
ASPECTS OF PLANETARY FORMATION

by

STUART JOHN WEIDENJSCHILLING

B.S., M.I.T., 1968

M.S., M.I.T., 1969

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGRJ.ELj Oj CL V \.F A %Ji %J I I AV IA

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

December, 1975
(1.P. FIesbdruau/

Signature of Author____4

DeDartment of Earth and Planetary Sciences

Certified by

Accepted by

Thesis p-e r visor

Chairman, Departmental Committee
on Graduate Students

j d ren

975

M-IrL -S



ASPECTS OF PLANETARY FORMATION

by

Stuart John Weidenschilling

Submitted to the Department of Earth and Planetary
Sciences in December, 1975 in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

ABSTRACT

The masses and orbital spacings of the planets are

the result of both the original structure of the solar

nebula and the process of planetary formation. Reconst-
ruction of the nebula from the equivalent solar-composi-
ion masses of the planets shows that Venus, the earth,

and the giant planets form a smooth trend of nebular
surface density with heliocentric distance. Mercury,
Mars, and the asteroid belt lic well below this trend,
indicating mass deficiencies. Mercury's mass may be the

result of incomplete condensation at high temperatures.
The zones of Mars and the asteroids appear to have lost

most of their orginal mass.

A self-consistent model for planetary accretion by

purely gravitational forces is developed. It is shown

that an initial relative velocity of planetesimals does

not significantly affect the time scale for accretion.
The first three terrestrial planets accrete on a time

scale of 108 yr; Mars requires mor than 109 yr. This
time scale for Mars cannot be ruled out, but is not sup-
ported by the lunar cratering record.

A planetesimal in an orbit which crosses that of a

planet may collide with the planet, or be ejected from

the solar system by a close encounter. A method is dev-

eloped for computing the probabilities of these fates.
The method avoids the use of 6pik's approximations, and

produces significantly different results. Ejection is

possible above a certain critical relative velocity, and

for encounters with a massive planet is much more prob-

able than collision. A scenario is developed in which

mass was removed from the zones of Mars and the asteroids

by a bombardment of planetesimals perturbed from Jupiter's
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zone. The critical velocity for ejection corresponds to
a minimum perihelion just outside the earth's orbit. The
bombarding planetesimals are ejected from the solar system
by Jupiter without reaching the zones of the other terr-
estrial planets. The accretion of Mars is interrupted by
the bombardment. Sweep-up of the resulting debris accounts
for late cratering of the moon and Mercury.

The encounter theory developed here is also applic-
able to the problems of origin of the comet cloud, cap-
ture of short-period comets by the giant planets, and
cratering histories of the terrestrial planets.

Thesis Supervisor:

John S. Lewis, Ph.D.
Title: Associate Professor of Geochemistry
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Preface

When attempting to construct and test a cosmogonical

theory, we face an overwhelming fundamental problem: we

know of, and can observe, only a single planetary system.

A given feature of it may be unique, or the improbable

outcome of a random process, but we are generally forced

to accept it as typical until proven otherwise. To be

viable, any theory must allow the possibility of the

details of our system. However, it would be unwise to

accept any that purports to make them inevitable. The

demonstration that something is possible, given some set

of necessarily restrictive assumptions, is no assurance

that it actually occurred in that manner. This thesis is

an attempt to construct a simple, self-consistent explan-

ation for certain features of our solar system, and is

offered in the spirit of "if..., then...". My own work

has led me to appreciate how little we really know about

the origin of the solar syatem, and how much less we can

agree upon. The thirty-eighth chapter of Job is still

recommended reading for the would-be cosmogonist.

Much of the material in this thesis has already been

published (Weidenschilling, 1974, 1975a-d). Since these

articles are readily available, they are not appended to
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this thesis. Their material appears herein what is hoped

to be logical order, with uniform notation, deletion of

superfluous material, and some afterthoughts and correct-

ions.
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I. MASS DISTRIBUTION IN THE PLANETARY SYSTEM AND

SOLAR NEBULA

A. Introduction

There are two basic methods for constructing models

of the solar nebula. In one case, the mass and general

dimensions of the nebula are specified empirically, and

the physical properties calculated by considerations of

force balances, energy transport, angular momentum, etc.

(Ter Haar, 1950; Cameron and Pine, 1973). Such models

may correspond generally to our own particular nebula,

but probably cannot reproduce it in detail. Our only

possible clue to the specific parameters of such a model

is its capability for producing the observed distri-

butions of planetary masses, compositions, and orbits.

However, the application of this test is limited by our

ignorance of the planet-forming process. The second ap-

proach starts with the planetary system and works back-

ward. One can add hydrogen and helium to each planet in

such amounts as to restore it to solar composition, and

spread its mass through some region surrounding its

orbit. A nebula constructed in such manner can, by def-

inition, reproduce any given system of planetary orbits

and masses. However, the nebular structure so derived is

entirely ad hoc, and will be in error if planetary forma-

tion was not simply the reverse of the "spreading" process.
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The two approaches are complementary, and should converge

as we improve our understanding. Kuiper (1956) constructed

a detailed nebular model by the second method. Since

then, our knowledge of planetary compostions and solar

elemental abundances has grown considerably, suggesting

a new calculation of this type. I will attempt to re-

construct empirically the mass distribution of the solar

nebula, with some estimate of the uncertainties involved

and the type of information which might be derived.

B. Computations

We can compute the equivalent solar composition mass

of a planet if we know the mass of a major constituent

element, and its solar abundance. Iron is ideal, since

most models of the terrestrial planets have involved

determination of their Fe content. Its high condensa-

tion temperature suggests that Fe was completely

condensed in all zones, except possibly that of Mercury.

Reynolds and Summers (1969) modeled the terrestrial

planets by varying the proportions of metal and silicate

phases; the composition of each phase was assumed to be

the same for all planets. They found Fe mass fractions

of 0.68 for Mercury, 0.35 for Venus, 0.38 for the earth

and 0.26 for Mars. However, Lewis (1972) has shown

that the bulk compositions of the metal and silicate

phases vary with condensation temperature (or helio-

centric distance). In particular, the retention of sulfur
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by the earth raises its mean atomic weight; the procedure

of Reynolds and Summers would overestimate the terrestrial

Fe abundance. Below its condensation temperature, the

weight fraction of Fe in the bulk condensate decreases

monotonically with temperature for any reasonable model

of nebular density (Lewis, 1975). It seems probable

that the earth's Fe content is lower than that of Venus;

I adopt 0.33 as a reasonable estimate. Siegfried and

Solomon (1974) and Johnston et al. (1974) have constructed

models of Mercury and Mars, respectively, in accordance

with Lewis' chemical models. Their estimates of Fe

content are 0.62 for Mercury, and 0.30 for Mars, which

are adopted here. New models for Venus and the earth

based on these assumptions are desirable. The range of

values among the various models suggest that the Fe

content for each planet is known to about ±10% of the

total amount. Use of Reynolds and Summers' values would

not affect the results significantly.

Neither the mass nor composition of the asteroid belt

is known with certainty. Accepting Schubart's (1974)

value of 1.96 X 10~ earth masses for Ceres, and assuming

that the entire belt is a few times more massive, I adopt

the figure of 5 X 10-4 earth masses. The present belt

may be only a remnant of a much larger earlier population.

From a study of their collisional evolution, Chapman and

Davis (1975) estimate the initial population of asteroids
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was some 300 times the present population, though they do

not rule out a still larger figure. That amount corresponds

to about 0.15 earth masses. According to Wetherill (1975a),

the present size and velocity distributions in the aster-

oid belt are not compatible with such a large population.

The majority of asteroids appear to have carbonaceous

chondritic compositions (McCord and Chapman, 1975), for

which an Fe content of 0.25 by weight is appropriate.

The zones through which the planetary matter should

be spread cannot be determined with certainty. Lecar

and Franklin (1973) suggested that the zones might lie

between the inner and outer Lagrangian points of each

planet. However, this would lead to wide gaps between

zones, while the solar nebula must have been continuous.

Their other suggestion was that the zones filled the area

between adjacent planets, with the distance to a boundary

proportional to the Lagrangian distance. In the absence

of any detailed model for planetary accumulation, I simply

take each zone boundary to lie halfway between adjacent

planets. This is certainly accurate to within a factor of

two. Mercury's zone is assumed to extend as far inward

from its orbit as outward; this is only twice the area be-

tween its perihelion and aphelion. Mars' zone extends to

the inner edge of the asteroid belt, at 2.0 AU. Adopting

Cameron's (1973a) solar abundances, with an Fe weight

fraction of 0.0012, the solar composition mass and surface
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density, as well as the surface density of solids, s*

are given in Table I.

Iron is not a significant component of the giant

planets. Current models are constructed of hydrogen

and helium in solar proportions, with cores of rocky

and/or icy matter. Detailed models of Jupiter and

Saturn have been computed by Podolak and Cameron (1974),

and by Zharkov et al. (1975). Their results are in

general agreement that both planets are enriched in

heavy elements with respect to solar composition. The

degree of enrichment is uncertain; the computed values

depend rather strongly on the assumed equation of state,

temperature boundary conditions. and H/He ratio. The

enrichment factor for acceptable models of Jupiter lies

in the range from 2 to 40; for Saturn, the range is about

10 to 60.

Podolak and Cameron also modeled Uranus and Neptune.

Using their value of 0.00343 for the weight fraction of

"rock" (metal and silicates in solar proportion) in solar

composition, their core masses correspond to about 1000-

2000 earth masses of solar material. Makalkin's (1973)

models of Neptune, and unpublished calculations for both

planets by Reynolds and Summers (1973) correspond to some-

what smaller masses. The adopted range of values in

Table II covers all models, without any choice of a "best"

value. The zone boundaries were chosen in the same way
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Table I

Terrestrial planet zones: masses and surface densities

Mass

(Earth=l)

Fe wt.% Mass

(solar comp.)

Zone

(AU)

as, g-cm
(solids)

a, g-cm
(solar comp.)

Mercury

Venus

Earth

Mars

.22-.56

.56-.86

.86-1.26

1.26-2.0

4600

2700

0.4

Asteroids

(present) .0005?

(original) .15?

0.1 2.0-3.3 .0006 0.13

25 30 2.0-3.3

28.053

.815

1

.107

1.7

225

270

900

27

0.2 40



Table II

Giant planet zones: masses and surface densities

Mass

(Earth=l)

318

14.6

Mass

(solar comp.)

600-12000

1000-6000

700-2000

Zone

(AU)

3..3-7.4

7.4-14.4

14.4-24.7

800-2000 24.7-35.5

-2a, g-cm

(solar comp.)

120-2400

55-330

15-40

10-25

Jupiter

Saturn

Uranus

Neptune 17.2



as for the terrestrial planets; the outer edge of the

asteroid belt marks the inner boundary of Jupiter's zone,

and Neptune's zone is assumed to extend as far outward

from its orbit as inward. The surface density of solids

is not given in Table II. In the zones of the giant

planets, H2 0, NH3 , and CH4 ices would be present in

varying proportions, depending on the local temperature

and pressure. Using Podolak and Cameron's abundances,

the "rock" surface density is 0.00343 times the solar

composition value. If H2 0 is fully condensed, as is 3.0

times larger; if NH3 and CH4 are also condensed, it is

4.6 times the value for "rock" alone. If H2 0 is fully

condensed in Jupiter's zone, as could equal that in the

earth's zone. If planetesimals form by the gravitational

instability mechanism of Goldreich and Ward (1973), their

masses are proportional to asa 6 . For comparable values

of as, the planetesimals in Jupiter's zone are more than

104 times as massive as in the earth's zone, possibly

approaching diameters of 100 km. Further accretion pro-

bably proceeded more rapidly than in the earth's zone;

the suggestion that Jupiter formed before the terrestrial

planets (Weidenschilling, 1974) seems reasonable. Jupiter's

heliocentric distance may have been determined by the

inner boundary of H 0 condensation in the solar nebula.
2

C. Results

The data of Tables I and II are plotted in Figure 1.
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The vertical "error bars" show only the uncertainty in

the planetary compositions. The horizontal bars show the

zone widths, and mark the mid-range of compositions.

Uncertainties in the solar abundances of heavy elements

do not seriously affect Fig. 1. A change in the adopted

solar Fe/H ratio would shift all G values for the terres-

trial planets by the same factor. The values for the

giant planets are based on the abundances of "rock-

forming" elements (principally Si and Fe) in solar-compos-

ition gas. Since the solar Fe/Si ratio is known to about

±20%, the uncertainty in normalization between the two

groups is small compared with the compositional uncert-

aiLnties for the giant planets. Better models of Jupiter

and Saturn would allow a considerable improvement in the

nebular model. A diagram similar to Fig. 1, but giving

only the surface densities of "heavy elements", and with-

out error estimates, appears in Lecar and Franklin (1973).

Even at the low resolution of these results, two fea-

tures are apparent in the reconstructed "nebula". There

are two regions of low density, one in Mercury's zone,

the other in the region of Mars and the asteroids. If the

Mars-asteroids gap is smoothed over, the general trend

from Venus to Neptune is roughly a= a -3/2. This profile

resembles quite closely the nebular models of Cameron and

Pine (1973), though the values of a shown here are smaller
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by nearly two orders of magnitude. Cameron has recently

lowered his estimate of nebular surface densities (Camer-

on and Pollack, 1975), but detailed models are not yet

available. The uncertainties in planetary compositions

and solar abundances allow a nebular mass in the range

of about 0.02 to 0.1 solar masses for our reconstructed

nebula, if all the heavy elements ended up in the planets.

The low surface density in Mercury's zone is easily

explainable. The temperature in at least part of the

zone was probably too high to allow complete condensation

of Fe. Mercury is enriched in Fe relative to silicates;

its bulk composition is compatible with such a high-temp-

erature origin (Lewis, 1972), Proximity to the sun would

also favor loss of matter by the Poynting-Robertson and

Yarkovsky effects, but these probably could not have

caused significant mass loss in the time available. An

initially higher surface density in Mercury's zone would

imply rapid accretion of the planet, on a time scale of

about 10 years (Weidenschilling, 1974). The minimum in

the zones of Mars and the asteroids is probably due to

the removal of matter, rather than a local minimum in the

nebular density. Even for the larger original population

of asteroids suggested by Chapman and Davis (1975), the

surface density is still anomalously low in the asteroid

belt. Smoothing over the gap, we can estimate that Mars
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and the asteroids should each have contained some two or

three earth masses of solid matter.

If there were nothing at all between the earth and

Jupiter, there would be no local minimum in the reconst-

ructed nebula. However, the reconstruction procedure

would then implicitly assume that matter was transported

across that region as part of the normal planet-forming

process. The existence of bodies in stable orbits there

indicates that such transport did not occur. The work of

Dole (1970) is of interest in this regard. Dole simulated

the formation of planetary systems by a Monte Carlo

method. He assumed an empirical solar nebula model in

which the surface density decreased mcnotonically with
J~v -Y . 4. 11

distance from the sun. Planetary nuclei with a range of

random orbital parameters were "injected" into the nebula

and allowed to accrete dust and/or gas in their vicinity,

according to certain simple assumptions. The resulting

planetary systems were similar to our own in numbers and

masses of planets, and mean orbital spacings. However,

Dole's simulations differ from our system in one respect.

When a is calculated for his simulated planetary systems

in the manner described above, the values show only small

deviations from the monotonic variation in the original

nebular model. There are no minima comparable to the

Mars-asteroids region. The more massive planets tend to
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be spaced more widely, minimizing the variations in the

"reconstructed" surface density values. This result

follows from his model of the planet-forming process,

which does not allow removal of matter from a planet's

zone. Dole's simulations, therefore, could not reproduce

our solar system in detail for any values of the random

input parameters.

These conclusions depend on the seemingly reasonable

assumption that the solar nebula's surface density de-

creased monotonically with distance from its center.

Some types of information cannot be recovered from any

such "reconstructed nebula". Any process of mass loss is

not detectable if it varied smooothly and monotonically

with heliocentric distance. If the sun lost an appreci-

able fraction of its mass during a T Tauri phase, all

planetary orbits would have expanded by the same factor,

which could not be inferred from Fig. 1. If Neptune orig-

inated at about 40 AU, in accordance with Bode's Law, its

distance could have decreased to its present value if it

ejected cometary bodies from the solar system by gravita-

tional perturbations in close encounters. The ejected

mass required is about one third of the planet's mass

(Safronov, 1967). The computed value of a for that case

is shown by the bent "error bar" in Fig. 1. Since the

change in a is parallel to the general trend, such a
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change in Neptune's distance could not be detected in

this way.

D. Summary

The degree of correspondence between the actual and

reconstructed solar nebulae is not certain. They will

agree in any regions which have not experienced signifi-

cant addition or removal of solid matter during the form-

ation of the planets. The observed planetary masses,

compositions, and orbital spacings are generally consist-

ent with such a model. For most of the planets, the

-3/2
computed values of a vary roughly as a , which may

be tentatively identified with the actual structure of

the original nebula. The regions of Mercury, Mars, and

the asteroids fall well below this trend. The first can

be explained by the incomplete condensation of Fe and

silicates at the high temperatures in Mercury's zone,

and possibly the loss of some matter into the sun. The

zones of Mars and the asteroids each probably contained

several earth masses of solid matter, which was removed

before massive planets could form there. In the follow-

ing chapters, I shall examine some of the consequences ,of

such a removal, and demonstrate a possible mechanism for

its occurrence.
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II. ACCRETION OF THE TERRESTRIAL PLANETS

A. Introduction

It is now generally accepted that the terrestrial

planets were formed by the accretion of many small bodies

(planetesimals). The many arguments in favor of such a

hypothesis have been reviewed by Shmidt (1958) and Saf-

ronov (1972a). The mechanism(s) and time scale for this

process are still disputed; published estimates for the

formation time of the earth range from about 103 to 108

years. The different theories reflect different emphases

and interpretations of incomplete and often contradictory

evidence. Many of these estimates arise from attempts to

explain a particular phenomenon; their relationships to a

more complete cosmogony are often poorly defined. Turek-

ian and Clark (1969) proposed rapid, inhomogeneous accre-

tion of the earth in an effort to explain its structure

and bulk chemical composition; the time scale was not

specified, except that it is required to be short compared

to the cooling time of an initially hot solar nebula.

Some consequences of this theory were considered by Ander-

son and Hanks (1972), but there has been no attempt to

make a quantitative theory of this type, or even to detail

the mechanism of accretion. Among the numerous difficult-

ies are the necessity for a high initial temperature at 1

AU, and for rapid transportation and accretion of condens-

0-24-



ation products formed in a widely dispersed state.

Hanks and Anderson (1969) proposed an arbitrary

accretion rate for the earth. The total accretion time

was treated as a free parameter, in an attempt to produce

a desired thermal history. The Hanks-Anderson accretion

rate has been used for thermal history models of other

bodies (Johnston et al., 1974; Siegfried and Solomon,

1974). However, there is no physical justification for

the use of that particular model (Weidenschilling, 1974).

Hills (1973) and Hallam and Marcus (1974) have developed

elaborate mathematical models for accretion; however,

they ignore or contradict explicit properties of orbits,

and cannot realistically represent the conditions of plan-

etary formation.

There are a few general cosmogonies in which accret-

ion is considered in the context of a more inclusive theory.

Alfven and Arrhenius (1970; see also Ip, 1974) proposed

that electromagnetic forces affected the accreting part-

icles. Cameron (1973b) suggested that turbulence and gas

drag in a dense, massive solar nebula were important. He

has recently revised his estimate of the nebular density

(Cameron and Pollack, 1975); the effect on his accretional

theory has not been announced. Safronov (1960, 1972a,

1972b) assumes that the accretion process was dominated

by gravitational forces. Only gravitational forces will
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be explicitly considered here; my results will be gener-

ally consistent with, but not necessarily limited to,

Safronov's cosmogony. The assumption that only gravit-

ational forces were important implies that gas drag was

negligible. The time scales which result force the con-

clusion that the nebula had dissipated before the terr-

estrial planets were formed. This is in apparent contra-

diction to the presence of the giant planets. They con-

tain large amounts of hydrogen and helium, and so must

have formed in the presence of the nebular gas (Cameron,

1973c; Perri and Cameron, 1974). This seeming inconsist-

ency may be explainable by the lower temperatures in the

outer part of the nebula, which allowed the condensation

of water ice in the zone of Jupiter (chapter I, above).

The orbital velocities of planetesimals, and possibly

their collision velocities, were smaller in the outer

nebula, and the icy matter may have stuck together more

easily than the rocky condensates of the inner nebula.

In any case, the presence of the giant planets must be

assumed in models of this type. We shall see that their

influence could have affected the formation of at least

some of the terrestrial planets.

One indication that the terrestrial planets accreted

after dissipation of the nebula is the abundance of noble

gases in the earth's atmosphere. Their relative abundances

differ from the solar ratios, but are similar to those of
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non-radiogenic trapped gases in stony meteorites. Also,

their abundances relative to Si are similar for both
(Wasson, 1969)

meteorites and the earthA. If the earth had formed in

the presence of the nebula, it would have captured a

temporary solar-composition atmosphere. Escape of the

H and He, even by rapid hydrodynamic blowoff, would

leave the heavy noble gases in solar proportions (Hunten,

1973). Cameron (1973b) suggested rapid accretion, with

removal of the captured atmosphere by an intense T Tauri

solar wind, and production of a secondary atmosphere by

influx of volatile-rich meteoritic matter. However, it

has not been shown that the T Tauri s.olar wind could

remove an atmosphere on the required time scale of 106 yr.

Also, the noble gas/Si ratio of the earth implies that

the later influx must have consisted of matter extremely

enriched in noble gases (and, coincidentally, in the

amount to produce agreement with measured meteoritic

abundances), or else consisted of most of the planet's

mass. The remaining possibility is outgassing after the

solar wind removed the captured atmosphere, but the slow

outgassing required would probably be incompatible with

the high temperatures developed during rapid accretion.

I consider this to be a strong argument against inhomo-

geneous accretion or any other "rapid" accretion theory.

Knowledge of the noble gas contents of the atmosphere

of Venus and Mars could test this argument.
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B.. The Model

I propose the following simplified model as a

working hypothesis: A swarm of particles orbit the sun

in keplerian orbits with some range of eccentricities

and inclinations. The swarm has roughly the shapa of a,

disk, its total mass is equal to that of the terrestrial

planets. The conservation of mass follows from Opik's

(1966a) demonstration that the terrestrial planets could

not eject significant amounts of matter from the swarm

(see chapter 3, below). The swarm contains a small

number of "embryos" or protoplanets, perhaps of about

lunar mass. The formation of such embryos has not been

explained in detail. Goldreich and Ward (1973) have

shown how kilometer-size bodies could form by gravita-

tional instability in a dust layer; these presumably

would be the members of the swarm. Cameron and Pollack

(1975) describe qualitatively the formation of larger

bodies from these. Lyttleton (1972) showed how bodies of

up to lunar size could form by capturing particles whose

heliocentric orbits lay between their inner and outer

Lagrange points. Unlike Lyttleton, however, I assume that

there were only a few embryos. Due to its gravitational

field, the largest body in some region of the swarm

grows more rapidly than the second largest body, and

"runs away" from it (Safronov, 1972a, ch. 9). Wetherill
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(1975b, 1975c) has pointed out that a close encounter

within the Roche limit is several times more likely than

an actual collision, so the largest bodies will tend to

disrupt competing bodies in their vicinity. Large bodies

could not grow in closely spaced orbits. If they grew in

distant orbits which perturbations later caused to

intersect, they would collide at high relative velocities,

and disrupt rather than coagulate. This may have happened

many times during the growth of the planets, those embryos

which escaped destructive collisions, and accreted only

much smaller bodies, survived to become the planets.

Safronov (1966) showed that the axial tilts of the earth

and Mars could be produced if the largest impacting

bodies had masses about 10-3 times the planet's mass

(however, if Venus' retrograde rotation was caused by

such an impact, the mass ratio must have exceeded 10-2)

In the later stages of growth, only a few massive

protoplanets survived in widely spaced orbits, and each

can be assumed to be the dominant influence on the swarm

in its vicinity.

The size distribution of the smaller bodies is not

important to this model, but deserves brief comment

here. Mass distributions have been derived by Safronov

(1966), Marcus (1967), Zvyagina and Safronov (1972), and

Hallam and Marcus (1974). These are all based on-

solutions of the scalar transport equation, which assumes
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only the coalescence of two colliding bodies, without

the possibility of disruption in collisions (Safronov

(1972a, ch. 8) considers some effects of fragmentation).

The various solutions which have been developed also

involve the implicit assumption that the presence of one

body in a volume of space does not influence the proba-

bility of another body being found there (Scott, 1968).

The stochastic nucleation theory of Hills (1973) also

makes these assumptions. The first is not valid for small

bodies, which have little gravitational binding energy

and are easily disrupted. The second, as we have seen,

is invalid for large bodies with appreciable gravitational

influence. The assumptions used in solving the scalar

transport equation lead to an overestimate of the

numbers and sizes of the largest bodies. Some of the

derived distributions may have been applicable at some

time, for some range of masses, but no important conclusion

can be based on them.

C. Gravitational Accretion

Let m be the mass of a planet, r its radius, and

its density. A particle of negligible size and mass

approaches the planet with a relative velocity u at
t

"infinity," when outside its gravitaional influence.

The impact parameter, b, is defined as the distance of

closest approach on the particle's unperturbed trajectory.

For a grazing impact, the closest approach on the

-30-



perturbed trajectory is r. Conservation of angular

momentum and energy gives

u2b = r2(u 2+2Gm/r), (2.1)

where G is the gravitational constant, or

b2 = r2 (1+2Gm/ru 2

= r2 (1+u2 /u2) (2.2)

= r 2(1+8Gpr2/3u2

where p is the planet's density, and u = /2Gm7ir is the

escape velocity from its surface. The gravitational

capture cross-section, Tb 2, is a function of u, and

formally becomes infinite when u approaches zero. This

singularity has no physical meaning in the realistic

case when the planet and particle are both in heliocentric

orbits. In that case, u can be zero only if their orbits

are identical. Any difference in orbital elements

produces some nonzero value of u. Consider the "worst

case" in which relative velocities are minimized, with

the planet and particle in coplanar circular orbits.

The circular keplerian velocity is

Vk = /Gm/a, (2, 34
k 0

where a is the orbital radius and m the solar mas-s.

Differentiating,
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3 1/2
av /3a = -(Gm /4a ) , (2.4)

k e

and the relative velocity between two orbits separated

by a distance b has the magnitude

u = (Gm /4a3 ) /2b = kb. (2.5)

Inserting in Eq. (2.2), we find that

b2 = [r2 +(r4+4u2r2/k2 1/2]/2 (2.6)maxe

gives the greatest value of b for which impact is

possible. Let a be the surface density of matter in the

particle swarm. The accretion rate is foimally

b

dm/dt = 2 a u(b) db = Okb2
max

= ak 3 2/3 2/3 32irGp 1/2
2 ) m [+(1+ 3k2  ] (2.7)

Eq. (2.7) is nonsingular for any finite value of k. A

more realistic consideration of eccentric and inclined

orbits would only increase the values of u; we might try

a velocity distribution of the type u = u0 +kb, or even

a Maxwellian distribution with the mean velocity propor-

tional to b. In either case, there is no singularity

in dm/dt. The expression for the gravitational cross-
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section contains two terms, proportional to r and r4 .

It has often been inferred from this that each term

dominates in a certain size range, with the accretion

rate rising sharply when the planet grows to the point

that u, = u (Hartmann, 1968; Alfven and Arrhenius, 1970).

However, Eq. (2.7) shows no such behavior; dm/dt is

proportional to m2/ 3 , or r2 , for all values of m.

The value of k in Eq. (2.5) is 1.0 X 10 a-3/2
-1

sec , where a is in AU. Since k is small, Eq. (2.6) is

approximated by

1/2 1/4
b ~ (u r/k) = (SiGp/3k2 ) r (2.8)max e

For the earth, b max is about 130 times r, or about twice

the moon's distance (the figure 42r in Weidenschilling,

1974, is in error). However, this description does not

correspond to physical reality, due to the earth's mass.

In the three-body sun-earth-particle system, particles

with very small values of u are found in Trojan or horse-

shoe orbits. For values of b less than about 0.008 AU,

such orbits are stable (Weissman and Wetherill, 1974),

corresponding to a minimum value of u of about 0.1 km

sec 1, and a minimum b of about 190r. These values are

for the earth's present mass, and would have been less for

an embryo; this probably did not affect the earth's acc-

retion.
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A more realistic case of accretion, treatable by the

two-body approximation, is that for which u is much

larger than the minimum value. This is the case when

the particle orbits have appreciable eccentricities and

inclinations. There is then no significant correlation

between u and b. The accretion rate is formally the

capture cross-section, times u, times the space density

of matter, 6, integrated over all velocities. In terms

of the mass, the capture cross-section is

2 3 3f 3 2/3 2/3 [1+ 32 /p /3 G .2/3

4p 3 u2

The accretion rate is

din 3~2/3 2/3d 1-)rT2 6 0m2/3(l+ 3 21Tp)1/3 G 2/3
d - +- ] u g(u) du,

-t 4p 3 u 2

(2.10)

where g(u) is a normalized function defining the distrib-

ution of u. Eq. (2.10) is formally correct for all cases

of physical interest, but p, 6, and g(u) may vary with

time, or with m. Any model of gravitational accretion is

an implicit or explicit determination of these quantities.

The variation of p is small, and has little effect on

the accretion rate. We can assume a constant average

value, between the uncompressed and compressed planetary

densities, with little error. The function g(u) is more
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important, and less certainly known. Kaula and Bigeleisen

(1975) assume that it is Maxwellian, but there is little

real justification for this choice. Stellar velocities

are approximately Maxwellian (Chandrasekhar, 1960), but

there are important differences between the stars in the

galaxy and particles in the circumsolar swarm. Stellar

interactions are elastic, while the particles experience

inelastic collisions. Also, we shall see that the rate

of removal of particles from the swarm is a function of

velocity; this selective removal alters the velocity dis-

tribution. The Maxwellian distribution is strictly valid

only in a situation of thermal equilibrium; accretion is

in this sense a "thermal. disequilibriun" process.

In spite of these reservations, we shall investigate

the effects of assuming a Maxwellian velocity distribu-

tion. In terms of the mean velocity, c, a three-dimen-

sional distribution is

g(u) du = 32/n2c3 exp(-4u 2/nc ) u2 du (2.11)

Inserting this expression into Eq. (2.10) and integrating,

dm =~~/ (I 1 ..2/ 32 7rp) / 3 4G 2/3
S4P)2/3 6 c m l 3 2 m23 (2.12)

Note that Eq. (2.12) is nearly identical to that obtained

from Eq. (2.10) if all particles are assumed to have the
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mean velocity c. We will assume, therefore, that g(u)

can be replaced by some effective mean v.elocity, whether

or not the actual distribution is Maxwellian.

The mean velocity always increases with time, prov-

ided that non-gravitational forces and inter-particle

collisions are unimportant. The principal reason for this

is the embryo's gravitational perturbations on the part-

icles. In successive close encounters (near misses),

the eccentricity of the embryo's orbit gives rise to a

statistical fluctuation in u, which results in a net

increase in the mean value (Opik, 1966a). This change

can be described as the result of the non-existence of

the Jacobi integral in the elliptical three-body problem

(Szebehely, 1967). In the circular three-body problem,

u may be regarded as an invariant for-any individual

particle. However, in an ensemble of particles with a

range of velocities, the mean velocity will increase with

time, even in this ideal case, because the accretion rate

is a function of u. If a particle has a given value of

u, but the relative velocity vector at encounter is all-

owed any orientation, then all possible particle orbits

are contained within some volume of space surrounding the

planet's orbit. The size and shape of this volume will

be discussed below. The distance from the planet's orbit

to the boundary of this volume in any direction is prop-



ortional to u, so the volume is proportional to u2. The

rate at which the planet sweeps out this volume is 'rb 2U;

the characteristic time for the sweeping out is the rate

divided by the volume, or proportional to b 2/u. If N is

the number of particles with velocity u, then

2
1 dN lue
N dt u u3.

Particles with smaller values of u are depleted more rap-

idly, so the mean velocity of the remaining particles

increases with time, even in this ideal case. In reality,

the increase due to perturbations is more important.

The mutual gravitational scattering of the particles

themselves also tends to increase their relative velocities.

For a system of particles of equal mass, Safronov (1972a,

ch. 7) derives the relation

u2 = Gm/er = u 2/2, (2.13)
e

where e is a dimensionless parameter on the order of a

few units, depending weakly on particle size. For a

power law size distribution, m and r refer to the largest

body, and Eq. (2.13) is obeyed by those particles which

interact with it. However, elastic or inelastic encount-

ers with other bodies which do not approach the largest

body may change u. Safronov also applies Eq. (2.13) to

the case where one 'body (planet) is much more massive than
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any other. The physical basis for this step is unclear.

Opik's (1966a) theory of encounters relates the increase

of u to the orbital parameters of the particle and planet.

The rate of increase depends on the eccentricity and other

parameters of the planet's orbit; it appears impossible, to

express this process in terms of a single parameter, or to

relate it directly to the planet's mass. While more real-

istic than Safronov's model, Opik's depends on too many

unknown quantities to be usable in this case. We shall

use a variation of Safronov's theory, realizing that it is

only qualitatively correct, and examining the effect of

different values of 0.

2
If we accept Eq. (2.13), we find that b = r'(l+20).

that is, the gravitational cross-section is always (1+2e)

times the geometric cross-section. To integrate Eq.

(2.12), we still need an expression for 6. In the case

where the "feeding zone" (the volume surrounding the

planet's orbit in which the particles move) is of constant

size, we can write

6 = 6 (1-f), (2.14)

where f = m/m is the fraction of the total mass which
p

has been accreted, with m the final mass of the planet.
p

We shall see below that Eqs. (2.13) and (2.14) are not

strictly consistent; however, they allow the accretion
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rate to be determined analytically. With Eq. (2.12),

they give

dm 6 271-')1/ /6 7 (1+4e/7) m (1-m/m ) (2.15)
dt o 8p4  p

This can be integrated, giving

m m exp(t/T)
mn(t) = E (2.16)

(M P-m 0)+m0 exp(t/T)'

where m is the mass at t=0, and the characteristic time

T is

T = /8p 1/6 6_1 (2.17)
(1+40/) 27n3 o

For m 0<<m this simplifics to

m(t) mo exp(t/T) (2.18)

1+(m 0/M ) exp(t/T).

A reasonable value for 80 in the earth's zone is 1011

g-cm-3 (see below). For this value, and p=4 g-cm -3 =4

7
T is about 3 X 10 yr. Equations (2.15) and (2.18) are

pl-otted in Figure 2. With m0 =0.01 m , accretion is 99%

complete in an interval of 10T , or 3 X 108 yr. Also

shown in Fig. 2 are m(t) and dm/dt for the accretion rate

of Hanks and Anderson (1969). That rate, which is
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entirely arbitrary, is seen to add most of the mass near

the end of the accretion interval.

I have stated that Safronov's velocity relation,

Eq. (2.13), is not consistent with Eq. (2.14), which

implies a constant zone volume. Note that by (2.13),

u = 0 when m = 0; i.e., the relative velocities are

initially zero, implying that all particles lie on the

same orbit. Then 60 would be infinite, or else (as

would actually be the case) the particles would not be

in the zone initially, but must be added later. In that

case, the factor (1-f) cannot be used. We wish to

generalize Safronov's relation to allow for disturbances

in the swarm other than the embryo's own gravity.

Initially chaotic orbits may have been due to turbulence in

the solar nebula, catastrophic collisions of other

embryos, or the perturbations of other planets which

formed earlier. The formation of the planetesimals by

gravitational instability (Safronov, 1972a, ch.6;

Goldreich and Ward, 1973) could not have occurred if

velocities in the solar nebula were appreciable.

However, such velocities could have developed later,

especially if Jupiter formed before the terrestrial

planets. I propose a velocity relation of the form

u2 = u2 + u 2 /26, (2.19)0 e

-40-



where u is some initial velocity. The ratio of gravi-
2 2

tational and geometrical cross-sections is (1+u /u ).
e

If u remained constant, this ratio would increase as the

2
planet grew, becoming proportional to r as the second

term became dominant. For Safronov's relation, Eq. (2.13),

this rati-o is constant, equal to (1+2e). With Eq. (2.19)

the ratio approaches unity when m is small, and (1+20)

when m is large.

It is convenient to replace u with a dimensionless

relative velocity. Let vk be the Keplerian circular

velocity of the planet in its orbit. I define

U u/vk. (2.20)

Since v2 Gm /a , Eq. (2.13) becomes
k

U2 m2/3/CO, (2.21)

1/3
where C (3/47rp) m /a, and (2.19) becomes

U2 = U2 + m2 /3/Co. (2.22)

This dimensionless notation is particularly convenient,

since the range of orbital parameters of the particles

are simple functions of U (Opik, 1951). The maximum

possible eccentricity is

(2.23)emax = U2 +2U,



and occurs when the particle's orbit has its perihelion

at the planet's orbit, and the orbits are coplanar. The

particle's aphelion is then the largest possible value,

2 2
Q max (1+U) /(1-2U-U ), (2.24)

in units of a. If the particle's aphelion is at the

planet's orbit, then the minimum perihelion is

q . = (1-U)2 /(1+2U-U), (2.25)

and eccentricity is

2
e(q . ) = 2U-U . (2.26)min

For any U, the maximum inclination (relative to the

planet's orbital plane) is

imax 2 sin~1 (U/2). (2.27)

For small values of U, it is a sufficiently good approx-

imation to take

Q = 1+4U e = 2U
max max

(2.28)
q = 1-4U i = U.

min max

Eqs. (2.28) define the limits of the"feeding zone"

from which the protoplanet may accrete matter. The zone



is a flattened torus enclosing the protoplanet's orbit,

with the out of plane thickness one fourth the width in

the orbit plane. Its volume is approximately 8 r a U

If the total mass in the zone is specified, then 6 is

determined by the value of U. Ip (1974) underestimates

the volume of the torus by a factor of four, thereby

overestimating the accretion rates in his model. Hartmann

and Davis (1975) do "particle in a box" calculations of

planetesimal collisional lifetimes, in which u is varied

for a "box" of constant size. The volume chosen corres-

ponds to u = 2.3 km sec~1 at the earth's orbit; they

therefore overestimate the the lifetimes for smaller u,

and underestimate them for larger values.

The simplest assumption is that of a "closed" feeding

zone: all of the mass to be accreted is present in the

zone initially, and equally available to the planet.

2
The volume of the zone is proportional to U , so

6 6 (1-f)(U2/U2), (2.29)
00

where

6 = m/8IT a 3U (2.30)o p o

Safronov uses the surface density, rather than the

volume density of matter. His results depend on an

assumed vertical structure of the swarm. His relation is

equivalent to



6 = 6 (1-f)(U3/U)

which implies that the entire swarm thickens uniformly.

However, in the case where a single large protoplanet

dominates a zone, Eq. (2.29) is more realistic. The

radial growth of the zone may result in matter being

added to it from adjacent regions of the swarm. The

amount will depend on the local density of the swarm,

and the mechanism, gravitational perturbations or

inelastic collisions, or both. However, in such cases

the initial mass in the zone is less than m , and 6

is less than given by Eq. (2.30), The initial stages

of accretion will be slower, and for most such models,

it appears that the total accretion time would be

lengthened. Matter added at the edge of a zone must

have a certain minimum velocity (relative to the circular

velocity) in order to reach the center of the zone and

be accreted.

Inelastic collisions at the edges of a zone would

tend to reduce relative velocities there, effectively

removing matter from the center of a zone. In the case

where two zones overlap, collisions between particles

from the different zones would lead to a buildup of

matter in the area of overlap, which would be gradually
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diffused back into pl

planet's perturbations.

ion, when 8 is small due

and the small amount of

can overlap with little

zone reaches the center

roaches to that zone's p

effective within a zone,

eccentricities decrease,

particles are damped. A

through the swarm, and p

anet-crossing orbits by the

In the later stages of accret-

to the large volume of the zones

matter remaining, adjacent zones

interaction until the edge of one

of the other, allowing close app-

lanet. If collisions are very

as well as at the edges, the

and the radial excursions of the

planet will then bore a "tunnel"

articles must diffuse into the

tunnel, then increase their eccentricities to become

planet-crossing. The initial accretion rate might be

large, but the later stages are slowed, and the time to

completion is increased. From these considerations, it

appears that the "closed" feeding zone assumption repre-

sents a lower limit for the accretion time, in the absence

of nongravitational forces. Note that the factor (1-f)

cannot be applied to an "open" zone, to which matter is

added during accretion. For the earth, with 6=5, and

f=0.01, Eq. (2.21) gives U=0.025, with a zone width of

0.2 AU. Much of the final mass lay outside this zone

initially, if there were no gaps devoid of matter be.tween

zones.

Obviously, the embryos did not know where to form,
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and the value of U was not selected, in order to make

the "best fit" of zones. Assuming the zones to be cent-

ered on the present planetary orbi.ts, a choice of U0=0.05,

e=5, provides a reasonable fit, with adjacent zones

approximately touching originally, and finally over-

lapping about to their centers. This is arbitrarily sel-

ected as the "nominal" case for detailed consideration.

The initial and final zone limits for this case are shown

in Table III. The initial zone width is primarily set by

the value of U0 , while the final width depends mainly on

6 (for the earth, with 0=5, the final value U is 0.12 if

U0 =0, and 0.13 if U =0.05). Values of U less than 0.05

would allow significant gaps bptween zones, and diminish

60, unless the zones were isolated "jetstreams." Larger

values of U0 , or smaller values of 6, allow significant

overlapping of zones beyond their centers, with exchange

of matter between zones. The differences in bulk chem-

ical compositions of the terrestrial planets (Lewis, 1972)

would be blurred if this had occurred on a large scale.

Some exchange between zones must have taken place in the

late stages of accretion, but amounted to a very small

fraction of the planetary masses.



TABLE III

Feeding Zone Boundaries, Nominal Case

Mercury (a=0.39)

Venus (a=0.72)

Earth (a=l.0)

Mars (a=1.52)

U =0.05
0

Initial

tin Qmax

0.48

0.89

1.23

0.32

0.59

0.82

0= 5

Final

U f

0.057

0.11

0.13

1.25 1.87 0.08

Qmax

0.49

1.13

1.74

1.96

0.31

0.48

0.62

1.11



D. Results

It is convenient to express the accretion rate as

df/dt, rather than dm/dt. We have

6 (f) m (1-f)/8r a U (f), (2.32)
p

2 2 1/3 2/3 2/3 (.3
U (f) =U 0 +t(4'rp/3) (am /mn 6)f (.3

and 2 2 1/3 2/3 2/3/ 9u /u 2 (327Tp/3) am f /m U'(f). (2.34)
e p 23e

The accretion rate is
2

df -k )2 /3  2/3 1e (f)
m 4rp 6(f)[J(f) [12+ (2.35)

d t -m 4 Tp v2U2p v kU Mf

which cannot be integrated analytically. Eq. (2.35) was

integrated numerically to obtain f(t), using a fourth-

order .g-t &ethod A.r most cases, an initial

value of f=0.01 was assumed. Integration was terminated

at f=0.99. The accretion time, ta, is arbitrarily

defined as the time for f to increase from 0.01 to 0.99.

Further integration would yield no useful information;

it should be emphasized that this formal procedure does

not account for bodies in unusually stable orbits, or

scattered from other zones, which would dominate the

final stage of accretion.

The results for the nominal case for the earth are

shown in Fig. 3. For the earth's mass, U =0.05 in Eq.

-11 -3
(2.30) gives 60=10 g cm . The accretion time is
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8
1.56 X 10 yr. The maximum growth rate is less than

-1-
10 cm yr . The effect of varying U0 is shown in Fig. 4.

-2
Since 6 varies as U , the accretion time increases

o 0

with U . If 6 is artifically held constant, t decreases

as U is increased, but this is equivalent to increasing

the mass in the zone. For a closed feeding zone, the

accretion time must increase with U Note that this
0

model does not reduce to Safronov's in the limit of

U -0. In reality, the closed zone assumption must break

down, and 6 reach some limit as the zone shrinks.

However, even for U0 =0.02 (U=0.03 at f=0.01), and the

entire mass assumed originally present in a zone 0.25 AU

8
wide, t is slightly more than 10 yr. Safronov's model,

a

with e=5, gives ta about 0.7 X 10 8yr (Safronov, 1972a,

ch.9.). Eq. (2.18), using somewhat different numerical

8
values, gave 3X10 ,yr. The accretion time appears to be

quite insensitive to the assumed value of U
0

The parameter 6 does not affect 6 or U0 . Fig. 5

shows the effect of variations in 6 for fixed values of

the other parameters. Smaller values of 6 correspond

to larger values of U f; for O=c' there is no acceleration.

Even a small acceleration drastically lowers the peak

accretion rate; ta is affected less strongly. The late

stages of accretion are slowed, causing the maximum rate

to occur at smaller values of f. Fig. 6 shows df/dt for

-49-



the earth as a function of f, normalized to the maximum.

For 6=3, the peak is at f=0.33; even for 6=o , it occurs

only at f=0,57. There is no late accretion peak at large

values of f, as suggested by Hanks and Anderson (1969),

or Hallam and Marcus (1974). There is no late peak for

Safronov's model, either.

F. Thermal Structure of an Accreting Planet

The potential and kinetic energy of a planetesimal

is released upon impact with a planet. An energy balance

at the surface gives (Benfield, 1950; Mizutani et al.,

1972)

2 4 4
p (u /2+Gm/r) dr/dt = ca(T -T )+p C[(T-T )+X] dr/dt

s a s b

+K(3t/3r), (2.36)

where p is the planet's density at the surface, C is the
s

surface emissivity, a the Stefan-Boltzmann constant, T

the effective temperature of "space" seen from the surface

(including contributions by solar radiation and any atmo-

sphere), Tb the temperature of the infalling particles,

C the heat capacity, K the thermal conductivity, and X

the latent heat of any phase changes. It can be shown

that the first term on the right side is much larger than

the other terms (Benfield, 1950), and Eq. (2.36) can be
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approximated by

ps (u 2 /2+Gm/r) dr/dt Ca(T4 -T4). (2.37)

This equation has been used in the accretional thermal

models of Hanks and Anderson (1969) and Mizutani et al.

(1973). In terms of the mass, it may be written

2 1/3 2/3 -1/3 p2/3
Eu /2+(47p/3) Gm ](367) --- dm/dt

Ps m2/3

Ca(T 4 -T 4). (2.38)

2a

If the kinetic energy, u 2/2, is small compared with the

gravitational potential energy, the power input per unit

area is proportional to dm/dt. For Safronov's velocity

relation, Eq. (2.13), this is also true for all values

of u. In such cases, the temperature peak in accretion

coincides with the peak in the accretion rate. For the

velocity relation of Eq. (2.22), the kinetic energy of

the particles contributes most of the accretional energy

in the early stages of accretion. The temperature peak

occurs at a slightly smaller mass than the peak in df/dt,

but for reasonable values of U0 the displacement is very

small. For all realistic combinations of U and 0, the

temperature peak from Eq. (2.38) occurs at values of f

less than 0.5. The magnitude of the temperature peak is
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typically on the order of a few tens of degrees, and

0
never more than 100 K, for the earth. The low tempera-

ture peak and the small radial growth rates indicate that

accretional heating is negligible, under these assump-

tions.

This conclusion should be viewed with suspicion,

since some of the assumptions may be invalid. The energy

balance of Eq. (2.36) assumes that all energy of impact

is released at the planet's surface. Levin (1972a) has

suggested that seismic waves could have heated the deep

interior of the earth during accretion. The fraction of

impact energy released in this form is uncertain, but is

estimated by Schultz and Gault (1975) to be on the order

-4

of 10 . If this figure is correct, seismic heating could

have amounted to only a few degrees. However, this does

not mean that most of the impact energy was in fact

released at the planet's surface. Eq. (2.36) implies that

dr/dt was uniform, when accretion was actually a series of

impacts which produced intense local heating and consid-

erable scattering of ejecta. If the impacting bodies were

sufficiently small, most of the energy was released at the

surface. Safronov (1972a, ch. 14) estimates that bodies

less than 100 meters in diameter would meet this condition.

Larger bodies would excavate craters in which some fraction

of the impact energy would be trapped by the fall-back of
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ejecta. Heat transfer in that case is not primarily by

conduction or radiation, but by the mixing and overturn

of the surface layers by later impacts. The problem of

heating by large impacts is complex; our knowledge of the

phenomena of cratering is insufficient to analyze it in

detail. Safronov (1972a, ch. 15) obtained an approximate

solution, estimating that the earth could have been

warmed by about 1100 K at a depth of 400-500 km below the

final surface. This figure should be considered only as

an order of magnitude estimate, due to the uncertainties

involved.

We may, however, consider the qualitative aspects of

Safronov's solution. The amount of heAting depends prim-

arily on the sizes of the impacting bodies. Safronov

assumed a power-law size distribution in which most of

the mass was contained in the largest bodies. I have

argued that such distributions, which are based on solut-

ions of the scalar transport equation, tend to overest-

imate the numbers and sizes of the larger bodies. How-

ever, the size distribution is not important, only the

fraction of mass contained in bodies above a critical

size. Safronov's heating estimate is probably not

seriously in error from this assumption. The presence

or absence of an atmosphere during accretion has little

effect, since kilometer-sized bodies can penetrate the
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earth's atmosphere without appreciable loss of energy.

Small-body impact heating is a function of the accretion

rate. Large-body heating depends primarily on the impact

energy, and so is greatest in the final stages of accretion,

with the highest temperatures developed in the outer

part of the planet. The small-body assumption, when

coupled with thermal histories which require significant

initial heating, leads to very short estimated accretion

times (Hanks and Anderson, 1969; Mizutani et al., 1972),

which cannot be achieved by the models developed here.

Accretion of larger bodies apparently can produce an

acceptable lunar thermal history with more reasonable

8
accretion times, on the order of 10 yr (Wetherill, 1975d).

F. Other Planets: The Problem of Mars

The accretion time of the earth is on the order of

8
10 years, and is not very sensitive to our choices of

U and 0. Whatever the values of these parameters for

the other planets, their accretion times will depend on

them in the same manner. The assumption that Uo and 6

are the same for different zones does not mean they are

geometrically similar, since different masses will mean

variations in the effect of 0. The accretion times for

all the terrestrial planets were computed with initial

embryos of f=0.01. If we chose embryos of identical

mass, the planets other than the earth would begin at

larger values of f, and have shorter accretion times.
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For U =0.05, 0=5, the computed times are: Mercury, 0.69 X

8 8 8
10 yr; Venus, 0.55 X 10 yr; earth, 1.56 X 10 yr; Mars,

2.6 X 10 9yr.

These accretion times are in general agreement with

earlier results (Safronov, 1972a; Weidenschilling, 1974).

The extremely long accretion time for Mars is due to its

small mass and large feeding zone (the smaller mass of

Mercury is offset by the small size of its zone). No

reasonable values of U and 0 can reduce the accretion
0

time of Mars to less than 109 yr. This figure is not due

simply to the assumption of a nonzero initial velocity;

Safronov also computes accretion times in the range of

1.5-2.4 b.y. The small masses of Mars and Mercury reduce

the sensitivity to the value of 6. For Mars, U0 might be

even larger than the nominal case, due to Jupiter's per-

turbations. Even if begun with a larger embryo, f=0.1,

the nominal accretion time is 2.0 b.y. If Mars originated

at the same time as the other terrestrial planets, then

some other mechanism, such as nongravitational forces,

was required to form it, and therefore may have operated

in the accretion of the other planets, as well. Before

abandoning gravitational accretion, we should consider the

possibility of a "young" Mars.

The age of the Martian surface cannot be determined

solely by crater counts. Soderblom et al. (1974) derived
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a Martian cratering history in which absolute ages of

different terrains were derived by comparison with lunar

terrains. Absolute ages of the Apollo sites are known;

crater counts in these regions can, in principle, give

the impact flux history. Soderblom et al. assumed th-at

the lunar and Martian fluxes were similar in time. They

concluded that Mars suffered an early intense bombardment

which declined rapidly at the end of accretion, some 4

b.y. ago. Chapman (1974) pointed out that other histories

of cratering and obliteration could produce the observed

crater distributions. Even the lunar flux histories have

been criticized by Hartmann (1975). The present-day

cratering flux at Mars is subject to considerdble uncert-

ainty (Wetherill, 1974a); that due to an earlier populat-

ion of stray bodies is even more speculative. I have

proposed one mechanism by which the Martian cratering

flux may have significantly exceeded the lunar flux in

the past: asteroids stored in quasi-stable Trojan orbits

could be perturbed by Jupiter into Mars-crossing orbits;

most would be ejected from the solar system before becom-

ing earth-crossing (Weidenschilling, 1975b; ch. 4, below).

We know little about Martian endogenous erosive processes,

whether steady or episodic. Even a "young" Mars would

have a surface age of some 2 b.y.; this interval is ade-

quate to produce the observed terrains.
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A more serious test of a "young" Mars is the planet-

ary thermal hiatory. The observed moment of inertia indi-

cates that Mars has a dense core. The division of the

planet into an isostatically high, heavily cratered "con-

tinental" hemisphere and a lower, relatively smooth

"ocean" basin suggests large-scale differentiation and

crustal formation (Siever, 1974). The huge shield vol-

canoes of the Tharsis region require a source of magma,

with at least some melting in the mantle. The most

detailed thermal models of Mars are those of Johnston et

al. (1974). They assumed that Mars formed 4.6 b.y. ago,

and considered a variety of initial temperatures and uran-

ium concentrations. For all the models tested, formation

9
of an Fe-FeS core began within 10 yr. Melting of a dry

silicate mantle began in from 2 to 2.75 b.y. However,

Lewis (1972) has argued that Mars should have formed at

least as rich in hydrous minerals as the earth. The add-

ition of water would lower the silicate melting temper-

atures considerably; all of the models of Johnston et al.

would reach the wet solidus in the mantle in less than 1

b.y. These models do not correspond exactly to the

thermal behavior of a slowly accreting Mars, but should

be generally similar. For a nominal accretion time of

2.6 b.y., Mars attains 95% of its final mass in only 1.6

b.y. There have been no thermal history calculations in
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which the time scale for accretion is comparable to that

for thermal evolution; they should be performed for Mars.

It appears that planetary differentiation could have kept

pace with accretion; indeed, the conclusion of Siever

(1974) that the Martian crust formed before the end of

accretion is only compatible with this thermal history if

accretion lasted more than 109 yr.

The most serious test of the age of Mars is the

completeness of accretion. By our formal procedure, the

half life of planetesimals in the final stage of accretion

is 2.4 X 10 8yr in the nominal case. If collision with

Mars were their only fate, about 10-6 earth masses would

reman a Mar-crssig ascrods.Howerthezone

of Mars cannot be called "closed" on this time scale.

A significant fraction of Mars-crossing bodies would

become earth-crossing; the time scale for this is rather

uncertain, but is on the order of a few times 10 8yr

(Wetherill, 1975c). The half-life of the Mars planet-

esimals would be significantly reduced by the loss of

earth-crossers. However, this explanation poses a new

difficulty. Since Mars would have attained most of its

9
mass some 10 yr before the formal end of accretion,

the amount of matter scattered into earth-crossing orbits

in this interval would be comparable to that accreted

by Mars, perhaps as much as a tenth of the planet's mass.

-58-



Most of this matter would be captured by the earth and

Venus, but about 1% would strike the moon (Wetherill,

1975b, 1975c). The moon must have been closer to the

earth at that time, but this probably would not change

Wetherill's results significantly. The amount appears

to be too large to be part of the post-mare cratering

flux. It does match that suggested by Wetherill for a

pre-mare "cataclysm" about 4 b.y. ago. The time scale

is a less severe constraint if the bombardment is assoc-

iated with mare formation, but special conditions must be

assumed to explain the asymmetric distribution of maria,

and the apparent low velocity of the Imbrium impact.

Whatever their fate, the Mars planeteSimals see

to have vanished completely. Opik (1966a) lists 34

asteroids as Mars-crossing, and identifies 11 of them

as original members on the basis of their velocities

relative to Mars. However, Wetherill (1974b) showed that

the orbits of most of these bodies never intersect that

of Mars. This scarcity of true Mars-crossers is signif-

icant. Possibly, their computed lifetimes are too long.

Most of the lifetimes computed by Wetherill, on the

order of 109 yr, are for objects derived from the asteroid

belt, with perihelia near Mars. Their orbits are

probably quite different from those of typical planet-

esimals originating near Mars. Nongravitation forces

may have been effective in the past, e.g., gas drag
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before dissipation of the solar nebula (Cameron, 1974),

or later, on a much longer time scale, such as the

Yarkovsky effect (Opik, 1951; Peterson, 1975).

Our present knowledge cannot rule out a Martian

surface significantly younger than the other terrestrial

planets, but the lunar cratering record imposes severe

constraints. It should be emphasized that if Mars is

the same age as the other terrestrial planets, that

result is by no means trivial. The age of Mars is an

important clue to the processes which formed it and the

other terrestrial planets. The Cameron or Alfven-

Arrhenius cosmogonies could conceivably form Mars in a

short time by nongravitational forces. There is yet

another possibility, which involves only gravitational

forces, but violates the feeding zone assumption. The

next chapter will develop the theory necessary to explain

this model.
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III. CLOSE ENCOUNTERS OF SMALL BODIES AND PLANETS

A. Introduction

The solar system contains many small bodies in

heliocentric orbits which cross the orbit of one or more

planets. They include comets, meteoroids, and some

asteroids; to these we may add the possibly extinct pop-

ulations of planetesimals and protocometary bodies which

were numerous during the formation of the solar system.

The distinctions between these types of bodies are tenu-

ous, and in this chapter I shall simply refer to them as

particles, regardless of origin. Their orbits are gener-

all unstable, since perturbations will alter the posit-

ions of the nodes and apsides, eventually leading to act-

ual intersection with the orbit of a planet. Unless

prvented by a resonance, close encounters with a planet

will occur, drastically changing the particle's orbit.

Its ultimate fate will generally be either collision with

a planet or ejection from the solar system. The prob-

abilities of encounter, collision, and ejection are of

prime importance for establishing the fates, and inferr-

ing the origins, of these bodies. In an important series

of papers, 'pik (1951, 1963, 1966a, 1966b, 1973) has de-

veloped expressions for these probabilities in terms of

the particle's orbital elements. Arnold (1965) has app-

lied these formulas in Monte Carlo simulations to invest-
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igate possible sources of meteorites. Bandermann and

Wolstencroft (1970, 1971) derived an analytical express-

ion for the probability of ejection which differed from

Opik's, but did not comment on its physical significance.

In this chapter, I present an alternative approach to

this problem, developing expressions by which the prob-

abilities of collision and ejection may be evaluated

numerically. This method avoids certain approximations

used by 8pik, and is conceptually simple.

I consider an "encounter" to be a passage within a

planet's sphere of influence, with a more precise defini-

tion to be developed later. Since each encounter changes

the particle's crbit, it is convenient to avoid formula-

tions in terms of its orbital elements wherever possible.

However, the probability that the particle's orbit inter-

sects that of the planet for a random value of the argu-

ment of perihelion depends explicitly on the values of

inclination and eccentricity (0pik, 1.951). If we assume

that the orbits do intersect, the probabilities of encoun-

ter per revolution of the particle, and of collision and

ejection per encounter, can be formulated in terms of

the relative velocity and a single angular variable.

The relative probabilities per encounter are of consid-

erable value, even if the probabilities per unit time

are poorly known.

By considering only encounters within the sphere of
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influence, we overlook the effects of small perturbat-

ions by distant encounters. However, we shall see that

the angular deflections produced by distant encounters

are small, and can only cause ejection of particles in

nearly parabolic original orbits. Such cases are covered

in the extensive literature on long-period comets, which

will not be reviewed here.

B. Computations

Let the planet's mass be m , and the solar mass m .

The particle's mass is considered negligible. The

planet's orbit is considered circular, of radius a .

The planet's sphere of influence has radius d; the planet

has radius r. The Keplerian orbital velocity of the

planet is vk . The particle's orbit has semimajor axis a,

inclination i with respect to the planet's orbital plane,

and eccentricity e. The particle's heliocentric velocity

has magnitude v; its velocity relative to the planet has

magnitude u. I define the following dimensionless quant-

ities:

U u/vk V= v/vk A= a/aP

S= Mp /M R r/a D d/a

In general, upper case quantities will be considered

dimensionless. This notation is equivalent to that in
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which m , a , and vk are the fundamental units of mass,
e pk

length, and velocity, with the unit of time V/2 times

the planet's orbital period. However, such a procedure

leads to taking trigonometric functions of formally

dimensioned quantities. Also, it will be convenient at

times to use conventionally dimensioned units.

I consider the particle to be unaffected by the

planet's gravity when outside the sphere of influence,

and unaffected by the sun's when within it (two-body

approximation). With these idealizations, an encounter

changes the orientation of the particle's relative vel-

ocity vector U, but its magnitude U remains unchanged.

Everhart (1973, 1974) has criticized this assumption, and

pointed out that the eccentricity of the planet's orbit,

here neglected, will result in changes of U. This effect

appeared in Arnold's (1965) simulations, and was explained

by Opik (1966a), who showed that the variation in U could

be treated statistically. The change in a single encoun-

ter, AU, is small and random; the effect of many encoun-

ters is a gradual increase in U. However, AU is small

enough to be neglected in the derivation of the encounter

geqmetry. In those cases where a particle's orbit crosses

the orbits of two or more planets, U can be changed greatly

by successive close encounters (0pik, 1966a). U may also

be changed by more distant perturbations (Everhart, 1973a).

However, we shall see that the probability of ejection is
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not sensitive to the value of U, and the basic conclus-

ions of this chapter will not depend on the assumption

of a constant U. Note, however, that even in the more

realist-ic case of elliptical planetary orbits, the rel-

ative variation of U per encounter is much smaller than

are the changes in A, e, and i. It is certainly desir-

able to avoid formulations in terms of these orbital

elements, if possible.

The condition for ejection is easily found. When-

ever V2 >2, the particle's heliocentric velocity exceeds

the escape velocity. I define a planetocentric coord-

inate system with the x-axis directed away from the sun,

the y-axis in the direction of the planet's orbital mot-

ion, and the z-axis perpendicular to the orbital plane.

The components of U in terms of the particle's orbital

elements are (Opik, 1963)

U2 = 2-A(l-e2 )-l/A (3.1)
x

U = [A(1-e 2 ) 1/2Cos i -1 (3.2)
y

U2 = A(l-e 2 )sin2 i (3.3)
z

The magnitude of U is given by

2 2 1/2
U 3-2[A(l-e )] cos i -1/A (3.4)

Equations (3.1-3.4) are approximations derived from

Tisserand's criterion, but are entirely adequate for our



purposes. In these units, Tisserand's criterion is equi-

valent to U2= 3-C, where C is the Jacobi quantity.

Let # be the angle between the negative y-axis and

the vector U. The heliocentric velocity is

V2 1+U 2-2U cos $, (3.5)

where

cos * = (U2 -l+1/A)/2U. (3s.6)

V = 2 defines the condition for escape on a parabolic

orbit, corresponding to 1/A = 0, and a critical angle

# = cos~ 1  [(U2 -1)/2U], (3.7)

where U must be between /2-1 and /7+1 f or to be def-

ined. For U<V/2-l, ejection is not possible for any

orientation of U. For U>V2+l, all possible initial helio-

centric orbits are hyperbolic, and will not be considered.

Note that all particle orbits with U<l are prograde, and

all orbits with U>/3 are retrograde. Orbits between these

values may be either prograde or retrograde.

The condition $=$ defines a cone symmetric about
C

the y-axis, which we shall call the "escape cone." Any

U vector which lies within the escape cone corresponds to

a hyperbolic heliocentric orbit. Consider a particle,

with some initial U with $<$ c, which encounters a planet

and has its U vector turned through some angle Y ($ and Y
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assumed known). After the encounter, the new vector U'

lies on a cone with half-angle y, symmetric about U. I

assume all orientations of U' on this cone are equally

likely, therefore the width of the intersection of the

U' cone and the escape cone is a measure of the ejection

probability. The geometry of the encounter is shown in

Figure 7. From the law of cosines for spherical tri-

angles, the width of intersection of the cones is 24,

where

= cos' - [(cos y cos # - cos #c )/sin y sin #3.

(3.8)

The probability of ejection, P(oo), is S/T. Note the

special cases: (1) If #=O, P(0)=0 for #<#c ; P(oo)=1 for

#>$ c. (2) If #+y<#) , P(c)=0. (3) If #+y>2r-#c, P(0)=0.

I define P(col#,#cy) as the probability of ejection,

given #, #c , and y. #c is determined by U, which is

assumed known. If the probability of deflection through

an angle y is assumed independent of $, we can write

P(ODIU) = P(OI#,#c ,Y)-P(YIU)-P(#)U) dy d#.

The probability of scattering through an angle y

can be found from the Rutherford scattering formula

(Landau and Lifshitz, 1960), by substituting the gravit-

ational potential for the Coulomb potential. The differ-
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ential scattering cross-section is

da = 1(Gm /u 2) 2 cos (y/2 ) sin-3 (y/2) dy. (3.9)

Since
1/2

u = (Gm /a ) U, (3.10)
op

Eq. (3.9) can be written

dO = 7a 2( M /U2)2 cos (y/2 ) sin- 3(y/2) dy. (3.11)

The total cross-section is

yM y.
f Ymax MP2 2 Ymi 2 Ymaxa = m da = aP ( -) 2 [sin- n )-sin- 2 )],(3.12)
yi U2  2

where y , and y are the smallest and largest possible
min max

scattering angles. The largest possible value of y is ,

corresponding to an impact parameter of zero. For ymin

=0, a is infinite. This singularity is characteristic of

any potential that varies as l/r, and simply means that a

deflection of zero requires an infinite impact parameter.

This definition of a leads naturally to a definition of

an encounter as an angular deflection of the particle's

trajectory greater than some minimum value. The impact

parameter b is given by

b = (Gm /u2 ) cot (y/2) = a (M /U2) cot (y/2).
p p p

(3.13)

If an encounter is defined by a specified minimum defl-

ection, the maximum value of b varies as U- 2 . However,
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the two-body scattering formula is not valid where the

perturbations by a third body are significant, and must

be restricted to within the sphere of influence. All

approaches which result in the particle's entering the

sphere of influence will be considered encounters; a

necessary condition is that b<d. For comparison with the

results of Bandermann and Wolstencroft (1971), I adopt

their definition of

d = 1.15 a (m /m.) 1/3 D = 1.15 M . (3.14)
p p p

Setting d=b in Eq.(3.13) gives

2 tan~l(M2/ 3 /1.15U2. (3.15)
Yd =p

The probability of encounter per revolution and the

computed probabilities of collision and ejection per

encounter will depend on the definition of d, but the

ratio of collision and ejection probabilities is insens-

itive to the choice of d.

I assume that the initial orbit of the particle can

intersect any point on the projected area of the sphere

of influence with equal probability. Then the probabil-

ity of a particle's angular deflection into an interval

dy, centered on y, is

da cos (y/2) sin~_ (y/2) dy = P(yIU) dy. (3.16)

a sin-2 (Yd/2)-l

Note that the cross-section for any deflection greater



than some given value of y is given by substituting that

value for y min in Eq.(3.12). It follows that if y is

the deflection produced by a grazing collision with a

planet, then the collision cross-section is

a= a2 (M /U2)2 [sin -2(y /2)-1], (3.17)
c p p g

and the collision probability per encounter is

sin- 2 (y /2)-i

= g,(3.18)
c sin- 2 (y d/2)-i

and is independent of $. This is acually an upper limit

on the collision probability, since there are classes of

orbits for which encounters are possible, but the minimum

impact parameter is too large for collision. The condit-

ion for a grazing impact is

2 r2  2 2 (2.2)b =r(1+u e/u ),(2)

Combining Eqs.(2.2), (3.10), and (3.13),

Y = 2 tan~1[M /U2R(l+2M /U2 R) /]. (3.19)
g p p

We now have the limits on y needed for evaluation of

P(* U,$). In accordance with the special cases mentioned

above, we take y to be the larger of Yd and ($c

and ymax to be the smaller of y and (27r-$- c). Then
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Ymax
P(coU,$) = j ymaX

min

(3.20)

j max cos- [ (cosy cos$ -cos4c )/siny sin$]cos(y/2)

Ymin IT sin 3 (y/2) [sin-2 (Yd/2) -l]

dy.

For some problems, it is desirable to know the mean and

root-mean-squared deflections per encounter. Considering

only encounters without collisions, the cross-section is

0 nc = ira2 (M /U2 )2 (sin-2 (yd/2)-sin- 2 (Y /2 )], (3. 21)

and the mean deflection is

S= J y da (y), (3.22)
nc Yd

With da from Eq. (3.9), this can be integrated by parts

to give

=yd sin-2 d/2)+2 cot(yd/2) -y sin-2 (Y /2 )

(3.23)
-2 cot(y /2)]/[sin-2 (d/2)- sin- 2 (y /2)].

Similarly,

-- 1
y2

nc

the mean squared deflection is

fYg y 2 da(ly) = {y2 sin-2(y /2)-y

yd d
sin-2 (y /2)

+4 [yd cot (Yd/ 2 ) -Y cot (y /2)]+8 ln[sin(y /2)/

sin(yd/2)]}/[sin-2 Yd/2)-sin- 2 (y /2)]. (3. 24)

-71-

(S/n) daC0



The mean and rms values of Y are typically about two and

three times Yd'

Equation (3.20) is suitable for evaluating the prob-

ability of ejection for a particular object for which $

is known. For encounters by a large population of objects,

or repeated encounters by a single body, some distribution

of * must be assumed. The simplest assumption is that of

"equipartition" in the orientation of the relative velo-

city vector, i.e., that all directions of U are equally

probable, with the exclusion of the escape cone. This

assumption was made explicitly by Opik (1966a, 1966b), and

implicitly by Bandermann and Wolstencroft (1971). The

resulting distribution for # is then

P(#) d) = sin # d#/(l-cos ). (3.25)

This expression overestimates the number of particles in

nearly parabolic orbits. The loss of particles into the

escape cone by both close and distant encounters tends to

deplete the population with 4 near 4c. A realistic dist-

ribution requires P(#) to go to zero at # c, with P(#)

linear in cos $(or 1/A) near $c (Everhart, 1973a). In

most of the calculations presented here, I have used Eq.

(3.25), in order to compare my results with those of Opik

and Bandermann and Wolstencroft. The calculated ejection

probabilities can b.e considered upper limits. The effect
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of other distributions of * on the calculated ejection

probabilities will be discussed below. One advantage of

this approach is the ease with which different distribut-

ions of # may be used for different classes of particles.

We shall see that the probabilities of collision and

ejection per encounter are both small for all orbits of

interest. Since an "old" population of particles will

have undergone many encounters, with the rms deflection

small compared to the allowed domain of $, we can expect

approximate equipartition except near $c. Comets are an

exception, since their observable lifetimes are not

limited by collisions or ejection, but by their disint-

egration. Lowrey (1973) classified short-period comets

by their velocities relative to Jupiter, and their values

of $. High-velocity comets (U>l) were not found with

small values of $, though low-velocity comets had appar-

ently reached equipartition. The average deflection per

encounter decreases with increasing U, so the number of

encounters needed to reach equipartition increases with

U. Apparently, when U>l the time required exceeds the

visible lifetime of the comet. The numbers of comets

visible as functions of U and * could provide an estimate

of their visible lifetimes, if one could compensate for

observational selection effects. Note that this result

is consistent with the conclusion of Everhart (1973a)
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that long-period comets (#~$ ) evolve into short-period

comets, but not vice versa.

With the distribution of # given by Eq. (3.25), the

average ejection probability per encounter for a given

value of U is

cosy cos*i-cos#$
maxc cos~{ coyC}cos(y/ 2 )sin# d# dy

P(U)= I sin sin
y

min T sin (y/2) (1-cos c )(sin -2 d/2 )1 l (3.26)

The value of P(o|U) must be evaluated numerically. The

limits of integration have been defined above. Only the

limits on y depend on the properties of the different

is
planets. The region of integration on the $,y plane s&e

shown schematically in Figure 8. The heavily outlined

region is the range for ejection. For y<(#c-#), the U

vector cannot reach the escape cone. For (2-# -#)<y<y ,c g

the U vector is turned completely through the escape cone,

and ejection does not occur (this outcome is significant

for small values of U, when the escape cone is narrow,

and turning angles are relatively large).

The lifetime of a particle is determined by the rate

of encounters, as well as the probabilities of ejection

and collision. Opik (1951, Eq. 18) calculated the prob-

ability of encounter per revolution of the particle, for

it

orbits assumed to intersect. In our notation, Opik's

result becomes
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P D/(4 sin $). (3.27)
e

This approximate formula is not valid for very small

values of sin $ (P obviously cannot exceed unity). If

we assume the distribution of Eq. (3.25), then the mean

probability of encounter per revolution for a population

of particles which has attained equipartition would be

P ($) P ($) d$ = Do /4 (1-cos # ), (3.28)
e fo e c c

0

The average time between encounters can be found if the

mean orbital period is known. The average semi-major

axis is found from Eq. (3.6):

l/A = fc (1-U 2 +2U cos 4) P($) d$. (3.29)
0

2
Since cos $ = (U -1)/2U, we find

C2

(1/A) = U+(1-U 2)/2, (3.30)

and the mean time between encounters (in revolutions of

the planet) is

1= (1/A)-3/2 p-1 P($) doJo e

= (1-U2+2U cos )- 3/2 sin * P($) d$. (3.31)

0

If P(O) is given by Eq. (3.26), this integral is not

finite. P() must go to zero at 4c at least as rapidly

as 1/A for convergence. If we assume equipartition for
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#<*c-2Yrms, and P(#) approaching zero linearly in cos

for larger values of *, this integral can be evaluated

numerically. For U=0.45, 1.0, and 2.0, T is about 120,

130, and 280 ravolutions, respectively, for Jupiter. Eq.

(3.31) can be considered a lower limit for the mean time

between encounters, since perturbations will keep the

particle orbits from intersecting the planet's orbit

for much of the time.

C. Results

Equation (3.26) was integrated numerically, using

Simpson's rule in a computer program. The probabilities

of collision and ejection as functions of U are shown for

the giant planets in Figure 9. The ejection probability

curves have nearly identical shapes for all of the planets.

This result was unexpected, since the limits of integration

are quite different for the different planets. The eject-

ion curve for Jupiter matches quite closely that given by

Bandermann and Wolstencroft (1971), though my values are

about 20% higher. In view of the different methods used,

I do not consider this difference to be significant.

The ejection probability curves are remarkably flat.

Over most of the possible range of U, the ejection prob-

ability varies by less than a factor of three. As

expected, it goes to zero at U=0.414, and to unity at

U=2.414,, but for 0.6<U<1.8, the ejection probability act-

ually decreases with increasing U. One might intuitively
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expect it to increase monotonically with U, since the

volume of the escape cone increases, and the required

deflection decreases. However, Eq. (3.13) shows that the

-4
cross-section for a given deflection varies as U . Over

most of the range of U, this effect dominates.

Opik (1961, 1963) has stated that the ejection prob-

ability is proportional to the volume of the escape cone.

Bandermann and Wolstencroft (1971) erroneously interpreted

this statement as a claim that the escape probability was

simply the fractional solid angle of the escape cone,

equal to (U 2+2U-1)/4U, and shown in Fig. 9. Actually,

Opik stated that the ejection probability was proportional

to this solid angle after randomization of the U vector.

This randomization requires a sufficient number of encoun-

ters so that the rms total deflection equals 7r/2. Opik's

expression for the average cross-section for this deflect-

2 2 2 24 2
ion was wB ln[(D +B)/(S +B)], where B=16M 2/7 U , and S =

p
2 2 2

R (l+2M /RU ). Dividing this cross-section by rD and
p

multiplying by the fractional solid angle of the escape

cone evidently gives an average ejection probability per

encounter of

P(0) = (U 2+2U-1) B ln[(D 2+B)/(S 2+B)], (3.32)
4U D2
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though I am unaware of any explicit statement of this

equation by Opik. Eq. (3.32) was evaluated for Jupiter,

using the definition of D in Eq. (3.14) (Opik's definit-

ion is somewhat different). The resulting curve is lab-

eled "Jupiter (Opik)" in Fig. 9. It is similar in form

to my result for low values of U, but deviates widely at

large values, and does not turn upward. The large differ-

ence in computed probabilities of ejection apparently

rsults from Opik's (1961) assumption that all deflections

are small. Large deflections, though rare, are very

effective for ejection. In the case of the terrestrial

planets, the small-deflection assumption should be more

realistic. However, the agreement between the two app-

roaches is even poorer for those planets. The results

for the terrestrial planets are shown in Figure 10. The

curve labeled "Mars (Opik)" was evaluated using Eq. (3.32).

In this case, the solid angle of the escape cone is not

a good measure of the escape probability. When most

deflections are small, escape is possible only through a

narrow annulus with $~ c, rather than through the entire

cone. The assumption that an accumulated deflection of

7r/2 is necessary for ejection underestimates the ejection

probability for a population of particles which has ach-

ieved equipartition and has some members with $~$. How-
c

ever, equipartition is unlikely for encounters with the
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terrestrial planets, as we shall see. The results in Fig.

10are probably a considerable overestimate of the eject-

ion probability.

The collision probability curves for the Jovian and

terrestrial planets are of different types, due to diff-

erences in both their masses and orbits. The inner

planets have higher orbital velocities, hence a given

value of U corresponds to a higher absolute velocity.

For relative velocities much greater than the escape vel-

ocity, the collision cross-section is essentially equal

to the geometric area. The terrestrial planets have

orbital velocities several times their escape velocities,

so for U greater than about 0.5, the collision probabil-

ities are nearly constant. The giant planets all have

escape velocities several timeslarger than their orbital

velocities, so collision probabilities vary rather strongly

with all allowed values of U.

The giant planets have ejection cross-sections more

than three orders of magnitude greater than their collis-

ion cross-sections. For the terrestrial planets, the

formal collision probability shown in Fig.10 is only about

one order of magnitude less than that for ejection. For

Mercury, the two probabilities are about equal; the coll-

ision probability is large because the sphere of influence

is so small. This difference is qualitative, as well as
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quantitative. Figure 11 shows yd and Y for the earth

and Jupiter as functions of U, as well as c. For vir-

tually all values of U, Y for Jupiter is larger than c

Therefore, Jupiter is capable of ejecting particles with

small initial values of #. The other giant planets also

have this ability. The earth and the other terrestrial

planets all have y <<4 ; they can therefore eject only
g c

particles with nearly parabolic initial orbits. A part-

icle with an initially small # must have its orbit evolve
'I

through the random walk described by Opik.before it can

be ejected. During this process, the particle will usu-

ally evolve into a Jupiter-crossing orbit, if it does not

first collide with a terrestrial planet. The probability

of ejection by Jupiter is so large that direct ejection

by terrestrial planets is of no real significance. None

of the known Apollo asteroids can be ejected by a single

encounter with a terrestrial planet; their lifetimes are

determined primarily by the probability of collision with

the terrestrial planets. Ejection from near-parabolic

orbits accounts for a significant part of the computed

ejection probability for all planets, but for the giant

planets, ejection is more probable than collision, even

for small values of $.

As stated above, the assumption of complete equipart-

ition overestimates the number of particles in nearly
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parabolic orbits, and therefore Figures 9 and10 represent

upper limits for the ejection probabilities. I have also

evaluated P(0) using the more realistic assumption that

equipartition prevails except when $is within a few times

Yrms of , . with P(oo) going to zero at $c, linearly in

cos $. The result is not sensitive to the value of the

transition point. The curve of P(O) is lowered by about

one order of magnitude, but the shape is not changed sign-

ificantly. This assumption brings the calculated ejection

probability curves into better agreement with Opik's

results, but the agreement is fortuitous. The flattened

shape of the ejection probability curves does not depend

strongly on the assumed distribution of $. If we evaluate

P(o|U,$) by Eq. (3.20) as a function of U with $fixed, we

find a curve of similar shape, but rising to unity at the

value of U for which the chosen value of $ is equal to

$c. The curve of P(ooU) will be of this same general

shape for any reasonably smooth distribution of $, and

will be rather flat for most of the allowed range of U.

From Eq. (3.4), we have U as a function of A, e, and

i. Figure 12 shows the contours of constant U on an a-e

diagram for i=0. For nonzero values of i, the U contours

are shifted to the left. A deflection in an encounter can

be considered as a displacement on a surface of constant U

in A-e-i space.
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D. Discussion

The methods developed here occupy a place between

the analytic approach of Opik and the Monte Carlo tech-

niques and numerical integration of orbits used by Arnold

(1965) and Everhart (1973a, 1973b). The latter are more

useful for determining the absolute lifetimes of particles,

since for that we must know the probability that the orbtis

will intersect in the first place. That probability is

determined mostly by distant encounters and the perturba-

tions of other planets. Analytic approximations of suff-

icient accuracy for many purposes should be possible

(Zimmerman and Wetherill, 1973). The direct integration

of orbits used by Everhart may be the most useful in this

respect, but such methods are not practical for determin-

ing collision probabilities, due to the extremely low

rate of collisions. I caution against applying these

formulas to individual objects, since in many cases exact

or approximate commensurabilities exist, invalidating the

assumption of random encounters. Many of the small bod-

ies in the solar system are protected from close encount-

ers with planets; it is for precisely this reason that

they have survived to the present day.

Some applications of these methods have been ment-

ioned in passing. The visible lifetimes of short-period

comets may be estimated from their distribution of 4, if
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allowance can be made for observational selection, and

the possible tendency for successive encounters with

Jupiter to be correlated. Opik (1963) concluded that the

time scale for dynamical elimination of comets was three

to five orders of magnitude greater than the time scale

for their disintegration. The fact that thousands of

dead comet nuclei are not observed led him to conclude

that most comets disintegrate completely, leaving no

solid bodies of asteroidal size. My computed ejection

probabilities are greater than Opik's, easing this prob-

lem to some extent. However, the Apollo asteroids, which

may be dead comet nuclei (Opik, 1963), are eliminated

chiefly by collision with the terrestrial planets. Their

calculated lifetimes are not changed by my results,

except that deflection to Jupiter-crossing orbits may be

somewhat more probable that calculated by Opik.

If comets originated within the solar system, and

were ejected into distant orbits by encounters with the

giant planets (Oort, 1950; Opik, 1973), we have in

principle a means of calculating the efficiency of this

process and limits on the mass of the comet cloud. Some

estimates already exist (Safronov, 1970; Opik, 1973),

but a better estimate should be possible. The total mass

and angular momentum lost from the solar system by the

ejection of comets may have been large enough to be of

cosmogonical significance (Levin, 1972b).
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The methods developed in this chapter are directly applic-

able to the problem of possible origin of short-period

comets by capture of parabolic comets. Everhart (1969)

has investigated such captures be close encounters with

giant planets, using conic matching and some direct inte-

gration of orbits for large numbers of random parabolic

initial orbits. He also followed the orbital evolution

of comets captured in this way by integration of their

orbits (Everhart, 1972). While this approach offers

greater potential accuracy, considerable insight may be

gained from two-body scattering models, with a consider-

able saving in computation time. A quantitative treat-

ment will not be attempted here, but some useful qualit-

ative results can be developed immediately. It is known

that most short-period comets have rather low values of

U with respect to Jupiter, typically less than 0.6 (Low-

rey, 1973). Stromgren (1947) suspected that such low-

velocity comets were captured from parabolic orbits of

low inclination, with perihelia near Jupiter's orbit.

Such orbits have U near the minimum value of 0.414. This

was confirmed by Everhart (1969). Stromgren suggested

that their preferential capture was due to their spend-

ing more time near Jupiter's orbit, making an encounter

more likely. However, there is another important effect.

A parabolic comet has #=#c, orginally. In the limit of
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small deflections, the capture probability in a single

encounter is 0.5. When the deflection is comparable in

magnitude to the size of the escape cone, the capture

likelihood is larger. Whenever yb2(0r- c), the capture

probability is unity. For Jupiter, the mean deflection

is comparable to the size of the escape cone for U~0.5.

Considerably more than half of all low-velocity encounters

result in capture. Such large-deflection captures also

result in more stable orbits; another close encounter

is necessary to eject the comet. Those captured by small

deflections can be ejected again by small perturbations,

without re-entering the planet's sphere of influence.

Note that most such captures and re-ejections are not

observable from the earth; 4 must be fairly small for a

comet to become visible. Some of these considerations

will be mentioned in the next chapter. We shall see that

the results developed here can offer an explanation for

the anomalously low masses of Mars and the asteroid belt.
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IV. MASS LOSS FROM THE REGION OF MARS AND THE

ASTEROID BELT.

We have seen in chapter 1 that the total mass of

Mars and the asteroids is much lower than the amount

which was probably condensed in that region. An ad hoc

local minimum in the nebular density would be dynamically

stable (Kuiper, 1956), but the origin of such a feature

during formation of the nebula is unexplained. Ter Haar

(1972) actually predicts a local maximum in nebular

density at 2AU; the results of chapter 1 suggest a

monotonic variation. We have seen in chapter 2 that the

small mass of Mars implies an unreasonably long accretion

time for that planet for a closed feeding zone model.

The removal of mass from its zone appears necessary.

The mass ratios: earth/ Mars/ asteroids suggest that

such a process was much more effective in the zone of

Mars than in that of the earth, and was nearly complete

in the asteroid belt. The magnitude of the deficiency

of mass in that region is seldom appreciated; perhaps

Mars seems large in our consciousness because we possess

a relatively large amount of data about that planet.

Actually, 95% of the mass contained in the terrestrial

planets lies within1AU.of the sun; the much larger area

between the earth and Jupiter contains only 5%.
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Jupiter has long been suspected of causing this

state (Kuiper, 1951), but the actual mechanism has not

been adequately explained. Since the orbits of Mars and

the existing asteroids are obviously stable over very

long time scales, direct gravitation perturbations by

Jupiter could not have removed the excess mass from

these regions. The relative velocities of planetesimals

would have been increased by these perturbations. This

would have slowed accretion in the asteroid belt, but

might not have prevented it, particularly if much more

mass was originally present. Such a process would not

have been effective in the zone of Mars. Safronov

(1972, chs. 9,13) has suggested that matter was "swept

away" from the zones of Mars and the asteroids by bodies

which originated in the zone of Jupiter and were perturbed

into eccentric orbits by that planet as it grew. A more

detailed examination of this process indicates that this

mechanism would have the required properties.

Orbits in the present asteroid belt, with semi-

major axes less than 3.3 A.U. (the resonance at 1/2 of

Jupiter's period) are stable. Except for certain

commensurable orbits, those beyond 4.0 A.U. are unstable,

and subject to close approaches to Jupiter

(Birn, 1973; Lecar and Franklin, 1973), Orbits between

3.3 and 4.0 A.U. are probably unstable on a longer time
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scale. Many rocky (and possibly icy) bodies of asteroidal

size would have condensed from the solar nebula in these

regions, as evidenced by the numerous observed Trojan

asteroids (Van Houten et al., 1970). To avoid confusion

with presently existing asteroids and comets, I refer to

these bodies as "projectiles". The formation of Jupiter

caused most of these bodies to be scattered into other

-parts of the solar system. An intense bombardment before

planetary accretion could have disrupted planetesimals

in those regions. Such a bombardment could have been

intense; one terrestrial mass, if divided into kilometer-

sized objects, could produce some 1013 projectiles, plus

secondary collisional fragments. The disruption of the

planetesimals, with the resulting decrease in the mean

size, could have cause preferential removal of matter

from that zone. Depending on their sizes, fragments

could be removed by radiation pressure, the Poynting-

Robertson effect, nebular gas drag, or the Yarkovsky

effect ('Opik, 1951; Peterson. 1975). The difference

in effects on Mars and the earth is much greater than

that which can be attributed to the geometrical factors

of the increased distance from Jupiter and smaller size

of the earth's zone. However, there is an effect which

would cause the total bombardment flux to vary by about

two orders of magnitude between Mars and the earth.
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Consider a projectile in a Jupiter-crossing orbit.

Its heliocentric orbit is determined by the magnitude

and direction of its velocity relative to Jupiter at the

point of intersection (Opik, 1951, 1963; Lowrey, 1973;

ch. 3, above). The minimum perihelion distance for any

value of U is attained when the U-vector is opposite in

direction to Jupiter's orbital motion. The projectile

then has its aphelion at Jupiter's orbit, and perihelion

at

q . = (1-U) 2 /(1+2U-U 2 ), (2.25)

in units of Jupiter's orbital radius. Whenever the pro-

jectile encounters Jupiter, the direction of the U-vector

is changed; the process can be described in terms of a

"random walk" (Opik, 1963). When U<0.414, the projectile

can be eliminated only by collision with Jupiter or

another body. For U greater than this critical value, an

encounter with Jupiter can put the projectile into a

hyperbolic heliocentric orbit, ejecting it from the solar

system. Figure 13 shows the probabilities of collision

and ejection as functions of U. Whenever ejection is

possible, it is more probable than collision with Jupiter,

by two to three orders of magnitude.

Figure 14 shows qmin as a function of U, and the

positions of the asteroid belt and terrestrial planets.
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The critical value of U corresponds to q .l 1.1 AU. In

order to reach the earth, a projectile with aphelion at or

beyond Jupiter's orbit must have U>0.42 at Jupiter. To

reach Mars, U needs only to be about 0.3. The lifetime

of a projectile is determined chiefly by encounters with

Jupiter. If U remained constant, then Fig. 12 implies

that the lifetime of a potentially Mars-crossing project-

ile would be about 100 times that of a potential earth-

crosser. Only a small fraction of those projectiles with

sufficiently large values of U actually cross the orbits

of the earth at any instant, but encounters with Jupiter

can allow any of them to do so eventually.

Actually, U is not constant; the eccentricity of

Jupiter's orbit, and its inclination to the invariable

plane, cause U to vary slightly between successive encoun-

ters. After many encounters, the average effect is an

increase in U (Arnold, 1965; Opik, 1966a). According to

8pik's statistical theory, several thousand encounters,

on a time scale of 105 to 106 years, are required to

increase U from 0.1 to 0.4. The rate of acceleration

decreases as U increases, so U >0.3 for most of that time.

Opik's estimate of the time scale is probably too small,

since he uses the present value of Jupiter's eccentricity,

near the maximum, and too large a value of the inclination

(0.027 <e O0.0 6 2 ; 0.004 <sin ij <0.008 (Brouwer and
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Clemence, 1961); 5pik used e = 0.05, sin i = 0.02).

Most of the projectiles will escape collision with Jupiter

during this acceleration. When U exceeds 0.42, the time

scale for elimination of potential earth-crossers will

be about 100 encounters, or 104 years. The absolute time

scale depends on the rate of encounters with Jupiter,

which will not differ greatly between Mars-crossers and

earth-crossers. The ratio of their lifetimes is insen-

sitive to the encounter rate, since the rates of accel-

eration, collision with Jupiter, and ejection areall

proportional to the encounter rate. A hypothetical

proto-Jovian core of smaller mass (Perri and Cameron,

1973; Kaula and Bigeleisen, 1975) would produce the same

effects on a longer time scale, with a larger fraction

of projectiles lost by collision with Jupiter.

The projectiles would have original values of U near

0.1. The acceleration by Jupiter would cause the region

of the present asteroid belt to be bombarded first, with

impact velocities of several km sec~* The zone of Mars

would receive a less severe bombardment, since for

U >0.15, some projectiles could have aphelia at Saturn's

orbit and be eliminated there. Most projectiles with

U >0.414 would be ejected by Jupiter, with little addit-

ional acceleration. Opik (1966a) estimates the fraction

surviving to U=0.6 at 10-8. This is considerable over-
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estimate; the rate of acceleration is smaller than Opik's

calculation, as stated above, and the ejection probability

is greater (Weidenschilling, 1975a; ch. 3, this thesis).

The bombardment of Mercury and Venus from this source

would be negligible; the craters of Mercury must have

had a different source, possibly bodies scattered by

multiple emcounters with other planets. There may have

been significant bombardment of the earth's zone, with

some effect upon the earth (Wetherill, 1972) or the moon

(Kaula and Bigeleisen, 1975), but of much lower intensity

than in the zone of Mars. The lunar highlands appear too

young to show evidence of this bombardment (Hartmann,

1975), which must have occurred some 4.5 X 109 years ago.

The heavily cratered areas of Mars are probably more

recent, also.

This bombardment mechanism does not affect the

presently observed meteorite flux at the earth or Mars,

since meteoroids originating in the present asteroid

belt can reach earth-crossing orbits without encountering

Jupiter (Wetherill, 1969, 1974a, 1974b). There is,

however, one possibly significant effect upon the Martian

cratering rate. The main bombardment was a sudden event,

lasting only about 106 years. It was probably triggered

by the dissipation of the solar nebula, in which drag

would have inhibited the acceleration of projectiles.
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Possibly, the formation of Jupiter by hydrodynamic

collapse (Perri and Cameron, 1973) was responsible.

However, some projectiles probably had original orbits

which were only unstable on a much longer time scale,

such as horseshoe or Trojan type orbits (Everhart, 1973b).

Bodies "leaking" from such nearly stable orbits would

have been much more likely to encounter Mars than the

other terrestrial planets before ejection. If such

bodies were sufficiently numerous, the cratering flux

at Mars could have been much higher than the lunar flux

for a significant fraction of the age of the solar

system (I am indebted to W. K. Hartmann for this sugges-

tion). Martian chronology based on comparison of lunar

and Martian crater counts may be in error from this

cause.

Rabe (1971) has suggested such a Trojan origin for

some of Jupiter's family of short-period comets. While

there are probably other adequate sources of periodic

comets, his conclusion points out the dynamical simi-

larity between the "projectiles" (after significant

acceleration) and the short-period comets. The observed

distribution of cometary perihelia supports the general

concept of a "barrier" near 1AU for Jupiter-influenced

objects. Fig. 15 shows the distribution of perihelia

for observed parabolic and periodic comets (Marsden,
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1975). According to the theory of Oort (1950), the

histogram for parabolic comets should be flat. The peak

near 1 AU is therefore an indication of discovery

selection effects. Apparently, the discovery probability

for q=1.5 AU is only about one fourth that for q=1 AU.

The periodic comets show an entirely different distribu-

tion of a. Even without correction for discovery selec-

tion, there is an excess of periodic comets with q >1 AU.

If the selection factor for parabolic comets is applicable,

the cometary flux at 1.5 AU is more than an order of

magnitude grater than that inside the earth's orbit.

Actually, the selection factor may be even greater for

periodic comets, since their brightness tends to vary

more rapidly with heliocentric distance (Oort and

Schmidt, 1951). Note also that the majority of periodic

comets with q< 1 AU have Q > 10 AU, suggesting that their

perihelia were reduced by the effects of the giant

planets other than Jupiter. It is impossible to demons-

trate or disprove this suggestion conclusively, since the

orbits of individual comets cannot be integrated back-

ward with sufficient accuracy. However, the limited

lifetimes against disintegration suggest that relatively

few comets with Q< 10 have been strongly influenced by

planets other than Jupiter.

The time scale for the main bombardment is much



shorter than that for planetary accretion by gravita-

tional forces (Safronov, 1972, ch. 9; Weidenschilling,

1974, 1975c; this thesis, ch. 2). Two scenarios are

possible: the bombardment might have removed the excess

mass from the zone of Mars before accretion began, or

might have terminated accretion which was already in

progress. We have seen that the first case leads to

extremely long accretion times, in excess of 2 b.y.

While such a time scale cannot be definitively ruled out

on the basis of evidence from Mars alone, the lack of a

heavy lunar cratering flux in this interval is a strong

argument against it. In the second, more plausible case,

Mars might have attained, say, 90% of its present mass

before the bombardment. This scenario suggests that

some significant accretion in Mars' zone took place

before dissipation of the solar nebula, but not in the

asteroid region. The post-bombardment fragments in its

zone probably exceeded the mass left in the asteroid

belt. If some 20% of the mass of Mars remained, roughly

half would be accreted by Mars, on a time scale of a few

times 108 yr. The rest would be scattered into earth-

crossing orbits after a delay of 108 yr. or more.

Encounters with the earth would lead to Venus- and

Mercury-crossing orbits. This scenario is compatible

with the intense lunar cratering of 4 b.y. ago, in both
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timing and amount. It would also result in the delayed

post-accretion bombardment of Mercury suggested by

Murray et al. (1975). Wetherill (1975b, 1975c) suggested

a bombardment by bodies derived from Mars-crossing orbits

are a possible source of pre-mare lunar cratering; a

necessary consequence of his model is a much heavier

bombardment of Mars during the same period.

The total mass scattered among the terrestrial

planets during this late bombardment period was not

large. Wetherill (1975b, 1975c) suggests a mass on the

order of 10-4 earth masses, not including that which

impacted Mars. Actually, this figure is merely a lower

limit. The early primary bombardment probably produced

a much larger mass of small fragments which have left

no visible cratering history. Some of this pulverized

matter probably was captured by the earth. Lewis (1972a)

suggested that the earth's H20 content was due to its

accretion zone extending slightly beyond the inner edge

of the stability field of the hydrous mineral tremolite.

However, it seems possible that the earth's water and

volatiles were derived from the zone of Mars. Life on

our own planet may be the result of this inheritance.
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FURTHER SPECULATION

From the author's admittedly biased vantage point,

the picture presented here - a low-mass nebula, "slow"

gravitational accretion, and bombardment- appears to be

generally self-consistent, without excessively blunting

Occam's razor. At our present state of knowledge, this

may be as much as one can expect from any cosmogony.

Certainly, a more quantitative treatment is desirable,

particularly for the behavior of the "projectiles" as they

are accelerated and ejected. If, for the moment, we do

accept this scenario for the formation of our own solar

system, what can we infer about the origin of other

systems?

The mechanism of formation of an "embryo" is

unknown, but the large numbers of planetesimals available

suggests that the origin and growth of a planet was not

governed by the statistics of small numbers. If the

formation of Jupiter was triggered by the presence of

solid H2 0 among the condensates in the nebula, then the

same should have happened in other systems. In any nebula

with sufficient oxygen abundance, a massive planet

should form near the limit of ice formation. If the

nebula is massive enough, the planet would become a gas

giant. The resulting bombardment should cause a gap or
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mass deficiency in the region beyond about one fifth of

the innermost gas giant's distance from the star. This

gap may be a common feature of planetary systems.

The location of the earth just inside the boundary

of the "safe" region (Fig. 14) is probably coincidental.

One may speculate that a possible inward drift of

pulverized matter from the bombarded region might raise

the local surface density and favor formation of a

planet at that point, if one was not already present.

Again, I lament the lack of a statistically significant

number of observable solar systems.

Undoubtedly, Mars would be a more congenial abode

for life, were it as massive as the earth. We would

expect it to possess a massive atmosphere with a

significant greenhouse effect, milder temperature, and

liquid water. Since the earth was not severely affected

by, and might even have benefited from, the bombardment,

this particular "Jupiter effect" probably does not

influence the possible abundance of life in the universe.

However, it may have deprived us of the chance to have

nearby neighbors.
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FIGURE CAPTIONS

Figure 1. Reconstructed nebular surface densities

obtained by adding H and He to restore each planet to

solar composition, and spreading the resulting masses

into contiguous zones centered on their orbits. The

meaning of the "error bars" is discussed in the text,

chapter 1.

Figure 2. Normalized mass and accretion rate vs. time

for model of Eq. (2.15) (solid lines). Accretion is 99%

complete in an interval of 10T. Also shown is the Hanks-

Anderson accretion rate, dr/dt c t2 sin yt, for a simi-

lar total time for accretion (dashed line).

Figure 3. Accretion of the earth for the nominal case

(UO=0.05, 6=5), for the model of Eq. (2.35). Shown are

fraction of mass accreted (f), accretion rate (df/dt),

radial growth rate (dr/dt), and dimensionless relative

velocity of particles (U). From f=0.01 at t=0, f reaches

8
0.99 in 1.56 X 10 yr.

Figure 4. Effect of U on accretion of the earth, with

e=5. With total mass fixed, the initial space density of

-2
matter, do, varies as U- .

0 0
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Figure 5. Effect of varying e on accretion of the earth,

for model of Eq. (2.35), with U =0.05., For e=o, particle

velocities are constant. Finite values of 0 drastically

reduce the peak value of df/dt.

Figure 6. Normalized accretion rates for the earth acc-

ording to Eq. (2.35), as function of f, for different

values of 0. The increase of particle velocities for

finite values of 6 slows the later stages of accretion,

causing the peak value of df/dt to occur at smaller

values of f.

Figure 7. Geometry of encounter for escape. The heavily

outlined spherical triangle defines the angle , accord-

ing to Eq. (3.8). The probability of escape is /7.

Figure 8. Region of integration of Eq. (3.26) in the $,y

plane (schematic) for a giant planet. For a terrestrial

planet, the collision region extends to small values of y.

Figure 9. Probabilities of collision (dashed lines) and

ejection (solid lines) for the giant planets, from Eqs.

(3.18) and (3.26). Also shown are fractional solid angle

2
of the escape cone, (U +2U-1)/4U, and Opik's ejection

probability for Jupiter from Eq. (3.32).

-106-



Figure 10. Probabilities of collision (dashed lines) and

ejection (solid lines) for the terrestrial planets, if

equipartition is assumed. This greatly overestimates the

ejection probability. Also shown is Opik's ejection prob-

ability for Mars from Eq. (3.32).

Figure 11. Maximum (y ) and minimum (yd) deflection

angles for Jupiter and the earth. All terrestrial plan-

ets have y <<$c'

Figure 12. A-e diagram for the case i=0, showing con-

tours of U and $.

Figure 13. Probabilities of collision with Jupiter

(dashed line) and ejection from the solar system (solid

line) per encounter, as a function of U. When U exceeds

the critical value for ejection, the ejection probability

is much greater than the probability of collision.

Figure 14. Minimum possible perihelion as a function of

U, for a projectile with aphelion at Jupiter's orbit.

The position of the asteroid belt is shown, as are the

ranges of heliocentric distances of the terrestrial plan-

ets at their greatest orbital eccentricities (Brouwer

and Clemence, 1961). The vertical dashed line marks the

critical velocity for ejection from the solar system.
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Figure 15. Perihelion distributions for near-parabolic

and short-period comets, after Marsden (1975). By Oort's

theory (Oort, 1950), the histogram for near-parabolic

comets should be flat; the apparent peak near 1 AU is due

to discovery selection effects.
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Figure 9
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Figure 10
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Figure 11
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Figure 12
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Figure 14
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Figure 15
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