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ABSTRACT

The elastic constants and their pressure and temperature derivatives

are presented for single-crystal MgO3.OAl203 spinel and for polycrystal-

line cadmium oxide. The elastic constants and their pressure derivatives

are reported for a natural magnetite and for a polycrystalline MgO.l.lAl2 03

spinel. The measured volume thermal expansion of cadmium oxide is

x16(32 ± 1) x 10. Some of the more important results are:

Spinel Spinel* Magnetite Cadmium
Parameter MgO-l.lAl203 MgO-3.OAl2 0 3 Coxide

Density 3.58** 3.6245 5.163 7.8438

Ks (kb) 2060** 2026 1596 1280**

K0

3 5.140 4.58 20.3 5.31( T P-T

V _- -0 .25T7- -0.215

*Voigt-Reuss-Hill average.
**Corrected to zero porosity.



Parameter Spinel Spinel* Magnetite Cadmium
Mg0-l.Al203  MgO-3.0A1203  * oxide

G (kb) 1020** 1155 893 520**

0p .82 0.753 -11.7 1.23

(G Gkb
-JK- -- -o.1o6 -- -0.125

v (km/sec) 9.8** 9.918 7.35 4.92**

v (km/sec) 5.4** 5.644 4.16 2.53**

Gruneisen's 0.87 0.69 -- 1.49
ratio

*Voigt-Reuss-Hill average.
**Corrected to zero porosity.

A comparison of four spinels shows their elastic properties to be in-

dependent of the magnesia-alumina ratio. This is consistent with the uni-

versal equations of state.

A new technique for measuring ultrasonic velocity in coarse grained

samples was used to study the effect of spherical pores on dynamic elastic

properties. Various forms of Mackenzie's equations adequately predict the

change in elastic parameters with porosities to approximately 10%. No ade-

quate theory exists for the effect of porosity on the pressure derivatives

of the elastic parameters.

A critical review in the light of most of the applicable data indi-

cates that the universal equations of state are of marginal value. A modi-

fied quasi-harmonic equation of state tailored to a specific composition is

required for reliable extrapolations to mantle temperatures and pressures.



Key parameters in the quasi-harmonic theory are the mode Gruneisen's

ratios. Theoretically, it is shown that the mode Gruneisen's ratios of

covalently bonded crystals are independent of wave vector. This new argu-

ment implies that the ultrasonic mode Gruneisen's ratios apply to all wave

vectors in that mode. The result is a modified quasi-harmonic equation of

state that is more rigorous than the Mie-Gruneisen equation.

A new theoretical expression is derived for the volume derivative of

Gruneisen's ratio, and the results are listed for 10 compounds. The volume

dependence of neither the Slater nor the Dugdale-MacDonald formulation of

y is correct. The implication to the reduction of shock data is dis-

cussed.
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SYMBOLS

A Helmholtz free energy

Ak amplitude of wave k

A transformation matrix
ni

a constant

a. components of a position vector

b constant

C constant

Cijkl components of the elastic stiffness tensor

C specific heat at constant volume

D determinant of coefficient matrix

D components of the dynamical-matrix
ij

E energy in mode n

E . lattice vibrational energyvib

th
F, reciprocal of travel time in the i mode

f frequency

G shear modulus

K adiabatic bulk modulus
s

KT isothermal bulk modulus

k wave vector

L length of sample



m mass of atom s
S

m mean atomic weight

P average pressure in the solid

P hydrostatic pressure

q. an elastic parameter

Sijkl components of elastic compliance

T temperature

t time

U internal energy

u. components of displacement vector

V total volume

v velocity of compressional waves
p

v velocity of shear waves
S

x() position vector of 1st cell

z mechanical impedance

a volume thermal expansion

compressibility

y Gruneisen's parameter

TDM Dugdale-MacDonald Gruneisen's ratio

ySL Slater Gruneisen's ratio

A seal thickness

A vector to atomic nearest neighbor

6jk kronecker delta



6 jk Eulerian finite strain tensor

n porosity

x. Christoffel constants
ik

E third order term in the Birch-Murnaghan equation

p density

(. ij components of stress tensor

$(i) phase lag between elastic waves i and j

$(V) configurational energy at volume V

$9 (V) rest potential at volume V

$(V) = $(V) plus zero point vibrational energy

W angular frequency or eigenfrequency

Subscripts:

p compressional wave

R Reuss averaging scheme

s shear wave

V Voigt averaging scheme

VRH Hill averaging scheme

Conventions:

y, partial derivatives of y with respect to x

y time derivative of y



I. INTRODUCTION

Theoretically based equations of state relate properties of materials

to pressure, temperature, and composition. With such equations of state, it

is possible to extend laboratory measurements made at low pressures and mod-

erate temperatures to the pressures and temperatures that exist in planetary

interiors. Certain forms of these equations are used to reduce shock-wave

data. Some of these equations of state are reviewed by Knopoff (1963) and

Brush (1967). Examples of geophysical applications of these and of empiri-

cal equations of state are found in Birch (1961a, 1963), Clark and Ringwood

(1964), and D. Anderson (1967a,b).

Of the empirical relations, a Birch-type equation (Simmons, 196 4a)

most satisfactorily relates an elastic property to density and composition.

(The effect of crystal structure can be ignored to the level of approxima-

tion in these empirical equations.) A weakness of the empirical equations

is that they cannot be extrapolated to high pressures and/or temperatures

without corroborating measurements (such as the Hugoniot). Complete theo-

retical equations of state exist for pressures in the millions of bars and/

or temperatures greater than 50,0000 K. For pressures and temperatures

corresponding to the interior of the earth, a basis for an equation of state

is found in the quasi-harmonic theory of lattice vibrations, but the param-

eters in the resulting equation have to be determined experimentally. A

difficulty is that these parameters vary with density. This dependence on

density is a prime concern of this study.

For the purely empirical laws, it is assumed that data for a few key

rocks and minerals can be cast into a law applicable to all geophysically

interesting materials. For example, if the equations of state for important
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end-member oxides were known, the equations of state of more complex minerals

might be inferred through some mixing law. Detailed studies of several end

members as a function of pressure or temperature are underway in .several labo-

ratories. Results are available for quartz (Thurston, et al., 1965), peri-

clase (Chung, et al., 1964; Bogardus, 1965), alumina (Schreiber and 0.

Anderson, 1966), forsterite (Schreiber and 0. Anderson, 1967), polycrystalline

calcia (Soga, 1968), and rutile (Chung and Simmons, 1969).

In this report, several new materials are added to the list of those

studied. The elastic properties, along with their pressure and temperature

derivatives, were measured on single crystals of Mg0-3.0Al203 spinel and mag-

netite and on polycrystals of MgO-l.lAl203 spinel and cadmium oxide (CdO).

The temperature derivatives were omitted in the case of magnetite because

several kilobars of confining pressure were required to obtain consistent

data.

Often, only very small crystals of a substance are available. Cadmium

oxide and high-pressure polymorphs such as stishovite are examples. In such

cases, hot-pressing provides samples large enough to measure the elastic con-

stants. Hot-pressed products are seldom free from pores. After repeated

attempts to hot-press cadmium oxide, the best specimen still had a 3.8% poros-

ity. This report includes an experimental study of the effect of porosity on

the elastic constants and their pressure derivatives.



II. EFFECT OF SPHERICAL PORES ON THE ELASTIC CONSTANTS

AND THEIR PRESSURE DERIVATIVES

For precise measurements of the elastic constants of a crystal, the

specimen must have dimensions of several millimeters. Such relatively

large crystals are not available for all. materials. In addition, for less

symmetrical crystal structures, elastic constants are more complex, and

hence, more difficult to obtain. For these reasons, often it is simpler

to study an isotropic hot-pressed product rather than a single crystal.

A hot-pressed specimen free from pores is difficult to manufacture.

The porosity of most products is several percent. As in sintering

(Mackenzie and Shuttleworth, 1949), the dynamics of hot-pressing favor

formation of spherically shaped pores. An exception is the porosity caused

by differential thermal contraction (Coble and Kingery, 1956). In this

chapter, only spherically shaped pores are discussed. The goal is to re-

late the effective elastic properties to intrinsic elastic properties and

porosity.

The seven largest porous glass samples were selected from a set of

thirteen samples fabricated for an earlier study. The details of the manu-

facture of the samples can be found in Walsh, Brace, and England (1965)

and England (1965). Each sample was cut into a right circular cylinder

approximately 1.5 centimeters in diameter by 2 centimeters long. The

ends were cut parallel to 6 minutes of arc and polished on a ly wheel.

The pores within the samples are generally smaller than 0.1 millimeter,

are almost spherical, and are not contiguous.

A variation on the Papadakis (1967) pulse-echo overlap method was used

to measure compressional and shear-wave velocities in the specimen. The

geometry of the sample and the pressure system is shown in figure II-1. A
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plug made of 4340 steel hardened to Rc 55 was used as a sound transmission

line and as the upper end of the pressure vessel. Peselnick, et al. (1967)

originally showed the advantages of such an arrangement: elimination of

electrical leads into the vessel and of the need to bond a transducer to

each sample. The transducers can be bonded permanently to the plug. An

X-cut quartz transducer was epoxied to one steel plug, and an ac-cut quartz

transducer was epoxied to another. Both transducers were 1/2 inch in diam-

eter and cut to a 5-NHz fundamental.

The sample-to-plug bonding was Eastman 910 quick-setting cement. This

cement is ideal because it is not a filler and requires close juxtaposition

of the surfaces before it will harden. To remove the sample, the bond was

softened by baking the plug-sample assembly at 1500 C for half an hour.

This baking did not damage the epoxy seals.

The pressure system was a standard piston and cylinder apparatus cap-

able of 10 kilobars. Because the porous glass samples were relatively

fragile, pressures were kept at less than 3 kilobars. The pressure medium

was petroleum ether, and the pressure was measured on a recently calibrated

Heise gauge. Accuracies of the pressure measurement are discussed in

chapter III.

The ultrasonic round-trip travel time in the sample can be obtained

by pulsing the transducer once, by watching the multiple reflections inside

the specimen, and by triggering the oscilloscope sweep so that these re-

flections appear superimposed on the cathode ray tubes (CRT). The recipro-

cal of the triggering frequency becomes the travel time. A schematic of

the signal seen at the transducer is shown in figure 11-2. If the oscillo-

scope is triggered at the times indicated by vertical hash marks and the

times are chosen properly, the reflections become superimposed. The sweep



rate must be such that a complete sweep is shorter than the time between

hash marks. Phase stability of event A with respect to sweep triggering

was obtained by use of the same source frequency divided by 64. The result

is an event A for every 64 sweeps across the scope. The reflected signals

decay completely between events A.

Oscilloscope clutter is reduced by trace-intensity 1hodulation which

highlights a chosen time period. Event A, with a variable delay line,

triggers a variable length pulse that then is applied to the Z-axis of the

oscilloscope. For best signal-to-noise ratio, a time that included only

reflections B and C was selected.

By use of the alternate trace feature of a dual-trace scope, with in-

puts connected in parallel, reflections B and C axe obtained on separate

traces. This allows selective amplifications of the reflections and choice

of their vertical separation; both features aid identification of the exact

overlap. Typical reflections of a shear-wave signal are shown in fig-

ure 11-3. The bottom traces match exactly, whereas the triggering fre-

3
quency for the top two traces is mismatched by one part in 10 . This

sensitivity in the identification of the overlap in this new method is im-

provement of an order of magnitude in precision over the pulse-mercury

delay-line technique frequently used to measure velocities of rocks. More

than one order of magnitude improvement in accuracy exists because the sig-

nal in the delay-line method passes through media with different filter

characteristics before the comparison. Points between dissimilar waveforms

then must be matched. Systematic errors are likely. A schematic of the

electronic components is shown in figure II-4.

Velocity data, lengths, porosities, and densities of the samples are

given in table II-l. Raw data are listed in Appendix G. Because pores
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were not interconnected, porosity could be measured by a comparison of the

dry weight and the weight submerged in carbon tetrachloride, i.e., by meas-

urement of the density. The uncertainty in porosity reported in table II-1

is ±0.01. Velocities are valid to 0.1%. The uncertainty in P-wave pressure

derivatives is ±1.8 x 10~ km/sec kb and that of S-wave pressure derivatives

is ±1.0 x 10~ km/sec kb. These uncertainties in the derivatives are caused

by scatter in measured velocities rather than by uncertainties in pressure.

The results (table II-1) are plotted in figures 11-5, 11-6, and 11-7.

Mackenzie (1950) suggested a thick spherical shell embedded in a matrix as

a model of material containing spherically shaped pores that were distrib-

uted homogeneously. The properties of the thick shell are taken equal to

the intrinsic elastic constants; the elastic properties of the matrix are

equal to the elastic properties of the overall porous medium. The theory

can be recast as

II-1) K' =K 1
3 K

(1 + n

[ G 5 3K + 4

GO - 5(9K + 8)

- I -l G /2

LK + G)(l' n)
3

y = v[lG ]
G, ~1/2

s s -G(1 - -n)

where K', G', v ' and v ' refer to the bulk modulus, the shear modu-
p s

lus, the compressional velocity, and the shear velocity of the porous medium,

respectively; n is porosity. The trace of equations II-1 are included in

figures 11-5, II-6, and 11-7. The agreement is good at porosities less



than 10% of values commonly found in hot-pressed samples. A similar agree-

ment was observed for the static bulk modulus (Walsh, Brace, and England,

1965).

For sufficiently low porosities, approximations for K' and G' are

11-2) K' K

G' =G 1 - a n +
3 + 2

The pressure derivatives of equations II-2 are

11-3
@K' 9K I
DP aP1 - + l1 +2MG

+ 3 13\ (n 2 1(n- K 1+L P\IT k i V+- I -rP) \ 4(GJ

3G' - 1 1 -
FPP 3 +

G 1
3 p 9\ K+2

2
+ 22

15

9 K
+ 2

From the equation for K' in equations II-1, it is easily shown that

( ) = - (3)(n). Assume linear K and G, i.e.,

II-4) K =K + 9

G =G + P



where P is the average pressure in the solid. Note that

9 = , and that (1)- n) .

Equations 11-3 become

II-)5)1 - n +
115 ap 1 F3 K2l G /\ /~

+(2 G )~ + + . -i
L4~ Gi 4 \G I 4\G/

10
D - 1 -G 1+ 2/o L +

+ 2 G 
+ 2 2

15
+ + 5_ _____+

9 K + 2 y~ + 2
T~~ 2)E (9K 2

For n = 0, 3K/9) = K/aP) . Therefore, for small n,

11-6) DK) 1 + n + K

- 1 + 2+G15

10 15
= G L aK' + +5

Pfe a 9 K + 2 9K \-- + 2l +G ~ ' + 2)

Except for the inclusion of the average pressure P the derivation is

equivalent to that of 0. Anderson, et al. (1968). Equations II-6 provide

poor fits to the pressure derivatives obtained for the porous glass. The

assumption of a linear dependence of K and G on pressure (eq. II-4) is

particularly poor for glass, and this may have caused the discrepancy. As



presented in chapter III, the elastic properties and their pressure deriv-

atives were obtained for both a single-crystal spinel and for a porous

polycrystalline spinel. Although the (MgO/Al2 0 3) ratios differed, the com-

parison should be valid. As will be shown in chapter III, the elastic

properties are weak functions of stoichiometry. Schreiber and 0. Anderson

(1967) obtained the pressure derivatives of a 6% porous forsterite.

Kumazawa and 0. Anderson (1969) did the same for single-crystal forsterite.

These data and values corrected according to equations II-6 are listed in

table 11-2. The corrections were generally inadequate.

Although equations II-1 provide adequate corrections to vp, vs, K,

3K
and G, the values of and G- given by equations II-6 are unreliable,

perhaps because of the combined effect of the assumptions of spherical

pores, noninteraction of stress fields, and linearity of the elastic param-

eters with pressure.



TABLE II-1.- ELASTIC PROPERTIES OF POROUS GLASS. (THE UNITS OF DENSITY

AND LENGTH ARE cgs, OF PRESSURE AND ELASTIC

OF VELOCITY km/sec.)

MODULI ARE kb, AND

Sample identification

Property F 680 750 30 29 27 720

Porosity

Density

Length

KT

K

G

v
p

v
5

o p x 10 3

( s x 103

l x 103

( v x 103

(IL)
(3PG

0

2.511

1.3160

458

460

302

5.862

3.469

.32

1.17

-2.41

1.5

-. 05

.93

0.05

2.390

2.4300

413

401

276

5.673

3.400

.00

-. 36

-4.6

.59

.03

0.11

2.232

2.3012

362

383

235

5.584

3.245

-. 45

-1.28

-7.7

-7.1

.53

-. 39

0.33

1.672

1.5878

210

211

145

4.920

2.945

-1.42

-16.5

.74

-. 93

0.39

1.534

1.7496

179

199

120

4.845

2.800

-2.37

-4.50

-20.5

-17.8

.05

-. 86

o.46

1.356

2.2298

135

148

100

4.555

2.719

-3.92

-6.10

-29.1

-23.3

-. 21

-. 98

0.50

1.245

2.7437

120

86

2.620

-6.49

-24.3

-. 87

*From Walsh, Brace, and England, 1965.



TABLE 11-2.- COMPARISON OF THE PRESSURE DERIVATIVES

FOR POROUS AND NONPOROUS MATERIALS

Spinel Forsterite

Porosity 0.02 0* 0** 0.06 0* 0**

5.40 5.60 4.58 4.87 5.38 5.37
aG

.82 .82 .75 1.3 1.34 1.80

*Reduced to zero porosity through application of equations 11-6.

**Voigt-Reuss-Hill averages of single crystal data.
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Figure II-1.- Arrangement of specimen in pressure vessel. The glass sam-
ple was bonded to the plug with Eastman 910 quick-setting cement. The
transducer is outside the pressure envelope.
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Figure 11-2.- Idealized signals at transducer. The vertical hash marks represent

the beginning of each sweep on the CRT. Because of Z-axis modulation, only the

two sweeps containing reflections B and C are seen.



Time

Figure 11-3.- Oscilloscope traces of typical shear wave signals. The
lower two traces show reflections B and C in a matched condition.

3
The upper traces are mismatched by 1 part in 10
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Figure 11-4.- Block diagram. The discriminator is a simple resistor-
bucking diode divider that provides high-voltage protection for the
amplifier. Also included is a passive filter designed to reduce
60-cycle ac pickup.
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Figure 11-5.- Effect of porosity on bulk and shear moduli. The lines are

the trace of the theoretical expression equation II-1.
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traces of the theoretical expression equation II-1.
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III. THE ELASTIC PROPERTIES OF SPINEL, MAGNETITE,

AND CADMIUM OXIDE

The Samples

Ultrasonic velocities and their pressure and temperature derivatives

were measured on a single-crystal spinel. Velocities and their pressure

derivatives were measured on a polycrystalline, hot-pressed spinel. At

ambient pressure, cracks in the polycrystalline spinel badly attenuated

the signals so that the temperature derivatives, which were obtained at

ambient pressure, could not be measured. A few kilobars of confining

pressure closed these cracks.

A microprobe analysis of the gem-quality single-crystal spinel yielded

MgO-3.0A1203. (Compositions of the samples are listed in table III-1.)

The matrix of the polycrystalline spinel had a composition of MgO-1.lAl20 3*

The polycrystalline specimen was degraded by inclusion of nearly pure

alumina (Al203 ). These inclusions occupied less than 5% volume and were

not distributed homogeneously. Because velocity measurements taken at

several points across the specimen were not noticeably different, the

effect of the inclusions is considered small.

Velocities in a natural magnetite crystal were measured as a function

of pressure. Although the specimen was superior to most natural magnetite,

it contained many flaws. Like the polycrystalline spinel, a confining

pressure was required for acceptable signal-to-noise ratios. Internally

consistent data were taken between 5 and 10 kilobars. These results were

extrapolated to obtain the zero pressure parameters.

The microprobe analysis showed the magnetite to be essentially pure

iron oxide (table III-1). Such analyses are insensitive to the oxidation
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state. A chemical analysis of Newhouse and Glass (1936) of magnetite col-

lected from the same area (Mineville, New York) showed an FeO to Fe2 03

ratio of 0.45. All their listed concentrations (table III-1) were close to

the microprobe results.

Several cadmium oxide polycrystalline samples were hot-pressed. The

best of these had a density that was 96.2% of X-ray density. Velocities

and their pressure and temperature derivatives were measured on this speci-

men. The successful manufacture of the specimen involved sieving reagent-

grade cadmium oxide to obtain a ly powder. The powder was packed into a

1-inch-diameter graphite die with an ultrasonic tamper. The die, mounted

in a press, was heated in an oxidizing atmosphere to 9500 C and was main-

tained at that temperature for several hours to calcine off absorbed

carbon dioxide. A pressure of 3000 psi was applied for 3 hours while the

assembly cooled. Although the microprobe analysis was relatively insensi-

tive to carbon, an upper limit of 2% could be assigned to the cadmium car-

bonate concentration. The other contaminants are listed in table III-1.

The weight of each sample when dry and the weight of the sample after

being immersed in carbon tetrachloride were used to obtain the density.

The balance was a Sartorius precision instrument.

The single-crystal specimens were oriented by use of the Laue X-ray

technique (Binnie and Geib, 1959) to ±1/2 degree, and the faces were cut

parallel to the (100) and (110) crystallographic planes. The cutting and

polishing techniques are described in appendix D. The polished faces were

flat to a few wavelengths of sodium light and were parallel to 3 minutes of

arc. The dimensions, measured with a Starrett T221L high-precision microm-

eter, and the densities are listed in table 111-2.



The Velocity Measurements

Ultrasonic velocities in magnetite were measured at 5 MHz. The phase-

comparison technique was used on the magnetite rather than the more con-

venient pulse-echo overlap (PEO) method described in chapter II. The

techniques, equipment, and analysis developed for phase comparison and an

error study applicable to all measurements are presented in appendix E.

The phase-comparison method is less restrictive because the transducer is

isolated from the sample by a buffer rod. This arrangement allows velocity

to be measured over extended temperature ranges. The phase-comparison

technique could be used at temperatures greater than 5000 C, at which most

transducers are ineffective. The phase-comparison technique should be

more accurate because the simple bond geometry facilitates a calculation

of the phase lag at interfaces. In practice, the result of the calculation

is inaccurate, and reducing the phase-lag effect to near zero by the use of

very thin bonds, as in the PEO technique, is undoubtedly the better

approach. The phase-comparison technique is slightly more sensitive than

the PEO method. In the phase-comparison technique, the signals are added

electrically, and the maximum is determined unambiguously; for PEO, two

traces are compared visually. The principal advantages of the PEO method

are a much better signal-to-noise ratio, steady-state operation of all com-

ponents, and less opportunity for operator error.

The PEO equipment assembly used to obtain velocities in all samples but

the magnetite is shown in figure III-1. The function of the assembly

(Chung, et al., 1969) is similar to that described for the apparatus used

to measure velocity in porous glass (chapter II). In this case, rather

than a simple pulse, a pulse envelope of 20 MHz continuous wave (cw) is



transmitted. Exact overlap could be determined to less than one part

in 10 . The transducers were quartz, either X- or AC-cut, were polished

for third overtone operation at a fundamental of 20 MHzs; they were coated

coaxially. The transducer was bonded to the sample with a 50/50 phthalic

anhydride and glycerine mixture that was chosen for its resistance to dis-

solution in petroleum ether.

Pressures of 7 kilobars (10 kilobars in the case of magnetite) were

achieved in a piston-in-cylinder pressure vessel. The useful volume inside

the vessel was 1-1/4 inches in diameter by 8 inches long. The pressure

medium, petroleum ether, was chosen for its low viscosity. For instance,

kerosene becomes so viscous at 10 kilobars that the manganin pressure sen-

sor is damaged.

A recently calibrated Heise bourdon tube gauge was used to measure

pressure in the 7-kilobar runs. Above 7 kilobars, a manganin coil was

used. In all cases, accuracies of the pressure meassurements were better

than 0.5%. Because these 0.5% errors were systematic, they are not addi-

tive, and pressure differences are good to approximately 0.5%. The tem-

perature in the pressure vessel was held at 25.00 C by a water jacket and

a temperature-controlled bath.

All measurements as a function of temperature were made at 1 bar in

a refrigerated, circulating, ethanol bath. Temperatures between 250 C

and minus 350 C were obtained. Temperature could be held to ±0.10 C.

Results

As in chapter II, the oscilloscope sweep frequency F is the recip-

rocal of travel time in the sample. F/F as a function of pressure or

temperature (F0 refers to ambient pressure or temperature) can be related
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to changes in the elastic constants (table 111-3). Figures 111-2 to 111-8

are the plots of F/F for the several samples. Tables III-4, 111-5, and

111-6 are lists of elastic properties derived from the previously mentioned

figures, from the equations in table 111-3, and from equations in the re-

view of the elasticity of crystalline solids presented in appendix C.

Accuracy was limited by the uncertain effect of the bonds between the

transducer and the sample. Great care was taken to reduce the thickness

of the bonds, but it is still probable that the thickness contributed a

few degrees of phase lag. Measuring the thickness of the sample and trans-

ducer separately and then when bonded yielded an upper limit to the bond

thickness of ly. For an estimated velocity of 1 km/sec in the bond, the

uncertainty in the round-trip travel time would be 2 x 10~9 seconds.

Because travel times were generally greater than 6 x 10~ seconds, the

14
error in velocity would be less than three parts in 10 . A precise

treatment of bond effect may be found in appendix B.

Accuracies of pressure and temperature derivatives are determined by

the scatter in the data, by the uncertainty in the pressure of 0.5%, and

by the uncertainty in the temperature of ±0.10 C. These errors are dis-

cussed in appendix E.

Only three independent elastic constants exist for crystals that have

cubic symmetry. One of the four velocities obtained on each of the single

crystals is redundant and serves as a check. It is easily shown that

(appendix C)

III-) v 2 (110)[110] = vs2(110)[100] - [ 2(110) - v 2(100)



where v s(ijk)[lmn] is the shear-wave velocity normal to the (ijk)

crystallographic plane, [lmn] is its displacement vector, and v (ijk)

is the compressional wave velocity normal to the (ijk) plane. In addi-

tion, it is. easily shown that

7( /F (100)[110] = v [ ] 2(110)[100]9 ( (l1)[l0]

0X(o v 2 (110)(110] s1

111-2) - [ 2 (110)_ \(110) - v 2(100) (100

where X is pressure or temperature. The parameters computed from equa-

tions III-1 and 111-2 are included in table II1-4. These derived param-

eters in the case of spinel are in excellent agreement with the measured

parameters. The difference between the derived and the measured velocities

for the magnetite was less than 0.5%. The check involves small differences

of large numbers. For magnetite, the inaccuracy of the check of velocity

was 1%, and the inaccuracy of the check of pressure derivative was approx-

imately 6%. Although agreement in velocity was excellent, agreement of

pressure derivatives for magnetite was relatively poor. It is likely that

pressure derivatives were influenced to an unknown extent by the flaws in

the natural magnetite crystal, Intrinsic derivatives in the magnetite

should not differ by more than 10% or 20% from the measured derivative,

because most cracks were closed in the 5- to 10-kilobar range in which the

measurements were made.

Dorasiwami (1947) measured the elastic constants of magnetite and

obtained C = 2.70, Cl2 = 1.08, Cg = 0.987, and K = 1.62 megabars.

The new zero pressure constants, C11 = 2.676, c12 = 1.056, Ch = 0.953,
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and K = 1.596 megabars are in fair agreement. Dorasiwami did not report

the composition of his magnetite.

0. Anderson (1968a) discussed the significance of the negative pres-

sure derivatives of v found in some oxides. His examples, zinc oxide
s5

and a-quartz, were not nearly as extreme as is magnetite ( (zinc oxide)
av

= -0.0032, a (a-quartz) = -0.0034, and v s/3P (magnetite) = -0.025).

Anderson's theory applies to oxides with relatively low shear moduli and

low atomic coordination. Although neither is true of magnetite, an alter-

native explanation is not apparent.

The polycrystalline spinel was 2% porous. If the corrections for

porosity discussed in chapter II are applied, the corrected values for the

polycrystalline sample are close to those of the single crystal

(table III-4). Verma (1960) and Schreiber (1967, 1968) list data for

spinel. Their compositions were Mg0-3.5Al203 (Verma) and Mg0-2.61Al203

(Schreiber). A comparison with the new data for MgO-l.lAl203 and for

Mg0-3.0Al203 is shown in table 111-7. No strong systematic variation of

the elastic properties exists with stoichiometry. The factor of 2 differ-
3K

ence in Schreiber's value of ( -- ) compared with the new data

(table 111-7) has its origin in the difference between Schreiber's value
9v ay

of ( 2), -0.00031 (unpublished data), and the new (72) , -0.000441.
T B TP

Pointon and Taylor (1968) measured v (100) and v (110) in a spinel at
p p

4.20 K. From these velocities and the Cauchy relation, the three elastic

constants listed in table 111-8 were inferred. The use of the Cauchy rela-

tion for this purpose appears to be satisfactory because the new data

reported here for spinel obey the Cauchy relation. An extrapolation of the

new temperature data falls reasonably close. The small difference between

the C may be caused by the smaller thermal contribution to the dynamic



elastic constants at temperatures near absolute zero. Because the new

temperature derivatives are consistent with the data of Pointon and Taylor

and are internally consistent, the derivatives are probably correct.

The thermal expansion of cadmium oxide was needed to find (aQ/DT)

where q is any elastic constant. The thermal expansion of cadmium oxide

had not been measured. A platinum-rhodium ribbon furnace (Smith, 1963) in

a Norelco X-ray diffractometer was used to obtain lattice spacing as a

function of temperature to 847 C. Magnesium oxide mixed with cadmium

oxide powder provided a standard. Data on magnesium oxide (Skinner, 1957)

were used to calibrate the 20 angles. The calibrated data are shown in

figure 111-9. The National Bureau of Standards value for the 270 C (111)
0

lattice dimension of cadmium oxide is 2.712 A. This compares favorably
0

with the measured dimension of 2.709 A. The measured volume thermal expan-

sion of cadmium oxide is (32 ±1) x 106.



TABLE III-l.- CHEMICAL COMPOSITIONS OF THE SAMPLE. (WEIGHT PERCENT OF THE OXIDE).

Spinel
single crystal

I Y I 1-

Spinel
polycrystal,

CdO
polycrystal

Magnetite
single crystal

Magnetite
(Mineville)*

4 I. 4 I 9

11.4 o

86.99

.11

25.82

73.23

.08

0.11

.00

.08

>98.00

.00

.13

0.08

.01

>99.00

MgO

Al 203

Fe2 0

FeO

CdO

Sio 2

MnO
2

TiO
2

CaO

Trace

.21

68.85

30.78

.27

Trace

*From Newhouse and Glass (1936).

.00

<.10

<. 10

.01
I .1 I L 4



TABLE 111-2.- DENSITIES AND LENGTHS OF THE SAMPLES

Sample Origin Density L[100] L[110] Porosity

Spinel Synthetic 3.6245 1.2767 1.1032 --

Polyxtal spinel Synthetic 3.510 .5632** -- 0.02

Magnetite Lyon Mountain, 5.163 1.2923 1.3658 --
N.Y.

Cadmium oxide Synthetic 7.8438 1.2416* -- .038

*Units are cgs.

**In the case of polycrystalline samples, only one length is listed and

it does not refer to a crystallographic direction.



TABLE 111-3.- EQUATIONS USED TO REDUCE DATA*

v. = 2LF..
1 l

(av) 0 (o ~
IIP ) i -K + - 3P

(IT i) (3 + aT

2

1 o 1 \4li q i Tq+ 2 BP 1i

(1i 0 av F)

IIT i P + 2 -3

*F is the reciprocal of travel time, L is sample length, q . is

an appropriate constant or combination of constants, and naught refers

to ambient.



TABLE 111-3.- EQUATIONS USED TO REDUCE DATA* - Concluded

For isotropic materials

Ks p 2

G =p v 2

4
3 s

(BKaF T 3+

( KSI
aT )

2pv 2- )

= - 1KTa + 2pv 2
3 v ~t+ pv

(GT

G G
a
3V

8
- G

F
\F/p-

2 s

2 s

*F is the reciprocal of travel time, L is sample length, q. is

an appropriate constant or combination of constants, and naught refers

to ambient.

a4(5F
s

F

F

3TG

=G -- +I

3 KT



TABLE III-4.- NEW DATA

I I 9

Spinel
P wave (100)
P wave (110)
S wave (110)[100]
S wave (110)[110)
*S wave (110)[110]

Spinel polycrystal
P wave
S wave

Magnetite

P wave (100)
P wave (110)
S wave (110)[100]
S wave (110)[110]
*S wave (110)[110]

CdO polycrystal

P wave
S wave

*Parameters derived from the cross-check equations.

v km/sec
(aF/F )

kb'

9.0827
10.3020
6.6023
4.4667
4.4670

9.695
5.309

7.200
7.380
4.296
3.960
3.98

4.8256
2.4961

3 F/F03T OC
-.0000592
-.0000478
-.0000367
-.0000578
.oooo6

-.000099

.000123

0.ooo814
. 000651
.000200
.000311
.0003

.00090
.00033

.00142

.00164

-. 0072

-. 0058

-. 009

.00176

.00112
_______________________ £ 1 .1



TABLE 111-5.- ELASTIC CONSTANTS OF THE SINGLE CRYSTALS.

THE SUBSCRIPTS V, R, AND H REFER TO THE VOIGT, REUSS,

AND HILL AVERAGING SCHEMES. P IS kb AND AT = T - 250 C.

kb Spinel Magnetite

C 2990 + 5.35 P - 0.376 AT 2676 + 8.03 P

C12 1544 + 4.21 P - 0.198 AT 1056 - 16.o P

C 1580 + 0.89 P - 0.128 AT 953 - 13.5 P

KVRH 2026 + 4.59 P - 0.257 AT 1596 + 20.3 P

Gv 1237 + 0.760 P - 0.122 AT 896 - 11.8 P

GR 1072 + 0.746 P - 0.100 AT 890 - 11.5 P

GVRH 1155 + 0.753 P - 0.106 AT 893 - 11.7 P



TABLE 111-6.- ELASTIC CONSTANTS OF THE POLYCRYSTALS

[The various Gruneisen's parameters,

X, are explained in chapter IV]

Spinel Polycrystal Polycrystal Magnetite* Polycrystal Polycrystal
spinel spinel** CdO Cd0*

2026

4.58

-. 257

1155

.753

- .106

9.918

.00530

-. 000441

5.644

.00043

-. 00020

1.41

Ks(kb)(3K
5T )

G (mb)

(_ )
v '(km/sec)
p

/3v )(
/av N

- I )(3vT
v (km/sec)

3Dv
ITS)P

p

X
S

X lo

Ahigh

Ta X
v

1980

5.40

.821

9.695

.0071

5.309

.00080

1.78

.63

.73

1.01

.87

.006

2060

1020

9.8

5.4

1596

20.3

893

-11.7

7.35

.00140

--

4.16

-. 025

1.2

-9.6

1157.0

5.31

-. 215

488.7

1.23

-. 125

4.826

.00714

-.000425

2.4961

.00210

-. 000280

2.07

1.32

1.41

1.57

1.49

.014

1280

520

4.92

2.53

*Voigt-Reuss-Hill

**Data, exclusive

averages of single-crystal properties.

of derivatives, corrected to zero porosity.

.57

.80

.69

.005



TABLE 111-7.- A COMPARISON OF DATA OBTAINED FOR SEVERAL COMPOSITIONS OF SPINEL.

p0

V (100)

V (110)

V (110)[100]

V (110)[110]

p

v
S

K
S

G

(Ks)

(3T

Pi

New*
Mg0 -1.lAl 2 03

3.58

9.8

5.4

2060

1020

Schreiber (1967, 1968)
MgO-2.61Al2 03

3.6193

9.0833

10.296

6.5978

4.4733

9.914

5.645

2020

1153

4.2

-. 13

.75

-. 11

New
Mg0-3. Al20 3

3.6245

9.0827

10.3020

6.6023

4.4667

9.918

5.644

2026

1155

4.58

-. 257

.753

-. 106

Verma (1960)
MgO-3.5Al

2 0 3

3.63

9.10

10.30

6.61

4.52**

9.93

5.66

2026

1164

*Corrected to zero porosity (chapter II).

**Calculated from vs 2 (110)[110] = V 2(100) - V 2(110) + v 2(100)[100].



TABLE 111-8.- A COMPARISON OF THE POINTON AND

TAYLOR DATA (1968) FOR SPINEL AT 4.20 K WITH AN

11 2
EXTRAPOLATION OF THE NEW DATA. (Units of 10 dynes/cmn.

Pointon and. Taylor New data

C 1 1  29.9 ± o.6 31.00

C1 2  16.5 ± 1.2 16.03

C 16.5 ± 1.2 16.18



Frequency counter

Figure III-l.- The Pulse-Echo Overlap System of Chung, et al.
(1969). System is functionally similar to that described in
Chapter II.
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IV. UNIVERSAL EQUATIONS OF STATE FOR

OXIDES AND SILICATES

Equations of state relate such material parameters as elastic con-

stants and density to pressure and temperature. Although equations of

state are used to interpolate laboratory measurements, the main use is the

extrapolation of such measurements to conditions outside the range of meas-

urements. The success of various forms of equations of state (reviewed by

Knopoff, 1963, for example) is well known. In general, the constants of

the equations differ for each material. Recently, several relations that

are believed to be independent of the details of composition and crystal-

lographic structure have been proposed in the geophysical literature

(Birch, 1961b; 0. Anderson-Nafe, 1965; and D. Anderson, 1967). These re-

lations, which may be called universal equations of state, express uniquely

the elastic parameters as explicit functions of density only and are be-

lieved to apply to all, or at least most, of the oxides and silicates. In

these equations, composition and pressure do not appear explicitly, but

enter implicitly through such variables as density and mean atomic weight

or volume per ion pair. These relations have been used to interpret the

velocities of elastic waves and densities of the interior of the earth

(Birch, 1964; D. Anderson, 1965; and Press, 1968). However, all three re-

lations are empirical, and many data show significant departures from each.

The purpose here is to examine these universal equations of state on the

basis of available data.

The elastic properties of materials of significance to the interpreta-

tion of observations on the interior of the earth have been measured by

several techniques. For the purpose of examining the proposed relations

among the elastic properties and such parameters as pressure and



composition, data obtained with field techniques are excluded because of

uncertainties in the composition and state of the rocks through which the

seismic waves propagate. Attention is focused on data obtained in the con-

trolled conditions of the laboratory where, in principle at least, all the

parameters can be measured precisely. (In practice, data of very high pre-

cision are often so incomplete as to be almost useless.) Various classes

of techniques for measuring elastic properties are summarized in

table IV-1, together with sufficient references to allow examination of the

techniques in detail. Because the universal equations of state are de-

signed to apply to the bulk properties of elastically isotropic aggregates,

only those techniques which lead to this information are listed in

table IV-l. Both precision and accuracy of the bulk properties computed

from single-crystal data are reduced to approximately 10~ because of un-

certainties in the schemes, such as those of Voigt and Reuss (Hearmon,

1961) and Hashin and Strikman (1962), that must be used to estimate the

properties of elastically isotropic, monomineralic aggregates from the

single-crystal measurements.

The ultrasonic data obtained on both single crystals and rocks are

shown in table IV-2 with mean atomic weight, density, and other parameters.

Similar data obtained with either high-pressure X-ray techniques or simple

compression measurements on the compressibility of oxides with sodium chlo-

ride structure are given in table IV-3.

The difficulties in obtaining from the literature all the requisite

data for a given material for such studies may be illustrated by the work

on hornblende. Alexandrov and Ryzhova (1961), as part of their extensive

work on the elastic properties of rock-forming minerals, determined a com-

plete set of single-crystal second-order elastic constants for two samples



of hornblende. The only information they presented that can be used to

estimate the composition consisted of optical properties (2V, dispersion,

and qualitative statement of pleochroism) and density; they concluded from

these data that both samples were "ordinary hornblendes." However, the

composition of common hornblende ranges between the various end members

shown in table IV-4 (Winchell and Winchell, 1951). In an attempt to sal-

vage something from Alexandrov and Ryzhova's data but without placing too

much reliance upon it, take the composition of both samples to be

40% H2Ca2Fe Si 8024 and 60% H2 a2Mg5Si8024 , a composition that is consistent

with the scanty data. For this (possible) composition, m = 22.4. Horn-

blende is no exception to the fact that most rock-forming minerals show

such large variation in composition that the designation (even if correct)

of spinel, magnetite, pyroxene, garnet, etc., is insufficient to express

the composition of a particular specimen.

Birch (1961b) noted that the velocity of compressional waves is a

function of the density and mean atomic weight. For those oxides and sil-

icates with m ~~ 21 and v = a + bp, several values of the two constants
p

were obtained by Birch from the linear regression analysis of various sub-

sets of his data. Additional data that have been obtained later continue

to show the general relationship, but with a number of exceptions. Simmons

(1964a) called attention to the failure of materials with high contents of

calcium oxide to conform to the Birch relationship. Materials for which

the experimental data differ from the predicted compressional velocities

by 0.5 km/sec are listed in table IV-5. Several of these materials contain

high contents of calcium oxide. Particularly disturbing are the discrep-

ancies of sillimanite, aegirite, apatite, and a-quartz.



In a study of ultrabasic rocks in which there was little variation in

content of either iron or calcium, Christensen (1966) showed that the ve-

locities of both compressional and shear waves, at 10 kilobars, are related

linearly to density with correlation coefficients greater than 0.999. The

rocks that he studied were chiefly mixtures of olivine (approximately fo92)2

enstatite, and chrysotile. The range of mean atomic weights of these min-

erals is approximately 19.8 to 20.8. The chief variation of chemical com-

position in the rocks, although not explicitly examined by Christensen, is

probably in water content. The implication of Christensen's data is that

Birch's relation describes adequately the properties of materials of re-

stricted composition.

0. Anderson and Nafe (1965) observed that the bulk modulus of many

"oxide compounds" followed the relationship

IV-1) knK = -xkn + C

where (27/p) is twice the average volume per atom and C is a constant.

In the context of their work, the phrase "oxide compounds" is used not

only for such oxides as magnesium oxide and titanium oxide, but also for

silicates, nitrates, and pyrex. This usage is neither common in mineralogy

nor to be recommended in geophysics. More data are now available then were

used in the initial compilation. Figure IV-1 is a plot of bulk modulus K

compared to (2E/p) and includes most available data. Linear scales are

used to show the large scatter; log-log plots tend to emphasize the gross

relationships at the expense of showing clearly any large variation that

may exist. 0. Anderson and Nafe showed that many silicates and oxides for



which data are available fall within a region bounded by

IV-2) ZnK = 4kn 2-j + 17.3

EnK = -3kn + 15.1

where the same values of K and 2m/p used by Anderson and Nafe for sti-

shovite have been used to evaluate the constant C. Even neglecting the

fact that hematite, rutile, chromite, sillimanite, beryl, topaz, barium

titanate, aegirite, montecellite, calcium oxide, cadmium oxide, and zircon

do not satisfy the relationship, the limits are so large that the relation-

ship is of little value in predicting the bulk modulus of a material from

its density and mean atomic weight. Only in the most qualitative sense is

it true that bulk modulus is related (by the Anderson-Nafe law) to compo-

sition through the parameter (2E/p).

D. Anderson (1967a) extended and modified Birch's relation to the

form p = Amn , where # = K/p. A least square fit to the data for 31 se-

lected minerals and rocks gave p = 0.0480.323 + 0.12. (This standard

deviation, given by Anderson in his equation 37 is that of p, rather than

p/i [D. Anderson, personal communication].) An equivalent statement of

the +-law is that the bulk modulus is a linear function of pressure. This

relation is shown in figure IV-2 with the data used by Anderson to evaluate

the constants and many other data from table IV-2. There seems to be little

reason to select some of these data and discard all the others. From in-

spection of figure IV-2, it can be seen that the data for many materials -

and including the precise single-crystal values of a-quartz, magnetite,



garnet, periclase, alumina, rutile, and calcia - depart more than one

standard deviation (as determined by Anderson for his smaller set of se-

lected data).

Implicit in the use of the D. Anderson 4-law to interpret the proper-

ties of the earth is the assumption that the only important parameters for

the determination of 0 for earth materials are p and I and that de-

tails of crystallographic structure and composition are (relatively) unim-

portant. Specifically, it is hoped that the properties of high-pressure

phases can be predicted from p and m. Data for such phases obtained

with static pressures are not yet available. Inasmuch as the plausible

suggestion has been made that the material in the deep interior may be

present as oxides, it seems desirable that any relation used to predict the

properties of these hypothetical oxides should at least fit the available

data on oxides that have the sodium chloride structure at atmospheric con-

ditions. These data are shown in figure IV-3. Although neither cadmium

oxide, europium oxide, strontium oxide, nor several of the other oxides is

likely present in sufficient quantities in the interior of the earth to

affect the physical properties of the earth, it would seem fair to use

these data to test relationships expected to be useful in predicting the

properties of simple oxides with close-packed structures. No data are

closer than two standard deviations (taking n _ 20) determined for the

original set of data. It is concluded that the relation lacks general

validity and suggested that application of the relation to the prediction

of the elastic properties of high-pressure phases is at least doubtful.

It is instructive to test also the 0. Anderson-Nafe law with the data

for oxides with the sodium chloride structure. These test results are



shown in figure IV-4. Very large discrepancies exist between the values

predicted from the 0. Anderson-Nafe law and the values determined experi-

mentally. Clearly, the Anderson-Nafe relationship does not fit the ob-

served data well enough to justify its use as a tool for predicting K.

An alternate test of the several relations is afforded by the correla-

tion coefficients (C.C.) and the standard errors (S.E.) that can be ob-

tained by analysis of the data of tables IV-2 and IV-3 which constitute a

larger set of data than was used initially by the various authors. For

this purpose, take D. Anderson's relation in the form En(p/~) = a + bknO

for ease of computation and Birch's relation in the form v = a + bp + cm.
p

The results are shown in table IV-6. From a geophysical viewpoint, the

correlation coefficients are uncomfortably small, and the standard errors

are large. (Although the S.E. for the D. Anderson relation (-15%) may

appear small, it is a larger fraction of the total range of the variable.)

The standard error (or similar statistical parameter) is a measure of the

dispersion of a given sample set (e.g., S ) of data.. Its use as a statis-

tical estimator of the S.E. for the population (e.g., S) consisting of the

appropriate data on all oxides and silicates at pressures from 4 to

2000 kilobars depends on the sample set S having been obtained in such

a way that the following two requirements are satisfied: (1) each element

of S is independent of the other elements, and (2) the distribution

function for set S is the same as it is for the population S. Because

neither of these requirements is satisfied by the present set of data, it

is incorrect (statistically) to use the standard errors of table IV-6 to

estimate the S.E. of such parameters as m for the earth derived from

seismic and other data by means of the various relations. It is the hope

of those who use the relations to interpret the data on the earth that the



66

S.E. given for the relations do apply to the data for the earth. At best,

these standard errors should be considered minimum values. The S.E. for

any relation can be made as small as desired by selecting the subset of

data used to evaluate it. For example, by restricting the set of data to

those materials for which 20 , m i 25, quite high correlation coefficients

for the Birch relation (>0.95) may be obtained.



TABLE IV-1.- MEASUREMENT TECHNIQUES FOR THE ELASTIC PROPERTIES OF MATERIALS

Class

A. Single crystal
elastic constantsa

B. P and S
velocities (rocks)

C. Compressibilities

Strain gage

Volume compression

X-ray

D. Shock wave

Precision

10-7

103

103

104

5 x 10-3

Accuracy

10-4

10-2

10-2

10~3

10-2

References

Hearmon (1961), Huntington (1958) McSkimin
(1964, 1967), Alers and Neighbours (1958),
Daniels and Smith (1963)

Simmons (1965), 0. Anderson and Liebermann
(1966)

Brace (1965)

Bridgman (1964)

Drickamer et al. (1966), McWhan (1967)

McQueen et al. (1967), Doran and Linde (1966)

aAlso used for high Q polycrystalline aggregates (O. Anderson, 1966c; Chung and Simmons,
1968).

10-3



TABLE IV-2.- ULTRASONIC DATA*

Material m p P/M VP Ref. [Fe [Ca0] V s K

Granite, G-1
Quincy
Rockport
Stone Mt.
Barre

Gneiss, Pelham

Qtz monz, Butte

Augite syenite

Anorthosite, New Glasgow
Bushveld

Gabbro, Mellen

Diabase, Centerville
Holyoke
Frederick, Md.
Cobalt, Ont.
Sudbury

Gabbro, F. Creek

Jadeite, Japan
Burma

Bronzitite, Stillwater
Bushveld

Harzburgite

Dunite, Webster, N.C.
Mt. Dun
Balsam Gap
T. S.
Burma
Bushveld

Chromite

1090 FeCr
204

Diamond 1005 C

20.9
20.9
20.6
20.7
20.8

20.8

21.2

22.1

21.1
21.3

21.8

22.0
22.0
22,0
21.8
22.2

21.8

20.4
20.4

21.2
21.0

21.7

21.0
21.1
20.9
20.9
20.9
24.3

31.98

12.01

2.619
2.621
2.624
2.625
2.655

2.643

2.705

2.780

2.708
2.807

2.931

2.976
2.977
3.012
2.964
3.003

3.054

3.180
3.331

3.279
3.288

2.978

3.244
3.258
3.267
3.312
3.324
3.744

4.45

5.058'

3.511

0.125
.125
.125
.125
.125

.127

.128

.126

.128
.132

.134

.135

.135

.137

.136

.135

.140

.156

.163

.155

.157

.137

.154

.154
.156
.158
.159
.154

.158

.292

6.23
6.45
6.51
6.40
6.39

6.31

6.56

6.79

6.85
7.21

7.21

6.93
6.63
6.92
6.82
6.91

7.23

8.28
8.78

7.83
8.02

7.28

7.78
8.00
8.28
8.42
8.56
7.36

8.78

17.22

1,2
1
1,2
1,2
1,2

1

1

1

1
1

1

1,2
1
1,2
1
1

1

1,2
1

1,2
1

1

1,2
1,2
1
1,2
1
1,2

3

3

1.9
3.6
1.5

.8
2.7 +

2.5

5.0

11.6

4.4
1.1

8.7 +

10.5
11.8
10.4
11.5
13.5 +

9.0

.5 +

.5

9.7
9.4 +

12.2

8.3 +
8.3
8.2
8.0
8.0

38.0

1.4
.4
.3

1.1
1.8

1.8

4.3

4.6

11.3
16.0

9.7

11.0
9.4

11.4
6.9
6.6

11.9

1.3
.8

2.2
.5

1.4

3.58

3.77
3.80
3.70

3.80

3.85

4.82

4.66

4.40
4.54

4.83

3.90

4.85

11.55

21.7

23.4
21.7
22.6

28.8

28.1

37.6

32.4

34.7
36.5

39.8

33.9

45.73

118.66

0.57

.61

.57

.60

.86

.85

1.20

1.06

1.13
1.19

1.32

1.27

2.03

4.17

1.75

1.62
1.75
1.67

1.16

1.18

.83

.94

.88
.84

.75

.78

.49

.24

*See note z at end of table for explanation of symbols and units.



TABLE IV-2.- ULTRASONIC DATA* - Continued

Material m p p/n V Ref. Fe0 [CaO] Vs *K

Galena 1158 PbS 119.64 7.597 0.063 3.75 3 2.08 8.29 .62 1.61

Magnetite 1252 Fe3 0 33.08 5.18 .157 7.40 3 100.0 4.30 31.24 1.62 .62

Pyrite 1354 FeS2  40.03 4.929 .123 8.09 3 5.17 29.81 1.47 .68

Barium titanate 2009 BaTiO3 46.65 5.5 .118 6.69 3 3.12 31.78 1.75 .57

Barium titanate 2010 46.65 5.5 .118 6.97 3 3.51 32.15 1.77 .56

Zircon 2046 ZrSiO4  30.55 4.56 .149 3.20 3 2.09 4.42 .20 4.96

Staurolite 3023 HFe2 Al9 4024 21.82 3.369 .154 7.58 3 16.9 4.66 28.50 .96 1.04

Sulphur 3025 S 32.07 2.07 .065 3.68 3 1.80 9.22 .19 5.23

Topaz 3039 (AlF)2Si0 4  26.29 3.52 .134 9.55 3 5.71 47.73 1.68 .59

2egirite 4019 NaFeSi206 25.67 3.50 .136 7.32 3 4.10 31.28 1.09 .91

Augite 4027 Ca(Mg,Fe)Si 206  22.29 3.32 .149 7.22 3 4.18 28.78 .96 1.04

Diopside 4026 CaMgSi206  21.66 3.31 .153 7.70 3 4.38 33.63 1.12 .89

Hornblende 4020 22.4 3.12 .139 6.81 3 3.72 27.92 .87 1.14
.
4
(H2Ca 2Fe5 8 024)

.6(H 2Ca 2 M 5Si 8 02 4 )

Hornblende 4021 22.4 3.15 .141 7.04 3 3.81 30.22 .95 1.05

Labradorite 4024 An58 5  20.89 2.68 .128 6.69 3 3.55 28.07 .75 1.33

Microcline 4022 21.17 2.56 .121 6.01 3 3.34 21.31 .54 1.83

Or78.5b 19.4 2.1

Oligoclase 4023 An15.5  20.36 2.64 .130 6.22 3 3.23 24.81 .65 1.52

Apatite 5001 Ca 5FP3012 24.02 3.218 .134 7.16 3 4.34 26.18 .84 1.18

Beryl 5008 Be3A 2Si 6018  18.54 2.72 .147 9.70 3 5.56 52.99 1.44 .69

Cancrinite 5021 A 19.92 2.46 .123 4.92 3 3.23 10.37 .25 3.94

Cancrinite 5022 A 19.92 2.44 .122 4.99 3 3.29 10.45 .26 3.91

*See note z at end of table for explanation of symbols and units.



TABLE IV-2.- ULTRASONIC DATA* - Continued

[FeO] +
Material m p p/m V Ref. [Fe 2 3 [CaO] Vs K

Ice 5025 H20 16 1.064 0.067 3.57 3 1.82 8.36 .089 11.3

Nepheline 5099 NaAlSiO 4  20.98 2.62 .125 5.91 3 3.49 19.02 .49 2.04

Nepheline 5100 20.98 2.62 .125 5.63 3 3.28 17.39 .45 2.19

Tourmaline 6035 3.10 8.32 3 5.25 32.40 1.01 .99

(NaAl,CaMg)Mg
3Al 5B3Si 6027 (OH)4

Rutile 2020 TiO2  26.63 4.26 .160 8.78 3 4.57 49.29 2.10 .47

Cadmium oxide CdO 64.21 8.238 .128 4.92 9 2.53 15.5 1.28 .78

Magnetite Fe304  33.08

Eclogite, Sunnmore 21.7 3.376 .156 7.69 1 8.2 13.9

Healdsburg 22.2 3.441 .155 8.01 1,2 12.9 11.9 4.58 36.2 1.25 .80

Garnet (gross) 22.8 3.561 .156 8.99 1 5.4 34.9

(al-py) 24.1 3.950 .164 8.07 1 32.1 2.0

Anorthosite, Stillwater 21.25 2.770 .130 7.10 1,2 17.8 3.81 31.1 .86 1.16

Gabbro, San Marcos 2.874 2 3.84

Quartz diorite, Dedham, Mass. 2.906 6.71 1,2 3.84 25.4 .74 1.35

Monticellite, Crestmore 22.7 2.995 .132 7.50 2 3 + 37.0 4.06 34.27 1.03 .97

Norite, Pretoria 2.978 7.28 1,2 3.94 32.3 .96 1.03

Idocrase, Crestmore 22.8 3.14, .138 2 3.6 33.8 4.28

Amphibolite, Mont. 3.120 7.35 1,2 4.30 29.4 .92 1.09

Eclogite 1552, Norway 3.577 2 4.60

Eclogite 1553, Norway 22.1 3.578 .162 8.35 2 4.66 40.77 1.46 .86

Albitite, Sylmar, Pa. 20.3 2.687 .132 6.76 1,2 3.73 27.1 .73 1.37

Serpentinite, Thetford, Que. 2.601 6.00 1,2 2.90 24.8 .65 1.55

Wollastonite 23.2 2.873 .124 7.71 2 48.3

*See note z at end of table for explanation of symbols and units.



TABLE IV-2.- ULTRASONIC DATA* - Concluded

*Notes for Table IV-2:

A. Composition is an average given by Dana (1949), p. 587.

B. Previously unpublished value. Composition calculated from Schmitt (1963).

x. Determined by x-ray measurements.

z. Explanation of symbols and units.

m = mean atomic weight

p = density, gm/cm
3

VP = velocity of compressional waves, km/sec

Ref. = references
[FeO] + {Fe203] = weight percent of oxide

Vs = velocity of shear waves, km/sec

= V 2 _ 4 V2 
2
/sec

2

p
K = bulk modulus = p$/100, mb

a = compressibility = 1/K, mb~1

+. Minimum value because either FeO or Fe203 not reported in original reference.

References for Table IV-2:

1. Birch (1960, 1961)

2. Simmons (1964 a,b)

3. Simmons (1965b)

4. McSkimin, Andreatch, and Thurston (1965)

5. Schreiber (1967)

6. Soga (1968)

7. Soga (1967)

8. Lieberman and Schreiber (1968)

9. Chapter III

Material m p p/rn V Ref F [CaO] Vs$ K 8

Microcline 21.4 2.571 0.120 7.15 2 48.3

Garnet #1 (23.8% Mno) 24.9 4.247 .171 8.47 1 19.1 .4 4.77 41.4 1.76 0.56 -

Garnet #2 24.3 4.183 .172 8.52 1 37.1 1.5 4.77 42.3 1.77 .56

"Spinel" Mgo-3.5A1203 20.37 3.63 .178 9.93 1 5.66 55.9 2.03 .49

a-Quartz SiO 2  20.03 2.649 .132 6.05 4 0 0 4.09 14.3 .38 2.64

Spinel MgAl204  20.32 3.619 .178 9.91 5 0 0 5.65 55.8 2.02 .49

Sillimanite Al20 o5 20.25 3.187 .157 9.73 2 0 0 5.15 59.3 1.89 .52

Calcia CaO 28.04 3.285 .117 7.945 6 0 100.0 4.85 33.1 1.09 .90

Garnet 23.79 4.1602 .175 8.531 7 33.5 1.1 4.762 42.5 1.77 .56

Magnetite Fe304 33.08 5.1633 .156 7.35 9 99 + 4.16 31.0 1.60 .62

Hematite Fe203 31.94 5.254 .164 7.90 8 100 4.16 39.3 2.066 .48



TABLE IV-3.- DATA ON OXIDES WITH NaCl STRUCTURE. ALL VALUES OF

6 FROM REFERENCES 1 AND 3 WERE OBTAINED WITH X-RAYS; THOSE FROM

REF. 2, WITH COMPRESSION MEASUREMENTS. SEE FOOTNOTE TO TABLE IV-2

FOR' MEANINGS OF SYMBOLS AND FOR UNITS.

Material mb b p/ K Ref.

MgO 20.16 3.584 0.178 1.780 0.562 49.67 1

CaO 28.04 3.345 .119 1.120 .893 33.48 1

Coo 37.47 6.438 .172 1.905 .525 29.59 1

NiO 37.36 6.8o8 .182 1.990 .503 29.23 1

FeOa 35.45 5.745 .162 1.540 .649 26.81 1

MnO 35.47 5.365 .151 1.440 .694 26,84 1

SrO 51.82 5.008 .097 1.18 .85 23.49 2

CdO 64.20 8.238 .128 1.280 .780 155.4 4

EuO 84.0 8.191 .098 1,070 .935 13.06 3

BaO 76.68 6.045 .079 .568 1.76 9.40 2

aWustite, Fe 9 3 5 0.

bValues determined
Wyckoff (1963).

from unit cell dimensions of Robie et al. (1966) or

References for table IV-3:

Drickamer et al. (1966)

Weir (1956)

McWhan et al. (1966)

Chapter III



TABLE iV-4.- COMPOSITION AND MEAN ATOMIC WEIGHT OF THE

END MEMBERS OF COMMON HORNBLENDE.

Composition m

H2 Ca2Mg 5 Si8 024  20.78

H2 Ca 2Fe Si 024 24.82

H2Ca2Mg3Al 4 i6 24 20.86

H Ca 2Fe 3Al Si 024

H2NaCa 2 5AlSi7 02 4  - 20.75

H 2NaCa 2Fe AlSi7024 24.8

H2NaCa2Mg4 Al3Si 602 4  20.85

H 2NaCa 2Fe Al3S 6 24 24.00



TABLE IV-5.- MATERIALS THAT DO NOT CONFORM TO THE DENSITY-MEAN

ATOMIC WEIGHT RELATIONSHIP OF BIRCH. AV = V (OBSERVED) -
p p

V(CALCULATED).

Material

Sillimanite

Topaz

Beryl

Grossularite

Chromite

Calcium oxide

Aegerite

Wollastonite

Monticellite

Harzburgite

Apatite

Bushveld anorthosite

Stillwater anorthosite

Microcline

Mellon gabbro

a-quartz

Cancrinite

AV (km/s)

1.2

>3-1/2

.8

1.3

1.3

14

2.4

1.4

.5

1.3

.6

.6

1.3

.6

-.1.2

-1.8



TABLE iv-6.- STATISTICAL PARAMETERS DERIVED FROM

DATA OF TABLES IV-2 AND IV-3.

Relation

V = a + bp + cm

knK = a + bkn (2imn/p)

knp/m = a + bkn@

Correlation
coefficient

0.716

.429

.752

aS.E. for K is about 80%.
bS.E. for p/m is about 15%.

Standard
error

1.22

.60 a

.017 b
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V. A MODIFIED QUASI-HARMONIC EQUATION OF STATE

AND GRUNEISEN'S RATIO

As concluded in chapter IV, the elastic properties of the various

oxides and silicates are not correlated adequately by any of the universal

equations of state. A stipulation of each of the universal equations is

that the values of the elastic parameters are fixed by the mean atomic

weight and density. For a particular oxide or silicate, temperature and

pressure affect the elastic parameters only when a change in density

occurs. Thus, the elastic parameters would not change if an increase in

pressure were balanced by an increase in temperature so that the density

remained unchanged. An equivalent statement of q = q(m,p), where q is

an elastic parameter, is

V-l) [ai)]P

Data on 10 oxides and silicates are listed in table V-1. A test of equa-

tion V-1, using the data from table V-1, was conducted. The test data are

presented in table V-2. Except for Ks, the requirement that q = q(mp)

fails, particularly, v v (m,p), which is a challenge to the validity
p p

of Birch's law. In chapter IV, Birch's law was the only universal law

illustrated to be even marginally successful. A general conclusion, based

on the arguments presented in chapter IV and on the failure of equation V-1,

is that the universal equations of state are inadequate for reliable

extrapolation to temperatures and pressures found in the mantle of the

earth. The reliability of an extrapolation to mantle conditions is

improved greatly if a theoretically sound equation of state tailored to a

specific petrological model is used. The quasi-harmonic theory of lattice



dynamics is presently the only suitable theory. A development of the

quasi-harmonic equation of state and an evaluation of the volume dependence

of its key parameter, Gruneisen's ratio, is prdsented in this chapter.

Background

Two problems are inherent in the formulation of an equation of state.

A theoretical expression is needed for the dynamic atomic interactions,

and values are required for the interatomic forces. Roughly, the temper-

ature dependence of the equation of state is derived from the dynamic solu-

tion, and the pressure dependence is derived from the interatomic forces.

Although the interatomic potentials of the general form

u -- + -- (m > n)
rn rm

may be justifiable for ionic crystals, the interatomic forces must be ob-

tained empirically for most materials.

Born and Huang (1954), Maradudin, et al. (1963), and others have re-

viewed the harmonic theory of lattice dynamics. Leibfried and Ludwig

(1961) have reviewed the quasi-harmonic theory and the general anharmonic

effects. Those parts of the quasi-harmonic theory pertinent to the geo-

physical use of the equation of state are discussed in this study. The

notation used here conforms generally to that used by Maradudin, et al.

Consider a lattice of N cells, each cell 1 having volume v and

containing r atoms. The atoms oscillate about mean positions determined

by temperature and pressure. This theory differs from the harmonic theory

in which these positions are equilibrium atom sites at zero P and T.



If $ is the potential energy of the crystal, a Taylor expansion of $,

based on mean position, is

V-2) $ 0V ,u u ,+ ...

lsi
l's'j

where V is the total volume, V = Nv, $9(V) is the rest potential at

volume V, u i() is the displacement from equilibrium in the ith direc-

tion of the sth atom in the 1th cell, and

1132
'ij s' ?)[ 3u u

Note that equilibrium requires the first-order term in equation V-2 to be

zero. If the displacements are such that the third and higher terms are

negligible (not the same as assuming that the displacements are small),

V-2 becomes a simple quadratic equation. The kinetic energy for the

crystal is

V-3) K =ms i2(l
lsi

where ( is the time derivative of u (l). A solution for the

equation of motion

v-4) ms1i + $ , = 0

(S) l's tj



is

V-5) u. ()= -1/2 u.(s) ei[wti i(1)]

where the amplitude u (s) is independent of 1 and V, R(l) is the

position vector of the 1th cell, w is the angular frequency, and k is

the wave vector. The characteristic equation of equation V-4 is

v-6) ,D ss - 66 U (s') = 0

where

Dij s' sms' -1/21 $i i ii.[IR(i I )-TC(i)]

l'

The elements of the dynamical matrix are Dij sS ). This matrix reflects

the symmetry of the crystal.

Equation V-6 has nontrivial solutions only if

V-7) Di s(I) - w26. 6ss' =0

for any allowed choice of k. Because s = 1, ... , and i = 1, 2, 3,

equation V-T is the 3r-degree equation in w2 Thus,

w = W (E) (p = 1,2,... ,3r).

Given boundary conditions for the oscillations, e.g., the displacement at

the boundary is always zero, k may have only N discrete values.

Therefore, 3rN solutions to equation V-6 exist. This situation might



have been anticipated from the three degrees of freedom of each of the rN

atoms in the crystal.

The solutions (eq. V-5) are wavelike. The crystal dynamics can be

considered as a problem of 3rN independent linear oscillators. The

Helmholtz free energy for a set of oscillators is written as the sum of

the equilibrium configurational energy, the zero point vibrational energy,

-and a term related to the thermal vibrational energy. Thus,

V-8) A (V) + kT ln -- e-w/kT

Because w is strictly a function of the equilibrium configuration or

volume V, a new function $(V) will be substituted for $(V) + .

The pressure is

V-9) P - - +,W YWa ) () Eh /kT

where

V-10) w = -

The Gruneisen parameter y for the eigenfrequency w is strictly a

function of V. The quantity

( I E

e o/kT

is the thermal vibrational energy of an oscillator having the eigenfre-

quency w. Equation V-9 becomes the quasi-harmonic equation of state



V-ll) P = + y

w

The only assumption to this point is that the third and higher order

potential-energy terms are negligible to the formulation of the vibrational

energy.

The Gruneisen assumption is that y can be replaced by an average

value y so that

V-12) P+ Vib

where Evib = E. Equation V-12 is the Mie-Gruneisen equation of

state. Because

y wE

V-13) 
= Evib

y is no longer strictly a function of volume but may also vary with the

temperature. Because each E had its own temperature dependence, a

variation of temperature at constant volume may change y even though

each y is fixed.

New Support for a Modified Quasi-Harmonic Equation of State

An alternative to the 3rN distinct terms in y is to assume that

the y terms within each mode are identical. In terms of the mode n,



equation V-13 is

EV-y y = nn
v -14 Y Evib

where En is the energy in mode n. Only three independent elastic modes

exist for the cubic crystals. The temperature dependence of y becomes

manageable. In the following discussion, it is shown that the Gruneisen's

ratios within a mode are independent of w for covalently bonded crystals.

To illustrate a sufficient condition for y n y (R), consider a

crystal which has symmetry other than triclinic or monoclinic. The orien-

tation of the eigenvectors for such a crystal is not dependent on I.

For this case, a transformation matrix A exists (not dependent on |ki),

so that entries in the orthogonalized dynamical matrix are

V-15) Dn ( )= A nDi , (n = 1,2,3).

If the order of summation is reversed, then

V-16) Dn s, msms') /2i1[(1')-(1)] Ani An ,ij )

The quantity in braces is strictly a function of the indices n, 1,

l', s, and s t . By denoting the quantity in brackets as gn(:) , equa-

tion V-16 can be written as

n-l/2 n( 11'i-(l')-x(l)]V-17) D , = msms' g '



Consider a lattice centered on the atom s (x(l) = 0) with the nearest

neighbors of type s . If the nearest neighbor forces are identical and

dominate the dynamical interactions, then

v-18) Dn ( = mm )-1/2gn(tZI)E e1.Z(1')

if

where Z(l') quantities are the vectors to the nearest neighbor forces.

Because the boundary conditions require that F - X(1 ) be indepen-

dent of volume, the volume derivatives of the solutions to the character-

istic equation are

V-19) d = m d ae
TV n[ dV it

where n has 3r values for each eigenvector or a total of 9r values.

From the definition of Gruneisen's ratio (eq. V-10),

V-20) y - - 1 d in gn(jj)
n 2 d in V

The assumption of dominant nearest neighbor forces yields mode gammas

that are independent of frequency or, equivalently, independent of temper-

ature. Because of the charge neutrality of atoms in covalently bonded

crystals, the nearest neighbor forces dominate. In support, consider that

the total energy of a covalent solid is very nearly the sum of the energies

of the individual covalent bonds (Ziman, 1964). Much of the bonding in

oxides and silicates is covalent, i.e., the mode gammas for much of the

material in the mantle and crust of the earth are largely independent of



temperature. Thus, the geophysically appropriate quasi-harmonic equation

of state is

V-21) P = -$, + ynE
n

where the summation is over the 9r modes.

To evaluate the mode gamma of an elastic branch n, consider the

phase velocity w /k . The boundary conditions are that the crystal dimen-

sions be an integral multiple of 2Tr/k . The reciprocal of the round-trip
n

travel time of a wave between two boundaries is

V-22) F (w) =
n 2Ts

where s is an integer. The mode gamma, in terms of Fn(W), is

3 In F (w)
V-23) n V

For those materials where y n Yn(w), w in the ultrasonic range may be

chosen. Then, F
F

V-24) Yn T n)

or

V 

F
F0
n)

V-25) Yn =KT L P J



A measurement of the change in ultrasonic wave travel time with pressure

yields Gruneisen's ratio for that mode (a direct application of the param-

eter (Fn/Fn0 ) that was used in chapter III).

The wave velocities in the solution to the dynamical equation are

observable, as indicated in equation V-25. The solution was based on com-

pletely decoupled oscillators. Because the elastic parameters in the dy-

namical equation are related more closely to the static rather than the

dynamic elastic constants, the ultrasonic waves are not truly eigensolu-

tions to the dynamical equation. If the ultrasonic waves were eigensolu-

tions to the dynamical equation, the phase velocities would be dependent

only on volume, i.e., (3v /Dp) = (3v /3p) . The data in table V-2
n P n T

indicate that this is not true. Because the y values in the quasi-

harmonic equation of state were obtained from the volume derivative at

constant temperature of the Helmholtz energy, the (3v /3p)T values prob-

ably are more nearly related to the solutions for yn'

The omission of the optic modes at room temperature is not serious;

however, at mantle temperature, much of the vibrational energy is in the

higher frequency modes. An approximation of the effect of the optic modes

may be obtained by ignoring the band gaps. Each optic branch becomes an

extension of an acoustic branch. For dominant, nearest neighbor forces,

the acoustic y n would be the same as that for the appropriate optic

branch. The summation in the modified quasi-harmonic equation V-21 would

be over nine values of n (three solutions to each of the three principal

directions) rather than over 9r values of n.
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A New Expression for the Volume Dependence of Gruneisen's Ratio

The quasi-harmonic equation of state is often used to reduce shock

data (Duvall and Fowles, 1963; Rice, et al., 1958). Because the locus of

possible P-V points (the Hugoniot) for a shocked material is assumed to be

an isentrope, the data reduction involves an estimate of adiabatic heating

in the shock front. If a reversible process is assumed, the thermodynamic

identity

V-26) T ds = C dT + T dV = 0

can be integrated to yield

-VdV

V-27) T = T.e .

To reduce the Hugoniot to an isotherm, one must depend heavily on equa-

tion V-27 or on the volume dependence of y. The uncertainty caused by

this dependence is discussed by Knopoff and Shapiro (1969). A common

approach has been to accept either the Slater (SL) or the Dugdale-

MacDonald (DM) expressions for y. Thus,

V-28) ySL = - + + 6SL'

V-29) y = - -+ + 6
DM 2 2(P DM

where the 6 SL,DM are factors that force the ySLDM to agree with the

thermal Gruneisen's ratio. Knopoff and Shapiro observe that neither



expression is sound theoretically. As demonstrated in figure V-1, the

correct volume dependence of ySL or TDM has considerable importance.

Anderson and Kanamori (1968) reduced the Hugoniots for several oxides

and silicates, including those for spinel, alumina, magnesium oxide, and

forsterite. They calculated the parameters in the Birch-Murnaghan equa-

tion (appendix A) for several densities along the Hugoniot. For the Birch-

Murnaghan equation of state,

V-30) P = K P - 5/3 J P 2/3

the SL and DM Gruneisen's ratios are

V-31) yS 11 2 + S~SLF3 SL

Y - -

DM 2 3 DM

The initial volume dependence of these Gruneisen's ratios are

V -3 2 ) S L o

(D ln y3ln y 0 2Y +
3a in V/DM \a ln V 3 Y

Data from the Anderson and Kanamori paper are given in table V-3 to show

S for several materials. The term + is small compared to



( Injy . As observed by Takeuchi and Kanamori (1966), little difference
k SL*

exists between the SL and DM formulations.

The following discussion is to determine whether h is

reasonable. The difference between the ultrasonic (3K /3P)T and

(aks la)p (table V-2) allows (a ln y/3 ln V)0 to be estimated. The

volume derivative at constant entropy of the Mie-Gruneisen equation of

state (eq. V-12) for y = y(V) is

V-33) P - Ks V 2 v + YVEvib + y aib)

The internal ene'rgy U is $ + Evib. Because dU = -pdV at constant

entropy, equation V-33 can be written as

V-34) Ks = P + , (1 + y + V$, - ,VEvib'

From the temperature derivative at constant volume,

V-35) Y - (1 + Y) V (DT)V

Because (aP/aT) = KTa, (aKs/T)V = Pa(K/ap )T - pa(DKs /ap)P; and

Y = KTa/pCv, then

V-36) a ln y ( + y) + P- - -1 -
V aln V KT I P p ap )T

The value of (a ln y/a in V) for 10 compounds are listed in

table V-4. Note that the values in table V-4 are an order of magnitude

smaller than the values in table V-3. The assumed volume dependence of



the Gruneisen ratio used to reduce the shock-wave data is much too large.

The isothermal equation, based on a constant Gruneisen's ratio, is probably

closer to being correct than are the equations based on an SL or DM for-

mula. The temperatures in a shock front are higher than were previously

thought, and the isothermal P-V curves are not as steep. Because neither

the SL nor the DM Formulations of Gruneisen's ratio is sound, the ultra-

sonic data should be used to obtain (y/aV) , and the linear approxima-

tion to y, i.e., y = y0 + (Ay/DV) 0V should be used for the reduction

of the Hugoniot. This procedure is not practical for high-pressure poly-

morphs. In such cases, (D ln y/3 ln V) = (1 + y) might be a good

alternative. For most of the compounds listed in table V-2, the second

term in equation V-36 is small compared to (1 + y).

The (3 ln y/3 ln V) values are plotted against the specific volume

in figure V-2. The trend is that the (a ln y/y ln V) value is less for

the more dense materials, which is consistent with 0. Anderson's (1968)

contention that Gruneisen's ratios for higher density polymorphs are

smaller. If (3 ln y/3 ln V) = (1 + y) and y is smaller for the high

density polymorph, then (3 ln y/3 ln V) is also smaller.



TABLE V-l.- DATA USED IN CHAPTER IV. EXCEPT FOR SPINEL CdO AND FORSTERITE,

DATA WERE TAKEN FROM 0. ANDERSON ET AL. (1968). SPINEL AND CdO DATA ARE

FROM CHAPTER III. FORSTERITE DATA ARE FROM KUMAZAWA AND ANDERSON (1969).

S.C. Polycrystal Polycrystal S.C. S.C. S.C. Polycrystal Polycrystal Polycrystal Polycrystal
spinel CdO Al 203 MgO a-SiO 2 Garnet** Mg2 SiO4 ZnO CaO BeO

3.6245 -

.69

2016

22.3 x 10-6*

.00530

-. 000441

.00043

-. 00020

4.58

-. 257

.753

3.5833

1.55

1599

31.2 x 10-6

.00829

-.00049

.00396

-. 00040

4.49

-. 16

2.54

-. 21

2.6485

.69

374

35.4 x 10'

.0137

-. 00027

-. 00338

.000009

6.4

-. 10

.45

-. 007

4.1602

1.22

1757

21.6 x 10-6

.00784

-. 00039

.00217

-. 00022

5.43

-. 20

1.40

-. 11

3.224

1.17

1275

24.7 x

p

KTY

lav

(av PTVP

Iav \

~I I
VIT

Is

(IK)T

3Po

5.621

.81

1389

15.0 x 10-6

.00364

-. 00019

-. 00319

-. 000039

4.78

-. 13

-. 69

-. 02

3.345

1.19

1049

28.1 x 10-6

.0104

7.8433

1.49

1141

32 x 10-6

.00714

-. 000425

.00210

-. 00028

5.31

-. 215

1.23

-. 125

3.008

1.27

2186

17.7 x 1

.00648

-. 00028

.00033

-. 00020

5.52

-. 12

.88

-. 12

*Thermal expansion of spinel is from Skinner (1966). The value in the 0. Anderson paper is 16.2 x 10-6
**The composition of the garnet is of an almandite-pyrope type.

\D

3.972

1.32

2505

16.3 x 10-6

.00518

-. 00037

.00221

-. 00031

3.98

-. 16

1.76

-. 18

-. 00051

.0029

-. 00037

5.23

-. 14

1.64

-. 14

.0107

-. ooo48

.00358

-. 00034

5.37

-. 15

1.80

-. 13



TABLE V-2.- A COMPARISON OF THE DENSITY DERIVATIVES OF THE ELASTIC

PARAMETERS AT CONSTANT. TEMPERATURE WITH THOSE AT CONSTANT PRESSURE.

a P

19.7

13.3

22.7

15.7

7.6

18.0

19.5

12.7

18.2

15.8

( T V)

0.9

2.4

5.5

6.3

-1.3

3.8

4.6

4.4

3.0

Ps

9.0

8.7

19.0

12.8

-. 3

10.2

13.8

2.6

13.2

11.3

p T

9.3

6.1

10.0

7.2

2.4

9.5

6.8

6.6

5.5

10 3

103

10 3

103

103

10 3

103

103

103

Spinel

CdO

Al2 03

MgO

a-sio 2

Garnet

Mg2 SiO4

ZnO

CaO

BeO

P )
11.5

6.7

9.8

5.1

2.8

9.3

6.1

8.7

5.0

103

103

10 3

103

103

10 3

103

10 3

103

10.7

8.1

13.0

13.3

5.1

13.8

13.6

5.1

10.9

14.2

1.5

1.4

4.4

4.1

.17

2.5

2.3

-1.0

1.7

103

103

103

103

103

103

103

103

3 ~

1.39 x

P

12.0 x 103 6.8 x 103

103

103

103

103

103

103

103
10 3

103

4.8

3.9

11.0

6.7

.20

5.1

5.3

1.3

5.0

7.0 x 103

lav Ap k 7),
1

T A



TABLE V-3.- ( f' I) FOR SLATER's
DEPENDENCE OF y ON VOLUME.

( kn yv
3 Zn V/SL

Spinel +17

A2 03 +42

MgO +10

Mg2Sio 4 +21



TABLE V-4.- THE VOLUME.DERIVATIVE OF

GRUNEISEN'S PARAMETER FOR SEVERAL MATERIALS.

Spinel

CdO

Al2 03

MgO

a-Si0
2

Garnet

Mg2 Sio 4

ZnO

CaO

BeO

Sp. Vol.*

5.27

8.19

5.13

5.63

7.56

5.72

6.65

7.24

8.38

4.16

\ n V/0

2.8

3.0

2.3

1.3

2.8

2.1

1.6

3.3

1.7

.0

*Specific volume is mean atomic weight/
density and has units cc/mole.



Note: Data from Knopoff and Shapiro (1969)
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VI. CONCLUSIONS

For an elastic parameter X, the effect of spherical pores on the

parameter X is predicted adequately by Mackenzie's (1950) equations.

However, the assumption of a linear dependence of X on pressure combined

with the pressure derivatives of Mackenzie's equations is insufficient to

predict reliably the effective 3X/aP as a function of porosity. When

the data of a study must be very accurate, the porosity will have to be

reduced to nearly zero, which is very difficult with modern hot-pressing

techniques.

Comparison of the elastic properties of four spinels (A1203/M 0

ratios of 1.1, 2.61, 3.0, and 3.5) shows an almost negligible dependence

on stoichiometry. Because the mean atomic weights and the densities of

the spinels are nearly the same, the result is consistent with the univer-

sal equations of state.

The 0, Anderson-Nafe, Birch, and D. Anderson relationships are tested

against the new data on spinel, magnetite, and cadmium oxide plus data

from the literature on the elastic properties of other oxides and sili-

cates. Numerous exceptions to each exist, and none of the relationships

appear to have general validity for oxides and silicates. However, the

Birch relationship may be useful for predicting the properties of some

materials with restricted compositions. If the phase and compositional

changes are barred, the 0. Anderson-Nafe law and the $ law predict the

strict dependence of an elastic property on density, i.e., K = K (p).
S 5

If the nearest neighbor atomic forces dominate the interatomic

lattice interactions, mode Gruneisen's ratios are independent of frequency.

This dominance is realized in covalently bonded solids. For such -
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materials, measurement of ultrasonic mode gammas are particularly perti-

nent. The quasi-harmonic equation of state becomes

VI-1) P = -$,v + yn En
n

where n is the elastic mode and y is the ultrasonically determined

mode gamma. Because most oxides and silicates are predominantly covalent,

when possible, equation VI-l should be used rather than the less accurate

Mie-Gruneisen equation. Certainly, either equation VI-1 or the Mie-

Gruneisen equation is preferable to any of the universal equations.

If the Gruneisen assumption that y is independent of temperature is

accepted, the volume derivative of Gruneisen's ratio is obtained readily,

i.e.

( ) K AK

VI-2) )=l + Y) + [(-J _ --3 lnV0 T 00P (TV

New data for spinel and cadmium oxide along with data for eight other

oxides and silicates indicate that (3 ln y/3 ln V) is nearly (1 + y),

which is an order of magnitude smaller that either the SL or DM approxima-

tion. Thus, equation VI-2 or, where ultrasonic data are unavailable,

(3 ln y/D ln V)0 = (1 + y) should be used in the reduction of shock data.

The isotherm derived from the Hugoniot is strongly dependent on the vari-

ation of Gruneisen's ratio with volume. To assume either the SL or the

DM formula is not sufficient.
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APPENDIX A

DERIVATION OF THE BIRCH-MURNAGHAN

EQUATION OF STATE

The development of the Birch-Murnaghan equation can be found in Birch

(1947, 1952). However, the derivation presented here has the advantage of

modern nomenclature and brevity without sacrificing rigor.

If each point in an undeformed body is designated by a position vector

whose components are a. (i = 1,2,3), and x. are the coordinates of the

point after deformation, then each point before deformation is uniquely re-

lated to some point after deformation by a function

A-1) a = a (xx 2 x 3)'

Consider an infinitesimal line segment da. at a point a.. The deforma-

tion transforms da. to a line segment dx. in the deformed body. By the

functional relation of A-1,

A-2) da. a. dx
1 i'j Qi

aa.
where use is made of the usual summation convention and a., is .

The difference of the squares of this infinitesimal line before and after

deformation is

A-3) A(ds) = dx. dx. - da. da

or, from A-2, in terms of the final coordinates,

A-4) A ds) = (jk - a. jagk)dxj d
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where 6jk is the Kronecker delta. The quantity ejk, defined as

A-5) Sjk = (1/2) (jk- a. a,

is called the Eulerian finite strain tensor. In terms of this strain ten-

sor, equation A-4 becomes

A-6) A(ds2) = 2 jk dxj dx'

We now want the constitutive relations. For a deformed body with sur-

face S, volume V, and specific energy * (either internal energy or

Helmholtz energy), the change in total energy (adiabatically for internal

energy or with a constant temperature for Helmholtz energy) due to an arbi-

trary, reversible, virtual displacement, (6x)., is

A-7) f/p 6# dV = / a n ( ndS + f/FJ(6x)j dV

where a. . are the stresses at the boundary, F. are the body forces,
13

and n. is the unit normal to surface S with positive sense outward.

Applying the divergence theorem and remembering the a , + F = 0 for

stress equilibrium, one may write A-T as

A-8) fV p - a x j dV = 0

Since this is true for any region of V,

A-9) p 6$ - a (x j = 0
1
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It is generally assumed that the energy, $, is some function of the de-

formation. If the Eulerian strain tensor is chosen as representative of

that deformation, 6$ can be expressed in terms of 6e. , i.e.,
ij'

A-10) 6$ =,
mn

or, by definition A-5,

A-ll) 6$ -B a, ,manA-il mn jm j'n'
mn

The operation of virtual displacement on A-2 yields

A-12) O = a ,k d (6x)k + 6 a 'k dxk

since the operators d and 6 are commutative. Division of A-12 by dxn

yields

a(6x)k
A-13) 0= a k xk + 6 a k 6 k'n

or,

A-14) 6a, a (6x) k
j n j k axnjn n

Therefore, by A-il,

A-15) 6 - a, a x '
mn -n
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and A-9 becomes

A-16 p ak ] a ~ In = 0.ha , E j m j'k nk ax n 0

Since (6x)k is arbitrary, its partial derivative with respect to x is

also arbitrary. Thus, A-16 requires that

A-17) a = p(tL) a ,ak
nk , Cmn ~

One should note that this is an entirely general definition of stress in

terms of the deformed body.

. Expansion of * around zero deformation yields

A-18) + 2l)(a )Sn:p+
o e e mn pl

where equilibrium required a zero linear term. Therefore, if the limiting

approximation is made that third and higher order terms in $ can be

ignored,

A-19) a = p 2 a, a,
nk a Cmn 3E pl m 9

which can be written

A-20) a = (- C mnpl6 1a , aa a, a ,nk = aa\O nl l jk s ' ~
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where the constants Cmnpl are

12
A-21) C =pmnpl o e e

np

and are the elements of the elastic stiffness tensor.

If instead of considering a general deformation, one assumed an iso-

tropic deformation in a cubic or isotropic materials, then the second order

equation, A-20, becomes the one parameter Birch-Murnaghan equation. For

instance, assume

1/3
A-22) a. x.

where p and p0  are the densities in the deformed and undeformed states,

respectively. Note that the Eulerian strain becomes

A-23) Ejk = (1/2) 1 - (P/P0)2/) jk'

Equation A-20 is easily written in the Birch-Murnaghan form

A-24) P = 3/2 K [(P) - (P5/3

where P is hydrostatic pressure and

A-25) K = 1/3 (C11 1 + 2C1122)'

Since the instantaneous bulk modulus K is

A-26 K =p
ap
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equation A-24 and this definition yields

7/3
K = 3/2 K 0( /) P00

- (5/3) (53-
A-27
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APPENDIX B

ULTRASONIC WAVE REFLECTION AND

REFRACTION AT A SEAL

Figure B-1 shows an ultrasonic wave u. traveling in a material g

and impinging on a seal (designated by an 0) at x = 0. The seal is gen-

erally less than a wavelength thick (A), although this analysis is not

thickness dependent. The u3 and u4 are, respectively, the transmitted

and reflected waves in the seal while u is the transmitted wave in

material m. u2  is the total of the waves reflected by the seal. k and

z are the wave vector, and mechanical impedance, respectively.

The propagating waves can be written

S(wt-k gx)

u = A e (Wt+kgx)u A2

B-1) u 3 = A3 e(wtkox)

U -=A 4ei(t+k ox)

u = A e i(wtkMx)
u55

where the A are complex.

Continuity at x = 0 and x = A requires

A2 - A3 A + 0 -A

B-2)
-ik A ik A -k A= 0.

0 + A3e 0 + A e -A5 m



109

Force balance yields

z A + z A 3
g 2 o 3*

-z A
oh4

B-3)
-ik A ik A

-z A e 0 + z A e 0
o03 oh4

+ 0

-ik A
+ z A e m

m 5

A2  A
The solutions for - and L are easily derived by dividing equa-

A lA1
1 1

tions B-2 and B-3 by A and solving the four linear independent equa-

tions. These equationp are recast in matrix form as:

1 -l

-ik A
0 e 0

z z
g 0

-ik A
0 -z e 0

0

ik A
0e

ik A
0-z e

0

By use of Cramer's rule,

-1 -1

-ik A
o0

z z
g 0

-ik A
0

-z e
0

-ik A
mz eM

where D is the determinant of the coefficient matrix in B-4.

= z A
gl1

= 0

B-4)

0

-ik A
m

-e

0

-ik A
mz e

m

A2/A 1

A31A

A A 1A4 1A

A /A
5 1

-1

0

z
g

0

B-5)
A2

A
1

ik A
0e

-ik A
m

ik A
0z e

0
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Similarly,

1 -1 -1 -1

-ik A ik A

A 0 e e 0 0

B-6)5=1
A D = z z0 -z0 z

-ik A ik A
0 -z e 0 z e 0 0 .

o 0

D is easily shown to be

B-7) D = -2 [(z z + z0z cos k0A + i( z zm + z2) sin kA -ik mA)

Similarly ,

B-8) ( )D = -2 z z- z z)cos k0A + i(zgz - z 2 sin k A (e ikmA)

and

B-9) D = -4z z
A) 0 g

B-8 can be written

B-10)=A zg - zoz)+ i zgz - z 2)tan k A

l z A1 z g + zozm) + i(z gz + z 0 )tan k0A

In those instances where A5/A is used, the origin will be moved to
-ik A

x = A. Therefore, u5 should be multiplied by e M
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B-9 becomes

A 52z z
B-li) = 

2
0 Z +

A (z z + zoz m)cos kA + i ( z + z02 sin k A

Note that neither A2 /A1  nor A5/A1  is symmetric with respect to switch-

ing materials g and m.

To obtain the phase lag $ for each of the interactions, equa-

tions B-10 and B-11 will be cast in form A2/A1j e + for B-10 and

A5 /1 e~ for B-11. By multiplying both numerator and denominator by

the conjugate of the denominator, one obtains for the phase angles

B-1) A A a 12 z 0z gz 2 - z 0z gtan k 0A
B-12) $ =(~ tan-1 \ ogkoo /l

Al/ z(02z 2 -z2z m 2+ z z 2 - ) z a 2 k 0A

and

B-13) $ = tan-1( m o tan k J
V 1 1 = a n _. o z g + z m 0 _

A similar manipulation yields the absolute values

-1/2

B-14) z - zz)2 + (zz - z )2 tan2koA

Ai z + z z )2 + z + z0 2 2 tan2k

and

A 2z z

A \ 2c2 + 2 2 1/2
B-15) j(z~ + ZoZm cos k A + z z + z2)sin k Al/

0 g 0 ) ~0 m 00
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Note that while $(A 2/A ) is not symmetric with respect to switching

materials g and m, A2/A1| is symmetric. Conversely, $(A 5/A ) is

symmetric and |A5 /A1  is not symmetric. The symmetries are used in evalu-

ating the total phase lag * and the ratio of the reflected amplitudes off

the two faces of the sample. (See section III.)



Material g Seal Material m

U 1  uU

---+ 5
U2 +---

Ko

Kg Zg Zo Km Zm

Figure B-1.- A schematic of the transmission u5
and reflection u2  of ultrasonic wave u1  as

it interacts with a seal. The K. and Z. are
1 1

the wave vector and mechanical impedence,
respectively.
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APPENDIX C

WAVE PROPAGATION IN A CRYSTALLINE MEDIA,

THE ELASTIC CONSTANTS, THE ISOTHERMAL CORRECTION

AND THE ULTRASONIC ESTIMATE OF GRUNEISEN'S RATIO

The Christoffel relations are used to relate the ultrasonic ve-

locities to single crystal elastic constants. A simple review is in-

cluded here.

Given a crystalline material with density p, the time variation of

the displacement vector u. of a point in a volume dx dy dz under a

stress field a.. is
itJ

3u. a..
C-l) p -1 dx dy dz - dx dy dz.

Or, in terms of the usual constitutive relation,

C-2) a = Cijkl kl*

where ekl is defined as 2 I- + x j, C-1 becomes
2 ~ 1  k

2 2
3 u. uk

C-3) p-= C
C3 2 ijkl 3x1ax

since the elastic stiffness tensor C is symmetric with respect to
ijkl

k and 1. The material is assumed to be uniform though anistropic.

A body wave travels through the medium in a direction parallel to s
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whose direction cosines are 1 and whose components are lx,1 2x2,

13 x3. The particle motion uk, expressed in terms of s is

auk (uk( 13
c-4) - --

ax 1 fs 1f

and

2 /2u /u 92-
3 k as Bk

C-5) =x -- + --19 j 323x. li 3s 1 jl

The last term in C-5 is zero since s is a linear function of the x.

C-5 can be written

22
3 2u k 2 u k3

c-6) ax ax. -2 3.3
1 i (3s

or

a2 2-

C-7) ~j= (----l 1 )-
3x 3x. -2 \ 1).

C-3 becomes

c-8) P 2 = Ci j1 2 *
at jklsl 2

The elements Xik of a matrix defined by Xik = C ijkl1 11 are called

the Christoffel constants.
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If a wavelength character is attributed to the uki.e.

C-9) utk =Ak

where k is a wave vector along s, then solving C-8 involves finding

the eigenvalues of

ikC-10) - ikuk

where the phase velocity v is defined as v = (w/k).

is the Christoffel relation.

The measurements made in this study were on cryst

symmetry and were such that s was either in the [100

direction. For the [100] case, C-10 becomes

C-11)

S11 2C -- pv

C - pv'

0

where the subscript notation 23 = 4,

tion C-11 has three roots labeled

C 44 - pv

u

u2

-u 3

Equation C-10

als with cubic

I or the [110]

= 0,

31 = 5, 12 = 6 is used. Equa-

u along [100]

u along [010]

u along [001]

C 1
v=

1, p

C44
s p

v =
s p



The subscripts 1 and s

spectively. For the [110]

refer to longitudinal and shear waves, re-

case, C-10 becomes

C + C C C11 44 2 12 + 44
2 2

C1 2 + C4 C11 + C14 4  2
2 2

0

0 = 0.

The three roots of equation C-12 are

C + Cl2 + 2C
V= 

2p

C44
v (1) = -

s p

(2) = C 12vs 2p

u along [110]

u along [001]

u along (110]

These equations show that measurement of three velocities v1 , v s(1)

and v (2) in the [110] direction yield all three elastic constants of a
S

crystal with cubic symmetry. Generally, measurements along a second

direction, often the [100], are made to check consistency of results.

Stiffness constants Cijkl measured ultrasonically apply to a

dynamic situation. That is, adiabatic heat due to strain in the medium

because of an elastic wave cannot flow distances on the order of the

elastic wavelength. The passage of the wave is too rapid. Thus, in a

lossless medium, ultrasonic velocity measurements determine the adiabatic

or isentropic stiffness constants C ijkl A static measurement yields

isothermal stiffness constants.
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C-12)



There are several situations where the distinction is important.

Here, only the case of volume change under hydrostatic pressure is

considered. The parameter expressing volume change with pressure P

is the bulk modulus K and is defined as K = -V( ). The adiabaticdV

bulk modulus is labeled Ks and the isothermal modulus is labeled KT.

Ks, in terms of the dynamic C ijkl is

C-13) K = C11 + 2C12)
Ks 3

A total differential of P is

C-14) dPdV + dT

Thus, the partial derivative of P with respect to V at constant

entropy S, is

C-15) V VS

where both sides have been multiplied by V. By definition of K,

c-16) K =KT V Vs/S

Since

C-17) =

and since the definition for volume thermal expansion is a - V T

C-16 becomes

C-18 K= KT - KTaV 3T
ajs
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Similarly,

C-19) TaV

Through use of the Maxwell relation

C-20) - = --a
3IV T 3T V,

C-18 becomes

C-21) K KT + VKT Sa T

The differential of the internal energy U is

C-22) dU = Tds - PdV

so that

C-23) D-V = TI-IT) TV.

Since is the specific heat

C-23 and C-21 yield

C-2 4)

at constant, volume CV, equations

K KT + VK TC T
S CV)'

or,

K=KTaS
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Equation C-25 is used to calculate Ks/K; however, the equation is

often expressed in terms of Gruneisen's parameter y. From the
VKT

text, it is easily shown that y = , therefore,
CV

C-26) Ks = KT (1 + Tay)

There are instances where the elastic compliances Sijkl are

more convenient to use than the elastic stiffnesses Cijkl If C

is the stiffness matrix and S is the compliance matrix,

C-27) S = C~

Details of the element by element calculation are in Nye (1960). The

results for materials having cubic symmetry are

SS11

C-28) 12

C C
11 + 12

(C1 - Cl2)(C1 +2C12)

-Cl2

(C11 - C 1 )(C11 + 2C 12)

S =1
44

To apply the harmonic theory to the single crystal oxides, the

v must be related to measured ultrasonic velocities and estimates
p's

obtained for the thermal energy. If f is the fraction of the

thermal energy in modes p or s, at sufficiently high temperatures

(above the Debye temperature (Slater, 1939)), f p=fs =1/3, i.e.,

y + 2

C-29) y = 3 *
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Also, from the Debye theory of specific heat, the vibrational energy at

sufficiently low temperatures is proportional to (w max)l3 Since

''max is independent of mode,

(C-30) E a 1

ps

and

(C-31) E . A 1 + 1vib 33
p s

Therefore,

3
V

y + 2y (-k)
p s v

(C-32) Y =3

1 + 2(--)
S

Experimental temperatures usually lie between the extremes of these

assumptions. However, equations (C-29) and (C-32) are effective bounds

for y. There is a method based on the Debye theory where the f
pS

could be calculated directly. The complication is usually not war-

ranted.

The v and v may best be obtained from an integration of the
p s

solutions to the Christoffel relation. As we have seen, velocity so-

lutions v for a wave traveling in a direction with cosines 1 must

satisfy

(C-33) |C..kl .11 - PV26 k = 0.
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2
which is a third order determinant in v . For an eigenvector l., the

square roots of the three solutions are labeled v (1.), v (1 ), and

vs(2)(1 i), where subscript p is attached to the highest velocity. If

the average of a value v, over the three principal directions, is de-

noted by <v>, then

(C-34) v = <v (1 )>

i s()i

v s - Vs(1) ( i ) + v s(2) ( i'

An additional assumption implicit in equation C-31 is that the con-

centration of allowed wave vectors is independent of direction. This is

so for crystals having cubic symmetry.

Although the v and v in equation C-34 are the appropriate pa-
ps

rameters for the modified quasi-harmonic model, it is probably adequate

to consider only the isotropic elastic properties of an aggregate of

the single crystals. Hill (1952) has shown that the so called Voigt

elastic constants

(C-35) Ky = ( )(C + 2C1122)

Gv = (1)(C 1 11 - C1122 + 3C12 1 2)

and the Reuss elastic constants

3(C-36) K~ = 3 2S
(C36 R ~(S + 2S

1111  1122

R ~(11 - 4s1122 + 3S1212
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are upper and lower bounds, respectively, for the bulk and shear moduli

of a polycrystal. This polycrystal has an isotropic distribution of

single crystals with elastic stiffnesses Cijkl and elastic compli-

ances S ijkl. Hill suggests that measured elastic constants fall near the

averages of the Voigt and Reuss limits. Although there are closer but

more complex bounds (Hashin and Shtrikman, 1962), the Hill averages will

suffice. The result is

4 1/2

(C-37) v = + - GHp p

(GH) 
1/2

v = --
s p

Equation C-37 was used to estimate the y s in chapter III.
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APPENDIX D

CRYSTAL CUTTING AND POLISHING TECHNIQUES

Rough orientations of the magnetite and the spinel crystals were esti-

mated from their morphologies. With the desired faces thus identified, the

crystals were embedded in paraffin on a goniQmeter supplied as part of the

Laue X-ray camera. A series of patterns were made with successive adjust-

ments of the goniometer until the desired orientation was achieved to

±1/2 degree.

The goniometer was then mounted on the bed of a surface grinder. The

faces were ground with a 400 grit wheel and finished with a 600 grit wheel.

The crystals were cooled during grinding by a water-rust inhibitor mixture.

The samples were ground with some trepidation since in previous expe-

rience with fused quartz and polycrystalline alumina, uneven frictional

heating had resulted in cracking of the surfaces. Undoubtedly, the greater

care taken grinding the magnetite and spinel crystals was warranted.

After being ground, the samples were mounted in the end of a one-inch in-

side diameter stainless steel tube, that slid freely, but without wobble, in

an aluminum frame. Figure D-1 is a cross section of the apparatus as it

sits on a polishing wheel. So that the bottom of the aluminpm frame would

not be worn by the polishing wheel, three 1/2-inch-diameter alumina (Luca-

lox) legs were inset into the frame's base. Although automatic polishing

systems were tried, this hand-held aluminum frame and piston worked best.

After mounting the sample in the piston, the crystal faces were pol-

ished on a piece of plate glass with 8y alumina. Finally, lp alumina

was used on a hard silk wheel. Although a slight tendency for the edges to

round might have been reduced by a careful matching of the polishing powder
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to the crystal, the method as outlined yielded surfaces on the spinel with

less undulation than a wavelength of light to within a millimeter of the

edges. In the case of magnetite, several flaws in the crystal made polish-

ing the surface to less than a few wavelengths of light impossible. The

lower estimates of accuracy of velocity given in the text for magnetite are,

in part, a reflection of these surface flaws.



|--3 in.-
1-1/4 in.

1/2 in. diameter
alumina legs-,

Hollow stainless
steel piston

-Aluminum cylinder

1/2 in. diameter
alumina legs

-Polishing wheel

I-Sample embedded in paraffin

Figure D-l.- Frame for holding sample during polishing. The stain-
less steel piston floats freely in the cylinder. The polishing
force can be varied by changing the length of the piston since
the piston's weight is on the surface being polished.
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APPENDIX E

THE PHASE COMPARISON TECHNIQUE AND ERROR ANALYSIS

There are several reviews of methods for measuring sound velocity,

e.g., McSkimin (1964) and Simmons (1965). The phase comparison technique,

developed by McSkimin (1953), lends itself to high precision measurements

with relatively simple electronics. Figure E-1 is a schematic of the hard-

ware and figure E-2 shows the wave trajectory in the buffer rod and sample.

The buffer rod permits removal of the active element, the quartz transducer,

from elastic interactions with and the environment of the sample. The

equipment built for this study at moderate pressures was to be used in

studies at high temperature as well. Above 5000 C, a quartz crystal loses

its piezoelectric character so that isolation of the transducer from the

furnace is essential. The assembly shown in Figure E-2 was inside the pres-

sure vessel.

The buffer and reflecting rods were made of fused quartz obtained from

Syncor, Inc. Their cylindrical surfaces were threaded on a cylindrical

grinder to reduce surface waves and to scatter side reflections. The end of

the buffer rod were polished by the A. D. Jones Optical Co. of Burlington,

Massachusetts, to less than a wavelength of sodium light and the ends made

parallel to 15 seconds of arc. Aluminum was evaporated onto the blunt end

of the rod to form an electrically conducting layer under the quartz trans-

ducer. (Previously, evaporated gold had been tried but was found to be less

durable.) The 1/2-inch-diameter quartz transducer was epoxied to the alu-

minum film. Removal of the transducer simply lifted the film under the

transducer. Redeposition of the film is a simple process. Only transducers

polished to the fundamental frequency were used. X-cut transducers were

used to generate compressional waves and AC-cut to generate shear waves.
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In the phase comparison technique, a continuous (cw) burst (shown as a

in figure E-2) is sent down the buffer rod so that reflections off the two

sample faces interfere. Ultrasonic interferometry is a more descriptive

term than phase comparison. The frequency f of the cw is varied until

either a maximum (constructive interference) or a minimum (destructive inter-

ference) is obtained for the overlap portion of the resulting envelope (wave

c and pattern iv in figure E-2). The minimum or null was arbitrarily used.

The condition for a null is that the travel time be

E-1) n + - - =
+2) f v 2 wT fy

where n is an integer, L is the length of the sample, v is phase

velocity in the sample, and $ is the phase lag of reflections or trans-

missions at seals caused by impedance mismatches and finite seal thicknesses.

n may be found by measuring velocity vapprox by the pulse travel time

method (Birch, 1960) and finding the number of wavelengths at frequency f

in the distance

E-2) 2L + 1- - approx.
271 T 2 f1

This method was used in the case of magnetite.

n may also be obtained by finding the next higher frequency f2 that

results in a null. The condition for this is

E-3) (n l+ 11= 2L $2\ 1
2 f2 2T f 2
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For the first approximation the travel times are assumed to be independent

of frequency. Thus,

E-4) (n + 1 +
\ 2) f 2 (+2) f1

or,

E-5) n = +
2 (f2_

The electronics system, similar to that used by McSkimin (1953), Verma

(1960), and others is shown in figure E-3. The low drift (less than 0.005%

over 10 minutes) 606A signal generator supplied a continuous RF sine wave

variable over the desired 5- to 20-MHz range. Frequency was measured with

a digital counter to seven significant figures. The signal was amplified

and gated by an Arenberg PG-650C. A wide band amplifier was used between

the source and the gated amplifier for isolation and to drive the gated am-

plifier to its design limit of about 100 volts peak-to-peak into 50 ohms for

small duty cycles. The internal gate of the PG-650C was set for about

80 bursts per second. Pulse lengths were varied between 3 and 10 usec. The

electrical signal passed through a discriminator to the quartz transducer.

This discriminator behaved electrically (fig. E-4(a)) to reduce the escape

of low level ringing in the tank circuit of the gated amplifier and present

a high impedance to the low level signals coming from the transducer. The

network between B and C (fig. E-4(b)) limited the voltages seen at input of

the preamplifier PA-620-SN. This preamplifier had an adjustable bandwidth

which was set at 1,3 MHz. Maximum gain of the preamplifier and the ampli-

fier, WA-600-E, was 120 dB. This gain was never needed. The usual setting
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was at about 90 dB. The preamp was necessary more for its filter charac-

teristics than for gain. The signal was rectified in the last stages of the

WA-600-E and displayed on the Tektronix 585A oscilloscope.

EVALUATION OF PHASE ANGLE

The seals, s(l) and s(2), form a mechanical link between the buffer

rod and sample. To avoid many of the seal problems normally incurred, the

assembly was mechanically loaded. A force of 15 lb was applied between the

quartz transducer and the fused quartz reflecting rod. With nothing between

the buffer rod and sample, submicroscopic variations in surfaces were still

sufficient to eliminate sound transmission. Gold foil only 0.00005 inch

thick inserted between the buffer rod and sample as well as between the

sample and reflecting rod permitted the 20 MHz compressional waves to pass.

The malleability of gold allowed it to absorb irregularities in the sur-

faces. Copper also worked but could not be obtained sufficiently thin.

Platinum made a poor seal,

For shear wave transmission more adhesion was needed between the buffer

rod and sample. Because petroleum ether, the pressure medium, dissolves

the resins or vacuum greases that have previously been used, a new type seal

was developed. Clear Seal, a silicone rubber made by GE, worked quite well.

$ is written

E-6) = $)+ $)+ $ - $)

where is the phase lag between the elastic waves i and ,j in fig-

ure E-2. Mathematical expressions in terms of the thickness of the seal

and the mechanical impedances of the buffer rod, seal, and sample can be

assigned each (appendix B). The thickness of the gold foil is
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supplied by the manufacturer and the mechanical impedance of gold is about

62.5 x 105 g/sec-cm2 . Changes with pressure were ignored.

In the case of shear wave seals, neither the seal thickness nor the

mechanical impedance of the Clear Seal were known. A special plug

(fig. E-5) for the pressure vessel was fabricated and the amplitude of a

wave reflected off the end of the plug was noted before and after coating

it with a thick layer of Clear Seal. This amplitude was recorded as a

function of pressure to 10 kilobars. If R is the ratio of reflected to

transmitted wave amplitudes, then the mechanical impedance, z0 , of the Clear

Seal is

E-7) z= Z 1 R

where z is the shear wave mechanical impedances of the steel plug. The

results of these measurements are shown in figure E-6. For the pressure

range of 1 to 10 kilobars, the shear wave mechanical impedance of the Clear

Seal is approximately

E-8) Z = [1.45 - 0.llP(kb)] x 10 g/sec-cm2

In addition to mechanical impedance, the thickness of the Clear Seal

bond is needed. Or, as shown in appendix B, the quantity tan k A is

needed rather than the thickness. k is the wave vector in the seal and
0

A is the seal thickness. (k A) is obtained from the ratio of amplitudes
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of reflected waves off seals s(l) and s(2) (fig. E-2). Using the equations

in appendix B, one obtains

4zbz(3-)-(zb 
+ z 2)

E-9) sin2k A =

o zbs (zb0 zb s+ z0 -_zb + zs2

where zb, zs, and z0 are the mechanical impedances of the buffer rod,

sample, and seals, respectively, and (A-b is the ratio of amplitudes of
Ae)

reflected waves b and e. Values for seal thicknesses of the Clear Seal

bond were around 0.00004 inch at 10 kilobars. Although z0 was corrected

for pressure, k A was not. The value at 10 kilobars was used throughout.

This resulted in a large uncertainty for shear wave studies of ±20% in

k A.
0
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ERROR ANALYSIS

Equation E-1 recast as

E-10) y 2Lf
n + - -

lends itself to error analysis. That is,

E-11) v + 6f V
v L f 2Lf

The precision micrometer allows a 6L of ±5 x 10- 5cm. For magnetite

(f = 5 x 10 /sec), Af could be found to ±200 sec 1 . f - (

where h is the uncertainty in degrees of picking a minimum. For v (110)

of magnetite 2L = 2.7 cm, v = 7.4 x 105cm/sec. This results in a

of 10~ h, or h y,, The sensitivity of ±200 sec~1 in f yields a

precision of 4 parts in 10 ,Since the magnetite data was extrapolated to44

room pressure, this should be doubled to ±8 parts in 10 . An additional

limit of accuracy lies in $. From appendix B, the terms in equation E-6

are

= = tan-1 Zb zs + z02 tan k A
C) (z~ozb +z 0z )

L (z 2 3

E-12) tan lo 2z zszb - z z )tan kA01
d z 2 2 -zo2b2) 2 2 4 2

(0zo s -z zb + zs zb - z0 0 an k0

2 3
Z ta 2k

) tan-l 2 zozbs o z(3zb tan tk a

(b~ ~ z z b 2- z0 z s 2+ z b 2zs o t an 2k 0
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where, again, o, b, and s refer to the seal, buffer rod, and sample,

respectively. Roughly, zs = zb
so that $ ) = $ . Therefore,

E-13) $ 2$(a).

Since k A is much less than 2ff,
0

E-14) $ ~ 2b s + k A
bz0 + z0zS

For z b ~- zs'

E-15) ( ~) + z)
-27 o s 0 z)

since k = ,f
0 v

A is about 10~ cm and is known to better than ±20%, z

and z are known to about 1%. Therefore,

z 0f6 27 =10-5 +

The total error, equation E-11, is

15 x 10-5 +
SL +

v

4 x l0~- + 10-5 ( zs + z
L v0 z0 z

+4 x lo-5 + 4 x lo4 + 6 x l0-5

f

0

E-16)

E-17)

or,

E-18)
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or about 5 parts in 10 . Doubling this because of the extrapolation yields

1 part in 10 accuracy in velocity for the magnetite.

The error in the pressure derivative of velocity is

E-19) =( 2 + 0 .005).

0.005 reflects the uncertainty in pressure . The 2 t-) is 0.001 from

equation E-18 so that Tv for magnetite was ±0.006.

The uncertainties in velocities for the single-crystal spinel and the

polycrystalline cadmium oxide were ±0.03% (Chap. III). In their cases

6 ( a V

By was ±0.005, The temperatures were accurate to ±0.10 C yielding
P )

an ihaccuracy in the temperature derivatives of 0.004. Often, the inaccu-

racies in the temperature derivatives were controlled by scatter in the

data. The uncertainties listed in chapter III reflect both factors.

The data on magnetite was reduced on the Univac 1108 at NASA's Manned

Spacecraft Center. The programs were written in FORTRAN V and are included

in Appendix F.
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Sync line

AMW
Buffer rod sample

Figure E-1.- Circuit for the measurement of ultrasonic 'velocity.
Adapted from McSkimin (1964).
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Fused quartz buffer rod Sample

6 in.
Fused quartz
reflecting rod

-+-- e

Spring

a

Quart z cry stal

Wave a as seen
traveling down
the buffer rod

Envelope of wave
b, the reflection
of a off surface
S(1)

Envelope of wave
e, the reflection
of c off surface
S(2)

Envelope of the
sum of b and e
if b and e are 1800
out of phase

Figure E-2.- Diagram of the buffer rod and sample assembly
and a schematic of the traveling elastic waves. Multiple
reflections are ignored in the drawing for conceptual
simplicity. Note that everything shown in the assembly
is inside the pressure vessel.

i)

ii)

iii)

iv)

-4+---
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Hewlett Packard
460 AR

wide band
amplifier

Quartz transducer.

Fused
quartz
buffer rod

-Sample

Figure E-3.- Block diagram of the electronics used.

Hewlett Packard
606 A

signal generator

Arenberg
PG-650 C

gated amplifier
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a 

V

V

B

Figure E-4.- Idealizations of the two electrical networks

in figure 111-3; v and i are the voltage and current

between points A and B; VB and VC are voltages with

respect to ground at points B and C.
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AC cut quartz transducer, 10 MHz

4340 steel plug hardened to Rc 55

Clear seal

To pressure gauge

10 kilobar pressure vessel - the fluid
is petroleum ether

Figure E-5.- Schematic of equipment used to measure the

mechanical impedance to shear waves of General

Electric's Clear Seal.



1.8 X 10-5

0

cL.

0q~%

I I I ~ I I I I

1 2 3 4 5 6 7 8 9 10
Pressure, kilobars

Figure E-6.- Mechanical impedance to shear waves
Clear Seal.

of the silicone rubber,

1.6

1.4

E
1.2

(n

1.0

.8
E



142

APPENDIX F

COMPUTER PROGRAMS

The following programs are written in Fortran V and are compatible

with the Univac 1108 at NASA's Manned Spacecraft Center.

Main program - Computes velocity

DO 4 N=1,25
IMPLICIT INTEGER(L,M,N),REAL(A-KO-Z)
COMMON/X/DEL,ZEN,RHOS,ZO,ZB,LFONE(25),FTWO(25),PHIP(25),PNUM(25)

1 ,WNUM(25)/Y/A,B,C,AVDIF
DIMENSION VZERO(25),VPHIP(25),P(25)
READ(5,ii) ZBZO,DELKAPPA,RHOS,ZEN
WRITE(6,12) ZB,ZO,DELKAPPA,RHOSZEN

11 FORMAT(F5.2,lXF5.2,1XF6.5,lXF6.1,lXF6.3,lXF7.5)
12 FORMAT(45HITHIS PROGRAM IS BASED ON NULL INTERFEROMETRY,

1 //4H ZB=,F5.2,2X4H ZO=,F5.2,2X5H DEL=,F6.5,2XTH KAPPA=,F6.1,

22X6H RHOS=,F6.3,2X5H LEN=,F7.5,//73H FONE(L) FTWO(L) PHIP W

3NUM PNUM P(L) VZERO VPHIP,lX/)

13 FORMAT (-6PF8.5,2XF8.5,2X,OPF4.3,6XF6.2,4XF6.1)
14 FORMAT (lH ,-6PF8.5,2XF8.5,2X,OPF5.3,2XF6.2,3XF6.1,3XF6.3,3X,

1 -5PF8.5,3XF8.5)
15 FORMAT (THOVPHIP=,-5PF8.5,3H +(,F9.6,9H) * P(KB),10X,7H AVDIF=,
1 F3.5)

16 FORMAT (7HOVZERO=,-5PF8.5,3H +(,F9.6,9H) *P(KB),10X,TH AVDIF=,
1 F8.5)

17 FORMAT (7HOVPHIP=,-5PF8.5,3H +(,F9.6,6H)*P +(,F8.6,6H)*P**2,

1 10X,7H AVDIF=,F8.5)
18 FORMAT (7HOVZERO=,-5PF8.5,3H +(,F9.6,6H)*P +(,F8.6,6H)*P**2,
1 10X,TH AVDIF=,F8.5)

DO 1 L=1,25
READ(5,13) FONE(L),FTWO(L),PHIP(L),WNUM(L),PHUM(L)
IF (FONE(l).EQ.O.) GO TO 5
VZERO(25)=O.
VPHIP(25)=0.
IF (FONE(L).EQ.O.) VPHIP(L)=O.
IF (FONE(L).EQ.0.) VZERO(L)=O.
IF (FONE(L).EQ.O.) GO TO 2

WND=1./(FTWO(L)/FONE(L)-l.)
IF (WNUM(L).NE.O.) GO TO 3
FUFN=AINT(WND)
REM=WND-RUFN
IF (REM.OE..25.AND.REM.LT..75) WNUM(L)=RUFN+.5
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IF (REM.LT..25.OR.REM.GE..75) WNUM(L)=AINT(WND+.5)+.5
3 IF (FTWO(L).EQ.o..AND.L.GT.1) WNUM(L)=WNUM(L-1)

PHIP(L)=O
IF (DEL.NE.O.) CALL PHIPIE(L)
P(L)=(PNUM(L)-54.)/180.958

ZENP=ZEN*(l. -P(L) /( c.*KAPPA))
VPHIP(L)=2. *ZENP*FONE(L /(WNUM(L)-PHIP(L))
IF (PHIP(L).GE..5) VZERO(L)=2.*ZENP*FONE(L)/(WNUM(L)-.5
IF (PHIP(L).LT..5) VZERO(L)=2*ZENP*FONE(L)/WNUM(L)

1 WRITE(6,14) FONE(L),FTWO(L),PHIP(L),WNUM(L),PNUM(L),P(L),VZERO(L),
1 VPHIP(L)
2 CALL LSLIN(VPHIP,P)

WRITE (6,15) A,B,AVDIF
CALL LSLIN(VZERO,P)
WRITE (6,16) A,BAVDIF
CALL LSBIN(VPHIP,P)
WRITE (6,17) A,B,C,AVDIF

CALL LSBIN(VZEROP)
WRITE (6,18) A,BC,AVDIF

4 CONTINUE
5 CONTINUE

END

Subroutine PHIPIE - Computes phase lag

SUBROUTINE PHIPIE(L)
COMMON/X/DEL,ZEN,RHOSZOZB,L,FONE(25) ,FIWO(25),PHIP(25),PNUM(25)

1 ,WNUM(25)
VO=3.3E5
ZA=ZO
IF (ZO.EQ.o.) VO=.13E5
THETA=6.283*DEL*FONE(L)/VO
IF (ZO.EQ.0) ZO=l.48-.oo6*PNUM(L)
V=2.*ZEN*FONE(L)/WNUM(L)
ZA=V*RHOS/10**5
A=((Z)**2+ZB*ZS)*TAN(THETA))/(ZO*ZS+ZO*ZB)
B=2.*(ZB**2*ZO*ZS-ZS*ZO**3)*TAN(THETA)/(ZS**2*ZO**2-ZB**2*ZO**2
1 +(ZS**2*ZB**@=Zo**4)*(TAN(THETA))**2)
C=2.*(ZB*ZO*ZS**2-ZB*ZO**3)*TAN(THETA(/(ZB**2*ZO**2-ZS**2*ZO**2
1 +(ZS**2*AB**2-Zo**4)*(TAN(THETA))**2

PHIA=ATAN (A)
PHIB=ATAN(B)
PHIC=ATAN(C)
D=(ZB**2-ZO**2)
E=(ZS**2-ZO**2)
IF(D.LT.O..AND.B.LE.O.) PHIB=3.1416+PHIB
IF (D.LT.O..AND.B.GT.O.) PHIB=3.1416-PHIB
IF (E.LT.O..AND.C.LE.O.) PHIC=3.1416+PHIC
IF (E.LT.O..AND.C.GT.O.) PHIC=3.1416-PHIC
PHIP(L)=(2.*PHIA+PHIB-PHIC)/6.283
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ZO=ZA
RETURN
END

Subroutine LSLIN - Computes least squares solution to v = A + Bp

where v is velocity, p is pressure, and A and B

are adjustable parameters

SUBROUTINE LSLIN(V,P)
COMMON /Y/A,B,C ,AVDIF
DIMENSION V(25),P(25)
IF (V(25).NE.O.) M=25
IF (V(25).NE.).) GO TO 2
DO 1 L=1,24
IF (V(L+1).EQ.0.) M=L

1 IF (V(L+1).EQ.0.) GO TO 2
2 PSQ=0.
PC=O.
VP=O.
VC=O.
D=O
DO 3 L=1,M

3 PSQ=PSQ+P(L)**2
DO 4 L=l,M

4 PC=PC+P(L)
DO 5 L=1,M

5 VP=VP+V(L)*P(L)
DO 6 L=l,M

6 VC=VC+V(L)
B=(VP-PC*VC/M)/(PSQ-PC**2/M
A=(VC-B*PC)/M
DO 7 L=l,M

7 D=D+ABS(V(L)-A-B*P(L))
AVDIF=D/M

RETURN
END

Subroutine LSBIN - Computes least squares solution to binomial,

v = A + Bp + Cp2

SUBROUTINE LSBIN(VP)
COMMON /Y/A,B,C,AVDIF
DIMENSION V(25) ,P(25)
IF (V(25).NE.O.) M=25
IF (V(25).NE.o.) GO TO 2
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DO 1 L=l,24
IF (V(L+1).EQ0.) M=L

1 IF (V(L+1).EQ.0.) GO TO 2
2 PSQ=0.

PC=O.
VP=O.
VC=O.
PQU=O.
PSQV=O.
PFOR=O.
DO 3 I=1,M

3 PSQ=PSQ+P(L)**2
DO 4 L=1,M

4 PC+PC+P(L)
DO 5 L=1,M

5 VP+VP+V(L)*P(L)
Do 6 L=l,M

6 VC=VC+V(L)
DO 7 L=1,M

7 PQU=PQU+P(L)**3
DO 8 Ll,M

8 PSQV=PSQV+V(L )*P (iL )**2
DO 9 L=1,M

9 PFOR=PFOR+P(L)**4
BOT=2.*PSQ*PSU*PC+PSQ*PFOR*M-PQU**2*M-PFOR*PC**2-PSQ**3
A=(PC*PQU*PSQV+PSQ*VP*PQU+PSQ*PFOR*VC-VC*PQU**2-PSQV*PSQ**2-PFOR
1 *VP*PC)/BOT
B=(VC*PQU*PSQ+PSQ*PC*PSQV+VP*PFOR*M-PSQV*PQU*M-VP*PSQ**2-PFOR*
1 PC*VC)/BOT
C=(PC*VP*PSQ+VC*PC*PQU+PSQV*M-PQU*VP*M-VC*PSQ**2-PSQY*PC**2)

1 /BOT
D=O.
DO 10 L=1,M

10 D=D+ABS(V(L)-A-B*P(L)-C*P(L)**2
AVDIF=D/M
RETURN
END
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Example of output from Program Main. These data were from an early study

of the v (100) of Spinel

p

THIS PROGRAM IS BASED ON NULL INTERFEROMETRY

ZB=13.48 zo=61.76 DEL=.00013 KAPPA=2050.0 RHOS=3.582

FONE(L) FTWO(L) PHIP WNUM

20.04707
20.04736
20.04617
20.03521
20.02468
20.01564
20.00506
19.98882

20.38814
20.38534

.00000

.00000

.00000

.00000

.00000

.00000

.000
-. 000

.000

.000

.000

.000

.000

.000

59.50
59.50
59.50
59.50
59.50
59.50
59.50
59.50

VPHIP= 9.02507 +( .003540) * P(KB)

PNUM

1866.5
1867.0
1865.0
1681.0
1504.5
1319.0
1143.0

962.0

P(L)

10.016
10.019
10.008

8.991
8.016
6.991
6.018
5.018

VZERO

9.06051
9.06064
9.06012
9.05666
9.05334
9.05076
9.04741
9.04154

LEN=1.34678

VPHIP

9.06051
9.06064
9.06012
9.05666
9.05334
9.05076
9.04741
9.04154

AVDIF= .00052

VZERO= 9.02507 +( .003540) * P(KB) AVDIF= .00052

VPHIP= 9.00781 +( .oo6o9o)*P +(-.000143)*P**2 AvDIF= .00645

VZERO= 9.00781 +( .oo6o9o)*P +(-.oo0l43)*P**2 AVDIF= .00645

ZB = impedance of buffer rod
ZO = impedance of seal
DEAL = thickness of seal in cm.
KAPPA = bulk modulus of specimen, in kb.
RHOS = density of specimen
LEN = length of specimen
FONE, FTWO = adjacent frequencies for null
PHIP = phase lag ($/27T)
WNUM = (n+1/2) as in equation III-1
PNUM = associate with P
P(L) = conversion PNUM to P
VZERO = velocity if # = 0
VPHIP = velocity
The last two lines refer to a least squares fit to a binomial in P
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APPENDIX G

ELASTICITY DATA OF THE POROUS GLASS SAMPLES

Included here are the data obtained on the porous glass samples.

Pressure P is in bars, sample length L is in centimeters, and the re-

ciprocal of travel time F is in sec~1. (The subscripts p or s

refer to compressional or shear wave, respectively.)

Sample F,

F
s

131778

131833

131856

131893

131891

L = 1.3160

P

0

211

513

729

1009

1250

1505

1790

2018

p

222729

222728

222735

222772

222857

222809

222829

222846

222869

Sample 680, L = 2.4300

s

69965

69938

69932

69957

69938

P

0

230

509

757

1023

F
p

N/A

116757

116723

116721

116720

P

0

238

513

744

1067

P

0

244

544

748

1042
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Sample 680, L = 2.4300 - Continued

s

69936

69887

69878

69834

69798

P

1248

1508

1769

2004

F
p

116724

116727

116727

116720

69754

Sample 750, L = 2.3012

s

70502

70473

70448

70431

70411

70302

70190

70072

P

0

239

478

728

980

1512

2042

2536

3025

F
p

121318

121324

121302

121279

121275

121241

121189

121162

121132

Sample 30, L = 1. 5878

F

92748

92568

92396

P

0

259

513

1239

1538

1774

2014

2287

2501

0

312

598

821

1001

1522

2003

2479

0

462

958

F
p

154920

154886

154832



Sample 30, L = 1.5878 - Continued

F P
s

92267 734

91926 1003

91770 1248

1533

1788

2009

Sample 29, L = 1.7496

F P
S

80031

79852

79679

79373

79149

78992 (weak)

0

227

500

707

1011

1239

1517

1754

Sample 27, L = 2.2298

s

60966

60894

60780

60708

P

0

734

1026

1267

149

1484

2012

2517

F
p

154816

154789

154676

154605

1545o6

154398

F
p

N/A

138405

138312

138256

138116

138026

137922

137798

0

469

996

1535

2054

2495

0

247

525

741

p

N/A

101834

101738

101604
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Sample 27, L = 2.2298 - Continued

S

60605

60498

60398

P

1512

1758

1972

2248

101495

101415

101344

101016

Sample 720, L = 2.7437

F
S

47740

47637

47607

47528

47428

47334

47227

47133

997

1255

1522

P

0

361

510

744

980

1244

1513

1757
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