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Abstract

We present a high order accurate streamline-upwind/Petrov-Galerkin (SUPG) algorithm for the solution of

the compressible Euler and Navier-Stokes equations. The 
ow equations are written in terms of entropy

variables which result in symmetric 
ux Jacobian matrices and a dimensionally consistent Finite Element

discretization. We show that solutions derived from quadratic element approximation are of superior quality

next to their linear element counterparts. We demonstrate this through numerical solutions of both classical

test cases as well as examples more practical in nature.
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1 Introduction

This paper centers upon a high-order accurate, stabilized, �nite element method for the numerical solution

of the compressible Euler and Navier-Stokes equations. The SUPG �nite element method for compressible


ow simulations was initially developed and analyzed by Hughes et al. [3, 4, 5, 2] and has since gained

signi�cant popularity. Its relation to multidimensional upwinding was elucidated in [9, 10] and higher order

implementations for inviscid 
ows were presented in [6]. In [1], the SUPG algorithm was extentded to cover

the simulation of near-incompressible 
ows by employing a stabilization matrix which exhibits proper scaling

over the entire range of Mach numbers. Here, we focus on the higher order implementation of the algorithm

developed in [1] for invicid and viscous 
ows.
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2 Compressible 
ow governing equations

We start from the time dependent two dimensional compressible Euler equations in conservation form

U;t + (F�Fv)1;1 + (F�Fv)2;2 = 0; (1)

where
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In the above expressions, � is the density; u = [u1; u2]
T is the velocity vector; E is the speci�c total energy;

p is the pressure; and the comma denotes partial di�erentiation (e.g. U;t = @U=@t, the partial derivative

with respect to time, Fi;j = @Fi=@xj , the partial derivative with respect to the j-th spatial coordinate). The

system of equations is closed once the pressure is related to the problem variables through the equation of

state, p = (
 � 1)�e, where e = E � juj2=2, is the internal energy. Here, 
 is the ratio of speci�c heats and

� is the absolute viscosity, both of which are assumed to be constant. Following the usual assumptions:
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We will assume that all the above quantities have been non-dimensionalized using reference, or free stream,

values for density ��, velocity u�, and length L. Thus, the dimensional variables, denoted with an overbar,

are related to the non-dimensional variables introduced above as
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We note that the equation system (1) can be written as

U;t +A1U;1 +A2U;2 = (K11U;1);1 + (K12U;2);1 + (K21U;1);2 + (K22U;2);2; (2)
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where the Jacobian matrices Ai = Fi;U, i = 1; 2, are unsymmetric but have real eigenvalues and a complete

set of eigenvectors. Kij = Fv
i;U;j

are the viscous 
ux jacobians. The above equation may be symmetrized

through a change of variables, for details, we refer the reader to [5, 7].

2.1 Entropy variables

We seek a new set of variables V, called entropy variables, such that the change U = U(V) applied to (1)

yields the transformed system

A0V;t + ~A1V;1 + ~A2V;2 = (~K11V;1);1 + (~K12V;2);1 + (~K21V;1);2 + (~K22V;2);2; (3)

where A0 = U;V is symmetric positive de�nite, and ~Ai = AiA0 = Fi;V, i = 1; 2, are symmetric.

Following [7], we introduce a scalar entropy function H(U) = ��g(s), where s is the non-dimensional

entropy s = ln(p=�
). The required change of variables is obtained by taking

V = HT
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The conditions g0 > 0 and g00=g0 < 
�1, ensure that H(U) is a convex function and therefore A�1
0 = V;U =

H;UU, and A0, are symmetric positive de�nite. Furthermore, if we chose g(s) = �s then we insure the

matrix �K

�K =

2
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3
5

is symmetric as well as positive semi-de�nite.

3 Variational formulation for the steady state problem

We now consider the compressible steady problem in conservation form expressed in terms of symmetrizing

variables. The conservative form of the equations is taken to be the starting point because we are ultimately

interested in an algorithm that can be used over the whole range of speed regimes, including situations were

the solution may contain discontinuitites. The problem is de�ned in a domain 
 with boundary � by

(F+Fv)1(V);1 + (F+Fv)2(V);2 = 0 in 
; (5)

~A�
nV = ~A�

n g on �n�a; (6)

Fv � n = f on �a (7)

For simplicity, the domain boundary is assumed to be made up of a solid wall �a, and a computational far

�eld boundary �n�a. In (6, 7), n = [n1; n2]
T is the outward unit normal vector to �, and ~An = AnA0,

An = A1n1 +A2n2. Finally, ~A
�
n = A�

nA0, and A
�
n denotes the negative de�nite part of An.
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Let the spatial domain 
, be discretized into non-overlapping elements Te, such that 
 =
S
Te, and

Te
T
Te0 = ;, e 6= e0. We consider the space of functions Vh, de�ned over the discretization and consisting of

the continuous functions which are piecewise linear over each element

Vh = fW jW 2 (C0(
))4; WjTe 2 (Pk(Te))
4; 8Te 2 
g:

The SUPG algorithm can then be written as: Find Vh 2 Vh such that for all W 2 Vh,

B(Vh;W)gal +B(Vh;W)supgjgls +B(Vh;W)bc = 0; (8)

where the forms B(�; �)gal, B(�; �)supg and B(�; �)bc account for the Galerkin, SUPG stabilization, and bound-

ary condition terms respectively, and are de�ned as
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and
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Z
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W � (Fff + F
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Z
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W �Fv(V; f ;n) ds: (12)

where � is the stabilization matrix. The numerical 
ux function on the far �eld boundary Fff , is de�ned by

Fff (V�;V+;n) =
1

2
(Fn(V�) + Fn(V+))�

1

2
jAn(V

�(V�;V+))j(V+ �V�):

Here, jAn(V)j = A+
n (V)�A�(V) is the absolute value of An evaluated at V�, and V�(V+;V�), is the an

average between the states V+ and V�. The average state, V�, is chosen to ensure the global stability of the

algorithm [6]. For inviscid compuations, the viscous terms in the expressions above would of course, vanish.

For viscous simulations, Dirichlet boundary conditions may replace portions of the boundary integral.

4 De�nition of �

The de�nition of � follows that of [1]. The following modi�cation is made for viscous simulations:

�
�1 = � i

�1 + � v
�1

where � i is the stabilization de�ned in [1] and � v is de�ned as:

� v
�1 = 2(~K11 + ~K22)=he

2
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5 Numerical results

In this section we present some numerical results that illustrate the performance of the proposed algorithm.

Test problems were solved employing both linear and quadratic element approximations. For comparative

purposes, the meshes used for all linear element approximations were obtained by subdividing each element

of the corresponding quadratic element mesh into four linear elements. In this way, comparisons between P1

and P2 solutions involving the same number of nodes can be made. hc thus represents the distance between

two nodes in the meshes used in the numerical simulations presented herein.

5.1 Example 1: Rinleb 
ow

In this example, we consider a ringleb test case (an exact solution of the Euler equations, [13]). The error

is computed in the L2 entropy norm [1]. Both P1 and P2 element approximation achieved their respective

optimal convergence rate of O(h2) and O(h3) respectively, as can be seen in �gure 1.

5.2 Example 2: Flow over an airfoil

In this example, the proposed scheme was used to simulate the 
ow over NACA 0012 airfoil at a Mach

number of 0:6, and at an angle of attack of 2Æ. In �gure 2, the L2 entropy deviation for both P1 and P2

simulations are presented. The quadratic element approximation results in a much lower level of entropy

error than its linear element counterpart. The geometric singularity at the trailing edge of the airfoil requires

a much �ner discretization around that point relative to the rest of the mesh for both the linear and quadratic

element approximations to achieve their optimal convegence rate. This is paticularly important for the P2

approximation since the error away from the geometric singularity vanishes far quicker, rendering the trailing

edge error as the dominant source of error for the numerical approximation.

5.3 Example 3: Flow over 
at plate

In this example, we consider 
ow over a 
at plate of unit length. The computational domain is [�1:5; 1]�[0; 1],

with the leading edge of the plate at (0; 0). The free stream Mach number is 0:5. The Reynolds number is

raised from 8000 to 64000 in successive simulations while keeping the mesh unchanged. The results in the form

of boundary layer thickness, Æ99(x = L), are plotted in �gure 4. The quadratic element approximation yields

results very close to that of the Blasius solution while the linear element approximation shows increasing

error with rising Reynolds number. Further numerical tests have shown that it is possible to resolve the

Blasius boundary layer with only two elements when quadratic element approximation is used.
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6 Conclusion

A high-order accurate, stabilized �nite element method for the solution of compressible Euler and Navier-

Stokes equations has been presented. The advantages of quadratic element approximation over linear repre-

sentation of solution were demonstrated through a number of test problems. In particular, these numerical

tests have shown that higher-order approximation is signi�cantly more e�ective in resolving viscous boundary

layers.
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Figure 1: Top: L2 entropy norm error of ringleb 
ow solution, Bottom: Computational mesh.

8



hc

L
2

S
ge

n

0.0025 0.005 0.00750.01
10-8

10-7

10-6

10-5

P1

P2

Flow Over NACA 0012 M∝ =0.6, α=2°

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Coarse Mesh-1672 elements

Figure 2: Top: L2 entropy error of 
ow over NACA 0012 airfoil, Bottom: Computational mesh.
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Figure 3: Mach contour of 
ow over NACA 0012 airfoil, M1 = 0:6, � = 2Æ
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Figure 4: Top: Computed value of boundary layer thickness at x = 1, Bottom: Computational mesh.
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