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ABASTRACT

Resolution of Seismic Reflections

by

Robert W. Wylie

Submitted to the Department of Geology and Geophysics on May 15,
1956 in partial fulfillment of the requirements for the degree
of Master of Science.

The problem under investigation is that of resolving seismio
echoes from two reflecting horizons in the earth where the horizons
represent the boundaries of a bed of rook which may be thinning
and hence of possible importance as a trap for petroleum. The
echoes from the boundaries of a thinning bed are recorded by standard
seismic methods as two waveforms which overlap when the bed thins
sufficiently. One needs special methods to resolve the two events
in these cases.

Assuming that these reflections can be represented as two
distinct waveforms or wavelets, the purpose of this thesis was
to investigate some approaches to the problem of determining their
times of occurrence in the case where overlapping does obscure
the second event. A brief discussion of Norman Ricker's papers
concerning seismic wavelets and seismic resolution (representing
the published work on the problem to date) is presented.

The use of the mathematical inverses of wavelets as con-
tractor operators is investigated and the limitations of such an
approach are noted. Such operators should give perfect resolution
in a noiseless system. These studies were carried out on theoret-
ical wavelets and on data from a group of reflection seismographs.
It was decided that in practice the noise problem is severe.

Another group of experiments is presented representing the
uses of a symmetric operator in resolution of our two events. The
specific group of symmetric operators which were studied were un-
folded cosine transforms of the reciprocals of the amplitude
spectrums of the wavelets. In general the results were superior
to those obtained from inverse operators but more work is necessary.
The limitations and possible applications of the approach are noted
along with some suggested future investigations.

Since the above approaches had definite limitations a
numerical method for applying a least squares fit was set up and
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is presented. Experiments were not carried out on this method
and it is left in mathematical form as a future possibility,
Computationally the least squares fit method is relatively in-
volved but it is felt that this may be a closer answer to the
original problem and that it should be investigated.

Thesis Supervisor:

Stephen M. Simpson, Jr.

Title: Assistant Professor of Geophysics
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Introduct$on

One of the major problems of interest in exploration

seismology is that of establishing the boundaries of a bed

which is thinning and may or may not be pinching out.

Exploration-wise one or both of these possibilities,

pinch-outs or thinning, may be of economic interest in

different areas, but in any case the boundaries need to be

defined. Much of this mapping has been carried out by

intuition and extrapolation from areas in which the boundaries

have been established with the maximum resolution of the

instruments at hand. Even if a definite answer as to the

exact boundaries is unobtainable thenvis, nevertheless,

much room for refinement of seismic resolution in these

areas. By increasing this resolution, extrapolation and

intuition need .be used to a much lesser extent and uncertainties

will be decreased greatly.

The goal of this paper has not been to find a method

which will give the exact boundaries but has been to

investigate methods of refining the data produced by present

seismic instruments in order to obtain greater resolution

in pinch-out or thinning areas. Here we are dealing

with a specific problem, present over small intervals of

seismic records, and have therefore attempted to investigate

specific tools which will aid in the solution of this

special problem. It is felt that much of the work will

be of interest, however, to persons working with more
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general questions of seismic resolution.

All of the tools investigated require a much closer

insoection of the data coupled with varying degrees of

more difficult comoutation than would be encountered

in an ordinary interpretation process. Increasing

resolution, however, is quite often worth a great deal of

effort. In this investigation the experiments have been

carried out numerically on WWI. It is worth mentioning

however that, where a numerical method is known to work,

large quantities of data are to be studied, and high

accurracies are not to be required, electronic analog

equipment may often be economically built and put into use.

The investigation is far from complete and I have

therefore included descriptions of all the studies so

that if the problem is carried on the research can at

least start a few steps closer to a final answer. Some of

the investigations which proved fruitless are mentioned

in a sentence or two where they logically came up in the

investigation in order that these blind alleys could be

avoided. The experiments concerning methods having

possible adaptation in some areas are presented in full.
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REVIEW OF PREVIOUS WORK ON CONTRACTION

Our interest in this paper is sighted at improved

resolution of two or more signals where their arrival

times are such that the first signal is superimposed on the

second. We are therefore interested in the character or

shape of these signals as they appear ox a seismic record

so that we might distinguish the arrival of trailing

signals which may be obscured by the original reflection

wavelet. The signal or wavelet shapes as observed in

practice are fairly common knowledge but little work has

been published on them. Some work has been done in determin-

ing them theoretically.

In 1953 Norman Ricker published two papers in Geophysids(6)

(7) concerning the wavelet theory of seismogram structure

and wavelet contraction, wavelet expansion, and the control

of seismic resolution respectively. In the first of these

articles Ricker attempted to describe the action of an

imperfect elastic medium on a seismic disturbance using

two basic assumptions: first that the initial disturbance

at the origin is given by a doublet, and secondly that the

disturbance is transmitted according to Stoke's differential

wave equation for a visco-elastic medium.
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where = elastic disDlacement

= viscosity of the medium

= density of the medium

wave velocity when is set = 0

= time

With these basic assumptions Ricker proceeds to develop

theoretical velocity and displacement type seismic wave-

lets for varying distance relationships. However, many

questions have been raised concerning this work. In an

interpretation of the paper, Bowman (3) points out four

general points of controversy due to some of the mathematics

and to the initial and some additional assumptions incorp-

orated in the study. The questions were:

(1). "Are the mathematical parts of the theory on

a sound basis?"

(2). *Does experiment bear out the theory?"

(3). 'How does the non-realization of the assumed original

pulse shape in -practice affect the applicability,"

of the theory?"

(4). "What is the physical meaning of the assumed

wave equation?'

In general the answers to the above questions as partially

offered by Bowman and others seem to support the math-

ematics but indicate a reasonable amount of doubt as to

the actual occunrame of Ricker type wavelets in field

studies. Strong objection has been made due to the



difference in Ricker's model of the earth from the actual

and to the lack of field evidence supporting his theoretical

damping conclusions.

Ricker's experiments and theory were based on an

earth model which was visco-elastic. As far as this

earth model is concerned Ricker's theory has been shown to

be correct. Ricker's experiments were carried out on the

Pierre Shale and in this area there was a very good agree-

ment of theory and observed data. However the properties

of Pierre Shale differ from most rocks in that this shale

is almost truly visco-elastic. Jeffreys (4) pointed out

the non-visco elastic state of most rocks and the fact

thau a more complicated wave equation was in order.

Van melle (0) and Treitel (9) have shown that the wave

equation used by Ricker is also non-physical from the energy

relationships.

In his second paper in 1953 Ricker incorporated the

study of his wavelets into a paper concerning seismic

resolution. Using these wavelets as models Ricker considers

a seismogram, free of distortions, as being made up of

large numbers of fundamental wavelets with different time

origins superimposed on one another. The analysis of a

seismogram he then considers as the breaking down of the

record into its wavelet components. To do this, Ricker

proposes a wavelet contractor as an electronic filter,

which when coupled with proper redording techniques would

produce a distortionless seismogram. The individual

wavelets on such a seismogram would be contracted to a
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lesser breadth without altering the relative arrival times

of the wavelet centers. Ricker set down two conditions which

were to be met within the band of relavent frequencies.

First: The chase characteristic must be a linear

function of the frequency f with intercept on the phase

axis of zero or an intergral multiple of r. For the wavelet

to emerge erect, the phase intercept should be zero or

an even multiple of 2r.

Second: The amplitude response characteristic must be

of the form A= A0ekf2

where f is the frequency and A and k are constants.

In-as-much as the characteristics of this wavelet

contractor have been derived from the wavelet theory which

has been seriously questioned a great deal of reserve must

be used in evaluating the usefulness of the method and the

equipment. It was shown by Robinson(S) that Ricker's

wavelet contractor could be duplicated by a mathematical

linear oDerator. Using Ricker's conditions and assumptions

Robinson achieved the same results. On actual seismograms

the maximum contraction achieved by Ricker's contractor

was approximately 0.8 of the original breadth.

Within this range Ricker's contractor, even with its

non-physical basis, seems to have applicability and sufficiency

for seismic studies. It was hoped, however, that we might

find a better method of seismic resolution using a different

approach which did not incorporate some of the weakness
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of Ricker's assumptions. This thesis study was launched to

accomplish this.



II Formation of an Inverse
In transforming the seismic recordings through his

contractor Ricker- 's operations required that the shape of the
wave forms remain constant. It was felt that if this con-
dition were dropped better contraction and/or resolution
could be affected with no loss of information pertaining to
the onset times of the reflected energies. This was the
general problem and the study proceeded historically in al-
most the same pattern as this thesis.

The operation which we are searching for is one which will
give a better indication of the time of onset of seismic re-
flections. As in most studies we have assumed that the seismic
traces as time functions may be represented as a noise function
plus signal functions whose time origins are directly related
to the geometries and the velocities involved. Finding these
onset times is the broad problem. Discovering them in areas
where they are not visible on the seismic record due to inter-
ference from other signals and noise without destroying the
information from other signals is the specific problem. The
most practical uses of such a method is of course that of
finding the onsets of two overlapping reflections such as
would represent a pinch-out or thinning of a bed bounded by
two reflecting horizons. It was with these goals in mind
that we proceeded. Considering the reflection from any
horizon to be a finite time series and having relaxed the
condition for constancy of wavelet shape, it was then quite
logical to attempt to find an operator which would produce
a spike or near spike at the onset of the waveform and which
would produce negligible output before and after this onset.
These characteristics suggest the mathematical inverse. This
inverse when convolved as a series term by term with the
original series will produce a series which will be an impulse



followed by zero terms. In finding an inverse for a time

series one merely performs a polynomial division into unity

obtaining a polynomial whose coefficients are the desired

inverse.

a0 + alz + a2z2 + a3z3..0

where a0 , a1, a2 ... ar are the ordinates of the
wavelet.

Unfortunately, as was found by experiment, most inverses

of waveforms found on seismic records are unstable. That is
to say, the higher order terms in the true inverse polynomial
become increasingly divergent. These divergent series will of
course theoretically still give a perfect spike when convolved
with the original wave form if one retains the infinite series
of the inverse whose terms diverge also to infinity. Again
there is a logical compromise. As suggested by Dr. Piety (5 )
we need only use the first group of smaller terms in our in-
verse to produce a spike in convolution which will be valid
to the number of terms used from the inverse. This restriction
may or may not be serious in application depending upon the in-
stability of the inverse and the interval length over which we
wish to operate.

Experiments were then set up to test the applicability
of our proposed "chopped-off" inverse. Two waveforms were
chosen for the initial study from Ricker's theoretical wavelet
tables. Thei- were the Ricker wavelet "taken at infinity" and
the Ricker wavelet "taken at twenty-five" which we shall hence-
forth respectively denote as V(ao) and V(25). These wavelets

were modified so that there initial values represented a dis-

crete jump in amplitude, the original waveforms as derived by
Ricker having extended in time from minus to plus infinity.
This modification was necessary in order that any stability



might be achieved by our inverse and it does render the wavelets

more physical. -- In our notation we will designate 1/V ( )

as the inverse,-- Using these modifications (Fig. 1) the two

wavelets were divided into unity and 180 terms of 1/V(25) and

of 1/V(co) were calculated in order that we might observe the

nature of the instability. (Fig. 2 and 3).

The stability of the inverse of any symmetric wavelet

and hence the true stability of any symmetric wavelet has been

shown to be impossible (MIT GAG Report 9, Section 4 ( I)) and

hence the instability of V(oo) was known. In general, if any

of the roots of the z plane transfer characteristic lie with-

in the unit circle the wavelet has an unstable inverse. This

was shown to be the case for V(25) also by observing the nature

of the computed inverse (Fig. 2 and 3). We note that in Fig.

3 the inverses apear to be time series added on to exponential

functions. As we are only interested in the first portion of

our inverse this exponential function has been determined and

subtracted from the raw inverse in various ways in attempts to

create an inverse which would be valid over a wider range of

convolution.

The logarithmic plot of the inverses (Fig. 3) shows the

exponential dependence very clearly. The functions aebx and

a(ex-1) were determined by fitting the asymptotes of 1/V(25)
and l/V(oD) to straight lines on this logarithmic scale. In

subtracting these exponential functions, the term -1 has little

effect on the large terms of the inverses but it does tend to

render the first values , which are the most important in this
study, more similar to the exact inverse. In. Fig. 4 we show

the effect of retaining consistency in the first terms. Here

we have reinverted the modified inverse of V(25) and V(o) and

have found

1 1 and 1
V(2.5) - a(e bx-l) V(00) -a(e bx~l)
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to be substantially similar to V(25) and V( o) whereas

I I

va) V(oo)

differ from the original wavelets completely.

The question also came up as to whether the inverse was

not just an exponential plus the inverse of the stable wavelet

whose amplitude spectrum was the same as that of the original

wavelet (Fig. 1). Using a factorization orogram developed by

other members of the GAG project this wavelet and its inverse

were formed (Fig. 5) from report lOb MIT GAG project. As we

can see in Fig. 6 this guess proved to be false.

As a result of these experiments the modified inverses

V(6) ak Y&)
were used in further studies. These are shown with their

amplitude and frequency spectrums in Fig. 7. It can be

noticed in Fig. 3 that V(25) seemed more stable than V( cc).
This was interpreted to indicate the probability that the
anomalous roots of the characteristic polynomial of V( m)

were further inside the unit circle than those of V(25).
The amplitude and phase characteristics of the modified in-

verse of V(25) at high frequencies are close to what we would

expect for a true inverse (amolitudes related reciprocally,
phases being the negative of each other) but the phase con-

dition breaks down at low frequencies. The spectral character-

istics for V( m) and its modified inverse do not fit these con-

ditions as well. This phenomena would seem to indicate that

convolving the modified inverses with the original wavelet will

produce a spike plus low frequency. The results of this con-

volution are shown in Fig. 8 and the preceding analysis is

shown to have been correct.
Using these convolved results we then proceeded to set

up a theoretical noiseless seismic situation with V(25) in

-22-
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order to show its possible use under ideal conditions. These

results are shown in Fig. 9. In this test we assumed that a

Ricker wavelet occurred on a noiseless section of a seismic

trace and that after a time lag another positive or negative

V(25) of different amplitude occurred. The resulting com-

bination hid the second event in both cases. Using the modified

inverse as an operator a convolution was made and definite

resolution was oroduced.

This was of course an ideal case where the first and

second wavelets were similar, in phase, and where there was

no noise. As our data is taken at discrete intervals in

digitalizing any seismic information we were first interested

in the effects of phasing. The occurrence of any reflection

over a seismic record will have different onset times on

various traces. We must of necessity continue our digital-

ization at a constant spacing over the interval of interest

on the seismic record or traces. It is obvious, therefore,
that we very seldom hit the first term of our wavelet with

a data point. It is this first term which our inverse has

been developed to spike and hence there is need to study the

sensitivity of the approach to a shifting. Such an experi-

ment was carried out on V(25) for shifts of 1/4, 1/2, 3/4

and 1 and the results are shown in Fig. 10. There appears

to have been a shift in the convoluted results and some slight

changes in amplitudes. The characteristics are still quite

good however. The data roints of V(25) appear to be close

enough together and l/V(25) insensitive enough to small

changes that we can conclude that for this operator and wave-

let phasing is of only minor importance. In a later section

of this paper we shall see how the spread of the data points
can make the phasing a major problem.

The problem of noise or variation in wavelet shape
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appears to be much more critical in the case of our inverse

operators. If there were only the original wavelet for which

we had established an inverse followed by another waveform in

our interval of interest we would still be in good straits.
The first waveform would produce a spike followed by a re-

latively flat period until the onset of the second waveform

which in convolution would at worst produce a transient. This

ideal case is in practice unobtainable as we invariably have
some noise which will distort the shape of the first waveform.

This will vary also from trace to trace. In order to dis-

cover the effects of this phenomenon a convolution was made
with the modified inverse of V(25) and V( co) and the modified
inverse of V( oc) and V(25). These results are shown in Fig.
11. The modified inverse of V(25) appears to be relatively in-
sensitive to changes in shape compared to the modified inverse
of V(oo). Even the former points out definite limitations of
this process in situations where we must contend with noise.

The operation must be sensitive enought to indicate the
onset of a set waveform but not sensitive to the degree that
it will blow up when it is convolved with a wavelet other than
its inverse. Thus if we were concerned with wavelets of the
same form as V(25) we would appear to have solved our general
problem. Ricker points out, however, that ordinary seismic
filters do not yield wavelets of the same form as V(25). They
are more likely of the form shown in Fig. 13. It should be
pointed out also that this dissimilarity of waveforms may not
be totally electronic and. as stated previously the occurrence

of Ricker's wavelets in actual practice is questionable. Go-

ing back to Fig. 1 and noticing the form of V(25) there is

reason to expect difficulties in applying the inverse operator

approach to contracting waveforms usually observed on seismic
records. Most waveforms in practice do not have their maximum
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amplitudes within the first few terms. Usually they build up
to maximum values in later terms, a characteristic which will
tend to increase the instability. One would expect the in-
verses of these waveforms to diverge quite rapidly.

In order to study the overlapping of two waveforms from
an actual seismogram a suite of records was obtained from the
Atlantic Refining Company which exhibited several pinch-out
structures. Of these we chose four records for our study (Fig.
12). The reflection picks at 0.98 and 1.07 seconds on record

7.19 were seen to get closer and closer together as we moved
over horizontally to record 7.16 where they seemingly combined
into one wavelet complex at 0.98 seconds. Analysis was started

on the two distinct waveforms which were present on record 7.19.
The first waveform aopearing around 0.98 seconds on record

7.19 was averaged over this record by lining up the maximum

positive peaks on every other trace, digitalizing each over a

fairly wide range, and averaging these time series term by term

(Fig. 13). Thus we have assumed that the noise is uncorrelated
on the average with the signal. The averaged wavelet was then
modified so' that it would have a definite zero origin and would

tail-off to zero. It is noticed on Fig. 13 that the averaged
wavelet from 7.19 has its largest positive amplitude not in the

first swing as did V(25) but rather in the second positive form

later in time. This is much more in line with the results of
other field observations.

An inverse was calculated for this modified wavelet (Fig, 14)

and as predicted it was widely divergent after only the first few

terms. The nature of the terms in this inverse also show no

signs of possessing any generalized smoothing function such as

a(ebx-l) which was so useful in rendering the inverses of the

Ricker wavelets stable over long intervals of time.
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The first nine terms seem all that we should really employ in

forming an inverse operator. This operator, although of very
limited use, is nevertheless good enough to separate the first
wavelet in the noiseless case from another waveform. In order
to check this the wavelet complex occurring around 1.07 seconds

on 7.19 was averaged in the same manner as was the original wave-
let. This complex was added on to the first wavelet after a
time lag of four spacings (10 milliseconds) and this new com-
plex was then convolved with the first nine terms of our in-
verse. In this noiseless case the onset of the two events was
quite clear (see Fig. 15). This limiting condition of a noise-
less system in which we are only able to discern between events
occurring within 20 milliseconds is quite restricting. As we
notice when we convolve our nine term operator with some of
the actual traces from 7.19 the noise in the actual cases tends
to obscure any spiking (Fig. 16). Our inverse approach is ap-
plicable however in discerning the onset of a second event short-
ly after the known onset of a known waveform in a relatively
noiseless system. These crnditions are quite restrictive and
we are therefore left to search for another app-roach.

We were next led to attempting to fit a Ricker wavelet to
our wavelet in the hope that this would be suitable means of
creating an inverse operator. Due to the configuration of our

waveform which we previously discussed the closest fit was to

V(oo). Convolution of the inverse obtained from our modified

V(oo) and the first modified wavelet from 7.19 produced diverg-
ing terms with no recognizable spike. This method was then

dropped.
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A STUDY OF THE RESOLUTION OF A SYMMETRIC

OPERATOR CHOSEN TO PRODUCE CONTRACTION OF

A SPECIFIC WAVEFORM

In the ideal case in which we are concerned with a stable

wavelet (i.e. having a stable inverse) it is seen that our con-

volution process will produce a single spike which has a white

light amplitude spectrum. It was hoped therefore, that we

might be able to produce contraction, although surely not a

single spike, if we convolved experimental wavelets with the

damped series which are the cosine transforms (unfolded to pro-

duce a symmetric operator) of the reciprocals of the amplitude

spectrums for the original waveforms. This convolution would

have as its output a series which would have a white light

spectrum and which it was hoped would be a close approximation

to a spike.

The reciprocal of the amplitude spectrum was, therefore,
computed for both the sharp-front wavelet (i.e. initial value

was quite large - as used in finding an inverse) modified from

the averaged wavelet from Record 7.19 and a modification of the

same wavelet smoothed so as to have gradually increasing ampli-
tudes before its first positive maximum (compare wavelets on

Figs. 19 and 20). The cosine transforms for both of these re-

ciprocal amplitude spectrums were computed and are also shown on

Figs. 17 and 18. In order to investigate the contraction proper-

ties various lengths of these symmetric operators were then con-

volved with the smoothed and sharp-front wavelet. In Fig. 19

the symmetric operator formed from the sharp-front wavelet to

49, 25 and 15 terms was convolved with the sharp-front wavelet.

These results show very good spiking for all three lengths of

the operator with similar forms and amplitudes in each case.

The dependence on operator length was evident in Fig. 20 where we

convolved 49, 25 and 15 terms respectively of the symmetric oper-

ator(formed from the smoothed wavelet and the smoothed wavelet

itself. Here we notice that the 25 term and 49 term operators

-39-
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produce relatively low leading and trailing amplitudes in comp-
arison with the results of the 15 term convolution. The leading
and trailing amplitudes for the convolutions in these two ex-
periments were small compared with the amplitude found with the
25 and 15 term convolutions shown in Fig. 21 where the symmetric
operator developed from the sharp-front wavelet was convolved with
the smoothed wavelet. In this experiment the 49 term operator pro-
duced a usable spike despite the variation in waveform This
seems to indicate that this method is at least less sensitive
to small variations in wavelet shape than our inverse approach.

It was hoped that we might be able to decrease the leading
and trailing amplitudes by smoothing our syMmetric operator. A
method of Cesaro sums was used on our operator formed from the
sharp-front wavelet giving zero initial and terminal values and
weighting each of the ordinate values linearly from these zero
extremes to the maximum at the point of symmetry. The convolution
of this revised symmetric operator (taken to 49, 25 and 15 terms)
with the smoothed wavelet resulted in a drastic reduction in con-
traction as is shown in Fig. 22. It was concluded that the
amplitudes of leading and trailing terms of the operator could
not be diminished by this process without a marked loss in con-
traction and this variation was dropped.

It was noticed that the symmetric operator formed from the
sharp-front wavelet to 49 terms produced a spike when convolved
with the smoothed wavelet and that the symmetric operator formed
from the smoothed wavelet to 25 and 49 terms produced similar re-
sults when convolved with the smoothed wavelet. Now inasmuch as
a smoothed wavelet seems to be more physical than one with a
sharp-front - and since the convolutions from the latter's oper-

ator seem to be somewhat better - it was decided that the 25
term operator from the smoothed wavelet and the 49 term operator
from the sharp-front wavelet would be used in further experiments
concerning this method.
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In an attempt to find how our contractor operators would

behave on an actual seismic record we convolved 25 terms of the

symmetric operator formed from the smoothed wavelet and 49 terms

of the symmetric operator formed from the sharp-front wavelet with

alternate traces from Record 7.19 over the interval from 0.91

seconds to 1.16 seconds (refer to Fig. 12). These results are

shown in Figs. 23 and 24 respectively, and are both encouraging

and discouraging. The results are noticed to be very similar

and in this experiment there seems little advantage of one oper-

ator over the other. It is seen that the first event or re-

flection is evident when looking at the filtered record section

as a whole, but that the second event, expected at about 1.07

seconds, is obscured. This may be attributed to the fact that

our second waveform on Record 7.19 is a complex and is probably

much different from our first wavelet (see Fig. 15). In practice

we might then find the cosine transform of the reciprocal of the

amplitude spectrum for the second waveform and use it as an oper-

ator over the same interval in order to pick out the second

event. Carrying out these two independent operations on the

complex on Record 7.16 we might then expect to find the onset

times of the two events.

Another note of interest in connection with Figs. 23 and

24 is that the spiking appears to die out on certain traces

where there was an identifiable waveform on the original records.

This suggests again the possibility of phasing and noise effects.

In order to study the effects of phasing, ordinate values

of the smoothed wavelet were interpolated for each 1/8 th

spacing (original time interval = 2.5 milliseconds, here we in-
terpolated an ordinate for every Le milliseconds interval).

The convolutions were then performed of 25 terms of the symmetric

operator formed from the smoothed wavelet and 49 terms of the

symmetric operator formed from the sharp-front wavelet with the

smoothed wavelet with ordiante values corresponding to a shift

of 1/4, 1/2, and 3/4 data spacings (by a similar arrangement

to that shown in Fig. 10). These results are shown respectively

-47-
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in Figs. 25 and 26. Here we notice that the spacing and relative

breadth of our waveform are very critical. As expected, the worst

resolution was produced with the half shift where the convolution

in both cases produced two diminished spikes instead of the single

event which was produced in the convolutions where there was no

shift. It would be very difficult to tie down the onset of the

firwt event let alone pick out the onset of the second over-

lapping event on any single trace if the onset of the first

signal satisfied this worst case. With the present phase-

dependent convolutions we must depend on the ensemble of convolutions

across the record for resolution, weighting more strongly the re-
sults of the in-phase traces.

It was hoped that we might eliminate the phasing effects

by decreasing our data spacing and therefore another phase test

was set up. The values of our symmetric operators, the 25 term

operator formed from the smoothed wavelet and the 49 term oper-

ator formed from the sharp-front wavelet, were interpolated for

half spacing. These new operators were then convolved with the

smoothed wavelet with 1/2 spacing shifted 1/8, 1/4, and 3/8
of the original 2.5 millisecond spacing. The results are shown

in Figs. 27 and 28 and, as the results are similar for all members

of the two sets, we can conclude that finer spacing will solve

the phasing problem. However, it is also noticed that there has

been a decided decrease in the contraction. This may quite

probably be due to the inaccuracies of the interpolation used

to form the symmetric operators for the half spacing and hence

to the difference of the interpolated values from actual values

which could be calculated exactly. It is felt that the 1/2

spaced operators will be more sensitive to changes in wave

shape but that with a more accurate computation of the symmetric

operator the resolution should be almost as good for any shift

with 1 /2 spacing as it is for the exact fit with regular spacing.

Mathematically it can be shown that the above relationship holds
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and is only in the nature of our data handling that we have

failed to produce the desired contraction. For completeness

we also convolved the snoothed wavelet and the symmetric operator

from the sharp-front wavelet to 1/4 spacing (Fig. 29). These
results show a larger, decrease in the conLraction than did the
experiments at 1/2 spacing and further indicate that our in-
terpolations were not yielding accurate ordinate values.

Further investigation is proposed inasmuch as there is a
good possibility that, with closer calculation of the cosine
transform of the reciprocal of the amplitude spectrum for the

half spaced wavelet d ata, we can produce an operator which will

have little or no phase dependence and which will contract the

wavelets. If, due to the nature of our data, we are unable to

obtain an operator which has the above properties and is also
fairly insensitive to small changes in wavelet shape, our
method may still be of some value. Looking at an ensemble of
seismic traces operated on by one of the symmetric operators

such as in Fig. 23 or 24 the contraction obtained with using

data of the original type (spacing = 2.5 milli3econds) may be
enough to pick out the first event. Subsequent operation with
an operator designed to contract a second event may likewise in-
dicate the time of occurrence of that event. Adding the results
found in both operations and taking into account the overall ef-
fects we may be able to obtain the desired information as to
the boundaries of our thinning bed.
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LEAST S4UARES 1ETHOD OF RESOLVING
OVEhL"PPING SElSMIC SIGNALS

The above approaches to solving our general problem seem

to have limitations and therefore a method of least squares
fitting is also proposed. This method is computationally much

more involved than any plan set up thus far in this paper. It
is therefore suggested that the method, mathematically set up

below, be programed for a digital computer and tested. If the

resolving power is good enough it is then suggested that,
economics having been weighed, special purpose analog equipment

be built to do the same work. This analog system would of course

run large amounts of data much more economically than a digital

machine to the accuracies required.
A Least Squares Fitting Method of Resolving 0verlaooing Seismic
Signals

In applying a method of least squares we first will de-

scribe the procedure using functional notation and then will

develop the discrete form which we will have to deal with in

an analysis by digital means.
A -01- B

aGovveirical t ov'

Fig. 30
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We will in general be interested in extending the re-

solution of reflections from two horizons from an area A

where these two events are distinguishable on seismic re-

cords to an area B where the reflectors are close enough to-

gether that their waveforms overlap and where one or both of

their onsets can not be distinguished. (see Fig. 30.) We
further assume that in area A the two events are reoresented

by the onset of two distinct waveforms W(t) and U(t) re-
sDectively. These two events may be determined by an averag-

ing process over records in area A, (See Fig. 31) requiring

that similar filters are used, it is assumed that the average

wavelet representing the reflection of a horizon in area A

will remain constant in amplitude and duration for the same

reflector in area B. This is of course a first aoproximation

which might be relaxed later if more information were available.

Our two averaged waveforms W(t) and U(t) can be expressed

Fig. 31

as distinct time functions and their existence at set times

after an arbitrary origin may be represented as W(t - x) and
U(t - y)

Fig. 32
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Short Interval of Seismic Interest

As we are only interested in a short interval of the re-

cords in area B representing that period of time over which

reflections from the two horizons are possible, we may set up

a new time origin and limit encomoassing this interval (Fig. 33).

Fig. 33 Interval of Interest on Seismic Record

This restriction to a short seismic interval will allow us to

deal with such oarameters as velocities, normal move-out, and

associated the geometries as constants. This will simplify

our computation greatly. Likewise we will later realize

simplification if we can restrict ourselves to small angles

of dip.

Functional Relationshios in Interval of Interest
Over this short interval we can then express the con-

tribution of the first wavelet W(t) on the Ith trace as

W(t - T1 - e (a)). Where T is its time of onset on the

middle trace from the time origin 0 and e (a) is the move-

out time to the 2th trace for an angle of dip of the first

reflector (a). Here we see that e is a known function of

a-for the Ith trace. Likewise we may reoresent the comnonent

of the 2th trace due to the second wavelet as U(t - T2 - d1(b))

where T2 is again the onset time on the middle trace and
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d I(b) is the move-out time associated with the Ith trace

and the angle of dip b. of the second bed.

The Ith trace may now be represented from 0 to P as the

time series F (t) = N'(t)+ W(t - T - e (a)) + u(t - T2 - d (b))

Here N (t) represents the noise function from 0 to P
Le+ta 4Otfme

fl(t) = W(t - T - eI (a)) + u(t - T 2 - d ()

where Tl, T2, a, @ are arbitrary functions. Then if the

noise function N1(t) is uncorrelated with

W(t - T - e (a))'4#u(t - T 2 - d (b))

on the average we can set up an error function

E2 1' 2 (, @ = aE (F (t) - f (t))2 dt
1 o

and expect to find a minimum as

T, l*. T 1

T2 --- T2

simultaneously
a - a

pN b

In practice there is of course no unique minimum and

there will probably be several over the interval. If we re-

strict ourselves first to a certain range of a's and @'s and

to possibilities that T2 > T1  our field is somewhat simplified.
Making a good guess as to Tl, T2, a, and P from information
available in area A will be our best aid to solution. Having
found the error function for the values of our first guess
we next the gradient of this error function and use it to
determine a new set of variables. With this new set of vari-

ables a new error function is calculated and the procedure
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is cycled until the variations reach a lower designated

limit. The function E2 is seen to be dependent on four

independent variables and thus in finding the gradient

E2 we have the direction of steepest descent in four dimen-

sions.

Discrete Notation

Using the same geometries we now proceed to setting up
the problem in a discrete form. We may consider the Ith

trace from 0 to P to be represented by

F1 (t): Y O*ih*P h = spacing
t.vt.O

We consider our geophone-shotpoint configuration to be an in

line split-spread set up with 2M recorders each spaced a

distance s apart all occurring on a horizontal plane (i.e. our
data has been assumed corrected to a plane surface as in Fig.

34).5%o

7 ;7 7~ 7 7 7' 7, 7 '17 / St4 Vaee

IgI iS= jeophoanv 1A*ebV 4

Fig. "34 Geometrical Configuration
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2D
T will now be = oswhere V is the average velocity

considered for the interval 0 to P. The move-out time

el(a) is somewhat more complicated. Considering the number-

ing of jugs from the down dip side to the up dip side sepa-

rately (as shown in Section 4. Report 10b, MIT GAG)(2).

+e. P) -(M Ms *-

L (M-) V cos

sA6be-mvuts I a 1 Ve 4 e,eiI Ow di

and up di/O ?e$pee1fi/e/

From these expressions we can find the exact move-out

times for any angle of dip and any trace number. For a

first approximation, in order that we might simplify the

computation, we assumed that our move-out times were linear

functions of the trace numbers. That is to say, that the
onset times of a given event on all the traces on one side
of a split spread were assumed to lie on a straight line
rather than along a curve (Fig. 35)

,4|~ /,;.,, of A wunrsD( 4pphe tt ,

"e-Aciaa/ Cabrve of tArrtPve 1

'e00 oe/d l ce

Fig. 35 Arrival of a Reflection Across a Seismogram



This assumption leads to relatively small errors (de-

creasing with depth) when compared with anomolous times of

arrival due to small perturbations (MIT GAG Report lOb,

Section 4 ( 2 )). r '

( 4 ) ) O _ES- + Csof 5m)

For the end traces

the middle trace

(A,+ COO) :A (-M ) Vcos Ot

+ (a

an assumption which improves with depth.

The move-out times of our interval of interest

mt., I

% M-o) k *Iot,(AM 0

C (o')=
*L

"pg

Now the move-out time per trace on the down dip side of the

record will be

4(o )(M)-.. 4D-a ,( -
(M (M-I )V Cos C
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It is seen that these functions can be found f or any angle

if we assume a value for V and D. The step-out on the trace

is now (m - 2) - (a)L or (2 - m)-(a)u depending on which

side we are calculating. These move-out times when general

will not produce integers and these quotients must be rounded

off in order that the points of the digitalized traces will
coincide. Otherwise a method of recalculating the amplitude
values on the traces for each non-integer shift

(m - I) +_ (a) L .r(I - M) e (Wu
h O" h

would be necessary.

Likewise we find the move-out time per trace for oIr

second wavelet ) (M+d)

Ms(M; Ve~dr) c~

These move-out times may also be represented in discrete
units of h. We shall consider these shift to be represented
on the 2th trace as

e I(CL) d
h u nd h

where these functions will be rounded off to the nearest
integers,

We now transfer our functional representations of our

wavelet s 1( ) otatf) n an
Into discrete notation.
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Assume that W(t)

) ~t:L~1

is Q,

(S"re f

units of h long and that U(t)
is Q units of h in duration.

?4e(t I

k
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We may now also set up f (t) in discrete form.

- r

ee 4

(Or 7t .1
f+

L +

Having formed f (t) we now proceed to find the error function.

(Ft. +

where subscripts u and L again denote up and down dip.
Steepest descent method aoplied to discrete data

Estimating Tl, T 2 , a and P from what we observed in
area A and using these values in the above error function

a value of E2 1(T, T2, a and A) is calculated. To improve
this first estimate the gradient of the error function is

taken at these values and we proceed along the gradient to
our next estimate. This process is repeated until tolerances

are met. In discrete notation we will proceed to this end by
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means of variations. First we vary T1 , by a small amount and

calculate E 2(T 1 + A , T2 , x, a) holding the other functions

at the original estimated values. Likewise we do the same

thing for T2 , a, and P increasing each of these by the same
increment while holding the other variables constant.

a) Subtracting the four new error functions from the original,

E'( ., ,Af,,-- T, p) -K

b) Finding the square root of the sum of the squares of these

remainders,

c) Find the ratios

x wV V

an increment of change H is chosen

x Id) Multiply this incremental change (H) by $ and change T by

this amount. Similarly multiply Z times the increment

times the increment and times the increment and add these

values algebraically to the original estimates.I II
e) With these new values T 1, T2, at and p' recompute the

error function and call it
f ) Compute E - 'E2 and proceed to form " in a similar

manner from the values of 'E , Tj, Ir, aL P! and cycle

the process until E - is within tolerances.

The values of T1 N + 1 T2N + 1  N + 1 N + 1 are then

the estimates of Tl, T2 , a, and b respectively. The value

of W - e at which the iterative method is stopped
would be determined previously.
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Conditions which may be enforced in order to get a closer fit

If we no longer relax the assumption that any event

occurs in general at non-integral values of spacing onthe

trace and furthermore falls on a curve rather than a straight

line we may come closer to the exact values of Tr, T 2 , a, P.
To utilize this information all data must be readjusted. We

assumed that there is no curvature across our record and that

there was no change in shape or amplitude of a wavelet from

area A to area B. It is seen that these assumptions may be

dropped with an increase of course in computational labor. It

is felt however that the method proposed above will yield

values of T1 , T2, a, P which are as reliable as our seismic
records permit for small angles of a and P and for non-shallow
reflections.
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CONCLUSION6 AND SUGGE6TIONS FOR FUTUhE STUDY

From the experiments concerning the inverse we may con-

clude that this approach will be of most use in separating two

events when the onset and shape of the first are known and where

the difference in onset times from that of the first wavelet to
that of the second waveform does not exceed the length of the

time interval during which the terms of the inverse of the first
wavelet are not greatly divergent. We must further specify a
low noise level., There may also be specific instances in which a
form of an inverse may be used as an operator over an interval
longer than itself with good results but this would depend on

the occurrence of fairly singular wavelet shapes.
From the experiments concerning the use of a symmetric

operator, formed from the cosine transform of the reciprocal of
the amplitude spectrum of a wavelet, our conclusions are not
quite as definite. The possibilities for applications of this
approach, however, appear to be more numerous and more promis-
ing. With the limited experimental background we can only say

that if enough data is available we can visually correlate the

events spiked by the symmetric operator and neglect nill traces,
considering them to be the result of phasing. It appears also

that the phasing problem can be solved. Thus in the case where
we have a section of a seismic record with low noise level and a
complex of two similar wavelets we would expect that convolution
with a symmetric operator determined for these wavelets should
produce two spikes considerably larger in amplitude than the
other out-put. Likewise for two different wavelets in a low
noise case e expect that it will be possible to use two dif-
ferent operators and obtain the two spikes and hence relative
times of arrival on successive convolutions.

It is suggested that the above experiments be continued
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and that the least squares approach, developed qualitatively in

this thesis, be set up for a digital computer and be evaluated

in several experiments. From these results it is hoped that

there will be conclusive evidence as to the areas of applicability

and validity of each of these approaches.
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