiR-181a, which is specifically enriched at the
CD47CD8" (DP) stage of thymocyte development, can represses the expression of Bcl-
2, CD69, and the T cell receptor, all of which are coordinately involved in positive

selection.
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Introduction

Short RNAs are known to control gene expression at several different levels in
organisms ranging from yeast to plants to mammals (Kloosterman and Plasterk 2006). In
mammals, the best-characterized class of short RNA species is the microRNA (miRNA)
class. These 22 nucleotide RNA species repress gene expression at the level of
translation by binding to the 3’ untranslated region (3' UTR) of target mRNAs. The
precise mechanisms of this repression are probably multifold (Bagga et al. 2005; Pillai et
al. 2005; Giraldez et al. 2006; Leung et al. 2006; Petersen et al. 2006).

Both bioinformatic and in vitro experimental data indicate that miRNA:mRNA
recognition is predominantly mediated by an interaction between the 5’ end of a miRNA
and a complementary sequence in the mRNA target (Doench and Sharp 2004;
Brennecke et al. 2005b; Lim et al. 2005). Bases 2-7 or 2-8 of the miRNA are primary
contributors to target specificity and are referred to as the miRNA “seed” region (Doench
and Sharp 2004; Brennecke et al. 2005b). Genomic experiments examining the effects
of transfection of individual miRNAs in HelLa cells have demonstrated that a high
proportion of the transcripts downregulated in response to a transfection of a miRNA
contain sequences complementary to the seed region (Lim et al. 2005). Based on these
observations, it is thought that miRNA family members that share common seed
sequences have similar target specificity. These observations have been extended to
predict mMRNA targets of miRNAs (Lewis et al. 2003; Lewis et al. 2005) and to
demonstrate a general reduction in the transcript levels of these targets in tissues where
these miRNAs are expressed (Farh et al. 2005; Krutzfeldt et al. 2005).

The number of described mammalian miRNAs continues to increase through
direct cloning efforts and bioinformatic prediction. Expression of several individual

mMiRNAs such as miR-142 (lymphoid), miR-223 (myeloid), miR-1 (muscle), and miR-9
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(neuronal), is largely restricted to single tissues or organ systems, consistent with these
miRNAs having a role in the developmental specification of these cells (Lagos-Quintana
et al. 2002; Chen et al. 2004). However, a large number of miRNAs exhibit a more wide-
ranging pattern of expression, consistent with these regulators being involved in events
such as growth and homeostasis. A systematic understanding of the roles of miRNAs in
such events is incomplete as few direct studies of changes in mMRNA and miRNA
expression over the course of a single developmental pathway have been conducted.
Specific expression of individual miRNAs in several compartments of the
mammalian hematopoietic system has been well described (Chen et al. 2004; Monticelli
et al. 2005). However, a close examination of the dynamic regulation of miRNAs and
the consequences of this regulation on global gene expression during sequential stages
of development of a single cell lineage has not been performed. T lymphocyte
development in the thymus has been extensively characterized (Starr et al. 2003). The
DN1 stage of development is a mix of lymphoid and myeloid progenitor cells (Porritt et
al. 2004). T lineage commitment is fixed upon rearrangment of the genetic locus
encoding the beta chain of the antigen receptor at the DN3 stage; cells that successfully
rearrange this locus proceed to the highly proliferative DN4 stage. Following the DN4
stage, expression of the CD4 and CD8 co-receptors defines the DP stage of thymocyte
development, at which point the thymocytes rearrange the alpha chain of the T cell
receptor and undergo positive and negative selection. Those cells that are positively
selected mature to CD4 SP (helper) or CD8 SP (killer) T lymphocytes and egress the
thymus to the periphery. Importantly, individual cell populations along this developmental
series are enriched for cells undergoing fundamental cellular processes such as
proliferation, differentiation, and apoptosis. Dynamic regulation of individual miRNAs
within these stages might be expected to influence these processes without perhaps

being critical for development of the T lineage per se.
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Here we describe discovery-compatible profiling and quantitative measurement
of short RNA expression from several ordered stages of T lymphocyte development. The
pool of miRNAs at a given developmental stage correlates closely with the cytoplasmic
volume as indicated by amount of total RNA. Although nearly all miRNAs that we
observe in this process are constitutively expressed, specific miRNAs are enriched at
distinct stages of thymocyte development. These enrichments can be correlated with
depletion of predicted targets of the miRNAs at the genomic level and bear functional
consequences; in reporter assays, the DP-enriched miR-181a confers repression
through the 3' UTR elements of three predicted targets (CD69, Bcl-2, and the T cell

receptor) known to be regulated at this stage of development.

Results

Short RNA Profiling Using Low Nanogram Amounts of Total RNA

We directly cloned short RNAs from developing thymocytes to enable profiling of
known miRNAs while allowing for the discovery of additional small RNA species of
potential interest. This involved developing a variation of existing protocols (Lagos-
Quintana et al. 2001; Lau et al. 2001) to allow cloning of short RNA species from low
nanogram amounts of total RNA (Figure 1).

We collected and analyzed 10,533 short RNA clones comprised of 3445 non-
redundant sequences from six stages of T lymphocyte development, each sorted to
>95% purity (Table 1, Figure 2). The sequences ranged in length from 16 to 33
nucleotides. Each sequence in the library was assigned a cloning frequency from each
cell type. 957 of the sequences were observed only once, suggesting that the library is
not close to saturation. The library was searched using the BLAST algorithm against full

length miRNA hairpins in mirBase (Release 8.1), tRNA and NONCODE databases (Liu
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et al. 2005a), and the mouse genome (mm8). While 67% of the clones matched
precisely to sequences in above databases, an additional 19% of the distinct sequences
could be annotated if we allowed a single internal mismatch or up to three mismatches
at the end of the sequence. We also noticed that over 80% of the clones annotated as
mismatches using the above criteria fell into the category of 3' end-mismatches with a
bias for adenosine or uracil in these positions. This pattern could reflect biases in the
cloning procedures or might reflect nucleotide modification or addition in vivo following
processing by Drosha or Dicer. Indeed, similar observations have been reported in
cloning efforts by other groups (Aravin and Tuschl 2005). Because of this, we elected to
include these sequences in our analysis and were thus able to annotate 9092 (86.3%) of
the clones using the above criteria.

As expected, the majority of clones were miRNAs. The average percentage of
clones representing miRNA sequences from each cell type was 68%, ranging from a low
of 56% in DN3 cells to a high of 82% in DP thymocytes (Table 1). The relative
representation of individual sequence classes within each cell type varied similarly.
Sequences corresponding to genomic regions annotated as repeats or to which ESTs
have been mapped were generally the second most abundant classes, observed with an
average cloning frequency of 12%. The third tier of abundance consisted of sequences
associated with tRNAs or un-annotated regions of the genome, with average cloning
frequencies of 6.6%. An exception was noted in the highly proliferative DN4 population,
where tRNA-associated sequences were only exceeded in abundance by miRNAs.
Sequences corresponding to ribosomal RNA, “other” non-tRNA and non-ribosomal
ncRNA classes, CpG islands, and the RefSeq “Known Gene” category constituted the
fourth tier of abundance with an average cloning frequency of 1.9%. The vast majority of
clones associated with ncRNA loci corresponded to the sense strand of the specific

ncRNAs. Interestingly, although 319 clones overlapped RefSeq “Known” genes, only
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36% of these clones mapped to these annotations in the sense orientation. Fully half of
the clones overlapping annotated genes mapped antisense to the protein-coding region
of the gene. The remaining 14%, while associated with RefSeq genes, mapped to more
than one region of the genome, so the precise location from which these sequences
originated, and the strand polarity associated with these sequences, could not be

determined.

Quantitative Validation of Clone Representation

We profiled short RNA cloning frequency from two independent preparations of
DN4 thymocytes and observed a high degree of similarity (Pearson correlation co-
efficient = 0.925). This high degree of similarity demonstrated that the short RNA
profiling method was reproducible. To determine whether the profile of short RNAs
accurately reflected their relative abundance in the cell, a quantitative solution-
hybridization based Trilogy® assay (Neely et al. 2006) was used to directly measure the
abundance of seventeen individual miRNAs in the DP thymocyte population (Table 1,
Figure 3). Reassuringly, there was a high degree of correlation between the calculated
number of copies per cell and relative cloning frequency of each of these miRNAs
(Pearson coefficient = 0.974). Surprisingly, this quantification revealed that miRNAs are
expressed at much lower levels in DP thymocytes than in other mammalian cells in
which miRNA expression has been directly quantitated. For example, miR-181a, the
miRNA cloned with the highest frequency in this cell type, was expressed at roughly 810
copies per cell as compared to the up to 50,000 copies per cell reported for miRNAs in
HelLa cells (Lim et al. 2003b).

To determine that the changes in cloning frequency of individual miRNAs
throughout thymocyte development reflected the relative abundance of these miRNAs at

each stage, we used the Trilogy® assay to calculate the copy number of each of 3-5
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miRNAs independently for each cell stage except DN1 (the scarcity of these cells did not
permit isolation of sufficient RNA to perform the Trilogy assay). The copy number for
each miRNA in each of the cell types was independently determined and plotted against
the cloning frequency of the miRNA (Figure 4). We observed generally high correlations
between miRNA copy number measured by Trilogy assay and cloning frequency in each
cell type, allowing the copy number of each miRNA species (and of the overall miRNA
pool) to be estimated for each cell.

Surprisingly, there was a marked change in per-cell RNA levels during T
lymphocyte development. In fact, the per-cell total RNA fluctuates by nearly an order of
maghnitude during this process, from a maximum of 6.8 pg/cell in highly proliferative DN4
thymocytes to a minimum of 0.7 pg/cell in DP thymocytes undergoing selection. The
calculated miRNA pool was also highly dynamic throughout T lymphocyte development,
ranging from about 5000 copies per cell in DP thymocytes to 33000 copies per cell in
DN4 thymocytes. However, the estimated size of the miRNA pools covaried closely with
changes in total RNA level at the various stages of T cell development (Figure 4, Figure
5). This covariation is reflected in a remarkably constant value for calculated number of
miRNAs per fg of cellular RNA. Indeed, although the per-cell RNA and miRNA pool vary
by 10- and 7-fold, respectively, the calculated miRNAs:total RNA ratio slowly and
steadily increased by a factor of two between the immature DN3 and mature SP stages.
In sum, these results strongly suggest that the total pool of miRNAs is tightly regulated

relative to the levels of ribosomal and messenger RNA.

Dynamic Regulation of miRNA Species During Thymocyte Development

The possibility that each stage of T cell development might have a signature
miRNA pattern was next investigated. We tested whether the ontogeny relationships of

the developing thymocytes to one another could be predicted with the miRNA signature
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of these cells. We performed hierarchical clustering of the cloning frequency of miRNAs
to infer cell lineage relationships. A ranked correlation coefficient was calculated for all
pairwise cell type combinations and used as a similarity matrix to generate a rooted tree
(Figure 6A). A second rooted tree was generated using mRNA array data from Hoffman
and colleaugues, who clustered the same cell types (Hoffmann et al. 2003) (Figure 6B).
A multiscale bootstrapping method was used to analyze the clustering in each case
(Suzuki and Shimodaira 2006). The two dendrograms revealed strikingly similar
clustering patterns. The immature DN3 and DN4 cells clustered together, the mature
CD4 and CD8 SP cells clustered together, and DP thymocytes fell at an intermediate
position. The DN1 population (which contains several different cell types) clustered in
the same location in both dendrograms. These data suggest that the miRNA profile
reflects the developmental relationships between individual cells to a similar degree as
the mRNA profile.

Examination of the libraries indicated that the vast majority of the 136 known
miRNAs that were cloned in this analysis were present at every stage of thymocyte
development. However, there were a number of cases in which an individual miRNA’s
expression was significantly higher in one cell type than in others by Chi square analysis
of the frequency data set. The relative abundance of 21 individual miRNAs varied
among the six cell populations in a statistically significant fashion (Figure 6C).
Statistically significant changes were heavily biased towards overrepresentation, with
twenty events in which miRNAs were significantly enriched in a specific cell type
compared to five events in which miRNAs were significantly depleted. Three of the five
depletions observed (miR-15b, miR-16, and miR-181a) were at the DN1 stage,
suggesting upregulation of these miRNAs upon commitment to the T lineage. The other
two depletions were striking in that they occurred at intermediate stages of T lymphocyte

development. Most striking was miR-142-3p, which was downregulated over six fold at
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the DN3 stage relative to the temporally adjacent DN1 and DN4 stages. The
uniqueness of this event in regards to global miRNA expression patterns led us to
examine it more closely.

Expression of the miR-142 primary transcript (pri-miR-142) was first examined.
Surprisingly, qRT-PCR analysis of this transcript revealed that there was no significant
reduction in relative expression between the DN1 and DN3 stages (Figure 6D). Editing
of the pri-miR-142 transcript by the p110 isoform of adenosine deaminase 1 (ADAR1)
has been shown to inhibit processing of this transcript to the pre-miRNA hairpin by the
Drosha enzyme (Yang et al. 2006). Since ADAR activity has been demonstrated in rat
thymus (Paul and Bass 1998; Yang et al. 2003), we wondered whether we could
attribute the specific downregulation of miR-142-3p at the DN3 stage to the activity of
this enzyme. Quantitative RT-PCR analysis demonstrated an increase in expression of
ADAR1p110 between the DN1 and DN3 stages of development, concomitant with a
decrease in expression of ADAR1p150 and ADAR2 (Figure 6E). Strikingly, although pre-
miR-142 expression was apparently reduced at the DN4 stage, we noticed an increase
in miR-142 expression at this stage consistent with a re-upregulation of ADAR2 at this
stage. Later increases in miR-142 expression correlated with an increase in pri-miR142
expression and/or a higher relative expression of ADAR2 or ADAR1p150 relative to the
ADARp110 isoform.

The miRNA expression dynamics during T lymphocyte development are largely
consistent with a mode of expression in which basally expressed miRNAs are
specifically enriched at given stages. In contrast, stage-specific depletion is much more

rare, and in the case examined appears to be controlled at the post-transcriptional level.
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Genomic Signatures of miRNA Families at Individual Stages of Thymocyte
Development

Several studies have reported that mMRNAs containing seed matches to tissue-
specific miRNAs tend to be expressed at lower levels in the tissue(s) where the miRNA
is expressed than in other tissues (Brennecke et al. 2005a; Farh et al. 2005; Krutzfeldt et
al. 2005; Stark et al. 2005). We analyzed the relationship between stage-specific
enrichment of miRNAs during T lymphocyte development and mRNA expression in
these stages using the microarray data of Hoffman et al (Hoffmann et al. 2003).

The mRNA array data were normalized to reflect the level of relative expression
of a transcript in a particular stage as compared to the mean expression of all six stages
examined. In this representation, one might expect that genes whose mRNA levels
changed most between stages would be enriched for large-scale differences controlled
at the level of transcription, obscuring the more subtle effects that have been observed
for miRNAs in a global analysis. We therefore eliminated the five percent of genes
exhibiting the greatest degree of enrichment and the five percent of genes exhibiting the
greatest degree of depletion at each stage, examining the cumulative distribution of the
remaining 90% of transcripts at each stage using a non-parametric Kolmogrov-Smirnov
(KS) statistic. The hypothesis that relative expression of genes with UTR elements
harboring seed matches was increased or decreased in each cell type was tested.

The largest enrichment in cloning frequency observed was for miR-181a at the
DP stage of thymocyte maturation; we chose this miRNA for a preliminary analysis. The
most significant depletion of predicted miR-181 family targets at the DP stage was
observed when targets were defined as all transcripts harboring a sequence
corresponding to positions 2-8 of the miR-181 family seed and compared to a set of
control targets harboring a similar numbers of seed matches to a control sequence (p =

0.003, Figure 7A). Interestingly, there was also a significant enrichment of predicted

47



Chapter 2: Dynamic regulation of miRNA expression in ordered stages of cellular development

miR-181a targets at the DN3 stage, with no enrichment or depletion occurring at the
DN1, DN4, CD4 SP, or CD8 SP stages.

We extended our analysis to other miRNA families that were statistically enriched
or depleted at various stages of thymocyte development, using the same target definition
for the broader analysis. Again, the aggregate expression of all miRNA family members
in a given cell type (e.g. summing the expression of miR-15a, miR-15b, and miR-16, all
of which share a common seed) was considered rather than the abundance of individual
statistically enriched or depleted miRNAs. Of 91 seed families tested, 20 were
demonstrated to vary significantly over the course of thymocyte development (Figure
7B).

When requiring a p value of less than 0.05 in the KS test, 26 enrichments or
depletions were observed in a set of 120 comparisons (20 miRNA family aggregates in
six stages) (Figure 7B). These enrichment and depletion events were identified for
fourteen of twenty significantly changed miRNA families, with depletion of seed match-
containing transcripts for at least one significantly enriched miRNA family in each cell
type. (Figure 7B). Relative miRNA expression was ranked in each cell stage and
enrichment and depletion events were examined in regards to these levels. Fully 50% of
target depletion events were observed at the stage at which the miRNA was most highly
expressed, while no enrichment events were observed at this stage (Figure 7C).
Surprisingly, the majority of enrichment events for predicted targets were observed at
the stage in which the miRNA was expressed at the second highest level. We took
advantage of the temporal arrangement of the various thymocyte developmental stages
to address this observation.

The general pattern of expression of miRNA families mirrored that of individual
mMiRNAs, characterized by constitutive expression with significant enrichments at a

single stage of thymocte development. Examination of the enrichment and depletion of
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predicted targets revealed an overrepresentation of depletion events at the cell stages
prior to, at, or following which the highest miRNA expression was observed (Figure 7D).
Closer examination of these adjacent stages revealed that target enrichment only
occurred prior to, but never at or following the cell stage with the highest level of mMiRNA
expression (Figure 7E).

The observed patterns of miRNA expression are consistent with three modes of
activity. In the first case, (miR-181 family) depletion of predicted targets is observed at
the stage where the miRNA is acutely enriched. In the second (miR-25,92 family), a
more gradual upregulation of the miRNA results in depletion of predicted targets prior to
the maximal expression of the miRNA. In the final case, enrichment of miR-142-5p at
the DN1 and DN4 stages appears to hold predicted miR-142-5p targets at a background
level, with depletion of this miRNA at DN3 allowing enrichment of predicted targets at
this stage. Importantly, all three of these potential modes of action are consistent with
negative effects on transcript expression at stages of high miRNA expression. We
wondered whether these global effects could be correlated with the regulation of genes

known to be involved in thymocyte maturation at specific stages.

miR-181a Represses Expression of Genes with Roles in Thymocyte
Maturation Through Their 3' UTR Elements

We focused again on the miR-181 family; this family of miRNAs is strikingly
upregulated at the DP stage of thymocyte development, and might thus be expected to
most dramatically impact gene expression at this stage. MiR-181 has been reported to
be highly expressed in thymocytes (Chen et al. 2004); however, the developmental
specificity of this expression has not been described. The Targetscan 3.0 server (Lewis
et al. 2005) was used to identify candidate targets of the miR-181 family that might play

a role in the processes of positive or negative selection characteristic of this stage of T
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cell development. Notably, CD69 and Bcl-2 are predicted targets of the miR-181a
family. Bcl-2 is known to be selectively downregulated at the DP stage of thymocyte
development (Gratiot-Deans et al. 1993), but expression levels of this gene are restored
following positive selection to the CD4 or CD8 SP stage. CD69 expression is increased
on DP cells that have undergone positive or negative selection; this marker has been
shown to appear on the surface of stimulated T cells less than thirty minutes following
stimulation (Hara et al. 1986). Interestingly, surface expression of the antigen receptor
is also increased in DP thymocytes following positive selection; this is known to occur
post-transcriptionally (Bonifacino et al. 1990; Maguire et al. 1990). Although neither the
alpha nor the beta chain of T cell receptor is a predicted miRNA target on the
Targetscan server, we noticed a seed match to the miR-181 family in the 3' UTR of the
TCRa transcript. The precise location of this seed match is conserved to rat, and the
human TCRa UTR features a miR-181 seed match nearby. We wondered whether miR-
181 might control expression of Bcl-2, CD69, the TCRa chain, and other genes with
known or putative roles in positive selection through interactions with the 3' UTR
elements of their transcripts

The 3' UTR elements of several predicted targets of miR-181a were fused to a
luciferase reporter, and we examined the ability of a synthetic miR-181a siRNA duplex to
repress the expression of these constructs in HelLa cells. Relative to transfection of a
control siRNA, miR-181a significantly downregulated reporters fused to the 3' UTRs of
the TCRa chain, CD69, and Bcl2 (Figure 8). The downregulation of Bcl-2 was
marginally enhanced but not dependent upon the presence of the AU-rich stability
element (ARE) in the 3' UTR of this gene. Expression of reporters fused to the predicted
miR-181 targets TOX, Runx1, EGR1, Bcl2AF1, and FoxP1 were not significantly

downregulated by transfection of synthetic miR-181a (Figure 8), even though each of
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these genes is a predicted target of the miR-181 family and contain similar seed
matches. We concluded that miR-181a is able to selectively repress the expression of a

reporter gene fused to the 3' UTR elements of the Bcl-2, TCRa, or CD69 genes.

Dysregulation of miR-181a Targets in Dicer-deficient DP Thymocytes

The finding that miR-181a was able to directly repress the expression of a
reporter gene fused to the 3' UTR elements of CD69, Bcl-2, or the TCR a-chain
suggested that the expression of these genes would increase if miR-181a levels were
decreased in DP thymocytes. Thus, expression of these genes in Dicer-deficient DP
thymocytes was examined. An Ick-cre transgene (Hennet et al. 1995) was crossed into
the floxed Dicer background (Harfe et al. 2005) to effect recombination of Dcr’ alleles at
the DN3 stage of thymocyte development.

The overall pattern of CD69 expression was conserved in Dicer-deficient DP
thymocytes. However, these cells exhibited a reproducibly higher median fluorescence
intensity when compared to sex-matched littermate controls harboring a functional allele
of Dicer (Figure 9A). Similarly, the T cell receptor (TCR) was expressed at a higher level
in Dicer-deficient cells (Figure 9B). Interestingly, the relative increases in expression of
CD69 and the TCR in Dicer-deficient DP thymocytes observed in vivo correlated with the
relative repression observed in the above 3' UTR assays.

Finally, Bcl-2 expression in Dicer-deficient DP thymocytes was examined. Dicer-
deficient DP thymocytes expressed levels of Bcl-2 protein markedly lower than those
observed in control cells. Consistent with a previous study (Cobb et al. 2005), Dicer-
deficient thymocytes were more apoptotic than control cells. We suggest that loss of
Dicer function induces a transcriptional program in DP thymocytes that obscures any

specific effect of miR-181a on levels of Bcl-2 protein expression.
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Modulation of Potential miR-181a Targets by Transfection of Nucleic Acids
into Dicer-deficient DP Thymocytes

The increased expression of CD69 and the TCR in Dicer-deficient DP
thymocytes is consistent with the regulation of these gene products by miR-181a and
miR-181b, both of which are specifically upregulated at the DP stage. However, Dicer
deletion would be expected to reduce the levels of all miRNAs. Thus, the increase in
expression of CD69 and the TCR in DP thymocytes might be due to reasons other than
the reduction in levels of the miR-181a family. To demonstrate direct regulation of CD69
and the TCR in DP thymocytes by the miR-181 family Dicer-deficient DP thymocytes
were isolated from mice and cotransfected with miR-181a or control siRNAs in addition
to a GFP marker plasmid. There was a reproducible reduction in the surface levels of
CD69 in GFP positive thymocytes when compared to GFP positive thymocytes that had
been transfected with a control siRNA duplex (Figure 9C and D; Figure 10). A similar
repression of the TCR complex was not observed within the time frame of the
experiment, potentially due to the fact that the fully assembled T cell receptor has an
exceptionally long half-life (Minami et al. 1987). We concluded that in Dicer-deficient DP
cells, specific introduction of miR-181a is able to repress CD69 expression. The reporter
assays demonstrate that miR-181a is able to effect this repression directly through the 3’
UTR elements of these genes. Thus, it is likely that miR-181 family members directly
regulate the levels of CD69 and the TCR through their 3' UTR elements at the DP stage

of thymocyte development.

Discussion

We quantitatively profiled short RNA species from sequential stages of
development of a single mammalian cell lineage, documenting dynamic regulation of

individual miRNAs and miRNA families during this process. This regulation is correlated
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to changes in gene expression at the genomic level in the processes of lineage
commitment, stepwise maturation, and the developmental decision to mature to one of
two related but highly different cell types. The functional significance of these dynamics
is demonstrated in the context of miR-181a and its predicted targets.

The degree of variation in the total miRNA pool and total cellular RNA content
across the T lymphocyte developmental progression is striking. The miRNA pool varies
per cell from a minimum of 5,000 molecules per cell in DP thymocytes to 33,000
molecules per cell in DN4 cells. At the same time, total RNA content ranges from a low
of 0.7 pg of RNA per cell in DP thymocytes to a maximum of 6.8 pg of RNA per cell in
DN4 thymocytes. The major changes that we observe in per-cell miRNA pool and total
RNA content stand in stark contrast to the constant, progressive increase in the ratio of
the total miRNA pool to the total RNA pool. This progressive increase is consistent with
previous studies in which overall miRNA levels are correlated to the level of
differentiation of a cell (Lu et al. 2005), but our data also suggest that global miRNA
levels are tightly coupled to cytoplasmic volume and/or ribosomal content. Cells that are
rapidly proliferating (e.g. DN4 cells) are likely to be more transcriptionally and
translationally active. The corresponding increase in the number of transcripts and level
of translation would necessitate an increase in miRNA levels to maintain the same
degree of control of the transcriptome. Although the absolute copy number of miR-181a
is lower in DP cells than at any other developmental stage, it represents a higher fraction
of the miRNA pool. It is only in the context of relative concentration that miR-181a
mediates its biological effect at the DP stage of development. Thus, the concentration of
an individual miRNA in relation to its targets is likely to be more important than its
absolute copy number.

In relative terms, the vast majority of short RNAs were expressed at constant

levels throughout thymocyte development. Of 136 miRNAs that were observed in the
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study, only 21 were observed to vary by cell type. Consideration of the aggregate
expression of miRNA family members yielded largely consistent observations in regards
to miRNA expression dynamics. However, there were instances in which the aggregate
miRNA family revealed additional enrichment (miR-23) or changed the stage at which
significance was observed (miR-15 family). The significantly changed miRNAs and
miRNA families were continually expressed throughout thymocyte development, with
transitory enrichments at specific cell stages. Curiously, while a high level of enrichment
for at least one miRNA or miRNA family was observed at each distinct stage of
thymocyte development, the reverse pattern of specific depletion at a single stage was
much more rare. A major depletion in the cloning frequency of both products of the miR-
142 gene at the DN3 stage is one exception (Figure 6, Figure 7). The relative
expression of various ADAR family members at and adjacent to this developmental
stage coupled with the lack of transcriptional downregulation of pre-miR-142 at the DN3
stage suggest a model in which ADAR2 and/or ADAR1p150 compete with ADAR1p110
to inhibit editing of pri-miR-142, ensuring proper maturation of the mature miR-142
miRNAs. Indeed, the perturbed pri-miR-142 editing patterns described in ADAR null
mutants are consistent with this model (Yang et al. 2006). This may partially explain why
this miRNA is an exception to the rule of basal expression with stage-specific enrichment
observed for other miRNA species.

Statistically significant changes in the relative levels of expression of predicted
MRNA targets were observed for 14 of 20 dynamically regulated miRNA families and for
at least one miRNA family in each developmental stage examined. Consistent with a role
in directly repressing the levels of proteins encoded by target mMRNAs or reinforcing
transcriptional downregulations, in most cases underrepresentation of predicted targets
was observed around local maxima in miRNA family expression. This strong correlation

indicates that regulation by miRNAs is a characteristic of many intermediate
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developmental stages, and not solely of mature, differentiated cells or “one-way”
developmental specification.

The dispensability of the RNAIi pathway for thymocyte maturation has been
suggested by conditional deletion of Dicerin the T lineage (Cobb et al. 2005; Muljo et al.
2005). However, it is unclear from these studies whether individual cells had completely
lost Dicer activity and miRNA function at the point that positive selection and lineage
choice occurred. Indeed, even using the early-acting Ick-cre transgene, DP cells exhibit
detectable levels of mature miRNAs (Cobb et al. 2005). The 10-fold reduction in
thymocyte number in these mice at stages immediately following deletion of the floxed
locus (Cobb et al. 2005), coupled with a marked increase in apoptosis of Dicer-deficient
thymocytes both in vivo and ex vivo (Cobb et al. 2005), leads us to believe that
elimination of Dicer is quite deleterious, manifesting after Dicer protein, and the miRNA
pool have been depleted. Indeed, peripheral T cells in Ick-cre Dicer” mice are enriched
for non-recombined alleles of Dicer'.

In any case, it is clear that even individual miRNAs can influence hematopoietic
development. Mice reconstituted with cells transduced with a miR-181a overexpression
vector exhibit a paucity of T lymphocytes (Chen et al. 2004). While this was interpreted
as a facilitated commitment to the B lineage, the results of this study provide an
alternative explanation. Disruption of CD69 signaling has been shown to negatively
impact the egress of lymphocytes from lymphoid organs, including the thymus
(Nakayama et al. 2002; Alfonso et al. 2006; Shiow et al. 2006). Forced expression of
miR-181 past the DP stage of thymocyte development would be expected to decrease
CDG69 levels on positively selected thymocytes, resulting in retention of these cells in the
thymus and an apparent decrease in peripheral T cells. Our data in regards to miR-
181a’s effect on the expression of Bcl-2 and the TCR in vivo are less complete.

However, the effects of forced expression of miR-181 on these gene products would
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further exacerbate the phenotype resulting from lowered CD69 expression. Reduced
expression of the TCR would be expected to shift the threshold for positive and negative
selection, while an inability to increase Bcl2 expression upon positive selection would
result in cell death. Recent work by Li and colleagues suggest that miR-181 can
increase the sensitivity of DP cells to stimulation of the T-cell receptor (TCR) (Li et al.
2007). Blocking miR-181 in DP cells suppresses both positive and negative selection.
miR-181 represses the expression of a group of protein phosphatases, which are
negative regulators of two TCR signaling molecules, Lck and Erk (Li et al. 2007). Thus
the expression of miR-181 in DP cells increases the basal phosphorylation levels of Lck
and Erk, reduces their activation threshold, and enhances TCR signaling strength (Li et
al. 2007).

Returning to the more global observations of this study, the lower relative degree
of enrichment or depletion of predicted targets and subtle effects on gene expression in
this study, (particularly in regards to similar computational studies) at first seem
unremarkable. However, other studies have compared gene expression profiles in
tissues specifically expressing a given miRNA or from cell lines in which an ectopic
miRNA is introduced. This analysis stands in stark contrast for the reason that nearly
every miRNA that we observe is expressed throughout T lymphocyte development, with
graded increases or decreases at specific times during this process. This pattern of
constant expression with transient enrichment is not consistent with the “switch like”
function that has been attributed to miRNAs with known developmental roles (Reinhart
et al. 2000; Fazi et al. 2005; Giraldez et al. 2006), and suggests two things: First, any
individual miRNA would be expected to exert some level of post-transcriptional control at
all times, with more or less robust effects during times of significant enrichment or
depletion, respectively. It follows that these miRNAs would not be expected to

dramatically effect gene activation and repression, instead exerting most of their effects

56



Chapter 2: Dynamic regulation of miRNA expression in ordered stages of cellular development

to modulate gene expression at an intermediate level. Second, the role of individual
miRNAs and miRNA families extends beyond the temporal window of their first
expression, continuing to play an active role in fundamental processes in subsequent

cell stages.

57



Chapter 2: Dynamic regulation of miRNA expression in ordered stages of cellular development

Methods

Mice

C57/BL6 mice were from Taconic or Jackson labs. The Dicer” mouse has been
described (Harfe et al. 2005). The Ick-cre transgenic mouse was from the Jackson
laboratories. All mice were housed, handled, and euthanized in accordance with federal

and institutional guidelines.

Thymocyte and RNA isolation

Thymocytes were isolated from female mice aged 5-10 weeks and stained with
antibodies from BD-Pharmingen. Populations were designated as follows: CD4SP -
CD4"CD8'TCR", CD8SP - CD8'CD4 TCR", DP - CD4*CD8'TCR™"", DN - CD4 CD8&
CD19°GR1YdTER-119°CD11b'DX5". DN cells were further divided as follows: DN1 -
CD44'CD25°, DN3 - CD44 CD25", DN4 - CD25CD44". Cells were sorted to > 95%
purity and processed using Ambion’s miRVana kit as per manufacturer’s instructions to
isolate both short and long fractions of RNA. For preparation of bulk DP cell RNA in the
direct quantification experiments, we used a one step positive selection with biotinylated
anti-CD8 and anti-biotin magnetic beads (Miltenyi). This routinely resulted in purities of

greater than 95%.

Short RNA Cloning

Short RNAs were cloned essentially as described (Lagos-Quintana et al. 2001; Lau et al.
2001). We cloned directly from the short RNA fraction eluted from miRvana columns.
There was no gel isolation between the 5" and 3' adapter ligations steps. Following RT

(Superscript I, InVitrogen) and ten cycles of PCR amplification with AmpliTaq Gold

58



Chapter 2: Dynamic regulation of miRNA expression in ordered stages of cellular development

(Perkin EImer), we digested our amplifications with the appropriate enzyme (Stu | or Pvu
Il, both from NEB) and gel isolated from a denaturing polyacrylamide gel using a 10 bp
ladder (/n vitrogen) and SyBR Gold (Molecular Probes). After the first round of
amplification, we switched to Pfu Turbo, iterating amplification, digestion, and gel
isolation until cloneable product could be identified. For this study, we amplified various
libraries anywhere from 30 to 38 cycles in total. Bioinformatic extraction of individual
short RNA clones from sequence reads was as described (Houbaviy et al. 2003).
3'linkers: Stu: 5'-CCTGTATCTGTGTATGGAAC-3"; Pvu:5'-CTGG-TATCTGTGTATGGddC-3'.
5" linkers: Stu: 5'-ACCACAGAGAAACCGrArGrG-3’; Pvu: 5'-
ACCACAGAGAAACCGrCrArG-3'. 3'RTprime/PCRoligos: Stu: 5'-GACTAGCTTGGTGCC-
ATACACAGATACAGG-3'; Pvu: 5'-GACTAGCTTGGTGCCATACACAGATACCAG-3'. 5’
PCR oligos: Stu: 5'-GAGCCAACAGGCACCACAGAGAAACCGAGG-3'; Pvu: 5'-GAGCCA-

ACAGGCACCACAGAGAAACCGCAG-3'. A detailed protocol is available on request.

Direct miRNA quantitation and calculation of miRNA copy number per cell

Thymocytes were sorted to >95% purity, directly counted in a hemacytometer, and lysed
in Trizol. Five fmol of miR-196a was spiked into each lysis and later detected as a
recovery control. Initial experiments in DP thymocytes were performed without a
recovery control. In later experiments, the average recovery for four independent
isolations of DP thymocytes was calculated, and data from earlier DP quantitations was
normalized to this value. RNA was processed as per manufacturer’s instructions,
quantitated on a Nanodrop spectrophotometer, and assayed using the Trilogy Assay
(U.S. Genomics) essentially as described (Neely et al. 2006). The molarity of a given
miRNA in each sample was determined by fitting the coincident events in the RNA

sample to a curve generated with a synthetic miRNA template in a complex background.
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Phylogenetic Analysis

We used the complete linkage method of hierarchical clustering in the R software
package to generate rooted trees from miRNA and mRNA expression data. To eliminate
noise, we omitted miRNAs cloned less than five times overall and set mMRNA array
values less than log,(20) to log2(20). Significance of clustering was analyzed with the

Pvclust package (Suzuki and Shimodaira 2006).

qRT-PCR Analysis of ADAR Expression

RNA was extracted with Trizol, DNAse-| digested, and reverse-transcribed using the
SuperScript lII kit. Quantitative Real-Time PCR was performed using a SYBR-Green kit
(Applied Biosystems) on a ABI 7500 instrument using the following oligos: A1LF 5'-
GACTAC-GCGTTGGGACTAGC-3"; A1LR 5-TGCTGAAGCTGGAAACTCCT -3'; A1SF
5-CTTGCC-GGCACTATGTCTC-3"; A1SR 5-TGCTGAAGCTGGAAACTCCT-3"; AB1F
5-CCAGTCAA-GAAGCCCTCAAA-3"; AB1R 5-GCGGTACTTGGAGTGACCAT-3".
Changes in relative expression of ADARp110 and ADARp150 were similar whether TBP
or Tubulin were used as a control. The pri-miR-142 oligos have been described (Yang

et al. 2006).

Luciferase assays

HelLa Cells were transfected at 80% confluency in 24 well plates with 100 nM siRNA,
100 ng of pGL3, 700 ng of Renilla/UTR reporter. Cells were split 1:3 4-6 hours after
transfection and assayed at 48h in a Dual Luciferase Assay (Promega). All results were
normalized to the effect of siRNAs on pRL-TK-RenCX6X (Doench et al. 2003). Si181a
is the predicted post-Dicer processing product of the miR-181a pre-miRNA hairpin.

UTRs were amplified with the following oligos and subcloned into the Not | and Xho |
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sites of pRL-TK-CX6x: ToxF 5-AGCTAGCTCGAGCATGTGAGCTTGTGG- GTCAC-3',
ToxR 5-ATGCATGCGGCCGC- AGCACTTAGCTAGCGCGTTC-3', RunxF 5'-
AGCTAGCTCGAGTGCATCTGGGTGGTCA- TTTA-3', RunxR 5'-
ATGCATGCGGCCGCT- TGGATCTTTGGGGTACAGC-3', CD69F 5'-
AGCTAGCTCGAGACTGTGCCATAGCACC-ACAG-3', CD69R 5'-
ATGCATGCGGCCGCA- CAGCTTAAACTTTATAGTGGGTTTT-3', EGRF 5'-
AGCTAGCTCGAGCATCTGTGCCAT- GGATTTTG-3', EGRR 5"-
ATGCATGCGGCCGCTATCCCATGGGCAATAGAGC-3', Foxp1F 5'-
AGCTAGCTCGAGAGACCGAAGATTGGGGAAAA-3', Foxp1R 5-ATGCATGCGGCC-
GCTG AGGTCAGAACTTAAA 5-ATG-3', Bel2af1F 5-AGCTAGCTCGAGGCAAACATA-
AGGAGGACAGCTT-3', Bcl2af1R 5-ATGCATGCGGCCGCAGGGGAGCATCATGCAA-
TAC-3', TerbF 5-AGCTAGCTCGAGTATGCATCCTGAGCCGTTCT-3', TcrbR 5'-
ATGCA-TGCGGCCGCCTCCATGTTTTTATTGATTTAGTCTG-3, TcraF2 5'-
AGCTAGCTCGAG-GCAAGACTGACAGAGCCTGA-3', TcraR2 5™-

ATGCATGCGGCCGCGAATCACCTTTAA-TGATGTCATGG-3'.

Transfection of DP thymocytes

Whole thymocytes were isolated and nucleofected using the Primary T cell
Nucleofection Kit (Amaxa) and program X-001. 5X10° cells were nucleofected with a 1.5-
3 ug of siRNA duplexes and 1 ug pMaxGFP. Levels of surface markers were monitored

at 12-16h post-nucleofection.
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Table 1. Short RNA cloning statistic.

The number of clones falling into a particular annotation class is listed for each cell type. The
representation of the class within the library derived from an individual cell type is listed in
parentheses. Column totals do not reflect the sum of annotated clones or percentages in a given
cell type due to overlap among the Known Gene, EST Repeat, and CpG classes in the UCSC
annotation database. miRNA” denotes any fragment of a miRNA hairpin other than the mature
miRNA, e.g. the miRNA* strand or loop.

Type DN1 DN3 DN4 DP CD4 CD8 | Total
miRNA | 1426 (58.0%) | 404 (56.0%)| 1764 (72.1%)] 742 (82.4%)| 873 (67.8%)| 914 (71.4%)| 6123
miRNA*® 34 (1.4%) | 18 (25%) | 37(15%) | 7(0.8%) | 18(1.4%) | 15(1.2%) | 129
tRNA 161 (6.6%) | 82 (11.4%) | 221(9.0%) | 53 (5.9%) | 83(6.5%) | 64 (5.0%) | 664
rRNA 20(12%) | 7(1.0%) | 24(1.0%) | 3(@3%) | 3(@2%) | 0(.0%) | 66

Other ncRNA| 58 (2.4%) | 20(2.8%) | 86(3.5%) | 9(1.0%) | 35(2.7%) | 12(0.9%) | 220
Known gene | 151 (6.1%) | 34 47%) | 41(1.7%) | 7(08%) | 41(32%) | 45(35%) | 319

EST 371 (15.1%) | 113 (15.7%) | 200 (8.2%) | 67 (7.4%) | 171 (13.3%)] 169 (13.2%)| 1091
Repeat | 367 (14.9%) | 118 (16.3%)| 196 (8.0%) | 66 (7.3%) | 188 (14.6%)| 188 (14.7%)| 1123
CpG 37 (15%) | 8(1.1%) 8 (0.3%) 1(0.1%) | 11(09%) | 8(06%) | 73
Unannotated | 289 (11.8%) | 58 (8.0%) | 84(34%) | 10(1.1%) | 65(5.1%) | 71 (5.5%) | 577
Total 2458 722 2445 900 1287 1280 | 9092
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Table 2. Calculation of copy numbers of individual miRNAs in
CD4'CD8" thymocytes.

miRNAs were quantitated by solution hybridization and direct detection using a U.S. Genomics
Trilogy platform. In each individual experiment, a standard curve was plotted from triplicate
standards of known concentration of a synthetic target in a complex background. Values obtained
for triplicate samples of DP thymocyte RNA were fitted to this curve to determine moles per
microgram, and then molecules per cell. In later experiments, we performed a recovery control by
detecting a synehttic miR-196a that had been “spiked” into the Trizol during cell lysis. The
average recovery from these latter experiments (~75%) was used to estimate the recovery of
earlier RNA isolations, and initial measurements were scaled by this factor. The plot of copy
number per cell vs. frequency of cloning in DP thymocytes in Figure 4 is a graphical
representation of the above analysis. The data represent 43 individual experiments performed in
triplicate from any one of seven distinct preparations of DP total RNA. Results of two
independent measurements of miR-16 and miR-21 in Hela cells are also shown.

DP thymocytes
Cloning
miRNA Mean copy #/cell SEM (n)  Frequency
miR-132 0.0 0.0 (3) 0.000
miR-219 1.8 6.2 (3) 0.001
miR-28 25 1.2(6) 0.001
miR-126 4.3 3.1(3) 0.000
miR-301 7.5 0.3(3) 0.002
miR-125b 10.5 4.4(9) 0.000
miR-181a* 12.0 1.1(3) 0.003
miR-24 34.3 2.5(12) 0.004
miR-19a 52.6 3.4(3) 0.007
miR-150 68.0 3.7(9) 0.010
miR-21 70.0 8.3(12) 0.016
miR-25 80.2 11.3(12) 0.014
miR-93 81.8 92.1(12) 0.013
miR15a 100.3 20.4(12) 0.023
miR-15b 219.4 55.9 (6) 0.058
miR-16 403.4 68.9 (6) 0.059
miR-181a 809.9 69.7 (15) 0.155
Hela Cells
Cloning
miRNA ‘ Mean copy #/cell SEM (n)  Frequency
miR-16 ‘ 1169.6 312.1(4) N/A
miR-21 19132.2 1770.0 (8) N/A
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Figure 1. Modified cloning protocol.

(A) In order to generate short RNA libraries from limiting (ng) amounts of total RNA, we
redesigned linker sets with “blunt-cutter” restriction half sites at their termini, such that ligation
of'a 5" linker to a 3’ linker would result in a cleavable product. An iterated process of PCR
amplification and enzyme digestion was used to obtain clonable product. This parallel strategy
also offsets insert loss by single enzyme digestion and reduces library bias stemming from T4
RNA ligase end specificity. In addition, the two libraries can be compared prior to pooling for
consistency. (B) Linker design and digestion schematics.
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Figure 2. Processing and annotation flowchart for cloned
sequences.

Cloning and sequencing of cDNA clones from six stages of T lymphocyte development yielded a
total of 10533 clones ranging in length from 16 to 33 nucleotides. We used BLASTN to query
these clones against miRNA mirBase (Release 8.1) (Griffiths-Jones 2006), Rfam (Griffiths-Jones
et al. 2005), the NONCODE database (Liu et al. 2005a), and the mouse genome (mm$
assembly). In total, we were able to map 9092 (86.3%) of the clones to sequences in the above
databases. Roughly two-thirds of these clones (67.3%) match precisely, whereas the balance of
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of clones align to known sequences when up to 3 mismatches are allowed. The proportion of
sequences not matching precisely is higher than what one would expect by chance, assuming a
sequence of 22 nucleotides long, and overestimating the polymerase error rate at one percent. We
elected to include sequences in our analysis aligning with one mismatch anywhere in the
sequence or any sequence having up to three mismatches at the end. The latter concession
allowed automated identification of clones derived from tRNA species, which are post-
transcriptionally modified with a 3" CCA motif. In addition, the majority of mismatches observed
in miRNA species appeared to be base additions to the 3’ end, with a bias towards an adenosine
or uracil. This observation has been previously described (Aravin and Tuschl 2005), and is
suggestive of post-Dicer modification of miRNA species. We did not observe a bias in
composition of the internal mismatches that would suggest known modes of RNA editing. The
miRNA? class is composed of any fragment of a known miRNA hairpin except the mature
miRNA (e.g. loop, *strand). The 1441 clones not aligning to the mouse genome according to our
criteria and excluded from the above analysis were queried against the genomes of 369 bacterial
species (downloaded from NCBI), Bos taurus (bosTau2 assembly) and Homo sapiens (hgl8
assembly) to check for potential contamination introduced by cloning vehicles, bovine serum and
human contact. In addition, we queried the sequence against one mammalian (Canis familiaris)
and one non-mammalian (Gallus gallus) species as specificity controls.
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Figure 4. Absolute copy numbers of miRNAs in Thymocyte
populations.

(A) Individual miRNAs were quantitated using the US Genomics Trilogy and Trilogy 2020
instruments. Measured values were fitted to a standard curve generated with synthetic miRNA to
determine molarity. We used this information along with cell counts and recovery controls to
calculate the copy number per cell for individual miRNAs in each cell type. (B) Measured pg
total RNA per cell. (C) Calculated miRNA pool per cell. For each cell type, we used the average
of the constants calculated for each data point in (A). (D) Calculated miRNAs/fg total RNA for
each cell type. For correct propagation of error, error bars in (A) and (D) represent the SEM.
Error bars in (B) and (C) represent the SD.
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DN3 DN4 D8
pG RNA/cell 3.67 6.82 0.67 1.47 2,77
miRNA pool/cell 21,000 32,000 5,200 13,000 33,000

miRNAs/fg bulk RNA 5.6+-0.6 4.8+-11 7.8+-13 95+-24 11.8+-0.8

miR181 (#/cell) 1,400 1,600 810 1,200 1,200

miR181 (% of pool) 6.7% 5.0% 15.6% 9.2% 3.6%

Figure 5. Measurements of total RNA content per cell.

Rooted trees were generated from miRNA and mRNA expression data derived from each
thymocyte population. Values were derived from cell counts, total RNA quantification, and
measurement of the concentration of individual miRNAs in each cell type normalized to a
recovery control. The calculated miRNA pool represents an estimate based on the average of
constants relating miRNA copy number to cloning frequency. We were not able to obtain enough
DNI1 cells to perform miRNA quantitation analysis.
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Figure 6. miRNA expression is dynamically regulated during
thymocyte development.

(A) Relationship of cells determined by Spearman correlation of miRNA profiles. (B)
Relationship of cells determined by Spearman correlation of mRNA profiles (Hoffmann et al.
2003). Values at branch points in (A) and (B) denote multiscale bootstrapping significance
values. (C) Heat map representing relative expression of the 21 miRNAs that were identified as
enriched or depleted during thymocyte development by the Chi square test. Asterisks reflect
statistically significant enrichment or depletion. (D) qRT-PCR analysis of pri-miR-142 in
thymocyte populations. (E) qRT-PCR analysis of ADAR family members in thymocyte
populations.
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Figure 7. Genomic signatures in response to changes in miRNA
family member expression.

(A) Cumulative distribution plots of predicted target expression for miR-181 family members
versus control heptamers at each stage of thymocyte development. (B) Chi square analysis of
aggregate expression of miRNA family members. Arrows indicate significant (p < 0.05)
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enrichment (up) or depletion (Lu et al.) of targets relative to control heptamers. Asterisks reflect
statistically significant enrichment or depletion of the indicated miRNA family. (C) Enrichments,
depletions, and no change of predicted targets at each miRNA expression ranking level for the 20
miRNA families shown. (D) Temporal analysis of enrichments and depletions during thymocyte
development relative to stage of maximum miRNA family aggregate expression. Significance of
these enrichments when compared to 1000 randomizations of the data set is shown.
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Figure 8. Repression of predicted miR-181a target UTRs in a
reporter assay.

The 3’ UTR elements of several genes identified by the Targetscan 3.0 server (Lewis et al. 2005)
as potential miR-181a targets were tested in a dual-luciferase assay. An alignment of the
conserved seed matches are indicated for each predicted target. Graphs indicate expression of the
construct in HeLa cells transfected with a control siRNA duplex versus a miR-181a duplex
normalized to the effect of each siRNA on a control UTR in a dual luciferase assay. Results are
representative of a minimum of three independent experiments performed in triplicate, Error bars
represend one SD.
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Figure 9. Dysregulation of CD69 and the TCR in Dicer-deficient
DP thymocytes.

CD69 (A) and TCR (B) staining on electronically gated DP thymocytes from Ick-cre” and control

Dicer” mice. Derepression was normalized via median fluorescence intensity (bar graphs). (C)

CD69 levels on GFP" and GFP™® Dicer’”’ DP thymocytes transfected with a miR-181a or control
siRNA. (D) As in C, examining lck-cre” Dicer’” DP thymocytes. Median fluorescence intensities
for each parameter are provided in Figure 10. Results are representative of a minimum of three

individual experiments.
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Figure 10. CD69 expression is inversely correlated with GFP
intensity in Dicer-deficient and control DP thymocytes
transfected with miR-181a.

(A) Representative gating of forward- and side-scatter gated GFP negative, low, and high
populations in Dcr’”/ thymocytes transfected with control or miR-181a or control siRNAs are
shown. The CD69 staining profiles of DP thymocytes from each population are overlaid to the
right. (B) Analysis of transfected lck-cre” Der’”’ DP thymocytes as in (A). (C) Normalized median
fluorescence intensity of populations transfected with si-miR-181a in (A) and (B). The values for
each parameter are set relative to the same populations in cells transfected with the control
siRNA.
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CHAPTER 3: Multiple abundant miRNA families
collaborate to buffer embryonic stem cells from
apoptosis

The material presented in this chapter was adapted, with permission, from the following
manuscript:

Grace X.Y. Zheng, Arvind Ravi, Christopher B. Burge and Philip A. Sharp. Multiple
abundant miRNA families collaborate to buffer embryonic stem cells from apoptosis. (in
preparation)

Experimental contributions:

Arvind Ravi cloned all the luciferase constructs, and performed all the luciferase assays.
Grace Zheng performed all the bioinformatics analysis and conducted the cell cycle and
apoptosis experiments.
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Abstract

MicroRNAs are an important class of short RNAs that play critical roles in post-
transcriptional gene regulation. Generated by cleavage of longer hairpin transcripts by
the enzyme DICER, they are emerging as key regulators of various mammalian cell
types, including embryonic stem cells (ESCs). In order to better understand their
functions, we attempted to identify targets of the most highly expressed of these
noncoding RNAs in mouse ESCs, which share the common seed “AAGUGC”,
nucleotides 2-7 of the miRNA, and include members of the miR-290-295 cluster, the
miR-302 cluster, and the miR-467 family. After identifying potential targets by combining
bioinfomatic predictions with experimental microarray data from both Dicer null (Dcr KO)
and miR-290-295 cluster null (295 KO) mouse ESCs, an unbiased gene ontology search
suggested that these miRNAs modulate key players in apoptosis. We confirmed this
prediction by validating two targets — Caspase 2 and Ei24 — both involved in the
mitochondrial apoptosis pathway. Notably, their corresponding AAGUGC miRNAs were
protective against apoptosis when transfected into Dcr KO and 295 KO in a state-
specific manner, specifically following exposure to doxorubicin or gamma irradiation.
These data implicate AAGUGC miRNAs as buffers of a critical ESC decision point

between DNA repair and cell death.
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Introduction

miRNAs are endogenous ~22nt RNAs that regulate gene expression post-
transcriptionally. In animals, the ability of miRNAs to accomplish this regulation depends
on complementarity between mature miRNA sequences and their mRNA targets. Most
commonly, partial binding of miRNAs leads to destabilization of mRNA transcripts and/or
inhibition of productive translation, although in some cases perfect (or near perfect)
complementarity instead leads to target cleavage. Both in vitro experiments and
bioinformatics have shown that matches for positions 2-7 of the miRNA, referred to as
the miRNA “seed,” are generally required for effective miRNA-directed mRNA
downregulation (Behm-Ansmant et al. 2006b; Bartel 2009).

Since the discovery of the first miRNA gene in the early 1990s, hundreds of
mMiRNAs have been identified across various mammalian cell types through cloning and
bioinformatics (Bartel 2009). The roles of miRNAs in mESCs have been of particular
interest in recent years, as this knowledge may shed light on key aspects of mammalian
development as well as generate useful insights that can be applied to reprogramming
and cancer, both of which recapitulate aspects of an ES expression state (Ben-Porath et
al. 2008; Lin et al. 2008; Bosnali et al. 2009; Judson et al. 2009). In addition, mMESCs can
survive in the absence of Dicer, and serve as a unique model system for dissecting
miRNA functions (Kanellopoulou et al. 2005; Murchison et al. 2005).

Recent studies have linked several miRNAs to ES cell lineage maintenance,
differentiation, and proliferation capacity. Benetti et. al. (Benetti et al. 2008) and
Sinkkonen et. al. (Sinkkonen et al. 2008) both showed that mESC specific miR-290-295
cluster can target Rbl2, which control Dnmt expression, suggesting that the miRNA
cluster plays a role in regulating de novo DNA methylation. miR-302 has been shown to

control germ layer specification by inhibiting lefty, an inhibitor of the Nodal pathway
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(Rosa et al. 2009). In addition, Melton et. al. showed that miR-290-295 cluster can
indirectly increase the expression of Lin28 and c-Myc to maintain mESCs in their self-
renewing state (Lee et al. 2008). Lastly, miR-290-295, miR-302, and miR-372, have
been found to accelerate cell proliferation by promoting G1 to S phase transition through
targets such as p21 and Lats2 (Voorhoeve et al. 2006; Card et al. 2008; Wang et al.
2008).

Overlapping roles for the miR-290-295 cluster and the miR-302 cluster are not
surprising, given their common seed AAGUGC (Table 1). However, other related
miRNAs include rodent specific miR-467a, c, and d, which have been cloned from T
cells (Neilson et al. 2007) as well as ES cells (Mineno et al. 2006; Landgraf et al. 2007),
remain largely uncharacterized. We will refer to these families collectively as the
“AAGUGC miRNAs” to emphasize the commonality of their seed sequence. Members of
the miR-17-92 cluster also share this hexamer, though it corresponds to positions 3-8
rather than 2-7 of the mature sequence. Because this shift is expected to significantly
reduce the activities of the miR-17-92 family in regulation of the AAGUGC seed targets
(Figure 1), we will not include the family in our study.

Several large-scale sequencing datasets (Mineno et al. 2006; Calabrese et al.
2007; Landgraf et al. 2007; Babiarz et al. 2008; Leung et al. 2010) have revealed that
AAGUGC miRNAs constitute the most highly expressed miRNAs in ES cells (Table 1),
underscoring their important regulatory roles in this cell type. Although a subset of
targets of AAGUGC miRNAs has been identified, we hypothesized that an unbiased
approach might uncover novel roles of these miRNAs in ES cells. To this end, we
attempted to identify endogenous targets by combining existing target prediction data
with microarrays of mMESCs before and after miRNA loss (Calabrese et al. 2007), as well
as before and after specific deletion of the miR-290-295 cluster (Jaenisch 2008). Initial

analysis using this data suggested strong enrichment of targets involved in apoptosis, a

-81 -



Chapter 3: Multiple abundant miRNA families collaborate to buffer embryonic stem cells from apoptosis

phenotype has to date not been linked to specific miRNAs in ES cells. Through gain and
loss of function studies, we show that AAGUGC miRNAs can protect ES cells from
apoptosis, especially during exposure to genotoxic stress. We validated 2 candidate
targets, Casp2 and Ei24, and propose that the anti-apoptotic property of these miRNAs

is mediated in part by the repression of these target genes.

Results
Predicted targets of AAGUGC containing miRNAs are enriched in pathways
regulating apoptosis.

To better understand the roles of AAGUGC miRNAs, we attempted to identify
their endogenous targets by combining existing target prediction data with microarrays of
mMESCs before and after miRNA loss. Using a previously characterized floxed Dicer
mMESC line (Harfe et al. 2005; Calabrese and Sharp 2006; Leung et al. 2006), we
compared wild type samples to those 5 days after Dicer deletion, having confirmed that
a majority of miRNAs was lost by this time. In both cases, we calculated a cumulative
density function (cdf) plot comparing expression differences for the set of all potential
7mer or 8mer targets (ie, transcripts containing at least an A1-7 or m2-8 match) for
miRNAs with the seed AAGUGC, shown in Table 1. Relative to a control set of genes
(“control”) that lacked the AAGUGC binding sites, but were matched for 3' UTR length,
dinucleotide composition, and expression level, the AAGUGC target set (“target”) was
more derepressed upon Dicer loss (Figure 2A). Conserved AAGUGC target genes
(“conserved_target”) as predicted by Targetscan 5.1 (Friedman et al. 2009) showed an
even larger derepression, suggesting further enrichment of genuine targets in this set
(Figure 2A).

We next performed Gene Ontology Analysis on this candidate set. Of all ES-

expressed genes (defined as WT expression = 16 on the microarray), we looked for GO
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category enrichment in the genes that increase on Dicer loss (defined as an 1.2 fold
upregulation in Dicer KO cells). From this analysis, top statistically significant categories
include regulation of apoptosis, regulation of cell cycle, and regulation of transcription.
We further refined our candidate list using array data of a specific miR-290-295 cluster
deletion (miR-290-295 KO) ES line, which also showed cdf plot signature changes for
AAGUGC containing seeds (Jaenisch 2008). In all, 806 candidates were identified as
Targetscan-predicted AAGUGC targets that showed an 1.2 fold upregulation in knockout
populations from both datasets (Figure 2B).

To validate some of predicted targets, we picked several candidate genes based
on the degree of upregulation in Dcr KO and miR-290-295 KO ES lines, as well as their
functional annotations. Their 3' UTRs were cloned into luciferase constructs, and
expression level ratios between Dicer WT and Dcr KO cells were evaluated (Figure 3A).
All candidates tested displayed at least mild repression relative to a control construct
lacking miRNA target sites, as did the previously identified miR-295 targets, Lats2 and
p21 (Wang et al. 2008). Additional transfection studies confirmed that repression could
be conferred specifically by either of two representative AAGUGC miRNAs, miR-295 or

miR-467a, in a Dcr KO background (Figure 3B).

Caspase 2 and Ei24, key apoptotic mediators, are direct targets of both the
miR-290 and miR-467 families.

We chose to further characterize the most downregulated target, Caspase 2, as it
suggested a novel link between embryonic stem cell-specific microRNAs and cell
survival. An initiator of apoptosis in response to genotoxic stress (Li and Yuan 2008),
Caspase 2 has four AAGUGC binding sites in its 3'UTR, though much of the repression
can be conferred by the first two sites alone (Figure 4B). RT-PCR demonstrated an

approximately five-fold increase in Caspase 2 transcript levels in Dcr KO cells,
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suggesting that miRNAs may significantly destabilize this transcript (Figure 5C).
Transfection of either miR-295 or miR-467a strongly repressed an intact Caspase 2
reporter in these cells, but not a reporter in which the four target sites were mutated
(Figure 4A). In support of these reporter data, a decrease in endogenous Caspase 2
protein on transfection of these two miRNAs was also observed (Figure 5A).

Given the extent to which Caspase 2 is regulated by miR-295 and miR-467a, we
decided to test whether AAGUGC miRNAs regulate other proapoptotic factors. Bim, a
BH3 only Bcl-2 family protein previously identified as a target of the miR-17-92 cluster
(Ventura et al. 2008), has potentially 3 AAGUGC target sites. Therefore, we additionally
designed luciferase reporters for it as well as Ei24/P1G8, a direct p53 transcriptional
target that binds Bcl-2 (Gu et al. 2000; Zhao et al. 2005a), and contains one 7mer miR-
295 site. While Bim reporter was not repressed in WT mESCs, Ei24 reporter displayed
a two-fold repression. More specifically, Ei24 appeared to be more responsive to miR-
295 than miR-467a, as the transfection of miR-295 in Dcr KO cells led to greater
repression of the Ei24 reporter (Figure 4A). The luciferase data were additionally
supported by RT-PCR data showing decreased levels of Ei24 in WT relative to Dcr KO
cells (RT-PCR was performed in place of Western Blot due to the lack of a good
antibody against Ei24) (Figure 5C).

To determine the extent to which the miR 290-295 cluster alone contributes to
repression of these targets, we additionally examined our reporter constructs in the miR-
290-295 KO line relative to its wild-type counterpart. The repression observed on both
Casp2 and Ei24 reporters was approximately half as seen in the Dcr WT and KO
systems (Figure 4C). This suggests that the miR-467 and miR-302 families of miRNAs
incompletely compensate for miR-290-295 cluster loss, despite having many overlapping
seeds (Figure 4C). As before, exogenous miR-295 or miR-467a could repress protein

levels for both targets in the miR-290-295 KO line (Figure 5B).
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AAGUGC containing miRNAs buffer ES cells against genotoxic stress.

Since two of our validated targets are key players in cell death, we wondered if
miRNAs with the seed AAGUGC are involved in regulating apoptosis of mMESCs. We
compared the apoptosis rate of WT and Dcr KO ES cells in a 24-hr period by staining
them with antibodies against cleaved Caspase-3 (Casp3), and analyzing them by flow
cytometry. Neither cell types exhibited substantial apoptosis, although Dcr KO ES cells
showed higher apoptosis rate than WT ES cells. (Figure 6A). As embryonic stem cells
are highly sensitive to DNA damage (Tichy and Stambrook 2008), we hypothesized that
AAGUGC miRNAs may be more protective against apoptosis in the context of genotoxic
stress. To test this, we examined the effect of overexpressing miR-295 and miR-467 in
cells exposed to either doxorubicin treatment, or gamma-irradiation. Doxorubicin inhibits
topoisomerase Il, and produces double stranded breaks. Gamma irradiation induces
DNA damage, and activates ATM and p53 in a manner similar to doxorubicin. Both
sources of stress activate intrinsic apoptosis pathways, and result in the cleavage of
Casp3. Both Dcr KO and WT ES cells showed minimal response immediately after 5Gy-
gamma radiation or 100nM doxorubicin treatment (Figure 6A). However, there was a
significant difference in their responses 24 hours after the treatment. While 5% of WT
cells became apoptotic, more than 25% of Dcr KO population exhibited Casp3 activity
(Figure 6A). Similar results were seen with using AnnexinV as a marker, a
complementary assay for detecting early apoptosis (Figure 12).

In order to examine if the phenotype is specific to miRNAs with the AAGUGC
seed, we transfected miR-295 and miR-467 into Dcr KO cells respectively, and
quantified their apoptosis rate immediately, and then 24 hours after radiation. Overall,
there were very small differences between Dcr KO cells transfected with miR-467 or

miR-295 and a pool of control siRNAs immediately following radiation. However, there
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was a stark difference in cells’ response to apoptosis 24 hours after the treatment.
Relative to control siRNAs, the overexpression of miR-467 or miR-295 drastically
decreased the apoptosis response of Dcr KO cells to radiation treatment (Figure 6B).
The reduction in apoptosis is AAGUGC seed specific, as siRNAs with changes in the
seed region failed to rescue Dcr KO ES cells from apoptosis (Figure 6B).

Next we wanted to see if any of the targets we validated were responsible for
AAGUGC miRNA specific apoptosis regulation. We applied siRNAs specific to each
target, and quantified the apoptosis rate 24 hours after exposing cells to radiation. A
higher level of apoptosis was observed with the transfection of Bim, Casp2, and Ei24
siRNAs immediately after treatment (Figure 6C). Although Bim is not targeted by the
AAGUGC miRNA family, we thought to use Bim siRNA as a positive control, as Bim, a
pro-apoptotic factor, is important in inducing cell death in mESCs (Su et al. 2009). We
believed that this was primarily due to the toxicity elicited upon siRNAs transfection. In
order to account for differences in transfection-specific toxicity, we decided to look at the
difference in Casp3 activation between 0 and 24hr timepoints (although the general
trends remain unchanged). After the transfection of Bim, Casp2, or Ei24 siRNAs, Dcr KO
cells exhibited a decrease of 5 to 10% in Casp3 activation 24 hours after radiation, a
level similar to miR-467a overexpression in Dcr KO cells (Figure 6D). In addition, the
combination of the three siRNAs (BCEsiRNAs) reduced the difference in apoptosis rate
even further to almost the same level seen in the WT ES cells (Figure 6C and D).

A similar set of apoptosis responses was observed when cells were treated with
100nM doxorubicin (Figure 7A). Transfection of miR-467a or siRNAs against the target
genes led to the reduction of apoptosis in Dcr KO cells (Figure 7B). However,
transfection of miR-295 was not as effective as miR-467a in protecting Dcr KO cells from
doxorubicin-induced apoptosis as it was with gamma-radiation (Figure 7B). Notably, the

8" nucleotide of miR-295 seed is different from that of miR-467. It is possible that miR-
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467 regulates a slightly different set of targets or has an increased affinity for a subset of
common targets, and is therefore more effective in suppressing doxorubicin-induced
apoptosis. To test this, we repeated the assays with miR-290-3p, a miRNA in the miR-
290 cluster that has the same 7-mer seed as miR-467. Interestingly, miR-290-3p is
equally as effective as miR-467 in buffering Dcr KO cells from doxorubicin-induced
apoptosis, suggesting that the 8" nucleotide is critical in silencing targets that are in the
doxorubin-induced cell death pathways (Figure 7B). It is also important to note that
doxorubicin treatment did not affect the expression of mature AAGUGC miRNA family in

WT mESCs (Figure 8).

Deletion of miRNAs containing AAGUGC seed makes cells more
susceptible to apoptosis upon DNA damage.

We exploited miR-290-295 cluster KO ES cells to assess if the loss of the
majority of the miRNAs with the AAGUGC seed can make cells more susceptible to
apoptosis upon exposure to DNA damaging agents. Northern blot analysis revealed that
the deletion of the miR-290-295 cluster not only results in the loss of the cluster, but also
reduces the expression of the miR-302 and miR-467 clusters. Interestingly, the
expression of let-7, a marker of ES cell differentiation, also increased in miR-290-295
KO cells, suggesting that some of the miR-290-295 cluster KO ES cells may be
undergoing differentiation (Figure 9). We irradiated miR-290-295 KO and WT ES cells,
and measured the cleaved caspase-3 activity 0 and 24 hours after the treatment. As
expected, miR-290-295 KO cells are much more sensitive to radiation than their WT
counterpart (Figure 10A). Overexpression of either of the two of the miRNAs in the
cluster, miR-290-3p, and miR-295, as well as miR-467, significantly reduced the rate of
apoptosis (Figure 10B). In addition, knocking down each of the 2 identified apoptosis

targets, Casp2, and Ei24, can partially rescue cells from apoptosis caused by radiation
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(Figure 10B). A similar set of observations was made with doxorubicin treatment, with
the exception of miR-295, which did not have a protective effect (consistent with our

observation in Dcr KO ES cells) (Figure 11).

Discussion

We provide the first demonstration of a group of miRNAs in ES cells controlling
the induction of cell death. We have shown that miRNAs with the hexamer seed
AAGUGC can suppress apoptosis of mESCs through target genes that are key players
in cell death.

We propose that AAGUGC miRNAs affect their anti-apoptotic response by down-
regulating the expression of Caspase 2 and Ei24, proapoptotic factors that are direct
targets of the miRNAs. Although the exact mechanisms are still emerging, Caspase 2
and Ei24 are involved in pathways that converge at the mitochondria, and ultimately lead
to the release of cytochrome c, formation of apoptosome, and activation of effector
caspases (Jin and El-Deiry 2005). EI24 resides in the ER, and can bind to Bcl-2 to
initiate ER-stress induced apoptosis (Gu et al. 2000). Caspase 2, one of the most
conserved caspases, has also been linked to DNA damage and ER stress response
(Krumschnabel et al. 2009). Mouse oocytes that lack Caspase 2 were found to be
resistant to cell death following exposure to chemotherapeutic drugs (Bergeron et al.
1998). This phenotype is reminiscent of the genotoxic-stress induced apoptosis,
response of WT mESCs, and KO mESCs when transfected with Caspase 2 siRNAs.

Our results showed that while downregulation of one of the three targets can
partially reduce the rate of stress-induced apoptosis of KO mESCs, a simultaneous
reduction of all the targets was able to suppress apoptosis to the same extent seen with
overexpression of AAGUGC seed containing miRNAs in Dcr KO mESCs. This suggests

that multiple apoptosis pathways are activated in mESCs upon exposure to genotoxic
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stress, and that this family of miRNAs controls most if not all of key players. The intricate
network of apoptosis pathways not only underscores the importance of apoptosis
regulation in mESCs, but also implies that there could be more miRNA target genes
involved in suppressing apoptosis of mMESCs.

miRNAs have the ability to confer robustness upon biological systems (Hornstein
and Shomron 2006). Because miRNAs can fine-tune gene expression post-
transcriptionally, they can correct leaky transcription of target genes and promote rapid
developmental transitions. Often, these roles are related to their position within feed-
forward networks, where they stabilize gene expression (Hornstein and Shomron 2006;
Tsang et al. 2007). In particular, this stabilization can help buffer cells from
environmental stress. For instance, a direct experimental link between miRNAs and
robustness was first provided by Li and colleagues (Li et al. 2009), who demonstrated
that miR-7 was necessary for the proper development of Drosophila sensory organs
specifically under conditions of temperature fluctuations.

Our results provide another example of how miRNAs can protect ES cells from
genotoxic stress. It is intriguing that AAGUGC miRNAs suppress apoptosis of ES cells
following exposure to DNA damaging agents. Intuitively, we would expect ES cells to
readily induce apoptosis in the event of genotoxic stress, as any change in their DNA
can be quickly amplified in other cell types. When the genome of a mESC is damaged, it
has several options: DNA repair, apoptosis, and differentiation (Cervantes et al. 2002).
ES cells are quick in eliciting DNA repair response, especially homologous
recombination-mediated repair and mismatch repair (Tichy and Stambrook 2008). They
also readily undergo apoptosis to eliminate cells with damaged DNAs (Cervantes et al.
2002). In addition, some studies suggest that DNA damage can cause downregulation of
Nanog, and induce differentiation of ES cells into other cell types that are no longer

pluripotent (Lin et al. 2005; Fujita et al. 2008). Thus, it is important to control the
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induction of cell death in the reproductive capacity of an organism. Interestingly, the anti-
apoptotic role of AAGUGC miRNAs may not be limited to ESCs, as the miR-467 family is
also upregulated in the transition from Double Positive to Single Positive thymocytes, a
time when apoptosis must be tightly calibrated for cells to escape negative selection
(Neilson et al. 2007).

In addition to identifying this novel anti-apoptotic phenotype, we were able to
confirm the results of other groups linking AAGUGC miRNAs to more rapid cell cycle
progression (Wang et al. 2008; Wang and Blelloch 2009), with miR-467 overexpression
in Dcr KO cells accelerating the G1/S transition similarly to previous reports for miR-295
(Figure 13). Thus, we can broadly identify these miRNAs as pro-proliferative, a feature
that likely extends to humans as well given the high expression of the homologous
clusters in human ESCs (Landgraf et al. 2007; Bar et al. 2008). Physiologically, the
rapid rodent-specific expansion of the miR-467 family may further increase the effective
dosage of this seed. This change may have important consequences for the
reproductive differences between rodents and humans, which in part depend on cellular
decisions between survival and death; tolerating higher rates of mutational stress may
allow rodents to maintain greater fecundity. Caspase 2, which has already been
implicated in the reproductive axis as Casp2 null mice harbor an excess of oocytes, is
likely differentially regulated by miRNAs in these species as well. Of the four sites we
identified in the Caspase 2 mouse 3'UTR, one was conserved in rat and none were
conserved in human (Targetscan 5.1).

Beyond these roles in normal physiology, the proliferative effects of AAGUGC
miRNAs also appear to have important consequences for cancer, which often share the
rapid growth pattern of ESCs. For instance, the miR-467 family and the miR-302 cluster
have been cloned from neuroblastoma and teratocarcinoma cell lines (Landgraf et al.

2007) respectively. We hypothesize that these miRNAs may be serving similar roles to
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promote rapid growth and survival in physiological as well as neoplastic contexts.
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Methods

ES Cell Culture

Feeder-free Dicer1” and Dicer1-/- mouse embryonic stem cells (MESCs) were

generated and maintained on gelatin as described previously (Calabrese et al. 2007).

MESCs cells containing a floxed and excised miR-290 cluster were generated in a

similar manner (Jaenisch 2008).

Oligos and siRNAs used in all the experiments

siRNA Sequence (5’ — 3’ unless otherwise noted)
MiR-295 5'- AAAGUGCUACUACUUUUGAGUCU -3’
3’'- UCUUUCACGAUGAUGAAAACUCA -3’
miR-295 5'- AAAGACGUACUACUUUUGAGUCU -3’
seed mutant 3'- UCUUUCUGCAUGAUGAAAACUCA -3’
miR-467a 5'-UAAGUGCCUGCAUGUAUAUGCG -3’
3'- GCAUUCACGGACGUACAUAUAC -5’
miR-467a 5'-UAAGACGCUGCAUGUAUAUGCG -3’
seed mutant 3'- GCAUUCUGCGACGUACAUAUAC -5’
miR-290-3p 5'- AAAGUGCCGCCUAGUUUUAAGCCC -3’
3'- CCUUUCACGGCGGAUCAAAAUUCG -5’
Control siRNA (from Dharmacon, Accell Non-targeting pool)
si-p21 (from Dharmacon, Smartpool)
si-bim (from Dharmacon, Smartpool)
si-casp2 (from Dharmacon, Smartpool)
si-ei24 (from Dharmacon, Smartpool)
RT-PCR
Primers

Casp2 Forward

GCAGGGTCACTTGGAAGACT

Casp2 Reverse

GAAGACAGGGAGGACCATCA

Ei24 Forward

TCTCTTCCCCATCCATCTT

Ei24 Reverse

TAACGTAACGACACTCCTTTC

B-actin Forward

GACGAGGCCCAGAGCAAGAGAGG

[-actin Reverse

GGTGTTGAAGGTCTCAAACATG

3'UTR Primers

Isgf3g Forward

AATAACTCGAGCGCGTCTCCATGGAAATAGA

Isgf3g Reverse

AATAAGGGCCCTTTAATTTGGAGCTCACATTTCT

Casp?2 Forward

AATAACTCGAGCCGCCTGCTATTCCTGCT

Casp2 Reverse

AATAAGGGCCCTCAACATTTATTTGGCACCTG
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Pax6 Forward

AATAACTCGAGAGAGAGAAGGAGAGAGCATGTG

Pax6 Reverse

AATAAGGGCCCAAATCATTCTGAGGATTTCTAGGG

p21 Forward

AATAACTCGAGCCTCTTCTGCTGTGGGTCA

p21 Reverse

AATAAGCGGCCGCAATCATCGAGAAGTATTTATTGAGC

Thbs1 Forward

AATAACTCGAGTCATCAGCTGCCAATCATAA

Thbs1 Reverse

AATAAGGGCCCTTCCATATGATTTATTGTTGTTCCTT

Itgav Forward

AATAACTCGAGCCACTTCTGTCCGCTCCA

Itgav Reverse

AATAAGGGCCCGAAGTCAACTGTAGTGTAATGTGTACC

Irak3 Forward

AATAACTCGAGATCCACCAGAAGATCAAGCAA

Irak3 Reverse

AATAAGCGGCCGCTTTTATATAACAATTGGAATGCCACAG

Lats2 Forward

AAACTCGAGCGAGGAAACCCAAAATGAGA

Lats2 Reverse

AAAGGGCCCTCCAACAAAACACCACAAATG

Mutagenic

Primers

Ei24 Site 1 GACCAGAGTTTTCCAGCTGTTTTTTTACGTCTTGCCAGCTCCTGT

Bim Site 1 GACCAGAGTTTTCCAGCTGTTTTTTTACGTCTTGCCAGCTCCTGT

Bim Site 2 AGCTTCCATTATGCCGAGTAAACGTCTTGTCTTCCACAAGATGTCT

Bim Site 3 CACAGCCTGGTGGAGGACGTCTTTCTAACCTGTGGAG

Casp2 Site 1 CCTTACTGTGGCTTCTGCATCGTCTTACACTGTACTTGACGGC

Casp? Site 2 GTACCATATGTGATATAACCTAGAACGTCTTGTCTCTGCTCTTATGAAACTTG
Casp? Site 3 GTGCTTACTGCAGGCTGTAATGCGTCTTTTGCTTGTTTCACTTGTTC

Casp? Site 4 CTTACTTACTGATATCCAGTAACTGCGTCTTACTAGGTCTTCATGAATGTTTC
Northern LNA

Oligos

Let-7g AACTGTACAAACTACTACCTCA

miR-16 GCCAATATTTACGTGCTGCTA

miR-295 AGACTCAAAAGTAGTAGCACTTT

miR-302d CACTCAAACATGGAAGCACTTA

miR-467a-5p CGCATATACATGCAGGCACTTA

2x-reporter
oligos

Subscript ; means the sequence in the bracket was present twice.

2x-bulged Forward: TCGAG(CTACCTGCACTAAAGCACTTTA).GGGCC
miR-20a Reverse: C(TAAAGTGCGGATAGTGCAGGTAG),C

2x-bulged Forward: TCGAG(CATATACATGCAGGCACTTA),GGGCC
miR467 Reverse: C(TAAGTGCCTTATGGTATATG),C

Generation of luciferase constructs, mESC transfection, and luciferase

assays

MicroRNA mediated repression of each candidate gene was tested by cloning PCR

amplified products corresponding to the entire 3'UTR (or in the case of Bim, 2kb

containing the 3 AAGUGC hexamer binding sites) into the 3' UTR of a pRL-CMV Renilla

luciferase reporter as described previously (Doench and Sharp 2004). Nucleotides 5-7
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of Casp2, Bim, and Ei24 binding sites were mutated by Quickchange site-directed

mutagenesis.

Digests were performed using either Xhol or Sall to give the 5' site and Apal or Notl to
give the 3' site. Firefly luciferase (pGL3) was used as a transfection control. Data

shown are summaries of three or more independent trials.

24 hours before transfection 1e®> mESC cells were plated/well of gelatinized 24-well
plate. Cells were transfected with 2ul Lipofectamine 2000 (Invitrogen), 0.1ug of CMV-
GFP plasmid (Invitrogen), 0.7ug of pWS (carrier plasmid), and 50nM of siRNAs in 300ul
of Opti-MEM (Invitrogen). 4 hours after transfection, transfection mix was removed from

cells and replaced with ESC media.

24 hours after transfection, cells were lysed with 1X Passive Lysis Buffer (Promega) and
Dual luciferase was measured using Dual Luciferase reporter assay system (Promega)

according to manufacturer’s instructions.

Northern Blot analysis

Total RNA was isolated from Dcr”” and Der™”* ES cells using Trizol (Invitrogen), following
the standard protocol. Approximately 50ug of each RNA was loaded onto a 15%
denaturing MOPS gel, according to the Northern Blot protocol outlined previously (Seila
et al. 2008). Membrane probed with GIn-tRNA was exposed to phosphoimager for 6
hours before being scanned. The rest was exposed to phosphoimager for 1 day before

being scanned. Prior to hybridizing with a different probe, membranes were stripped by

- 94 -



Chapter 3: Multiple abundant miRNA families collaborate to buffer embryonic stem cells from apoptosis

incubating the membrane in boiling 0.1% SDS for 30 minutes and loss of signal was

confirmed prior to rehybridization.

Western Blot analysis

24 hours after transfection with short RNAs, Dicer1”, Dicer™""* miR290-295", or
miR290-295""* cells were lysed in RIPA buffer (1% NP40, 0.5% sodium deoxycholate,
0.1% SDS, in pH 7.4 PBS) containing protease inhibitors. 30-50 ug lysate was loaded
onto 8-12% Bis-Tris gels (Invitrogen) and wet-transferred at 4°C to Westran PVDF
membranes for 2h at 70V. After 1 hr blocking at room temperature in 5% milk-TBST,
membranes were probed overnight at 4°C with 1:2000 mouse anti-vinculin (Santa Cruz
Biotechnology), 1:200 rat anti-Caspase 2 (Millipore, 10C6), 1:200 goat anti-Ei24 (Santa
Cruz, H-20), or 1:200 rabbit anti-Bim (Assay Designs, AAP-330). After 2x 10 min. TBST
washes, membranes were probed for 1hr at room temperature with 1:2000
corresponding hRP-conjugated secondary, washed an additional 2x 10 min. in TBST,

and visualized using Wester Lightning Plus ECL (PerkinElmer).

RT-PCR

1flox/fiox 504 Dicert” cells. A

Trizol (Qiagen) was used to extract RNA from Dicer
Superscript Il kit (Invitrogen) was used to reverse transcribe 1 ug RNA following DNAse
treatment with the Turbo-DNA free kit (Ambion), and real time PCR was performed with

the primer sequences listed, using beta actin for normalization.

Transfection and BrdU assays

24 hours before transfection 1e®> mESC cells were plated/well of gelatinized 24-well

plate. Cells were transfected with 2ul Lipofectamine 2000 (Invitrogen), 0.1ug of CMV-
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GFP plasmid (Invitrogen), 0.7ug of pWS (carrier plasmid), and 50nM of siRNAs in 300ul
of Opti-MEM (Invitrogen). 4 hours after transfection, transfection mix was removed from

cells and replaced with ESC media.

24 hours after transfection, cells were pulsed labeled with BrdU for 10 min. APC BrdU
Flow Kit (BD Biosciences) was used to analyze cell cycle profile. Only GFP positive cells

were used in our data analysis.

Transfection and Casp3 assays

24 hours before transfection 2e® mESC cells were plated/well of gelatinized 12-well
plates. Cells were transfected with 4ul Lipofectamine 2000 (Invitrogen), 0.2ug pCAGGS-
mCherry plasmid, 1.4ug of pWS, and 50nM of siRNA in 600ul of Opti-MEM (Invitrogen).
4 hours after transfection, transfection mix was removed from cells and replaced with

ESC media.

24 hours after transfection, cells were exposed to 5-Gy gamma radiation or 100nM
doxorubicin. Immediately after exposure, one plate of cells were trypsinized and fixed
with 1x BD Perm buffer. Cells were stained with Rabbit Anti-Casp3 antibody (BD
Biosciences) at 1:100 for 20 min at room temperature. Following washing, cells were
incubated with Alexa-488-conjugated secondary antibody (diluted 1:250) (Invitrogen) for
60 min at room temperature, washed, and resuspended in BD FACS buffer containing
1:5000 Hoechst stain. 24 hours after the treatment, another plate of cells was trypsinized

and treated with the same protocol for FACS analysis.
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Casp3 assays were also performed on Dcr KO and WT mESCS without transfection. 24
hours before collecting cells for Ohr time point for Casp3 assay, 2e° mESC were
plated/well of gelatinized 6-well plates. In the context of genotoxic stress, 4> mESCs
were plated/well of gelatilized 6-well plates. 24 hours after plating, cells were treated with
5-Gy radiation or 100nM doxorubicin. Casp3 assays were performed at Ohr and 24hr

after the treatment following the same protocol described above.

AnnexinV assays

4E5 mESCs were plated/well of gelatinized 6-well plates. 24 hours after plating, cells
were exposed to 100nM doxorubicin. Cells were trypsinized Ohr and 24hr after the
treatment for Annexin V detection, following Annexin V-FITC apoptosis detection kit (BD

Biosciences).

Microarray analysis

Microarray analysis was performed 5 days following transfection of Dicer1™"

wild-type
cells with either GFP alone or GFP and cre recombinase, and data was analyzed using
biological triplicates. Microarrays for the miR290-295 cluster deletion were performed on

two deletion and two wild-type lines independently derived. Spot replicates were

condensed using geometric means.

The log fold change (LFC) value for WT/Dcr_KO was defined as the difference between
the mean log expression in WT cells and the mean log expression in Dcr” cells. The
conserved set of targets were downloaded from TargetScanMouse5.1 website
(http://www.targetscan.org/mmu_50/). To identify targets predicted for the AAGUGC

seed family, we looked at all miRNAs that contain AAGUGC in their seed region. More
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specifically, they include “miR-291b-3p/519a/519b-3p/519¢-3p”, “MiR-290-3p/292-
3p/467a”, “miR-467cd”, “miR-106/302", and “miR-467b”. We excluded all the targets of
“miR-302ac/520f”, as well as T1A 7mer targets of “miR-467b”, as they do not contain the
6mer match to AAGUGC. Targets with top 25% of branch length scores were considered

“conserved”.

Gene Ontology analysis

Gene Set Analysis Toolkit (http://bicinfo.vanderbilt.edu/webgestalt/) was used to perform

GO analysis. Targets and controls were generated as described in the text.

Statistical analyses

All test statistics were calculated using R (http://www.r-project.org). The Wilcoxon rank
sum test was used because it does not assume normality of the underlying distributions.
T-tests and Kolmogorov—Smirnov (KS) test using these data gave generally similar

results.
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Table 1. Description of miRNAs in the AAGUGC family.

Sequences and cloning statistics of miRNAs in the AAGUGC family are listed. The hexamer
seed is highlighted in red. ES cell lines from Leung et. al. were used for all the experiments
described in the chapter.

% cloned in different ES cell lines

Cluster Chr miRNA Sequence Leung et. al.| Babiarz et. al.| Ciaudo et.
(a) (b) al. (c)

miR-290-3p AAAGTGCCGCCTAGTTTTAAGCC 0.01 6.31 0.03
miR-291a-3p | AAAGTGCTTCCACTTTGTGTG 1.28 8.36 16.71
miR-290-295 chr7 miR-291b-3p | AAAGTGCATCCATTTTGTTTG 0.03 0.88 0.00
cluster miR-292-3p AAAGTGCCGCCAGGTTTTGAGTG 2.66 12.47 10.10
miR-294 AAAGTGCTTCCCTTTTGTGTG 13.56 10.82 12.72
miR-295 AAAGTGCTACTACTTTTGAGTC 25.01 13.70 8.89
MiR-302 miR-302a TAAGTGCTTCCATGTTTTGGTG 1.55 0.14 0.04
cluster chr3 m!R-302b TAAGTGCTTCCATGTTTTAGTA 1.27 0.16 0.00
miR-302d TAAGTGCTTCCATGTTTGAGTG 1.63 0.32 0.02
MiR-467 miR-467a TAAGTGCCTGCATGTATATGC 0.00 0.08 0.33
cluster chr2 m!R-467c TAAGTGCGTGCATGTATATGT 0.68 0.00 0.03
miR-467d TAAGTGCGCGCATGTATATGC 0.21 0.00 0.36
AAGUGC miRNA family / total miRNA reads 47.89 53.23 49.22

(a) A. Leung, A. Young, AJ Bhukar, G. Zheng, A. Boson, and P.A. Sharp. 2010Submitted.
(b) J.E. Barbiarz, J.G. Ruby, Y. Wang, D.P. Bartel, and R. Blelloch. Genes Dev, 2008. 22 (20).

(c) C. Ciaudo et. al., Plos Genetics 5, 2009, e1000620.
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Figure 1. Repressive effect of miR-467a-5p and miR-20a on their
control reporter constructs.

Luciferase assays of miR-20a and miR-467a-5p reporters with two bulged binding sites in Dcr
KO ES cells. Luciferase activity of the reporter was normalized to a reporter with no binding site
to miRNAs. 20nM of si-20a and si-467a-5p were transfected 24 hours before the reading of
luciferase activity. n=2, and results are shown as mean + S.E.M. P-values were results of t-tests, *
denotes p < 0.05, and ** denotes p < 0.01.
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Figure 2. mRNA targets of AAGUGC miRNAs show decreased
stability in Dcr KO cells and their luciferase targets can be
repressed.

(A) CDFs (cumulative distribution functions) of log, fold change (LFC) in mRNA expression
between the wild type (WT) and Dcr KO ES cells (the left panel), and the wild type and 290-295
KO ES cells (the right panel), are plotted. Plots include conserved target (green line), all
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predicted AAGUGC target (red), and Control mRNAs (blue). All predicted AAGUGC targets
include ~3000 predicted TargetScan targets that contain a 7-mer or 8-mer match to AAGUGC in
their 3' UTRs. Conserved target set contains ~500 top 10% of all predicted AAGUGC targets that
were ranked by branch length scores. The Control mRNA set was selected to match the predicted
targets in seed match type and count. Targets are depressed in both Der KO as well as 295 KO
mESCs (p < 2.2¢"'% and p <2.2¢™'® by rank sum test respectively). (B) Venn diagram of
microarray and target prediction data used to generate AAGUGC seed candidates. AAGUGC =
genes with at least an A1-7 or M2-8 match to the AAGUGC seed; 295 KO = genes showed a 1.2
fold upregulation on miR290-295 cluster loss. Dcr KO = genes showed a 1.2 fold upregulation
on Dicer loss. Only ES-expressed genes (i.c., genes with an expression of at least 16 in the wild-
type arrays) were considered for analysis.
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Figure 3. Repression of predicted AAGUGC miRNA targets in WT
and Dcr KO ES cells.
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(A) Activity of luciferase reporters of predicted AAGUGC miRNA targets were assayed in WT
and Dcr KO ES cells. Luciferase reporters contain full length 3’ UTRs of predicted targets.
Relative luciferase activity is the ratio of the reporter’s activity in WT ES cells and Dcr KO ES
cells. (B) Activity of luciferase reporters of predicted AAGUGC miRNA targets were assayed in
WT, Der KO ES cells, as well as in Dcr KO ES cells after over expression of 20nM of miR-295
or 20nM of miR-467. n=3, and results are shown as mean + S.E.M. P-values were results of t-
tests, * denotes p < 0.05, and ** denotes p < 0.01.
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Figure 4. Repression of Casp2 and Ei24 by AAGUGC miRNAs.

(A) Luciferase reporters with full length Casp2 3’ UTR, Ei24 3’ UTR, as well as their seed mutant
versions were assayed in WT and Dcr KO ES cells. Casp2:4M has all 4 AAGUGC seed binding
sites mutated, and Ei24:1M has 1 AAGUGC seed binding site mutated. 20nM of miR-295 and
miR-467a-5p were transfected in Dcr KO ES cells to test if the repression of luciferase reporters
is specifically due to AAGUGC miRNAs. (B) Casp2 luciferase reporters bearing different
combinations of AAGUGC seed binding sites mutations were tested in WT and Dcr KO ES cells.
Casp2:2, 2™ AAGUGC binding site was mutated; Casp2:3.4, 3™ and 4" binding sites were
mutated; Casp2: 2,3,4, 2™, 3", and 4™ binding sites were mutated; Casp2:1,2, I* and 2™ binding
sites were mutated; Casp2: 1,2,3,4, all binding sites were mutated. (C) Luciferase reporters with
full length Casp2 3’ UTR, Ei24 3’ UTR, as well as their seed mutant versions were assayed in WT
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and miR-290-295 KO ES cells. n=3, and results are shown as mean = S.E.M. P-values were
results of t-tests, * denotes p < 0.05, and ** denotes p < 0.01.
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Figure 5. Repression of Casp2 and Ei24 in WT ES cells, as well
as miR-290-295 KO ES cells.

(A) Western blot of Casp2 in WT and Dcr KO ES cells. 50nM of miR-295, miR-467a-5p, Bim
siRNA, Casp2 siRNA as well as Ei24 siRNA were transfected into Dcr KO ES cells, and Casp2
protein expression was assayed 24 hours after the transfection. (B) Western blot of Casp2 in WT
and miR-290-295 KO ES cells. (C) RT-PCR of Casp2 and Ei24 in WT and Dcr KO ES cells. n=3
for Casp2, and n=1 for Ei24.
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Figure 6. AAGUGC miRNAs protect ES cells from radiation-
induced apoptosis.

(A) The percentage of cleaved Casp3 in WT and Dcr KO ES cells under normal culturing
conditions (0 and 24 hours after plating) and after exposure to 5-Gy radiation (0 and 24 hours
after radiation treatment). Cleaved Caspase-3 was assayed by flow cytometry, and was used to
estimate apoptosis response. Apoptosis rate of Der KO cells was shown in black bars, and that of
WT cells was shown in white bars. (B) Dcr KO cells were treated with 5-Gy radiation 24 hours
after transfection of 50nM of miR-467a or miR-295. Caspase-3 activity was assayed 0 and 24hr
after the treatment. Transfection of seed mutants and control siRNAs (50nM) into Dcr KO cells,
and overexpression of control siRNAs (50nM) into WT cells served as controls. (C) Der KO cells
were treated with 5-Gy radiation 24 hours after transfection of 50nM siRNAs against Bim, Casp?2,
and Ei24, or a combination of the three. Caspase-3 activity was assayed 0 and 24hr after the
treatment. (D) Results of B and C were summarized here, where the difference in apoptosis rate
between 0 and 24hr time points was shown. n = 3 for all experiments. Results are shown as mean
+ S.E.M. (standard error of the mean). P-values were results of Mann-Whitney tests, * denotes p
= 0.05, and ** denotes p < 0.01.
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Figure 7. AAGUGC miRNAs protect ES cells from doxorubicin-
induced apoptosis.

(A) The percentage of cleaved Casp3 in WT and Dcr KO ES cells under normal culturing
conditions (0 and 24 hours after plating) and after exposure to 100nM doxorubicin (0 and 24
hours after radiation treatment). Cleaved Caspase-3 was assayed by flow cytometry, and was used
to estimate apoptosis response. Apoptosis rate of Dcr KO cells was shown in black bars, and that
of WT cells was shown in white bars. (B) Cells were transfected with 50nM siRNAs as shown,
and difference in apoptosis response of WT and Dcr KO ES cells 24 hours after exposure to
100nM doxorubicin was plotted. n = 3 for all experiments. Results are shown as mean + S.E.M.
(standard error of the mean). P-values were results of Mann-Whitney tests, * denotes p < 0.05,
and ** denotes p < 0.01.
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Figure 8. Expression of AAGUGC miRNA family stays the same
before and after doxorubicin treatment.

Northern analysis for miR-295, miR-302d, and miR-467a-5p in Dcr KO ES cells, WT ES cells,
and WT ES cells 6 hours after 2uM doxorubicin treatment.
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Figure 9. Expression of AAGUGC miRNAs in 295 KO ES cells
before and after genotoxic stress.

(A) Northern analysis of miR-295, miR-302d, and miR-467a-5p in WT ES cells and miR-290 KO
ES cells. GIn tRNA was probed as a loading control, whereas miR-16 and let-7g were probed as
negative controls. (B) Northern analysis of miR-295, miR-302d, and miR467a-5p in miR-295 KO
ES cells before and after stress. Lane 1, no stress; 2, 6 hours after 5-Gy radiation; 3, 6 hours after
2uM doxorobucin; 4, 12 hours after 2uM doxorubicin.
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Figure 10. AAGUGC miRNAs protect ES cells from radiation-
induced apoptosis.

(A) The percentage of cleaved Casp3 in WT and miR-290-295 KO ES cells under normal
culturing conditions (0 and 24 hours after plating) and after exposure to 5-Gy radiation (0 and 24
hours after radiation treatment). Cleaved Caspase-3 was assayed by flow cytometry, and was used
to estimate apoptosis response. Apoptosis of KO cells was shown in black bars, and that of WT
cells was shown in white bars. (B) Cells were transfected with 50nM siRNAs as shown, and
difference in apoptosis response of WT and 295K O ES cells 24 hours after exposure to 5-Gy
radiation was plotted. n = 3 for all experiments. Results are shown as mean + S.E.M. (standard
error of the mean). P-values were results of Mann-Whitney tests, and * denotes p < 0.05.
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Figure 11. AAGUGC miRNAs protect ES cells from doxorubicin-
induced apoptosis.

(A) The percentage of cleaved Casp3 in WT and miR-290-295 KO ES cells under normal
culturing conditions (0 and 24 hours after plating) and after exposure to 100nM doxorubicin (0
and 24 hours after radiation treatment). Cleaved Caspase-3 was assayed by flow cytometry, and
was used to estimate apoptosis response. Apoptosis of KO cells was shown in black bars, and that
of WT cells was shown in white bars. (B) Cells were transfected with 50nM siRNAs as shown,
and difference in apoptosis response of WT and KO ES cells 24 hours after exposure to 100nM
doxorubicin was plotted. n = 3 for all experiments. Results are shown as mean + S.E.M. (standard
error of the mean). P-values were results of Mann-Whitney tests, * denotes p < 0.05, and **
denotes p < 0.01.
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Figure 12. Comparison of WT and Dcr KO cells’ apoptosis
response to stress with AnnexinV assay.

AnnexinV positive cells were assayed by flow cytometry immediately or 24hr after exposure to
100nM doxorubicin. n=2. Results are shown as mean + S.E.M. (standard error of the mean).
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Figure 13. AAGUGC miRNAs can promote G1 to S phase
transition of Dcr KO ES cells.

Dcr KO ES cells were transfected with 50 nM of miR-295, miR-467, and other siRNAs as shown.
24 hours after the transfection, cells were incubated with BrdU for 10 min, and BrdU positive
cells were analyzed with flow cytometry. Assays with miR-295 seed mutant, miR-467 seed
mutant, and control siRNAs serve as negative controls. Results are percentages in each stage of
the cell cycle and are shown as mean + S.E.M. (standard error of the mean). n = 3 for miR-295,
miR-467, and ctl transfections. n = 2 for miR-295 seed mutant, miR-467 seed mutant, and p21
siRNA transfections. P-values were results of Mann-Whitney tests, and * denotes p < 0.05.
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CHAPTER 4: Characterization of the Sfmbt2 miRNA
cluster and its function in murine placental development

The work included in the chapter is a preliminary characterization of the Sfmbt2 cluster.
Much of the analysis on the evolutionary impact of species-specific miRNAs is ongoing,
and needs to be extended before final conclusions can be reached. In this chapter, we
will point out limitations of the study, and propose directions that need to be explored in
the future.

Experimental contributions:

Arvind Ravi cloned all the luciferase constructs, and performed all the luciferase assays.
Arvind Ravi and Grace Zheng discussed all the computational analysis, and Grace
Zheng performed all the computational analysis.
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Abstract

mMiRNAs are endogenous ~22nt RNAs that post transcriptionally regulate gene
expression and control fundamental cellular processes. While targets and functions of
some well conserved miRNAs have been characterized through comparative genomic
analysis, studies about species-specific miRNAs have proved challenging. Here we
characterized a novel, mouse-specific miRNA cluster that is upregulated in murine
placenta. Placental-expressed, mouse-specific targets of the cluster are enriched in
pathways regulating growth and apoptosis, suggesting they play an important role in
promoting placental growth. In addition, we compared mouse and human 3' UTRs to
show that many target sites of the cluster show positive selection. We have begun to

extend this analysis to other species-specific miRNAs.
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Introduction

miRNAs are key regulators of gene expression, and play important roles in
development, cell growth, differentiation, and metabolism (Bartel 2009). Hundreds of
miRNAs have been identified in mammals, and approximately 50% of known miRNAs
are found in clusters, transcribed as polycistronic primary transcripts (Kim et al. 2009).
While many miRNA clusters are conserved, recent efforts in large-scale sequencing
have uncovered poorly conserved miRNA clusters that have tissue-specific expression
(Zhang et al. 2008).

The Sfmbt2 miRNA cluster maps to chromosome 2 of the mouse genome. The
Sfmbt2 cluster is localized in an intron of Sfmbt2 (Figure 1A), a poorly characterized
Polycomb Group gene. Although the coding region of the Sfmbt2 gene is highly
conserved among vertebrates, the intron which harbors the miRNA cluster bears little
similarity to the equivalent intron outside of rodent species. Five of the 42 mouse Sfmbt2
miRNAs can be mapped to the homologous intron in rat, but none can be aligned to the
corresponding intron in human. Expression of the Sfmbt2 cluster was initially detected in
murine T cells, and subsequently cloned from mouse ES cells (Table 1).

We are interested in further characterizing the Sfmbt2 cluster in the placenta for
two reasons. First, the host gene, Sfmbt2, was recently identified as an imprinted gene
expressed preferentially from the paternal allele in early embryos and in later stage
extraembryonic tissues (Kuzmin et al. 2008). Imprinted gene expression has been
observed in the placenta, and linked to placental functions (Kaneko-Ishino et al. 2003).
Paternally expressed genes are proposed to increase embryonic growth, while
maternally expressed genes are proposed to suppress fetal growth (Moore and Haig
1991). Consistent with this theory, Cattanach et. al. showed that paternal duplication of

proximal chromosome 2 (which includes the Sfmbt2 gene) resulted in placental growth

- 118 -



Chapter 4: Characterization of the Sfmbt2 miRNA cluster and its function in murine placental development

enhancement, whereas maternal disomy resulted in fetal and placental growth reduction,
implicating Sfmbt2 as a candidate for the placental growth effect (Cattanach et al. 2004).
Secondly, a survey of miRNA expression across many mouse tissues revealed that the
Sfmbt2 miRNA cluster is upregulated in the placenta relative to other tissues (Landgraf
et al. 2007). Interestingly, we have identified one of the miRNA families in the cluster,
miR-467a, as a miRNA family promoting proliferation because it advances the G1to S
phase transition and suppresses apoptosis (see Chapter 3). This is consistent with the
hypothesized pro-growth role of the Sfmbt2 miRNAs as a maternally imprinted placental
regulator.

In this study we investigated the possible role of Sfmbt2 miRNA cluster in
contributing to murine placental growth. We first characterized the Sfmbt2 miRNA cluster
and confirmed its expression in murine placenta. Mouse-specific targets of the Sfmbt2
miRNA cluster are enriched in pathways regulating cell survival, implicating the Sfmbt2
mMiRNA cluster as a possible promoter to placental growth. While many genes are
subject to selection during evolution to enrich for or avoid miRNA binding sites by
changes in 3' UTR length and in site density (Farh et al. 2005; Stark et al. 2005), it is
unclear if recently evolved and species-specific miRNAs have similar effects on their
target genes. We therefore explored the impact of the Sfmbt2 miRNA cluster and other
species-specific mMiRNAs on shaping the evolution of 3' UTRs. Sequence comparison
between mouse and human 3' UTRs revealed that target sites of many human or

mouse-specific mMiRNAs might be under positive selection.

Results

Expression of repeat-derived Sfmbt2 miRNA cluster is upregulated in
murine placenta.

The Sfmbt2 miRNAs collectively map to intron 9 of the Sfmbt2 gene, with some
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of the individual miRNAs also mapping to other sites in the mouse genome (Figure 1A).
The intron spans 50kb, and largely consists of simple repeats and B4 SINE repeat
elements. The miRNA cluster can be classified into four groups based on their sequence
similarities: miR-297s, miR-466s, miR-467s, and miR-669s. While the seed regions of
miR-297s, miR-466s, and miR-467s are well conserved within each group, there is little
similarity among the 5’ ends of sequences in the miR-669 family (Figure 2). This
observation suggests that each miRNA precursor in the miR-669 family could have
multiple stem-pairing configurations, resulting in different mature miRNA sequences.
miR-297s are mapped to two ends of the intron, and miRNAs from miR-466s, miR-467s
and miR-669s are part of a 2kb region that tiles across the intron 12 times (Figure 1A).

Short RNA sequencing data from ES cells revealed that the Sfmbt2 miRNA
cluster consists of 42 miRNAs (Table 1). Although most datasets suggest the miRNA
cluster is expressed at low levels in ES cells, Calabrese et. al. showed that the cluster
represents ~30% of expressed miRNAs in ES cells (Calabrese et al. 2007; Babiarz et al.
2008; Ciaudo et al. 2009; Leung et al. 2010). A closer comparison of the miRNA
expression profile in ES cells between Calabrese et. al. and other studies revealed that
the Sfmbt2 cluster’s upregulation is accompanied by a downregulation of miR-290-295
mMiRNA cluster in Calabrese et. al. (Calabrese et al. 2007; Babiarz et al. 2008; Ciaudo et
al. 2009; Leung et al. 2010). This suggests that the ES cells used by Calabrese et. al.
may be more differentiated towards the trophoblast lineage.

The cluster contains 25 miRNA seeds, defined as nucleotides 2-7 of the mature
mMiRNA sequence, and the maijority are not found in human miRNAs. One exception is
the miR-467a family of miRNAs, which shares the seed AAGUGC with other conserved
miRNA clusters, such as the miR-290-295 and miR-302 clusters. Their function to
promote cell growth in mouse ES cells has been examined in Chapter 3. The potential

functions of other miRNA seeds in the Sfmbt2 cluster remain unclear.
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Publicly available microarray results show that the relative expression of the
Sfmbt2 gene in the placenta is two fold higher than in ES cells (Wu et al. 2009). To test if
the same expression trend would be observed with the miRNA cluster, Northern Blot
analysis was performed on placental RNA obtained from day 11.5 (d11.5) and day 13.5
(d13.5) embryos, along with RNA obtained from wild type (WT) and Dcr knockout (KO)
ES cells (Figure 1B). Expression of the three Sfmbt2 miRNAs probed was quantified to
be five fold higher in the placenta than in WT ES cells. Mature Sfmbt2 miRNAs are
absent from Dcr KO ES cells, confirming that their expression is dependent on Dicer, an
RNase Ill enzyme required to process miRNA precursors to mature miRNAs (Figure 1B).
Published microarray data also show that the relative expression of host gene Sfmbt2 is
1.5 fold higher at d11.5 than d13.5 (Lee et al. 2009). However, our Northern analysis
was not sensitive enough to detect a similar expression difference of the Sfmbt2
miRNAs between the two timepoints. qRT-PCR or short RNA sequencing from the
placenta will need to be performed to further examine the difference in the Sfmbt2
mMiRNA expression between d11.5 and d13.5. The data will also allow us to assess the

relative abundance of individual Sfmbt2 miRNAs in the placenta.

Predicted targets of Sfmbt2 miRNAs are enriched in pathways regulating
cell growth and apoptosis.

To better understand the roles of Sfmbt2 miRNAs in placental development, we
attempted to identify their endogenous targets by combining the predicted target dataset
with microarrays of murine placenta at d11.5 and d13.5. The expression of host gene
Sfmbt2 showed a 1.5 fold increase at d11.5 (relative to d13.5) (Lee et al. 2009). Despite
the small change, we hypothesized that predicted targets of Sfmbt2 miRNAs may be
more destabilized at d11.5. When comparing the gene expression profiles at d11.5 and

d13.5, predicted targets (defined as mRNAs that have at least a A1-7mer or M8-7mer
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match) of 13 Sfmbt2 miRNAs showed a significant decrease in expression at d11.5
compared to control genes matched for 3' UTR length and dinucleotide composition
(Figure 3 and Table 2).

Since most Sfmbt2 miRNA seeds are mouse-specific, we wondered if their
mouse-specific targets also displayed a decrease in expression at d11.5. We selected
mMRNAs that contained the Sfmbt2 miRNA target sites exclusively in mouse, but not in
orthologous positions in dog or human. To focus on potentially real mouse-specific
targets, we required the mutation rate at each of the target sites to be significantly higher
than that of adjacent regions (defined as the 80-nt 3' UTR sequences upstream and
downstream) (See the next section and Methods for more details of the analysis). We
found that mouse-specific targets of 12 Sfmbt2 miRNAs were derepressed in the
comparison between d13.5 and d11.5 relative to a control set (generated as above), and
five of them showed even greater derepression than all predicted targets (Figure 3 and
Table 2).

We next performed gene ontology (GO) analysis on mouse-specific Sfmbt2
targets. Of all genes expressed in the placenta (defined as expression at d11.5 = 8), we
looked for GO category enrichment in 330 upregulated targets (defined by a 1.2 fold
increase in expression at d13.5 relative to d11.5). The top statistically significant
categories were regulation of cell proliferation, negative regulation of cellular processes,
and establishment of localization (p = 1.1e™, 8.3e®, and 1.8e” respectively). Pathway
enrichment (KEGG) analysis also revealed that upregulated targets were enriched in
pathways that regulate cell survival, such as MAPK signaling pathways, tumorigenesis,
and apoptosis (p= 3.9e "%, 7.2e"?, and 1.4e”® respectively). Interestingly, many
upregulated targets overlap with validated AAGUGC miRNA targets (such as P21,
Lats2, and Casp2) that have been shown to regulate cell cycle and apoptosis of ES cells

(Chapter 3).
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To validate predictions of mouse-specific targets, we picked several candidate
genes based on the degree of downregulation at d11.5 (relative to d13.5), as well as
their functional annotations. The candidate genes’ 3' UTRs were cloned into luciferase
constructs, and expression level was evaluated in Dcr KO ES cells, before and after the
transfection of specific Sfmbt2 miRNAs. Dcr KO ES cells lack mature miRNAs, which
allowed us to test the specificity of Sfmbt2 targets by expressing exogenous miRNAs.
Luciferase reporter of Dedd2, a proapoptotic factor, contained a binding site for miR-
297a-5p, and a binding site for miR-466a-5p. Our preliminary analysis showed that
Dedd2 reporter was repressed 1.5-fold by miR-297a-5p and miR-466a-5p respectively.

We are actively cloning and testing other luciferase constructs (Figure 4).

Target sites of many species-specific miRNAs are positively selected to
lose binding sites in their 3’ UTRs.

As evolutionary variations in miRNA genes contribute to the generation of new
regulatory specificities, the unique presence of the Sfmbt2 miRNA cluster in rodents has
prompted us to look for potential mouse 3' UTRs that responded to the creation of the
cluster (Bartel 2009). We hypothesized that comparative analysis of 3' UTRs would
reveal two groups of variants: A) mMRNAs that gained binding sites to Sfmbt2 miRNAs in
their 3' UTRs for downregulation; B) mRNAs that were selected to lose target sites to
Sfmbt2 miRNAs to maintain expression levels in certain cellular states.

We tested for the presence of each group by analyzing aligned 3' UTRs from
mouse and human in two steps. For group A, if the Sfmbt2 miRNA targets are under
positive selection for site gain, then we would expect more sites gained in mouse 3'
UTRs than control heptamers, and higher variation at the binding site than their adjacent
sequences. Accordingly, in Step I, we counted the number of times a Sfmbt2 miRNA

binding site (M8-7mer match) is present in a mouse 3' UTR, but absent in its human
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counterpart, and calculated the fraction of seed sites gained in mouse (relative to
human) (Figure 5A). To assess if the fraction was higher than what we would expect by
chance, we performed the same analysis with control heptamers of similar composition.
mMiRNA target sites with a significantly higher fraction of sites gained in mouse relative to
control heptamers were considered for further analysis in Step I, where the variation at
the miRNA binding site was compared to that of adjacent sequences (defined as the 80-
nt 3' UTR sequences upstream and downstream) (Figure 5B and C). Of the 25 Sfmbt2
mMiRNA seeds, target sites of four seeds showed a significant gain signal in mouse (Step
I). They are miR-297a-5p, miR-466a-5p, miR-466k, and miR-4661-5p, all of which
displayed a distinctly higher mutation rate at the miRNA binding sites than flanking
sequences (Step II).

We tested for group B in a similar manner, but looking for sites lost in mouse
instead. Therefore we first counted the number of times a Sfmbt2 miRNA binding site is
present in human, but absent in mouse 3' UTRs (Step I). We then focused on target
sites with a significant loss signal, and compared their variation to adjacent sequences
(Step Il). Overall, we found that binding sites of miR-297a-5p and miR-466a-5p showed
significant loss signals in mouse. Combined results from groups A and B showed that
four out of 25 Sfmbt2 miRNA seed binding sites displayed positive selection in mouse
when compared to human 3' UTRs.

We then extended the analysis to other miRNA seeds in the human and mouse
genomes to test if their target sites are also under positive selection. Since the Sfmbt2
cluster is mouse-specific, we focused on human or mouse-specific miRNAs. Out of 595
human-specific miRNA seeds, we found 32 seeds (5.38%) whose target sites showed
significant loss signals (Table 3 and Table 5). This ratio is significantly higher than that of
shuffled control heptamers (2.12%, p= 0.0005 by Chi-square test) (Table 3), suggesting

that the positive selection signals from targets of 32 human-specific miRNAs are

- 124 -



Chapter 4: Characterization of the Sfmbt2 miRNA cluster and its function in murine placental development

statistically significant (Table 5).

Our method also revealed that target sites of seven out of 201 (3.48%) mouse-
specific miRNA seeds showed significant loss signals (Table 3). However, this ratio is
not significantly different from that of shuffled control heptamers (p=0.21 by Chi-square
test). Similarly, while we detected gain signals from target sites of 23 human or mouse-
specific miRNAs, it is possible that many of them are false positives (p=0.38 and p=0.21
for human and mouse-specific miRNA targets by Chi-square tests respectively). The
results of our analysis may be updated as miRNA and 3' UTR sequences of mouse and
human become better annotated. Furthermore, we are actively refining the two-step
procedure used to detect positive selection signals among miRNA targets. Improved
sensitivity of our method may reveal more miRNA target sites that are under positive

selection.

Discussion

Here we provided a preliminary characterization of a novel murine-specific
miRNA cluster, the Sfmbt2 cluster, and investigated its function in regulating placental
development. The cluster is upregulated in the placenta, and some mRNAs appear to
have evolved binding sites for this cluster after the divergence of mouse from human or
dog. Collectively these mRNAs are enriched in pathways that regulate cell proliferation
and apoptosis, suggesting that the Sfmbt2 cluster promotes murine placental growth.
Our method also allowed us to detect a total of 32 human-specific miRNAs whose
targets have been positively selected to lose miRNA binding sites since the divergence
of human from mouse or dog.

The host Sfmbt2 gene is imprinted in the placenta, and has been implicated in
promoting placental growth (Kuzmin et al. 2008). We suggest that the Sfmbt2 miRNA

cluster within an intron of this gene might facilitate this role. However, more genetic
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evidence and biochemical assays will be needed to delineate the specific functions of
the miRNA cluster and the host gene. SFMBT2 is a PolyComb Group protein, and has
been shown to interact with YY1 (Yy1 is the mammalian ortholog of Pho, an important
component of Drosophila Pho-RC complex) in vitro (Kuzmin et al. 2008). It would not be
surprising if SFMBT2 regulates the transcription of target genes with YY1 to promote
placental growth, in parallel with the proposed miRNA regulation from its intron. In fact,
functional interactions between intronic miRNAs and their host genes have been recently
demonstrated in tumorigenesis. MCM7 and its intronic cluster, miR-106b~25, cooperate
to drive transformation, while overexpression of either individual gene is not sufficient to
do so (Poliseno et al.).

mMiRNA creation and expansion have been linked to major developmental
innovations (Lee et al. 2007). Hertel et. al. observed that tandem duplications of
miRNAs are strongly overrepresented in the vertebrate ancestor, and at the origin of
placental mammals (Hertel et al. 2006). One notable example is the creation of
paternally-imprinted miR-134 cluster (located at the mouse DIk/-Gt/2 domain in eutherian
mammals (Seitz et al. 2004 ). Here we reported a maternally-imprinted miRNA cluster
that appears to have arisen through de novo creation after the separation of primates
and rodents, and undergone expansion through tandem duplication in mouse. Evidence
from previous studies on the Sfmbt2 host gene as well as our study on the miRNA
cluster suggests that the miRNA cluster contributes to placental growth in mouse. The
speculated role of the Sfmbt2 cluster is consistent with the parent-offspring conflict
hypothesis that has been proposed to explain the evolution and maintenance of
imprinting in mammals (Moore and Haig 1991). Paternally expressed genes are
proposed to increase embryonic growth, thereby maximizing the competitiveness of
individual offspring bearing a particular paternal genome (Moore and Haig 1991).

Maternally expressed genes are proposed to suppress fetal growth (Moore and Haig
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1991). This would allow a more equal distribution of maternal resources to all offspring
and increase transmission of the maternal genome to multiple offspring (Moore and Haig
1991).

We speculate that the unique creation of the miRNA cluster is linked to the heavy
reproductive demand on mouse. Murine gestation time is ~19-21 d and average litter
sizes are in the range of 12 (in contrast to humans, who have a gestation time of ~9
months and largely singleton pregnancies) (Knox and Baker 2008). Thus it is not
surprising that the mouse genome has evolved to ensure successful pregnancy and full
development of fetuses within a short period. In fact, mouse mature placenta is
dramatically enriched for rodent-specific genes, including prolactin-like hormones and
pregnancy-specific glycoproteins (Knox and Baker 2008).

Besides mouse, human and all other eutherians’ placenta have evolved to
facilitate the broad range of reproductive strategies displayed by respective species
(Knox and Baker 2008). Studies have shown that the human placenta is enriched for
primate-specific genes, including a miRNA cluster that is exclusively expressed in the
placenta (Bentwich et al. 2005; Knox and Baker 2008). This miRNA cluster (Chr19
mMiRNA cluster) consists of over 50 miRNAs, and is found on human chromosome 19,
downstream of an imprinted gene Znf331, and upstream of the miR-371-372 cluster.
Members of the miR-371-372 cluster have been linked to promoting tumorigenesis, and
its mouse homolog miR-290-295 cluster can promote proliferation and suppress
apoptosis (Voorhoeve et al. 2006; Wang and Blelloch 2009). Interestingly, several
miRNAs from the Chr19 miRNA cluster share a seed sequence with the miR-372 and
miR-295 family, suggesting that this novel miRNA cluster may be involved in growth
regulation and human placental development.

Not only do miRNAs contribute to early mammalian development, they also

influence the evolution of 3' UTRs. Genes are under evolutionary pressure to maintain or
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avoid miRNA complementary sites in their 3' UTRs (Farh et al. 2005; Stark et al. 2005).
Additionally, recent evidence suggests that proliferating cells tend to shorten their 3’
UTRs to escape global miRNA regulation (Sandberg et al. 2008; Mayr and Bartel 2009).
Evolving miRNA-mRNA 3' UTR interactions have also been linked to phenotypic
variation among species. For example, Texel sheep have evolved to acquire a miR-1
and miR-126 binding site in the 3' UTR of the myostatin gene (Gdf8), whose repression
leads to the muscular hypertrophy of Texel sheep (Clop et al. 2006). While previous
studies have all focused on the interactions between conserved miRNAs and their
conserved targets (and anti-targets, mMRNAs that lack conserved binding sites), our study
suggests for the first time that species-specific miRNA target sites can be positively
selected. In particular, our analysis suggests that 3' UTRs of human genes have
undergone selection to avoid regulation by some of human-specific miRNAs. As miRNA
and 3' UTR sequences of more species become available and better annotated, we
speculate that our methods will reveal more miRNA target sites that are under positive
selection. Such method would become an invaluable tool to understand regulatory roles

of miRNAs on species-specific developmental processes.
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Methods

ES Cell Culture

Feeder-free Dicer1” mouse embryonic stem cells (NESCs) were generated and

maintained on gelatin as described previously (Leung et al. 2010).

Oligos and siRNAs used in all the experiments

siRNA Sequence (5° — 3’ unless otherwise noted)

5’- AUGUAUGUGUGCAUGUGCAUGU -3’

miR-297a-5p 3’- UGUACAUACACACGUACACGUA -3’

miR-466a-5p 5’- UAUGUGUGUGUACAUGUACAUAU -3’
3’- UAAUACACACACAUGUACAUGUA -3’

Control siRNA (from Dharmacon, Accell Non-targeting pool)

3’UTR

Primers

Dedd2 Forward AATAACTCGAGGGGAGGCATAACCCCCTGC

Dedd2 Reverse AATAAGGGCCCCCCACCTGTGCCCTTTCCA

Northern LNA
Oligos

miR-297-5p ACATGCACATGCACACATACAT

miR-466a-5p ATGTACATGTACACACACATA

miR-467a-5p CGCATATACATGCAGGCACTTA

Generation of luciferase constructs, mESC transfection, and luciferase
assays

MicroRNA mediated repression of each candidate gene was tested by cloning PCR
amplified products corresponding to the full length of 3' UTR that contained the miRNA
binding sites into the 3' UTR of a pRL-CMV Renilla luciferase reporter as described

previously (Doench and Sharp 2004).
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Digests were performed using either Xhol or Sall to give the 5’ site and Apal or Notl to

give the 3'site. Firefly luciferase (pGL3) was used as a transfection control.

24 hours before transfection 1e®> mESC cells were plated/well of gelatinized 24-well
plate. Cells were transfected with 2ul Lipofectamine 2000 (Invitrogen), 0.1ug of CMV-
GFP plasmid (Invitrogen), 0.7ug of pWS (carrier plasmid), and 50nM of siRNAs in 300ul
of Opti-MEM (Invitrogen). 4 hours after transfection, transfection mix was removed from

cells and replaced with ESC media.

24 hours after transfection, cells were lysed with 1X Passive Lysis Buffer (Promega) and
Dual luciferase was measured using Dual Luciferase reporter assay system (Promega)

according to manufacturer’s instructions.

Northern Blot analysis

Total placental RNA from d11.5 and d13.5 was obtained from Lee’s lab. Approximately
36ug of each RNA was loaded onto a 12% denaturing UREA gel, according to the
Northern Blot protocol outlined previously (Calabrese et al. 2007). Membrane probed
with GIn-tRNA was exposed to phosphoimager for 3 hours before being scanned; miR-
297a-5p membrane was exposed for 16 hours; miR-466a-5p 24 hours; and miR-467a-5p
24 hours. Prior to hybridizing with a different probe, membranes were stripped by
incubating the membrane in boiling 0.1% SDS for 30 minutes and loss of signal was

confirmed prior to rehybridization.
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Microarray analysis

Microarray data was obtained from and processed according to Lee et. al. (Lee et al.
2009). The log, fold change (LFC) value for d11.5/d13.5 was defined as the difference
between the mean log expression in d11.5 cells and the mean log expression in d13.5
cells. Targets of a Sfmbt2 miRNA were selected based on at least one match to a T1-A
or M2-8 7mer of the mature miRNA sequence. A target was defined as mouse-specific if
the orthologous heptamer binding site in human has mutated, and if the mutation rate is
significantly higher than that of flanking sequences. Controls were selected to match

targets in 3' UTR length and composition, and did not overlap with target sets.

Bioinformatics analysis

Sfmbt2 miRNAs were aligned against mouse (mm9), human (hg18), and rat (rn4)
genomes by running BLAST analysis. The genomic sequences were downloaded from

UCSC database (http://genome.ucsc.edu/).

Human and dog mature miRNA sequences were obtained from miRBase Release 15
(Griffiths-Jones et al. 2008). Mouse mature miRNA sequences were obtained from
Chiang et. al. (Chiang et al.). miRNA seeds were defined as nucleotides 2-8 of the
mature sequence. A miRNA seed was considered shared between mouse and human if
it existed in both human and mouse. However, a miRNA seed was defined as mouse
specific if it existed in mouse, but not in dog or human. Likewise, a miRNA seed was
defined as human specific if it existed in human, but not in dog or mouse.

Sfmbt2 miRNA precursors coordinates were obtained from mirBase (release 15)
(Griffiths-Jones et al. 2008), and sequences were extracted from mm9. ClustalW was

used to obtain multiple sequence alignments among precursors (Larkin et al. 2007).
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Analysis of positive and purifying selection on human and mouse 3' UTRs

Aligned human, mouse, and dog 3' UTRs were obtained from TargetScan 5.1 (Friedman
et al. 2009). 17840 3' UTRs were used for the analysis. In Step I, the control distribution
for group A (or group B) was generated from heptamers that had a similar number of site
matches in mouse (or human) as the heptamer of interest (for example, a miRNA seed).
In Step II, the mutation rate of each heptamer binding site was calculated as the fraction
of mismatched nucleotides in a 7-nt window. T test was used to check if the mutation
rate around the seed binding site was significantly higher than that of neighboring
sequences. The mutation around the seed binding site was calculated as the average of
the mutation rates of 7 heptamers around the seed binding site (the seed binding site, as
well as three heptamers upstream and downstream). The mutation rate of neighboring
sequences was calculated as the average of the mutation rates of the rest of heptamers

in the 80-nt window.

Gene Ontology analysis

Gene Set Analysis Toolkit (http://bicinfo.vanderbilt.edu/webgestalt/) was used to perform
GO analysis. Sfmbt2 targets and mouse specific targets were generated as described in
the text. Control genes were defined as all genes that are expressed in the mouse

placenta (detected by the microarray anaysis).

Statistical analysis

All test statistics were calculated using R (http://www.r-project.org). The Wilcoxon rank
sum test was used because it does not assume normality of the underlying distributions.

T-tests and Kolmogorov—Smirnov (KS) test using these data gave generally similar
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results. Chi-square test was used in positive and purifying selection analyses (Steps |

and Il) to check if a specific category was over-represented relative to the control.
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Table 1. Description of the Sfmbt2 miRNA cluster.

Sequences and cloning statistics of Sfinbt2 miRNAs in mouse ES cells are listed. The cloning
statistics were taken from previous studies in mouse ES cells. ES cells from Leung et. al. were
used for experiments presented in the chapter.

% cloned in different ES cell lines
Id Sequence Length Seed Calabrese et. al. | Leung et. al. | Babiarz et. al. | Ciaudo et. al.
(a) (b) (c) (d)

miR-297a AUGUAUGUGUGCAUGUGCAUGU 22 JUGUAUG 0.8743 0.0003 0.0318 0.0087
miR-297b-5p  |AUGUAUGUGUGCAUGAACAUGU 22 |UGUAUG 1.6289 0.0013 0.0164 0.0000
miR-297¢ AUGUAUGUGUGCAUGUACAUG 21 JUGUAUG 1.3791 0.0000 0.0000 0.0000
miR-467a-5p  |UAAGUGCCUGCAUGUAUAUGCG 22 |AAGUGC 4.8136 0.0000 0.0761 0.3291
miR-467b GUAAGUGCCUGCAUGUAUAU 20 |UAAGUG 0.2295 0.0000 0.0642 0.0532
miR-467¢c UAAGUGCGUGCAUGUAUAUGU 21 |AAGUGC 0.5354 0.6753 0.0000 0.0310
miR-467d UAAGUGCGCGCAUGUAUAUGC 21 JAAGUGC 0.4091 0.2147 0.0000 0.3605
miR-467e AUAAGUGUGAGCAUGUAUAUG 21 JUAAGUG 0.4555 0.8718 0.0000 0.0705
miR-467a-3p  |AUAUACAUACACACACCUACAC 22 |JUAUACA 5.1394 0.0000 0.0761 0.0199
miR-467b* AUAUACAUACACACACCAACAC 22 JUAUACA 0.0070 0.0000 0.0642 0.0000
miR-467¢e* AUAUACAUACACACACCUAUA 21 |UAUACA 0.4856 0.0000 0.0000 0.0000
miR-466a-5p  |UAUGUGUGUGUACAUGUACAU 21 JAUGUGU 0.2457 0.0008 0.0645 0.0000
miR-466b-5p  |GAUGUGUGUGUACAUGUACAU 21 |AUGUGU 0.0765 0.0002 0.0000 0.0000
miR-466¢c-5p  |GAUGUGUGUGUGCAUGUACAU 21 JAUGUGU 0.2098 0.0000 0.0000 0.0000
miR-466d-5p  |UGUGUGUGCGUACAUGUACAU 21 |GUGUGU 0.0035 0.0000 0.0000 0.0074
miR-466e-5p  |GAUGUGUGUGUACAUGUACAU 21 |AUGUGU 0.0765 0.0000 0.0000 0.0000
miR-466f-5p UACGUGUGUGUGCAUGUGCAUG 22 |ACGUGU 0.0000 0.0000 0.0000 0.020
miR-466h UGUGUGCAUGUGCUUGUGUGU 24 JGUGUGC 0.0598 0.0000 0.0000 0.0000
hp2288 GUGUGCAUGUGGAUGUAUGU 20 JUGUGCA 0.0133 0.0000 0.0000 0.0000
miR-466a-3p  |UAUACAUACACGCACACAUAAG 22 |AUACAU 1.0639 0.0000 0.0645 0.0099
miR-466b-3p  |UAUACAUACACGCACACAUAAGA 23 |AUACAU 2.1641 0.0000 0.0000 0.0099
miR-466b-3-3p |AAUACAUACACGCACACAUAAG 22 |AUACAU 0.0070 0.0121 0.0000 0.0000
miR-466d-3p  |UAUACAUACACGCACACAUA 20 |AUACAU 2.1208 0.0000 0.0000 0.0050
miR-466f-3p CAUACACACACACAUACACA 20 |AUACAC 0.0127 0.0000 0.0000 0.1683
miR-4669 AUACAGACACAUGCACACAC 20 |JUACAGA 0.0603 0.0005 0.0000 0.0000
miR-466| UAUAAAUACAUGCACACAUAUU 22 |aAuaaAu 0.0399 0.0042 0.0000 0.0000
hp2090 UACAUACACACAUACACACGCA 22 |ACAUAC 0.0565 0.0000 0.0000 0.0000
miR-297a* UAUACAUACACACAUACCCAU 21 |AUACAU 1.7557 0.0000 0.0000 0.0000
miR-669a-5p  |AGUUGUGUGUGCAUGUUCAUGU 22 |GUUGUG 0.3488 0.0000 0.1318 0.2117
miR-669b-5p  |AGUUUUGUGUGCAUGUGCAUGU 22 |GUUUUG 0.1928 0.0000 0.0554 0.8918
miR-669¢c-5p  |AUAGUUGUGUGUGGAUGUGUGU 22 JUAGUUG 0.0931 0.2609 0.3251 0.0756
miR-669d ACUUGUGUGUGCAUGUAUAUGU 22 |CUUGUG 0.6050 0.0000 0.0000 0.0000
miR-669e UGUCUUGUGUGUGCAUGUUCAU 22 |GUCUUG 0.1363 0.0000 0.0000 0.0000
miR-669g UGCAUUGUAUGUGUUGACAUGAU 23 |GCAUUG 0.0033 0.0000 0.0000 0.0000
miR-669h AUGCAUGGGUGUAUAGUUGAGUG] 24 |UGCAUG 0.0432 0.0000 0.0000 0.0000
miR-669a-3p  |ACAUAACAUACACACACACGUAU 23 |CAUAAC 4.4878 0.0000 0.1318 0.0730
miR-669b-3p  |AUAUACAUACACACAAACAUAU 22 |JUAUACA 0.2959 0.0000 0.0554 0.0000
miR-669f CAUAUACAUACACACACACGUAU 23 |AUAUAC 0.5053 0.0002 0.0000 0.0000
miR-669i UGCAUAUACACACAUGCAUAC 21 |GCAUAU 0.0332 0.0000 0.0000 0.0000
miR-669j UGCAUAUACUCACAUGCAAACA 22 |GCAUAU 0.0199 0.0000 0.0000 0.0000
miR-669k UAUGCAUAUACACGCAUGCAA 21 |AuGCAU 0.0266 0.0000 0.0000 0.0000
hp2252 UAUGCAUAUACACACAUGUACA 22 |AUGCAU 0.0066 0.0000 0.0000 0.0000

sfmbt2 miRNA cluster / total miRNA reads (%) 30.7213 2.0424 1.1576 2.3451

(a) J. M. Calabrese, A. C. Seila, G. W. Yeo, and P. A. Sharp, Proc Natl Acad Sci, 2007. 104 (46).
(b) A. Leung, A. Young, AJ Bhukar, G. Zheng, A. Boson, and P.A. Sharp. 2010Submitted.

(c) J.E. Barbiarz, J.G. Ruby, Y. Wang, D.P. Bartel, and R. Blelloch. Genes Dev, 2008. 22 (20).
(d) C. Ciaudo et. al., Plos Genetics 5, 2009, e1000620.
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Table 2. Target statistics of SFmbt2 miRNAs.

LFC of predicted targets (between d11.5 and d13.5) of each Sfmbt2 miRNA were compared to
those of controls by Wilcoxon test (p/), and LFCs of mouse specific Sfimbt2 miRNA targets were
compared to those of controls by Wilcoxon test (p2). “total targets” — number of all predicted
targets of a specific Sfmbt2 miRNA seed; “mouse specific targets” — number of mouse specific
targets of a Sfmbt2 miRNA seed.

total mouse
miRNA seed miRNA p1 p2 ol 1 specific
targets

targets

CUUGUGU [miR-669d 0.00002| 0.01846] 921 399
UAUACAU |miR-467a-3p/467b*/467¢*/669b-3p 0.00005] 0.00181| 1407 519
GUGUGCA |miR-466hj 0.00044| 0.00134] 1196 526
GUCUUGU |[miR-669¢ 0.00066| 0.12920] 678 258
AUGCAUA |miR-669h-3p/669k 0.00108| 0.00642 865 239
UGUAUGU |miR-297a/297b-5p/297¢ 0.00147| 0.02438 1033 553
AAGUGCC |miR-467a 0.00219] 0.06870| 781 239
GCAUUGU |miR-669g 0.00347| 0.01990] 578 212
GUGUGUG [miR-466d-5p/466k 0.00607| 0.11072] 1616 977
AUAUACA |miR-669f 0.01177] 0.04886| 2014 659
UAAGUGU |miR-467e 0.01722| 0.00427| 731 328
UAGUUGU |miR-669¢ 0.03293[ 0.70088] 489 202
GUUUUGU [miR-669b 0.04674 0.00062| 1329 615
GCAUAUA |miR-669ij 0.08557| 0.38816] 636 213
ACGUGUG |miR-466f-5p 0.10080| 0.32340 365 202
UGCAUGG |miR-669h-5p 0.11350| 0.07416| 854 359
UAAGUGC |miR-467b 0.11701| 0.07844| 627 173

MIR-297b-3p/466a-3p/466b-3-3p/466C-

AUACAUA | i 3p/4666.30/4673 0.14642| 0.03100| 1548 665
AUACACA |miR-466f-3p 0.17663| 0.00965| 1908 850
AAGUGCG |miR-467c/d 0.22560| 0.35483 165 62
AUAAAUA |miR-466| 0.22908| 0.05234] 2832 500
UGUGCAU |hp2288 0.24434] 0.00252] 1080 432
CAUAACA |miR-669a-3p 0.27217| 0.15256] 849 357
AUGUGUG |miR466a-5p/466b-5p/466C-5p/466e-5p | 0.32233| 0.55551] 1237 638
GUUGUGU |miR-669a 0.32867| 0.56666] 596 292
ACAUACA |hp2090 0.37034 0.30598| 1827 887
UACAGAC |miR-466g 0.49446| 087167 977 304
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Table 3. Summary statistics of positive selection signals
detected from heptamer binding sites in mouse and human 3’
UTRs.

The analysis was performed in two steps, and each step consisted of two tests. Here we explained
the details of the analysis by searching for targets that have specifically gained binding sites to a
mouse-specific miRNA seed. The same analysis can be extended to other human or mouse-
specific miRNA seeds to look for gain or loss signals in target 3> UTRs.

In Step I, we compared mouse to human 3’ UTRs to check if the mouse-specific miRNA seed is
preferentially gained in mouse 3° UTRs. First, we calculated the fraction of the seed site gained in
mouse. Then we compare the fraction to that of control heptamers. The seed sites that displayed a
significantly higher fraction of site gain than heptamer controls were considered significant
(»=0.05). In Step II, we compared mouse to human 3’ UTRs to find the variation at the target site
as well as variations along its 80-nt flanking sequences. The percentage of nucleotides changed
(% mutation) was calculated for the miRNA seed, as well as for heptamers that were 40-nt
upstream, and 40-nt downstream. If the mutation rate at the miRNA binding site was much higher
than those of adjacent heptamers, target sites of the miRNA seed was considered to be under
positive selection for site gain (p=<0.05).

“count” represents the number of heptamers that were significant in each test. “fotal” represents
the total number of possible heptamers in the specific test category. P-values were the result of
Chi-square tests. Numbers colored in red represent the ratios that were significantly higher than
the controls (the ratios from “all heptamers” categories). There are 16384 total heptamers, and
1117 distinct M2-8 miRNA seeds in mouse and human miRNAs combined. There are 796 mouse
or human specific miRNAs (dog miRNAs were used as an outgroup).

Step | Step Il
gain events gain events
count total count/total p count total count/total P
(%) (%)
all heptamers 765 16384 4.67 all heptamers 347 16384 2.12
human- human-
specific 38 595 6.39 0.077 specific 16 595 2.69 0.38
miRNA seeds miRNA seeds
mouse- mouse-
specific 13 201 6.47 0.31 specific 7 201 3.48 0.21
miRNA seeds miRNA seeds
human + human +
mouse 51 796 6.41 0.036 mouse 23 796 2.89 0.16
summary summary
loss events loss events
count total cou?,z;otal p count total cou::;:;otal P
all heptamers 765 16384 4.67 all heptamers 347 16384 2.12
human- human-
specific 49 595 8.24 0.001 specific 32 595 5.38 0.0005
miRNA seeds miRNA seeds
mouse- mouse-
specific 12 201 5.97 0.39 specific 7 201 3.48 0.21
miRNA seeds miRNA seeds
human + human +
mouse 61 796 7.66 0.001 mouse 39 796 4.90 0.001
summary summary
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Table 4. Target sites of 32 human species-specific miRNAs are
under positive selection for site loss.

miRNA seed miRNA direction of t_arget site
selection
CAUAGCC hsa-miR-103-as site loss in human
GGAUGGU hsa-miR-1193 site loss in human
GGAUGAG hsa-miR-1255a hsa-miR-1255b site loss in human
GGGUGGU hsa-miR-1293 site loss in human
CAUGGGU hsa-miR-1308 site loss in human
AUAGGGA hsa-miR-135a* site loss in human
UGUAGGG hsa-miR-135b* site loss in human
UGUGUGG hsa-miR-147 site loss in human
CCCCACA hsa-miR-1975 site loss in human
GACAGCG hsa-miR-2277 site loss in human
GGGUAGA hsa-miR-3132 site loss in human
UAGGGAG hsa-miR-3162 site loss in human
AGGACUG hsa-miR-3169 site loss in human
UGGGGUU hsa-miR-3170 site loss in human
AGUGAGU hsa-miR-3174 site loss in human
GAAGAAG hsa-miR-3185 site loss in human
GGGACUG hsa-miR-3199 site loss in human
GGGUGGA hsa-miR-363* site loss in human
UAGGAGG hsa-miR-4266 site loss in human
UAGGGGG hsa-miR-4278 site loss in human
CCCCACU hsa-miR-4286 site loss in human
CCCACUA hsa-miR-4301 site loss in human
GGGUAAG hsa-miR-555 site loss in human
GAGUGUG hsa-miR-574-5p site loss in human
ACACGGG hsa-miR-602 site loss in human
GGGGUGG hsa-miR-608 site loss in human
GGGUGUU hsa-miR-609 site loss in human
GGGGGAA hsa-miR-625 site loss in human
GCuGUCU hsa-miR-626 site loss in human
GGUUGGG hsa-miR-92a-1* site loss in human
GGUGGGG hsa-miR-92a-2* site loss in human
UGACUGU hsa-miR-943 site loss in human
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Figure 1. Genomic structure of the Sfmbt2 miRNA cluster and
its expression in placenta.

(A) Precursors of Sfmbt2 miRNAs were mapped to the 9™ intron of the Sfinbt2 gene by BLAST.
The intron spans from 10.39Mbp to 10.44Mbp on Chromosome 2. The Sfimbt2 miRNAs were
color coded, and * refers to miRNAs with both 5" and 3’ sequences mapped to the locus. (B)
Northern blot analysis of miR-467a-5p, miR-297a-5p, and miR-466a-5p in placental and ES cells.
GIn tRNA was probed as a loading control. Lane 1, placental d11.5; 2, placental d13.5; 3, WT ES
cells; 4, KO ES cells.
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Figure 2. Multiple sequence alignments of Sfmbt2 miRNAs.

%
conservation

Precursors of Sfmbt2 miRNAs were aligned with ClustalW. Alignments of mature sequences and
% conservation calculated along the mature sequences were shown for each miRNA family found
in Sfmbt2 miRNA cluster. (A) miR-297 and miR-467 families. (B) miR-466 families. (C) miR-
669 families.
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Figure 3. Predicted targets of Sfmbt2 miRNAs show decreased
stability in d13.5 placenta.

Representative CDFs (cumulative distribution functions) of log2 fold change (LFC) in
mRNA expression between d11.5 and d13.5 placenta cells are plotted for two miRNA
target sets that showed the most significant difference between “all targets” and
“control” (A) and “mouse targets” and “control” (B). (A) “all targets” (green) include
399 predicted targets of miR-669d, and “mouse targets” (red) include 921 mouse
specific targets. The control mRNA (blue) was selected to match the predicted targets in
di-nucleotide composition and 3’ UTR length. “all targets” and “mouse targets” are both
de-repressed in d13.5 placental cells (p=2.0e™ and p=1 85¢7 by rank sum test
respectively). (B) CDFs were plotted for 1080 predicted targets and 432 mouse specific
targets of hp2288, an unannotated miRNA from the Sfmb¢2 cluster. Although “all
targets” are not derepressed relative to the control mRNAs at d13.5, “mouse specific”
targets are (p=2.52¢™ by rank sum test).
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Figure 4. Repression of Dedd2 by two of Sfmbt2 miRNAs.

Luciferase reporter with full length Dedd2 3” UTR was assayed in Der KO ES cells. 20nM of
control siRNA, miR-297a-5p, and miR-466a-5p were transfected in Dcr KO ES cells. n=3 and
results are shown as mean + S.E.M.
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A. Steps taken to test for site gain of a mouse-specific miENA
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Figure 5. lllustration of the positive selection analysis for site
gain of a mouse-specific miRNA.

(A) A flow chart of the analysis. The analysis was divided into 2 steps. In Step I, the fraction of
sites gained in mouse was calculated for the mouse-specific miRNA. Then the fraction was
compared to those of control heptamers. If the fraction of the sites gained for the mouse-specific
miRNA was significantly higher than that of controls, the miRNA seed was considered for Step 11
of the analysis, where the mutation rate at the miRNA binding sites was compared to those of
adjacent sequences. Targets were considered to be positively selected for site gain if the mutation
rate at the miRNA binding site is significantly higher than those of adjacent sequences. (B)
Histogram of the fraction of sites gained in mouse for control heptamers. The blue arrow points at
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the fraction of sites gained for the miRNA seed of interest. (C) Mutation rates of the miRNA
binding site and its flanking sequences. % mutation = fraction of mismatched nucleotides in the
7-nt window. “0” - the miRNA binding site, “40” — 40-nt downstream of the miRNA binding site,
“-40” — 40-nt upstream of the miRNA binding site.
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Appendix: Exploring miRNA targets that are under purifying
selection

Comparative genomic analysis revealed that the 5' region of miRNAs is the most
conserved portion of mMiRNAs (Lewis et al. 2003; Lim et al. 2003a; Lewis et al. 2005;
Chen and Rajewsky 2006). Seed binding sites in the 3' UTRs tend to be more highly
conserved than expected by chance (Lewis et al. 2003; Lim et al. 2003a; Lewis et al.
2005). As a proof of principle, we extended our method to look for purifying signals of
mMiRNA target sites in two steps. If target sites of a miRNA are under purifying selection,
then we would expect more sites maintained between human and mouse 3' UTRs, and
lower variation at the binding site than their adjacent sequences. Accordingly, in Step I,
we counted the number of times a miRNA binding site (M8-7mer match) is present in the
human 3’ UTR, but absent in its mouse counterpart (Figure 1). The fraction of sites
gained in human was calculated, and compared to that of controls. Target sites that
showed a conservation signal should have a significantly lower number of sites gained in
human than expected. In Step I, we focused only on miRNAs target sites with significant
conservation signals, and assessed their variation relative to adjacent sequences
(defined as the 80-nt UTR sequences upstream and downstream) (Figure 1). Of the
1117 miRNA seeds, target sites of 71 (6.36%) of them showed a significant conservation
signal between human and mouse. This is significantly higher than the proportion of
control heptamers with conserved target sites (2.56%, p=0.00050 by Chi-squareTest)
(Table 1). Furthermore, target sites of almost 20% of conserved miRNAs (defined as
shared between mouse and human) are under purifying selection, a result that is
consistent with results from previous studies (Lewis et al. 2003; Lim et al. 2003a; Lewis

et al. 2005; Friedman et al. 2009) (Table 1).
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Table 1. Summary statistics of purifying selection signals detected from
heptamer binding sites in mouse and human 3' UTRs.

The analysis was performed in two steps. In Step I, we compard human to mouse 3’ UTRs to find
heptamers that showed significant conservation signals between human and mouse. In Step 11, we
compared human to mouse 3’ UTRs to find the variation at the target site as well as variations
along its 80-nt flanking sequences. The percentage of nucleotides changed (% mutation) was
calculated for the heptamer, as well as for heptamers that were 40-nt upstream, and 40-nt
downstream. If the mutation rate of the heptamer was much lower than those adjacent heptamers,
the heptamer was considered to be under purifying selection (p=<0.05).

“count” represents the number of heptamers that were significant in each test. “fotal” represents
the total number of possible heptamers in the specific test category. Numbers colored in red
represent the ratios that were significantly higher than the controls (the ratios from “all
heptamers” categories). There are 16384 total heptamers, and 1117 distinct M2-8 miRNA seeds
in mouse and human miRNAs combined. 218 are shared between mouse and human.

Step | Step Il
purifying selection urifying selection
count total count/total count total count/total
(%) (%)

all heptamers 788 16384 4.81 all heptamers 419 16384 2.56

all miR seeds 98 1117 8.77 all miR seeds 71 1117 6.36
miR seeds miR seeds

shared by 54 218 24.77 shared by 43 218 19.72
human and human and

mouse mouse
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Figure 2. lllustration of the purifying selection analysis.

The analysis was divided into 2 steps. In Step I, the fraction of sites gained in human was

calculated for each heptamer. If the heptamer gained fewer sites in human than expected
(»=0.05), it was considered for further analysis in Step II, where the mutation rate of the miRNA
binding sites was compared to those of heptamers in the neighboring 80-nt sequence. (A)

Histogram of the fraction of sites gained for control heptamers. The red arrow points at the

fraction of sites gained for the miRNA seed of interest. (B) Mutation rates of the miRNA binding

site and its flanking sequences. % mutation = fraction of mismatched nucleotides in the 7-nt

window. “0” - the miRNA binding site, “40” — 40-nt downstream of the miRNA binding site, “-
40” — 40-nt upstream of the miRNA binding site.
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miRNAs are key modulators of animal development. In this thesis, we have
studied the regulatory roles of miRNAs in the development of murine T lymphocytes, ES
cells and the placenta. In each chapter, we focused on miRNAs characterized by
enriched expression during development. Cloning microRNAs from various stages of T
cell development revealed variable expression of miRNAs during this process. miR-181
was significantly enriched at the CD4"CD8" (DP) stage of T lymphocytes. We identified
several targets that implicated miR-181 in the process of thymocyte positive selection. In
ES cells, we focused on a family of miRNAs sharing the AAGUGC seed sequence. This
family, the most abundant in embryonic stem cells, impacted ES cell division in the G1 to
S phase transition and suppressed apoptosis. Lastly, we characterized a mouse-specific
Sfmbt2 miRNA cluster and speculated in regards to its role in promoting placental
growth. While these studies were undertaken in three distinct developmental systems,
they only scratch the surface in understanding the complex developmental networks that

are regulated by miRNAs.
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mMiRNAs in T lymphocyte development

Cloning statistics of short RNAs in T cells have shown that the expression of
miR-181 is elevated at least 10-fold at the DP stage, when thymocytes undergo positive
and negative selection to become mature T cells. Studies from our and other labs
suggest that miR-181 can enhance TCR signaling strength (Li et al. 2007; Neilson et al.
2007). However, our current understanding of miR-181’s role in T cell development is
likely incomplete. Firstly, while we are able to associate the functions of a few validated
targets of miR-181 to TCR signaling, we do not know the effects of the remaining targets
in vivo. Secondly, it is not clear the extent to which miR-181 influences the expression of
these targets, and the relative importance of each target in T cell maturation. It is also
possible that miR-181 regulates additional targets since T cells express more than 40
tyrosine phosphatases and other negative regulators of TCR signaling (Mustelin et al.
2005). Finally, besides TCR signaling, miR-181a may play a role in other pathways such
as the costimulatory pathways suggested by Li et. al. (Li et al. 2007). All three questions
can be addressed by creating a conditional knockout of miR-181 in the T cell lineage, or
a miR-181 knockout mouse. The miR-181 knockout mouse will also allow us to examine
its role in B lymphoid cells. miR-181 is highly expressed in B lymphoid cells, and its
overexpression can bias haematopoietic cell development towards the B cell lineage
(Chen et al. 2004).

While miR-181a is upregulated more than 10-fold in DP cells, the mechanism of
upregulation remains unknown. It is known that miR-181a and miR-181b are located in
tandem on chromosome 2 and they exhibit coordinate upregulation in DP cells. These
facts suggest that the mechanism of regulation is more likely transcriptional than post-
transcriptional. It has been proposed that the miR-181 family is transcriptionally

regulated by MYCN in glioblastoma (Nicoloso and Calin 2008). Understanding how miR-
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181 expression is transcriptionally regulated has the potential to not only lend more
insight into its role in T cell development, but also its role in oncogenesis as
overexpression of miR-181 has been detected in breast, pancreas, and prostate cancers
(Calin and Croce 2006).

Beyond our observations regarding miR-181, our short RNA sequencing data
throughout T cell development raises several interesting questions that might be better
addressed through deep sequencing of short RNAs in T cells. First of all, many of
noncoding short RNA sequences mapped to genomic regions annotated as repeats or to
which ESTs have been mapped. Additionally, among the clones that overlapped RefSeq
“known” genes, less than half of the clones mapped to these annotations in the sense
orientation. Fully half of the clones overlapping annotated genes mapped antisense to
the protein-coding region of the gene. It is curious what these noncoding RNAs are, and
we speculate that some of these clones may be endo-siRNAs, which have been
detected in mouse oocytes and ES cells (Babiarz et al. 2008; Tam et al. 2008;
Watanabe et al. 2008). The precursors of mouse endo-siRNAs are transcripts that
contain long hairpin structures or dsRNAs that are derived from sense-antisense pairs
(Tam et al. 2008; Watanabe et al. 2008). Increased depth of coverage in these libraries
might determine whether any of the non-coding short RNAs cluster in the genome, and if
their genomic sequences can form hairpin-like structures.

Secondly, deep sequencing might help us to better understand whether the
process of active RNA editing impacts miRNA function in T cells. In Chapter 2, we
attributed the decreased expression of miR-142 at DN3 to ADAR editing. However, we
were not able to observe ADAR-edited sequences in our cloning data. While this is in
part due to the observation that endogenous ADAR editing sites were often outside the
mature miRNA, increased depth of coverage would also allow comprehensive profiling of

precursor and mature miRNA sequences at the DN3 stage of thymocyte development.
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Lastly, deep sequencing might enable us to uncover other miRNAs and
noncoding RNAs playing important roles in T cell development. We first cloned miRNAs
from the Sfmbt2 cluster in developing T lymphocytes, and the expression of members of
this cluster were found to be specifically elevated in mature CD4 and CD8 cells.
However, the relative expression of Sfmbt2-derived miRNA sequences uncovered in T
cells is greatly underrepresented relative to their cloning statistics in ES cells, making it
difficult to know whether their presence is simply a result of stochastic processes, or
signals their functional importance in T cells. Deep sequencing data will allow us to
ascertain a non-random presence, and provide a better direction for future investigation

of the role of the Sfmbt2 miRNA cluster in T cells.

miRNAs in ES cells

Our functional assays on Dcr KO and WT ES cells suggest that AAGUGC
miRNAs are involved in buffering ES cells from apoptosis, especially when cells are
subjected to genotoxic stress. This is consistent with miRNAs’ ability to confer
robustness upon biological systems. Recent additional work from our lab provides more
experimental evidence in multiple systems that demonstrate the central role of miRNAs
in apoptosis regulation. Upon oxidative stress, Dicer null Sarcoma cells show a much
stronger Caspase 3 activation than their wild type counterparts (Figure 1) (Arvind Ravi,
unpublished data). Interestingly, sarcoma cells express a very different set of miRNAs
from ES cells, suggesting that miRNAs can control the induction of programmed cell
death in a cell-autonomous manner. Our preliminary data suggested that ES cells
undergo apoptosis in a p53-dependent manner. However, the sarcoma cells under study
lack p53 function, implying that miRNAs can control multiple signaling pathways
activated by different stress stimuli. Identification of downstream signaling networks

upon Caspase 3 activation in ES and Sarcoma cells will help us better understand the
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role of miRNAs in regulating stress and apoptosis.

Our work has also shown that AAGUGC miRNAs can affect apoptosis by
downregulating the expression of certain proapoptotic factors (Casp2 and Ei24) that are
direct targets of the miRNAs. Recent studies suggest an interesting link between
apoptosis and ES cell differentiation. Upon DNA damage, induced P53 was found to
suppress Nanog transcription, and induce differentiation (Lin et al. 2005). Additionally,
activated Casp3 can induce the cleavage of NANOG protein (Larsen et al. ; Fujita et al.
2008). These observations present an alternative for ES cells to maintain genetic
stability by differentiating into other cell types. However, future studies will need to

address how cells decide to undergo apoptosis or differentiation upon DNA damage.

miRNAs in placental development

The Sfmbt2 miRNA cluster is a maternally-imprinted, mouse-specific miRNA
cluster that has affected the evolution of mouse 3' UTRs. Many mRNAs that have been
positively selected to gain target sites to this cluster are enriched in pathways regulating
cell growth and apoptosis, suggesting that the miRNA cluster can promote murine
placental growth. However, our study opens up more questions on the role of the Sfmbt2
miRNA cluster in placental development.

Although we have tested a few mouse-specific Sfmbt2 miRNA targets in Dcr KO
ES cells, further experiments are required to demonstrate their relevance in regulating
placental growth. First, target repression by Sfmbt2 miRNAs needs to be confirmed in
trophoblast stem cells or choriocarcinoma cell lines. Since our preliminary data suggest
that mouse-specific target sites confer weak repression, it will be useful to focus on
mRNAs that have multiple miRNA binding sites with favorable 3' UTR context. Gain and
loss of function experiments can then be performed in cell cultures to address their

potential function in promoting cell proliferation and suppressing apoptosis.
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Sfmbt2 has been implicated in promoting placental growth, because paternal
duplication of Sfmbt2-containing regions enhanced placental growth, while maternal
duplication reduced placental growth (Cattanach et al. 2004). It will be important to
establish a direct functional link between the Sfmbt2 gene and placental growth. To this
end, we have obtained insertional gene trap mutants from the Bay Genomics consortium
to disrupt the expression of the Sfmbt2 locus. To parse the function of the miRNA cluster
from the Sfmbt2 gene, we utilized two types of insertion. An insertion upstream of the
cluster should disrupt the function of the gene and the miRNA cluster, while an insertion
downstream of the cluster should only disrupt the gene, leaving the expression of the
miRNA cluster intact. Preliminary evidence showed that while the loss of the gene alone
did not have any observable developmental defect, loss of the gene and the miRNA
cluster resulted in abnormal blastocysts resembling the Cdx2 knockout phenotype (Joel
Neilson, unpublished data). Cdx2 is a key transcription factor required for the
establishment of a functional trophectoderm. This suggests a link between the Sfmbt2
locus and trophoblast development (Beck et al. 1995; Strumpf et al. 2005). It will be
interesting to further characterize the insertional mutants to ascertain the effect and
relative contribution of the Sfmbt2 gene and miRNA cluster in placental development.

Noncoding RNAs (ncRNAs) are often associated with imprinted gene clusters. In
addition to the Sfmbt2 miRNA cluster, another large imprinted miRNA cluster has been
identified at the DIk1-Gt/2 domain, a well known maternally imprinted locus that includes
growth-promoting genes such as Peg10 (Seitz et al. 2004). Interestingly, the miRNA
cluster is transcribed from the antisense strand, and is only expressed from the maternal
allele. Several members of the cluster can bind to Peg11 mRNA (another maternally
imprinted gene) and induce its cleavage (Davis et al. 2005). This observation, along with
other examples (such as the interaction between Igf2 and Igf2R) is consistent with the

parent-conflict theory, which states that positive growth effects from paternally
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expressed genes are usually suppressed by maternally expressed imprinted genes
(Moore and Haig 1991; Reik et al. 2003). These examples raise an interesting possibility
that a maternally imprinted Sfmbt2 locus could be targeted by a paternally imprinted
gene to balance out its growth-promoting effect in placenta. Most placenta-imprinted
genes are paternally-imprinted, and they will serve as a good starting point to look for
the proposed interactions (Wagschal and Feil 2006).

The placenta is a hallmark of mammalian development (Jaenisch 1997). It is
designed uniquely to provide the fetus with nutrients, gas and waste exchange, and
protection from the maternal immune system and environmental stress (Sood et al.
2006). Since miRNAs play an important role in maintaining homeostasis and buffer cells
from aberrant environmental stimuli, we would expect miRNAs to be a central player in
placental development. However, our current understanding of miRNAs’ role in the
placenta is in its infancy. There is a lack of functional studies on placental miRNAs
(Maccani and Marsit 2009). In addition, existing miRNA expression data has been
generated from mature placenta, which provides a starting point for understanding their
role in placental development (Landgraf et al. 2007). A comprehensive set of miRNA
(and other short RNAs) expression profiles at key developmental time points of the
placenta would add another dimension of information about gene expression.

Such a comprehensive set of miRNA expression profiles, combined with other
datasets can greatly facilitate our understanding of placental function. This combination
of data can be used to address several outstanding questions. First of all, we can use
mMiRNA data to better understand the expression dynamics of the Sfmbt2 cluster and its
role throughout placental development. By examining the expression level of individual
miRNAs, we can begin to tease out the relative contribution of members of the cluster,
and look into differential regulation of the individual miRNA expression. The analysis can

be extended to other miRNA clusters expressed in the placenta. Additionally, we can
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focus on miRNAs that show enriched or dynamic expression during placental
development, and use transcriptomic data to explore their functions. Secondly, ncRNAs
have been implicated in eigenetic regulation, which is prevalent in the placenta (Maltepe
et al.; Maccani and Marsit 2009). The deep sequencing data of short RNAs, coupled with
methylation and chromatin immunoprecipitation data would enable us to explore the role
of short RNAs in regulating DNA methylation and histone modifications.

It will also be interesting to extend the study of miRNAs and other short RNAs to
human placenta, which will allow us to understand human placental development, and
gain insight into mechanisms that affect immediate and long-term health of the fetus.
Given the vast difference between murine and primate reproductive strategies, we would
expect to uncover many primate-specific miRNAs that play important roles in their
placental development. In fact, a primate-specific miRNA cluster was found to be
uniquely expressed in the placenta (Bentwich et al. 2005). The availability of
transcriptomic and noncoding RNA data during human placental development would
greatly facilitate our understanding of their functions.

In addition to the primate-specific cluster and the Sfmbt2 miRNA cluster
discussed above, an increasing number of species-specific miRNAs have been revealed
by deep sequencing studies. Our analysis in Chapter 4 revealed that targets of 32
human-specific miRNAs have evolved to preferentially lose binding sites. While some of
these miRNAs are likely to have important functions, the challenge will be to identify a
developing system in which the miRNAs are relevant. This task will become increasingly
easier as short RNAs are sequenced in multiple organisms across multiple tissues.

Overall, miRNAs are key players in all aspects of mammalian development. They
have also been shown to be involved in tumorigenesis and many developmental defects
(Stefani and Slack 2008). Since there is a close link between deregulation of normal

developmental processes and pathogenesis, our understanding of the regulatory roles of
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miRNAs in developmental networks will generate useful insights that can be applied to

the treatment of diseases.
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Figure 1. Caspase 3 activation in Mouse Sarcoma and ES cells
before and after stress induction.

(A) The percentage of cleaved Casp3 in WT (blue) and Dicer null (red) Sarcoma cells under
normal culturing conditions (left) and 19 hours after 25nM Sodium Arsenite treatment (right). (B)
The percentage of cleaved Casp3 in WT (blue) and Dicer null (red) ES cells under normal
culturing conditions (left) and 24 hours after 100nM doxorubicin treatment (right).
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