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We present the result from a precision measurement of the mass of the � lepton,M�, based on 423 fb�1

of data recorded at the �ð4SÞ resonance with the BABAR detector. Using a pseudomass endpoint method,

we determine the mass to be 1776:68� 0:12ðstatÞ � 0:41ðsystÞ MeV. We also measure the mass

difference between the �þ and ��, and obtain ðM�þ �M��Þ=M�
AVG ¼ ð�3:4� 1:3ðstatÞ � 0:3ðsystÞÞ �

10�4, where M�
AVG is the average value of M�þ and M�� .

DOI: 10.1103/PhysRevD.80.092005 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

I. INTRODUCTION

Masses of quarks and leptons are fundamental parame-
ters of the standard model. They cannot be determined by
the theory and must be measured. A precise measurement
of the mass of the � lepton is important for testing lepton
universality [1] and for calculating branching fractions that
depend on the � mass [2]. Uncertainties in the � mass have
important consequences on the accuracy of the calculated
leptonic-decay rate of the �, proportional to M5

� [3].
CPT invariance is a fundamental symmetry of any local

field theory, including the standard model. Any evidence of
CPT violation would be evidence of local Lorentz viola-
tion and a sign of physics beyond the standard model [4–7].
The most common tests of CPT invariance are measure-
ments of the differences of the masses and lifetimes of
particles and their antiparticles. The most precise test of
CPT invariance is from the measured limits of the mass
difference of neutral kaons, jMK0 �M

K0 j=MK
AVG < 8�

10�19 [8] at 90% confidence level (C.L.), where MK
AVG is

the average value of MK0 and M
K0 .

At the �ð4SÞ resonance, the cross section for eþe� !
�þ�� is 0:919� 0:003 nb [9], resulting in a very large data
sample, comparable to the number of b �b events produced.
With this data sample we can perform a pseudomass-
endpoint measurement, first used by the ARGUS
Collaboration [10] and recently by the Belle
Collaboration [11], to measure the mass of the � lepton.
Unlike the production-threshold method used by the BES
[1] and KEDR [12] experiments, this pseudomass method
has the advantage of measuring the mass of the �þ and ��
separately, which allows us to test the CPT theorem by
measuring their mass difference. This measurement was
first performed by the OPAL Collaboration [13], and the
current limit is jM�þ �M��j=M�

AVG < 2:8� 10�4 [8] at

90% C.L.: the Particle Data Group (PDG) average value of
the � mass is M�

AVG ¼ 1776:84� 0:17 MeV [8]. Tables I

and II summarize the most recent measurements ofM� and
the measured upper limits of jM�þ �M��j=M�

AVG.

The pseudomass is defined in terms of the mass, energy,
and momenta of the � decay products. For hadronic decays
of the �� (�� ! h��� and its charge conjugate), the �
mass, M�, is given by

M� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

h þ 2ð ffiffiffi
s

p
=2� E�

hÞðE�
h � P�

h cos�
�Þ

q
; (1)

where �� is the angle between the hadronic system and the
�� andMh, Eh, and Ph are the mass, energy, and magnitude
of the three-momentum of the hadronic system h, respec-
tively. The � indicates quantities in the eþe� center-of-
mass (CM) frame. In the CM frame, the energy of the � is
given by E�

� ¼
ffiffiffi
s

p
=2, where

ffiffiffi
s

p ¼ 10:58 GeV. This rela-
tion ignores initial state radiation (ISR) from the eþe�
beams and final state radiation (FSR) from the � leptons.
We also assumeM��

¼ 0. Since the neutrino is undetected,

we cannot measure the angle ��, thus we define the pseu-
domass Mp by setting �� ¼ 0

Mp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

h þ 2ð ffiffiffi
s

p
=2� E�

hÞðE�
h � P�

hÞ
q

� M�: (2)

Figure 1 shows the pseudomass distribution after apply-
ing all of the selection criteria (Sec. III) and the sharp
kinematic cutoff at Mp ¼ M�. The smearing of the end-

point and large tail in the distribution is caused by ISR and
FSR and detector resolution. The � mass is measured by
determining the position of the endpoint. We choose to use
the decay mode �� ! ���þ���� and its charge conju-
gate, since it has a relatively large branching ratio,
Bð�� ! ���þ����Þ ¼ ð8:99� 0:06Þ% [8], has a high
signal purity, and has large statistics in the endpoint region
due to the large central value and width of the mass
distribution of the 3� system.

TABLE II. Measured upper limits of the �þ and �� mass
difference at 90% C.L.

Experiment jM�þ �M��j=M�
AVG

OPAL [13] <3:0� 10�3

Belle [11] <2:8� 10�4

TABLE I. Recent � mass measurements.

Experiment M� (MeV)

BES [1] 1776:96þ0:18þ0:25
�0:21�0:17

KEDR [12] 1776:81þ0:25
�0:23 � 0:15

Belle [11] 1776:61� 0:13� 0:35
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II. THE BABAR DETECTOR AND DATASET

The data used in this analysis were collected with the
BABAR detector at the PEP-II asymmetric-energy eþe�
storage rings operating at the SLAC National Accelerator
Laboratory. We use 423 fb�1 of data collected at the�ð4SÞ
resonance corresponding to over 388 million �þ�� pairs.
For the control samples of inclusive K0

S ! �þ��, Dþ !
K��þ�þ, Dþ ! ��þ, Dþ

s ! ��þ, and their charge
conjugates used for systematic studies, we use about 100,
100, 423, and 423 fb�1 of data, respectively. The back-
ground Monte Carlo (MC) samples used for this analysis
comprise of generic eþe� ! �ð4SÞ ! B �B events simu-
lated with the EvtGen generator [14], and eþe� ! q �q
(q ¼ u; d; s; c) continuum events simulated with the
JETSET7.4 generator [15]. For simulation of � pair events

we use the MC generators KK2F [16] and TAUOLA [17], and
use PHOTOS [18] to incorporate FSR. For the extraction of
the �mass, we generate signal samples with three different
� masses (M� ¼ 1774, 1777, and 1780 MeV), each com-
parable in event totals to the data sample. The BABAR
detector and its response to particle interactions are mod-
eled using the GEANT4 simulation package [19].

The BABAR detector is described in detail elsewhere
[20]. The momenta of the charged particles are measured
with a combination of a five-layer silicon vertex tracker
(SVT) and a 40-layer drift chamber (DCH) in a 1.5 T
solenoidal magnetic field. A detector of internally reflected
Cherenkov radiation is used for charged particle identifi-
cation. Kaons and protons are identified with likelihood
ratios calculated from dE=dx measurements in the SVT
and DCH, and from the observed pattern of Cherenkov
light in the detector of internally reflected Cherenkov
radiation. A finely segmented CsI(Tl) electromagnetic
calorimeter is used to detect and measure photons and
neutral hadrons, and to identify electrons. The instru-
mented flux return contains resistive plate chambers and

limited streamer tubes [21] to identify muons and long-
lived neutral hadrons.
The most critical aspect of this analysis is the recon-

struction of the charged particle momenta. Tracks are
selected using the information collected by the SVT and
DCH using a track finding algorithm: they are then refit
using a Kalman filter method to refine the track parameters
[22]. This algorithm corrects for the energy loss and mul-
tiple scattering of the charged particles interacting with the
detector material and for any inhomogeneities of the mag-
netic field according to a detailed model of the tracking
environment. Since the energy loss depends on particle
velocity, the Kalman filter is performed separately for
five mass hypotheses: electron, muon, pion, kaon, and
proton. The main components of the detector to be mod-
eled for charged particle tracks originating from the vicin-
ity of the interaction point are the 1.4 mm thick beryllium-
beam pipe and 1.5 mm of cooling water at a radius of
2.5 cm, five layers of 300 �m thick silicon at radii of
3.3 cm to 15 cm, a 2 mm thick carbon-fiber tube at
22 cm that is used to support the SVT, and a 1 mm thick
beryllium tube at 24 cm that makes up the inner wall of the
DCH. Detailed knowledge of the material in the tracking
volume and the magnetic field is crucial to accurate mo-
mentum reconstruction [23]. This information is based on
detailed information from engineering drawings and mea-
surements taken both before and after the commissioning
of the detector.

III. ANALYSIS METHOD

For our event selection, we require exactly four tracks in
the event, none of which is identified as a charged kaon or
proton. We veto events with K0

S ! �þ�� candidates with

an invariant mass within �25 MeV of the nominal K0
S

mass [8] and �0 ! �� candidates constructed with pho-
tons with CM energy greater than 30 MeVand an invariant
mass in the range 100 MeV � M�� � 160 MeV. We re-

quire the total charge of the event to be zero. We divide the
event into two hemispheres defined by the plane perpen-
dicular to the event-thrust axis in the CM frame, which is
calculated using all tracks and photon candidates. One
hemisphere of the event, the tag side, must have a single
track identified as either an electron or muon, and in the
opposite hemisphere, the signal side, we require three
charged tracks, none identified as a lepton. In addition to
the �0 veto, we require the number of photons with CM
energy greater than 50 MeV on the signal side to be less
than 5 and the total photon energy on the signal side to be
less than 300 MeV to further reduce sources of background
with one or more neutral pions.
To reduce background events from two-photon pro-

cesses, we apply six additional selection criteria. We re-
quire the total reconstructed energy of the event to be
within the range 2:5 GeV � E�

tot � 9:0 GeV and the thrust
magnitude to be greater than 0.85, where these quantities
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FIG. 1 (color online). Pseudomass distribution. The points are
data, the solid area is the background estimated from MC, and
the dashed vertical line represents the PDG average value of the
� mass [8]. Note the sharp edge of the distribution at the � mass.
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are calculated with all tracks and neutrals with CM energy
greater than 50 MeV. We require the tag lepton to have an
energy less than 4.8 GeV, the energy of the three-pion
system on the signal side to be 1:0 GeV � E�

3� �
5:2 GeV, and the reconstructed mass of the 3� system to
be greater than 0.5 GeV. We also require the polar angle of
the missing momentum to be in the range �0:95 �
cos��miss � 0:92.

We define our fit region to be 1:68 � Mp � 1:86 GeV.

After all requirements, our signal efficiency is 2.0% and the
purity of our sample is 96%. Our largest background is
�� ! 2���þ�0��, where the �0 is not reconstructed.
The total number of events in the data is 3:42� 105,
3:40� 105, 3:52� 105, and 3:29� 105 for the �þ, ��, e
tag, and � tag, respectively.

We use three MC samples with different �masses (1774,
1777, and 1780MeV) to empirically determine the relation
between the pseudomass endpoint and the �mass, account-
ing for the smearing due to resolution and ISR or FSR
effects.

To determine the endpoint from the pseudomass distri-
bution, we perform an unbinned-maximum-likelihood fit
to the data using an empirical function [11] of the form

FðxÞ ¼ ðp3 þ p4xÞtan�1

�
p1 � x

p2

�
þ p5 þ p6x; (3)

where x is the pseudomass, and the pi are free parameters
of the fit. Only the position of the endpoint, p1, is important
in determining the � mass, as the shape of the distribution
does not affect the edge position since the correlation
between p1 and the other parameters is small.

Figure 2 shows the pseudomass distributions from the
three MC samples, with the shift in the edge clearly visible.
We fit each one of the MC distributions, and Fig. 3 shows
the fit results for p1 versus the generated � mass. In the
absence of ISR or FSR effects and with perfect detector

resolution we would expect the relation between the p1 fit
result and generated � mass to be linear with a slope of
unity and y� intercept ¼ 0. With the inclusion of the ISR
and FSR effects and detector resolution, we expect the
relationship to still be linear with a slope of unity but to
have a nonzero offset. We fit the results to a linear function,
ðp1 � 1777 MeVÞ ¼ a1ðMg � 1777 MeVÞ þ a0, where

Mg is the generated � mass, and a0 and a1 are free

parameters of the fit. The results of the straightline fit are
a1 ¼ 0:96� 0:02 and a0 ¼ 1:49� 0:05 MeV. We use the
results from the straightline fit to determine the value of the
� mass from the endpoint fit of the data.
To determine the mass difference, we split our data

sample into two sets based on the total charge of the
three-pion signal tracks. We use the combined fit results
for a1 and a0 to determine the mass of �þ and ��. As a
cross check, we split our MC in the same way and repeat
the procedure described above for each sample. We find the
individual fit results for a1 and a0 to be within one sigma of
the combined fit results.

IV. TRACK MOMENTUM RECONSTRUCTION

A previous analysis [23] of BABAR data has revealed
that the track reconstruction procedure leads to systematic
underestimation of the individual track momentum. This
effect is not observed for MC simulation. There are two
potential sources of bias in the track momentum measure-
ment: errors in the detector model which could lead to a
momentum-dependent bias, and incorrect modeling of the
magnetic field strength in the tracking volume, which leads
to a bias independent of momentum. We use a K0

S !
�þ�� control sample to investigate this bias and deter-
mine a correction. The K0

S daughter pions have a momen-

tum distribution similar to the pions in our signal sample,
and the long flight length of the K0

S is ideal for studying the
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FIG. 2 (color online). Pseudomass endpoint distributions from
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energy loss correction used by the reconstruction algo-
rithm. The K0

S candidates are reconstructed from two op-

positely charged tracks that have an invariant mass within
25 MeV of the nominal K0

S mass value [8]. This sample

comprises 2:96� 106 K0
S candidates. We determine the K0

S

mass by performing a maximum-likelihood fit to the data
using a function which is a sum of two Gaussian distribu-
tion functions with a common mean and different widths,
and a second order polynomial to describe the background.
The background is relatively flat and does not affect the
measurement of the K0

S mass. We increase the amount of

SVT material, the strength of the solenoid field, and the
strength of the field due to the magnetization of the beam-
line dipole magnets inside the detector model to correct the
reconstructed track momenta. The increases of the material
in the SVTand the strength of the solenoid field are chosen
to improve the agreement of the reconstructed K0

S mass

with the world average value [8]. These increases are larger
than the estimated uncertainties. In the following we detail
the procedure to derive these corrections.

A. Energy loss

Track momenta are corrected for energy loss by the
Kalman filter procedure. The amount of energy a particle
loses due to material interactions depends on the nature and
amount of material traversed and the type and momentum
of the particle. Thus, any error in the estimated energy loss
will vary with the amount of material the track traverses
and the laboratory (lab) momentum of the track.

There is clear evidence that track momenta are under-
estimated for our nominal reconstruction procedure, as
shown in Fig. 4. The K0

S sample, as a function of the

decay-vertex radius, ranges in purity from 7% to 91%,
with the lowest purity arising from the interaction region,
when the candidates have very short flight distances. The
larger the radial distance of the K0

S decay vertex, the less

material the charged pions traverse, decreasing the size of
the energy-loss correction. The largest deviation is seen for
those events where the K0

S vertex is closest to the interac-

tion region. This dependence of the reconstructed K0
S mass

on the amount of material traversed by the pions demon-
strates that the energy-loss correction is underestimated.
Figure 4 also shows theK0

S mass as a function of the K0
S lab

momentum: the purity of the sample ranges from 14% to
83%with increasing momenta. We see that lower momenta
K0

S particles have masses further from the expected K0
S

mass than high momenta ones, since the energy-loss cor-
rections are greater for the lower momenta particles, be-
cause the K0

S decay-vertex radius and K0
S momentum are

correlated.
We study two possible corrections to the energy-loss

underestimation: increasing the amount of SVT material
by 20% and increasing the amount of material in the entire-
tracking volume by 10% [23]. For each correction, we
increase the density of the corresponding detector material

by the indicated amount and repeat the Kalman filter
procedure again. Figures. 4 and 5 show the resulting K0

S

mass variations after these corrections. In the case where
the entire-tracking-volume is increased, we observe that
the K0

S mass variation with the decay-vertex radius is flat,

but the K0
S mass is over-corrected at lower momenta. A

smaller correction of the entire tracking material could be
used to flatten the K0

S mass variation with the momentum,

but then theK0
S mass variation with the decay-vertex radius

would no longer be flat. Therefore, we do not use the
increase of the entire tracking material in our correction.
In the case where the SVT material is increased, we
observe that the K0

S mass variation with decay-vertex ra-

dius and momentum is substantially reduced and flat. This
reduction and flattening of the dependence of the recon-
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FIG. 4 (color online). Fitted K0
S mass vs decay-vertex radius

(top panel) and K0
S lab momentum (bottom panel). On the

vertical axis, the PDG average value of the K0
S mass [8] has

been subtracted from the fitted value. The points show the
normally reconstructed data events, the open circles show the
data reconstructed with 20% more SVT material, and the shaded
region is the error on the nominal K0

S mass [8]. The dependence

of the K0
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to the underestimation of the energy loss by the reconstruction
procedure.
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structed K0
S mass on the vertex position and momentum is

our motivation for applying this correction to our material
model. The estimated uncertainty in the SVT material is
about 4.5% as determined from detailed analyses of the
composition of the SVT and its electronics: the 20% in-
crease significantly exceeds this estimated uncertainty. We
apply it as a simplified method to account for this and all
other uncertainties in the energy loss estimation. The un-
certainty in this simple correction accounts for the largest
uncertainty in the � mass measurement.

B. Magnetic field

After the SVT energy-loss correction, we find that the
K0

S mass is still underestimated. In order to further correct

the K0
S mass, we consider two possible sources of error:

uncertainty in the 1.5 T solenoidal magnetic field that runs
parallel to the beam axis and the perturbation to this field
due to the magnetization of the magnetic materials com-

prising the beamline dipole magnets (BDM) due to the
solenoid field.
The BDM are permanent magnets, made of samarium-

cobalt, the closest of which is located 20 cm away from the
interaction region. The fringe fields from these magnets in
the interaction region are small and have been well mea-
sured; however the magnetic field due to the magnetization
of these magnets by the solenoid field is not well known.
The permeability of the BDM material was not measured
before the commissioning of the detector, and subse-
quently variations in the susceptibility of �20% with
respect to the average value (þ 0:14) have been found
within the individual small blocks used to construct the
BDM. The field in the tracking volume due to the magne-
tization was estimated from measurements made at two
points near the BDM, using Hall and nuclear magnetic
resonance probes, followed by finite element calculations
that depend on the permeability of the magnets. In 2002,
the probes were moved and the field was remeasured at two
new points. At one point, there was good agreement with
expectation, but at the other point the overall value of the
field strength was 0.4% higher than expected. We increase
the field due to the magnetization of the BDM by 20% to
account for the variation of the measured permeablility of
these magnets and the observed discrepancy between the
measured and estimated fields, in order to improve the
agreement of our reconstructed K0

S mass with the world

average value [8]. Figure 6 shows the effect of the increase
on the K0

S mass as a function of the K0
S momentum mea-

sured in the lab frame.
The solenoid field was very accurately measured with an

uncertainty of 0.2 mT prior to the installation of the BDM
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the shaded region is the error on the nominal K0

S mass [8].
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during the commissioning of the detector. To further cor-
rect the K0

S mass, we increase the solenoid field by 0.02%,

and then refit the tracks. Figure 6 shows the effect of this
increase. This increase is larger than the measured uncer-
tainty in the solenoid field, but it further improves the
agreement of our reconstructed K0

S mass with the world

average value [8]. Table III shows that this increase, in
conjunction with the increases of the SVT material and the
BDM magnetization field, shifts the K0

S mass so that it is

consistent with the world average value [8].

C. Momentum reconstruction correction

We study the overall corrections described above for K0
S

and D� decays. These corrections affect the reconstructed
masses in different ways. Although the size of the correc-
tion varies depending on the decay kinematics, decay
mode, and the mass of the particle being reconstructed,
the masses of our test samples are consistent with the world
averages after the corrections are applied. To determine the
size of a correction, we increase the amount of SVT
material, the field due to the BDM, and the solenoid field
strength in three separate simulations. For each of these
simulations we refit each pion track using the Kalman fit
procedure described above, and recalculate the recon-
structed mass. The overall mass correction is taken as the
sum of the three individual mass shifts, and the corrected
mass is determined by adding the correction to the mass
determined with the normal reconstruction. Figure 7 shows
the corrected K0

S mass as a function of the K0
S decay-vertex

radius and momentum in the lab frame. This method
improves the agreement of our measured K0

S mass with

the world average. Table III shows the individual correc-
tions as well as the overall correction for the K0

S mass.

We also apply this method to the decay Dþ !
K��þ�þ and its charge conjugate. We perform a vertex
fit to the three tracks and require the vertex probability to
be greater than 0.1%. We also require the mass of the
candidate to be in the range 1:84 GeV � MD �
1:90 GeV. To determine the mass of the D meson, we
perform a maximum-likelihood fit to the K�� mass dis-
tribution using a function which is a sum of two Gaussian
distribution functions with a common mean and different

widths and a second order polynomial to describe the
background. Table IV summarizes the result of the fits
with the normal reconstruction and modified detector
model. We find that the measured mass using the normal

TABLE III. Shifts in the measured mean value of the K0
S mass

when each track reconstruction correction is applied separately
and comparison with the nominal value [8].

Fit MK0
S
(MeV) Mass Shift (MeV)

Default Reconstruction 497.323 -

SVT Material þ20:0% 497.477 þ0:154
Solenoid Field þ0:02% 497.383 þ0:060
BDM Field þ20:0% 497.382 þ0:059
Fully Corrected 497:596� 0:006 -

PDG Average 497:614� 0:024 -
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FIG. 7 (color online). Fitted K0
S mass vs decay-vertex radius

(top panel) and lab momentum (bottom panel). On the vertical
axis, the PDG average value of the K0

S mass [8] has been

subtracted from the fitted value. The points show the normally
reconstructed data, the triangles show the data after the correc-
tion from the increased material and magnetic-field strengths has
been applied, and the shaded region is the error on the nominal
K0

S mass [8].

TABLE IV. Shifts in the measured mean value of the D� mass
when each track reconstruction correction is applied separately
and comparison with the nominal value [8].

Fit MD� (MeV) Mass Shift (MeV)

Default Reconstruction 1868.70 -

SVT Material þ20:0% 1869.17 þ0:47
Solenoid Field þ0:02% 1869.00 þ0:30
BDM Field þ20:0% 1869.00 þ0:30
Fully Corrected 1869:77� 0:04 -

PDG Average 1869:62� 0:20 -
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reconstruction differs by �0:92 MeV relative to the world
average value of 1869:62� 0:20 MeV [8]; after applying
the correction, the difference is reduced toþ0:15 MeV, in
very good agreement within the current uncertainties.

We apply this method to the events in the sample of
�� ! ���þ���� and its charge conjugate and obtain a
correction of þ0:63 MeV for the � mass. Table V shows
the individual shifts on the � mass.

D. Charge asymmetry

The �þ and �� tracking efficiencies differ because of
different cross sections for interactions of low-momentum
�þ and�� with the detector material [8]. This could cause
differences between the reconstruction efficiencies for
�þ ! ���þ�þ ��� and �� ! ���þ����. A difference
in the reconstruction efficiency for the �þ and �� might
introduce a dependence of the reconstructed � mass on the
� momentum and thus might result in an artificial mass
difference.

To estimate any charge asymmetry in the track recon-
struction procedure, we measure the mass difference in
several control samples: Dþ ! K��þ�þ, Dþ ! ��þ,
Dþ

s ! ��þ, and their charge conjugates. The momentum
spectra of the daughter pions in the � signal sample are
similar to the spectra in the three control samples. The
selection criteria for the Dþ ! K��þ�þ and charge con-
jugate modes are described in Sec. IVC. The � candidates
are reconstructed from two oppositely charged kaons, and
the reconstructed mass of the � candidate is required to be
within�12 MeV of the nominal value [8]. To reconstruct a
D or Ds candidate, the two kaon tracks from the � candi-
date are combined with a pion track, and the three tracks
are required to have a vertex probability greater than 0.1%.
The D and Ds candidates are required to have a CM
momentum greater than 2.4 GeV to further reduce back-
grounds. The D and Ds candidates are required to have an
invariant mass within the range 1:85 GeV � MD �
1:90 GeV and 1:95 GeV � MDs

� 1:99 GeV. For the

three samples, respectively, the total numbers of events
are 4:5� 106, 1:7� 106, and 2:2� 106, and the purities
are 33%, 90%, and 87%. To determine the masses, we
perform a maximum-likelihood fit to each three-particle
invariant-mass distribution, again using a sum of two
Gaussian distribution functions with a common mean and

different widths and a second order polynomial back-
ground function. Table VI shows the observed mass dif-
ference, �M � MXþ �MX� , for each of the three decay
modes, where X is the particle whose mass is measured.
The results are consistent with zero difference. Thus, we do
not make any correction and use these results to determine
the systematic uncertainty in M�þ �M�� due to the pos-
sible residual uncertainty in tracking. As a cross check, we
perform the study on a sample of Dþ ! ��þ, Dþ

s !
��þ, and charge conjugates where we do not constrain
the momentum of the D and Ds. We find the mass differ-
ence of these samples is consistent with the results using
the samples that have a D and Ds momentum constraint.

V. RESULTS

Figure 8 shows the pseudomass distribution of the com-
bined �þ and �� samples compared to the fitted distribu-
tion. The fitted value of the endpoint position is
p1 ¼ 1777:58� 0:12 MeV. Using the MC results for a0
and a1 and applying the reconstruction procedure correc-
tions described in Sec. IVC, we obtain M� ¼ 1776:68�
0:12 MeV, where the error is statistical only.
Figure 9 shows the resulting pseudomass distribution

from subtracting the �� distribution from the �þ distribu-
tion. We measure p1ð�þÞ to be 1777:29� 0:16 MeV and
p1ð��Þ ¼ 1777:88� 0:17 MeV. Applying the above pro-

TABLE V. Observed shifts for M� in the data due to each
correction applied to the reconstructed track momenta separately
and total correction.

Detector Parameter M� Shift (MeV)

SVT Material þ20:0% þ0:31
Solenoid Field þ0:02% þ0:11
BDM Field þ20:0% þ0:21
Correction þ0:63

TABLE VI. �M for the D� and D�
s meson control samples

used to study the possible charge asymmetry.

Sample Mass Difference (MeV)

Dþ ! K��þ�þ �0:04� 0:03
Dþ ! ��þ þ0:06� 0:04
Dþ

s ! ��þ þ0:10� 0:05
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FIG. 8 (color online). Combined �þ and �� pseudomass end-
point distribution. The points show the data, the curve is the fit to
the data, and the solid area is the background. The inset is an
enlargement of the boxed region around the edge position
showing the fit quality where p1 is most sensitive.
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cedure, we find M�þ ¼ 1776:38� 0:16 MeV and M�� ¼
1776:99� 0:17 MeV, where the errors are statistical only.
Thus, M�þ �M�� ¼ �0:61� 0:23ðstatÞ MeV. Figure 10
shows the pseudomass threshold region, where the ��
distribution is clearly shifted to a higher mass relative to
the �þ distribution.

VI. SYSTEMATIC STUDIES

Table VII summarizes the estimated systematic uncer-
tainties in M�.

The largest source of error in the � mass measurement
arises from the momentum-reconstruction uncertainty. The
increases in the SVT material and magnetic-field strengths
are applied to obtain a better agreement of the recon-
structed K0

S mass with the nominal K0
S mass [8], but the

actual cause of the discrepancy is still unknown. The effect
of the induced magnetization of the BDM on the magnetic

field in the tracking volume has never been measured, and
the discrepancy between the actual field and modeled field
is unknown. Although there is no evidence of any mis-
modeling of the solenoid field, we increase the field by
0.02%, which is larger than the measured uncertainty of the
field, 0.013% (0.2 mT). The simulation of the SVTmaterial
is believed to be accurate to within 4.5%, but the increase
we use is substantially larger. To account for the uncer-
tainty of the momentum reconstruction we add the mass
shifts originating from these corrections in quadrature.
This results in the dominating systematic uncertainty of
�0:39 MeV. The systematic uncertainties are summarized
in Table V.
Another important source of systematic error comes

from the uncertainty in the absolute scale of the eþe�
CM energy. From the error propagation of Eq. (2), we find

�ðMpÞ ¼ E�
h � P�

h

Mp

�ð ffiffiffi
s

p
=2Þ: (4)

Near the endpoint of the pseudomass distribution, E�
h �ffiffiffi

s
p

=2, and M�
h � M�, so that �ðM�Þ � 0:17�ð ffiffiffi

s
p

=2Þ.
The eþe� CM energy calibration has been seen to drift

over time due to changing beam conditions. Over a two-
year period of data taking, the calibration had drifted by
�2:6 MeV. We exploit the fact that the �ð4SÞ resonance
decays exclusively to b �b pairs and calibrate

ffiffiffi
s

p
=2 based on

the measured invariant mass of fully reconstructed B me-
son decays using the equation

MB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

s
p

=2Þ2 � P�2
B

q
; (5)

where MB and PB are the mass and reconstructed momen-
tum of the B meson. We reconstruct a dozen hadronic B
decay modes and divide the data into subsamples of 2500
candidates each. We then perform a maximum-likelihood
fit to the reconstructed mass distribution for each subsam-
ple to extract the central value ofMB and then adjust

ffiffiffi
s

p
=2

to obtain the world average B meson mass [8]. We apply
this correction to the value of

ffiffiffi
s

p
=2 for all data taken during

the time period corresponding to each subsample. The
statistical uncertainty of this correction is negligible, so
the only uncertainty in

ffiffiffi
s

p
=2 is due to the error in the PDG

average value of the B meson mass (0.5 MeV) [8]. This
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FIG. 9. Resulting pseudomass distribution from subtracting the
�� distribution from the �þ distribution.

Pseudomass (GeV)

1.774 1.776 1.778 1.78 1.782 1.784 1.786

E
ve

nt
s/

(2
 M

eV
)

2000

2500

3000

3500

Pseudomass (GeV)

1.774 1.776 1.778 1.78 1.782 1.784 1.786

E
ve

nt
s/

(2
 M

eV
)

2000

2500

3000

3500

1.774 1.776 1.778 1.78 1.782 1.784 1.786

2000

2500

3000

3500

FIG. 10 (color online). Pseudomass distributions for the �þ
and �� in the region around the pseudomass threshold region.
The open circles and solid points show the �þ and �� distribu-
tions, respectively. The curves show the results of the fits to the
data.

TABLE VII. Systematic uncertainties in M�.

Source Uncertainty (MeV)

Momentum Reconstruction 0.39

CM Energy 0.09

MC Modeling 0.05

MC Statistics 0.05

Fit Range 0.05

Parametrization 0.03

Total 0:41
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uncertainty in
ffiffiffi
s

p
=2 corresponds to a systematic uncer-

tainty in M� of 0.09 MeV.
Since we have a limited number of MC events, there are

statistical errors associated with the straightline fit parame-
ters a0 and a1 (Fig. 3). These errors introduce a systematic
error in M� of �0:05 MeV.

We also consider alternatives for the pseudomass fit
parametrization [Eq. (3)], by fitting with two other func-
tions [11]:

F1ðMpÞ ¼ ðp3 þp4MpÞ
Mp �p1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þðMp �p1Þ2
q þp5 þp6Mp

(6)

and

F2ðMpÞ ¼ ðp3 þ p4MpÞ �1

1þ exp
Mp�p1

p2

þ p5 þ p6Mp:

(7)

We repeat the fitting procedure with F1 and F2 and obtain
shifts inM� of �0:02 MeV andþ0:02 MeV, respectively.
We add the shifts in quadrature and find�0:03 MeV as the
systematic uncertainty.

We also investigate the choice of fit range. We applied
the procedure discussed in Sec. III using toy MC samples,
refitting each sample with various fit ranges. We take the
largest shift, 0.05 MeV, as the systematic uncertainty.

We study the effect of the MC modeling of the three-
pion mass distribution in tau decays. We find that the peak
of the distribution in MC is about 300 MeV lower than that
in the data, while the widths of the distributions are similar.
The MC modeling for the �� ! ���þ���� and its
charge conjugates is based on 16 form factors [24] deter-
mined from low statistics data from the LEP and CLEO
experiments: measuring the form factors is a very challeng-
ing task that has not yet been performed on the high
statistics data collected by BABAR. Although there is this
discrepancy, we find that the pseudomass distribution in
MC is similar to that in data. To test for possible effects in
the endpoint of the pseudomass distribution due to the
modeling of the 3� invariant mass, we generate four toy
MC samples, varying the mean and width of the 3� mass
by �300 MeV. We find that the shifts in the pseudomass
endpoint are consistent with zero, but we conservatively
take the average of these shifts, 0.05 MeV, as the system-
atic uncertainty due to the MC modeling.

We also investigate the choice of background estimation
and pion misidentification and find the effects on the fit
result are negligible. We also find the error due to the
uncertainty in the boost of the CM frame and the uncer-
tainty in the MC modeling of the track resolution to be
negligible.

We have assumed that the neutrino mass is zero even
though the PDG limit for the direct measurement isM��

<

18:2 MeV [8]. Neutrino experiments [25] have measured
differences in the mass squared between the three neutrinos
to be much less than 1 eV2 [26]. Direct measurements of
M�e

< 2 eV [8] thus suggest that the mass of the � neutrino

is Oð<1 eVÞ. We perform MC studies on the effect of
the neutrino mass on the � mass determination and find
that a 1 MeV neutrino mass would bias our result by
�0:02 MeV.
All of the systematic effects listed above cancel in the

�þ and �� mass-difference measurement. An additional
systematic arises from the possible charge asymmetry dis-
cussed in Sec. IVD. To study this effect, we measure the
mass differences for charged D and Ds mesons, which are
presented in Table VI. We take a weighted average of the
absolute values of the mass differences, 0.06 MeV, as the
resulting systematic uncertainty. As a cross check of the �
sample, we studied the mass difference M�þ �M�� sepa-
rately for the e and � tags, before and after the 20%
increase of the SVT material, and find consistent results.

VII. CONCLUSIONS

In summary, we have measured the mass of the tau
lepton to be 1776:68� 0:12ðstatÞ � 0:41ðsystÞ MeV,
where the main source of uncertainty originates from
the uncertainty in the reconstruction of charged particle
momenta. This result is in agreement with the world aver-
age [8].
We measure the mass difference of the �þ and �� to be

�0:61� 0:23ðstatÞ � 0:06ðsystÞ MeV, or ðM�þ �
M��Þ=M�

AVG ¼ ð�3:4� 1:3ðstatÞ� 0:3ðsystÞÞ� 10�4. We

use our result to calculate an upper limit on the mass
difference, jM�þ �M��j=M�

AVG < 5:5� 10�4 at 90%

C.L. We find our measurement is consistent with the
previously published results made by the Belle
Collaboration. We perform parametrized MC studies to
determine the significance of our result of the mass differ-
ence. We generate 4500 samples each for the �þ and ��
with the masses of each sample set to the value extracted
from the combined data sample, 1776.68 MeV. The
samples are generated with the same number of events as
the number of events in the data. We fit each sample and
calculate the mass difference between the �þ and ��
samples. We also repeat the procedure using an alternative
parametrization [Eq. (6)], and determine that the two pa-
rametrizations give consistent results. We find, assuming
no CPT violation, that there is a 1.2% chance of obtaining
a result as different from zero as our result.
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