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ABSTRACT
' Resolution of Seismic Reflections
by
Bobert W. Wylie

Submitted to the Department of Geology and Geophysics on May 15,
1956 in partial fulfillment of the requirements for the degree
of Master of Science,

The problem under investigation 1s that of resolving seismio
echoes from two reflecting horizcns in the earth where the horizons
represent the boundaries of a bed of rock which may be thinning
end hence of possible importance as a trap for petroleum., The
echoes from the boundsries of a thinning bed are recorded by standard
seismic methods as two waveforms which overlap when the bed thins
sufficiently. One needs specisal methods to resolve the two events
in these cases,

Assuming that these reflections can be represented as two
distinct waveforms or wavelets, the purpose of thls thesie wase
to investigate some approaches to the problem of determining thelr
times of ocourrence in the ocase where overlapping does obhscure
the second event. A brief discussicn of Norman Ricker's papers
concerning seismic wavelet® and selsmic resolution (representing
the published work on the problem to date) is presented.

The use of the mathematical inverses of wavelets as con-
tractor operators 1s investigated and the limitetions of such an
approach are noted., Such operators should give perfeot resolution
in a noiseless system. These studles were carried out on theoret-
ical wavelets snd on data from a group of reflection seismographs,
It was decided that in practice the nolse problem 1s severe,

Another group of experiments is presented representing the
uses of a symmetric operator in resolution of our two events. The
specific group of symmetric operators which were studied were un-
folded cosine transforms of the reciprocals of the amplitude
spectrumes of the wavelets. In general the results were superlor
to those obtained from inverse operators but more work is necessary.
The limitations and possible applications of the approach are noted
along with some sugigested future investigations,

Since the above approaches had definite limitations a
numerical method for applying a least squares fit was set up and

-



is presented. Experiments were not carried out on this method
and it is left in mathematical form as a future possibility.
Computationally the least squares fit method is relatively in-
volved but it is felt that this may be a closer answer to the
originel problem and that it should be investigeted,

Thesis Supervisor:

Stephen M. Simpson, Jr,
Title: Assistant Professor of Geophysics
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Introduction

One of the major problems of interest in exploration
selsmology is that of establishing the boundaries of a bed
which is thimning and may or may not be pinching out.
Exploration-wise one or both of these possibilities,
plnch-outs or thinning, may be of economic interest in
different areas, but 1n any case the boundaries need to be
defined. Much of this mapping has been carried out by
intuition and extrapolation from areas in which the boundaries
have been established with the maximum resolution of the
instruments at hand. Even if a definite answer as to the
exact boundaries is unobtainable theris, nevertheless,
much room for refinement of seismic resolution in these
areas. By increasing this resolution, extravolation and
intuition need be used to a much lesser extent and uncertainties
will be decreased greatly.

The goal of this paper has not been to find a method
which will give the exact boundaries but has been to
investigate methods of refining the data produced by present
selsmic instruments in order to obtain greater resolution
in pinch-out or thinning areas. Here we are dealing
with a specific problem, present over small intervals of
selsmic records, and have therefore attempted to investigate
specific tools which will aid in the solution of this
speclal problem. It is felt that much of the work will

be of interest, however, to persons working with more
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general questions of seismic resolution.

All of the tools investigated require a much closer
insvection of the data coupled with varying degrees of
more difficult comoutation than would be encountered
in an ordinary interpretation process. Increasling
resolution; however, i1s quite often worth a great deal of
effort. In this investigation the exneriments have been
carried out numerically on WWI, It is worth mentioning
however that, where a numerical method 1s known to work,
large quantities of data are to be studied, and high
accurracies are not to be required, electronic analog
equipment may often be economically bullt and put into use.

The investigation is far from complete and I have
therefore included descriptions of all the studles so
that if the problem is carried on the research cén at
leagt start a few steps closer to a final answer, Some of
the investigations which proved frultless are mentioned
in a sentence or two where they loglically came up in the
investigation in order that these blind alleys could be
avolded, The experiments concerning methods having

possible adaptation in some areas are presented in full,



REVIEW OF PREVIOUS WORK ON CONTRACTION

Our interest in this paper is sighted at impreved
resolution of two or more signals where their arrival
times are such that the first signal 1s superimposed on the
second. We are therefore interested in the character or
shape of these signale as they appear om a seismic record
so that we might distinguish the arrival of tralling
signals which may be obscured by the original reflection
wavelet., The signal or wavelet shapes as observed in
practice are fairly common knowledge but little work has
been published on them, Some work has been done in determin-
ing them theoretically.

In 1953 Norman Ricker published two papers in Geophysiés(6)
(7) concerning the wavelet theory of seismogram structure
and wavelet contraction, wavelet expansion, and the control
of selsmic resolution respectively. In the first of these
articles Ricker attempted to describe the action of an
imperfect elastic medium on a seismic disturbance using
two basic assumptions: first that the inltial disturbance
at the origin is given by a doublet, and secondly that the
disturbance is transmitted according to Stoke's differential

wave equation for a visco-elastic medium.
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With these basic assumptions Ricker proceeds to develop

wave veloclity when.q is set =0

time

theoretical veloclity and displacement type seismic wave-
lets for varying distance relationships., However, many
questions have been raised concerning this work. In an
interpretation of the paper, Bowman (3) points out four
general points of controversy due to some of the mathematics
and to the initial and some additional assuﬁptlons fﬂcorp—
orated in the study. The questions were:

(1). "Are the mathematical parts of the theory on
a sound basis?"

(2). "Does exneriment bear out the theory?"

(3). "How does the non-realization of the assumed originél
pulse shape in practice affect the applicability..
of the theory?*

(4). "What is the physical meaning of the assumed
wave equation?®

In general the answers to the above questions a8 partially
offered by Bowman and others seem to support the math-
ematics but indicate a reasonable smount of doubt as to
the actual occurrewe of Rlcker tyne wavelets in field

studles, Strong objection has been maje due to the
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difference in Ricker's model of the earth from the actual
and to the lack of field evidence supporting his theoretical
damping conclusions,

Ricker's experiments and theory were based on an
earth model which was visco-elastic. As far as this
earth model is concerned Ricker's theory has been shown to
be correct. Rlcker's experiments were carried out on the
Pierre Shale and in this area there was a very good sgree-
ment of theory and observed data, However the properties
of Plerre Shale differ from most rocks in that this shale
is almost truly visco-elastic. Jeffreys (4) pointed out
the non-visco elastic state of most rocks 2nd the fact
that a more complicated wave equation was in order.

Van Melle (10) and Treitel (9) have shown that the wave
equation used by Ricker is also non-physicsl from the energy
relationships.

In his second paper in 1953 Ricker incorporated the
stucy of his wavelets into a paper concerning seismic
resolution. Using these wavelets as models Ricker considers
a selsmogram, free of distortions, as being made up of
large numbers of fundemental wavelets with different time
origins superimposed on one another. The analysis of a
seismogram he then considers as the breaking down of the
record into its wavelet components., To do thls, Ricker
proposes a wavelet contractor as an electronlic filter,
which when coupled with proper redording techniques wou;d
produce & distortionless seismogram. The individual

wavelets on such a selsmogram would be contracted to a
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lesser breadth without eltering the relative arrival tlmes
of the wavelest cemters. Ricker set down two conditions which
were to be met within the band of relavent frequencles.
First: The ohase characteristic must be a linear
function of the frequency f with intercept on the phase
axis of zero or an intergral multiple of m, For the wavelet
to emerge erect, the phase intercept should be zero or
an even multiple of 2w,
Second: The amplitude response characteristic must be
of the form A= Aoekfz
where f 1s the frequency and Ao and k are constants,
In-as-much as the characteristics of this wavelet
contractor have been derived from the wavelet theory which
has been seriously questioned a great deal of reserve must
be used in evaluating the usefulness of the method and the
equipment, It was shown by Robinson(8) that Ricker's
wavelet contractor could be duplicated by a mathematical
linesr operator. Using Ricker's conditions and assumptions
Robinscn achieved the same results, On actual selsmograms
the maximum contracticn achieved by Ricker's contractor
was spproximately 0.8 of the original breadth.
Within'this range Ricker's contractor, even with 1ts
non-physical basis, seems to have applicability and sufficiency
for selsmic studies. It was hoped, hewever, that we might
find a better method of selsmic resolution using a2 different

approach which did not incorporate some of the weskness
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of Ricker's assumptions. This thesis study was launched to

accomplish this,
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11 Formation of an Inverse

In transforming the seilsmic recordings through his
contractor Ricker 's operations required that the shape of the
wave forms remain constant. It was felt that if this con-
dition were dropped better contraction and /or resolution
could be affected with no loss of information pertaining to
the onset times of the reflected energies, This was the
general problem and the study proceeded historically in al-
most the same pattern as this thesis,

The operation which we are searching for is one which will
glve a better indication of the time of onset of seismic re-
flections, As in most studlies we have assumed that the seismic
traces as time functions may be represented as a noise function
plus signal functions whose tilme origins are directly related
to the geometries and the velocities involved. Finding these
onset times 1s the broad problem. Discovering them in areas
where they are not visible on the seismic record due to inter-
ference from other signals and noise without destroying the
information from other signals is the specific problem. The
most practical uses of such a method is of course that of
finding the onsets of two overlapping reflections such as
would revresent a plnch-out or thinning of a bed bounded by
two reflecting horizons. It was with these goals in mind
that we proceeded, Considering the reflection from any
horizon to be a finite time series and having relaxed the
condition for constancy of wavelet shape, it was then quite
logical to attempt to find an operator which would produce
a splke or near spike at the onset of the waveform and which
would produce negligible output before and after this onset,
These characteristics suggest the mathematical inverse., This
Inverse when convolved as a series term by term with the
orlginal serlies will produce a series which will be an impulse

-l 5=~



followed by zero terms., In finding an inverse for g time
serles one merely performs s polynomial divislion into unity
cbtaining a polynomial whose coefficlents are the desired
inverse,

e, + 8,z + a222 + 3323... /1

where 8y al, 8res08, are the ordinates of the
wavelet,

Unfortunately, as was found by experiment, most inverses
of waveforms found on seismic records are unstable, That is
to say, the higher order terms in the true inverse polynomial
become increasingly divergent. These divergent series will of
course theoretically still give a perfect spike when convolved
with the original wave form if one retains the infinite series
of the inverse whose terms diverge also to infinity. Again
there 1s a loglcal compromise. As suggested by Dr. Piety (5 )
we need only use the first group of smaller terms in our in-
verse to produce a spike in convolution which will be valid
to the number of terms used from the inverse., This resﬁriction
may or may not be serious in application depending upon the in-
stability of the inverse and the interval length over which we
wish to operate,

Experiments were then set up to test the applicability
of our proposed "chopped-off" inverse. Two waveforms were
chosen for the initlal study from Ricker's theoretical wavelet
tables. They:- were the Ricker wavelet "taken at infinity" snd
the Ricker wavelet "taken at twenty-five" which we shall hence-
forth respectively denote as V(e ) and V(25). These wavelets

were modified so that there initisl values represented a dis-

crete jump in amplitude, the original waveforms as derived by
Ricker having extended in time from minus to plus infinity.
This modification was necessary in order that any stability

~16-



might be achieved by our inverse and it does render the wavelets
more physical. =-- In our notation we will designate 1/V ( )
as the inverse,-- Using these modifications (Fig. 1) the two
wavelets were divided into unity end 180 terms of 1/V(25) and
of 1/V(e) were calculated in order that we might observe the
nature of the instability. (Fig. 2 and 3).

The stability of the inverse of any symmetric wavelet
and hence the true stability of any symmetric wavelet has been
shown to be impossible (MIT GAG Report 9, Section 4 ( L)) and
hence the instability of V(ee) was known. In general, if any
of the roots of the z plane transfer characteristic lle with-
in the unit circle the wavelet has an unstable inverse, This
was shown to be the case for V(25) also by observing the nature
of the computed inverse (Fig. 2 and 3). We note that in Fig.

3 the inverses appear to be time serles added on to exponential
functions., As we are only interested in the first portion of
our inverse this exponential function has been determined and
subtracted from the raw inverse in various ways in attempts to
create an inverse which would be valid over a wider range of
convolution,

The logarithmic plot of the inverses (Fig. 3) shows the
exponential dependence very clearly. The functions aebx and
a(eP*-1) were determined by fitting the asymptotes of 1/V(25)
and 1/V(w) to straight lines on this logarithmic scale., In
subtracting these exponential functions, the term -1 has little
effect on the large terms of the inverses but it does tend to
render the first values , which are the most important in this
study, more similar to the exact inverse, In. Fig. 4 we show
the effect of retaining consistency in the first terms. Here
we have reinverted the modified inverse of V(25) and V(a) and
have found

1 1
1 and 7

v(25) - a(ebx—l) V(o) - a(e

bx_l )
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to be substantially similar to V(25) and V() whereas
| \

I D b« nd 4
vzs)~ 2¢ a V(o)

differ from the original wavelets completely.

The question also came uv as to whether the inverse was
not Jjust an exponential plus the inverse of the stable wavelet
whose amplitude spectrum was the same as that of the original
wavelet (Fig. 1). Using a factorization orogram developed by
other members of the GAG project this wavelet and its inverse
were formed (Fig. 5) from report 10b MIT GAG project. As we
can see in Fig, 6 this guess proved to be false,

As a result of these experiments the modified inverses

e ) am - alt)

were used in further studles. These are shown with their
amplitude and frequency spectrums in Flg., 7. It can be
noticed in Fig. 3 that V(25) seemed more stable than V().
This was interpreted to indicate the probability that the
anomalous roots of the characteristic polynomizl of V(o)
were further inside the unit circle than those of V(25),
The amplitude and phase characteristics of the modifiled in-
verse of V(25) at high frequencies are close to what we would
expect for a true inverse (amnlitudes related reciprocally,
phases being the negative of each other) but the phase con-
dition breaks down at low frequencies. The spectral character-
istics for V(o) and its modified inverse do not fit these con-
ditions as well. This phenomena would seem to indicate that
convolving the modified inverses with the original wavelet will
produce a spike plus low frequency. The results of this con-
volution are shown in Fig. 8 and the preceding analysis is
ghown to have been correct,

Using these convolved results we then proceeded to set
up a theoretical noiseless seilsmic situastion with V(25) in

—aeb=x

22w
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order to show 1ts possible use under ideal condlitions. These
results are shown in Fig. 9., In this test we assumed that a
Ricker wavelet occurred on a noiseless section of a selsmic
trace and that after a time leg another vositive or negative
V(25) of different amplitude occurred. The resulting com-
bination hid the second event in both cases. Using the modified
inverse as an operator a convolution was made znd definite
resolution was oroduced,

This was of course an 1deal case where the first and
second wavelets were similar, in phase, and where there was
no noise. As our data is taken at discrete intervals 1in
digitalizing any seismlic information we were flrst interested
in the effects of phasing. The occurrence of any reflection
over a seismic record will have different onset times on
various traces, We must of necessity continue our digital-
ization at a constant spacing over the interval of interest
on the seismic record or traces, It is obvious, therefore,
that we very seldom hit the first term of our wavelet wlth
a data point. It is thils first term which our inverse has
been developed to splke and hence there 1s need to study the
sensitivity of the aporoach to a shifting. Such an experi-
ment was carried out on V(25) for shifts of 1 /4, 1/2, 3/4
and 1Y4 and the results are shown in Fig. 10, There appears
to have been a shift In the convoluted results and some slight
changes in amplitudes. The characteristics are still quite
good however, The data voints of V(25) appear to be close
enough together and 1/V(25) insensitive enough to small
changes that we can conclude that for this operator and wave-
let phasing is of only minor importerce. In a later section
of this paper we shall see how the spread of the data points
can make the phasing a major problem,

The problem of nolse or variation in wavelet shape
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apoears to be much more critical in the case of our inverse
operators. If there vere only the original wavelet for which
we had established an inverse followed by another waveform in
our interval of interest we would still be in good straits,
The first waveform would produce a spike followed by a re-
latively flat veriod untlil the onset of the second waveform
which in convolution would at worst produce a transient., This
ideal case is in practice unobtainable as we invariably have
some nolse which will distort the shape of the first waveform,
This will vary also from trace to trace. In order to dis-
cover the effects of this phenomenon a convolution was made
with the modified inverse of V(25) and V() and the modified
inverse of V() and V(25)., These results are shown in Fig,
11. The modified inverse of V(25) appears to be relatively in-
sensitive to changes in shape compared to the modified inverse
of V(). Even the former points out definite limitations of
this process in situations where we must contend with noise,

The operation must be sensitive enought to indicate the
onset of a set waveform but not sensitive toc the degree that
1t will blow up when it is convolved with a wavelet other than
its inverse. Thus if we were concerned with wavelets of the
same form as V(25) we would appear to have solved our general
problem. Ricker points out, however, that ordinary seismic
filters do not yileld wavelets of the same form as V(25), They
are more likely of the form shown in Fig. 13. It should be
pointed out also that this dissimilerity of waveforms may not
be totally electronic and as stated previously the occurrence
of Ricker's wavelets in actual practice is questionable. Go-
ing back to Fig. 1 and noticing the form of V(25) there is

reason to expect difficulties in applying the inverse operator

approach to contracting waveforms usually observed on seismic
records, lMost waveforms in practice do not have their maximum
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amplitudes within the first few terms, Usually they build up
to maximum values in later terms, a characteristic which will
tend to increase the instability. One would expect the in-
verses of these waveforms to diverge quite rapidly.

In order to study the overlapping of two waveforms from
an actual selsmogram a sulte of records was obtained from the
Atlantic Refining Company which exhibited several pinch-out
structures., Of these we chose four records for our study (Fig.
12). The reflection picks at 0.98 and 1.07 seconds on record
7.19 were seen to get closer and closer together as we moved
over horizontally to record 7.1l6 where they seemingly combined
into one wavelet complex at 0,98 seconds. Analysis was started
on the two distinet waveforms which were present on record 7.1G.

The first waveform avppearing around 0,98 seconds on record
7.19 was averaged over this record by lining up the maximum
positive peaks on every other trace, digitalizing each over a
fairly wlde range, and gveraging these time series term by term
(Fig. 13). Thus we have assumed that the nolse is uncorrelated
on the average with the signal. The averaged wavelet was then
modified so that it would have a definite zero origin and would
tail-off to zero. It is noticed on Fig. 13 that the averaged
wavelet from 7.19 has its largest positive amplitude not in the
first swing as did V(25) but rather in the second positive form
later in time. This is much more in line with the results of
other field observations,

An inverse was calculated for this modified wavelet (Fig. 14)
and as predicted it was widely divergent after only the first few
terms. The nature of the terms in this inverse also show no
signs of possessing any generalized smoothing function such as
a(ebx-l) which was so useful in rendering the inverses of the
Ricker wavelets stable over long intervals of time,
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Fig. 12 Four records of the Atlantic Refining Co. exhibiting pinchout.
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The first nine terms seem all that we should really employ in
forming an inverse operator. This operator, although of very
limited use, is nevertheless good enough to separate the first
wavelet in the noiseless case from another waveform, In order
to check this the wavelet complex occurring arcund 1.07 seconds
on 7.19 was averaged in the same manner as was the original wave-
let. This complex was added on to the first wavelet after a
time lag of four spacings (10 milliseconds) and this new com-
plex was then convolved with the first nine terms of our in-
verse. In this noiseless case the onset of the two events was
quite clear (see Fig. 15). This limiting condition of a noise-
less system in which we are only able to discern between events
occurring within 20 milliseconds 1s quite restricting. As we
notice when we convolve our nine term operator with some of

the actual traces from 7,19 the noise in the actual cases tends
to obscure any spiking (Fig. 16). Our inverse approach is ap-
plicable nowever in discerning the onset of a second event short-
ly after the known onset of a known waveform in a relatively
nolseless system, These conditions are quite restrictive and

we are therefore left to search for another avproach,

We were next led to attemoting to fit a Ricker wavelet to
our wavelet in the hope that this would be sultable means of
creating an inverce operator., Due to the configuration of our
wagveform which we »reviously discussed the closest fit was to
V(). Convolution of the inverse obtained from our modified
V(o) end the first modified wavelet from 7.19 produced diverg-
ing terms with no recognizable spike. This method was then
dropped,
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A STUDY OF THE RESOLUTION OF A SYMMETRIC
OPERATOR CHOSEN TO PRODUCE CONTRACTION OF
A SPECIFIC WAVEFORM

In the ideal case in which we are concerned with a stable
wavelet (1.e. having a stable inverse) it is seen that our con-
volution process will produce a single spike which has a white
light emplitude spectrum. It was hoped therefore, that we
might be able to produce contrgction, although surely not a
single spike, if we convolved experimental wavelets with the
damped series which are the cosine transforms (unfolded to pro-
duce a symmetric operator) of the reciprocals of the amplitude
spectrums for the original waveforms, This convolution would
have as its output a series which would have a white light
spectrum and which it was hoped would be a close approximation
to a splke.

The reciprocal of the amplitude spectrum was, therefore,
computed for both the sharp-front wavelet (i.e. initial value
was quite large - as used in finding an inverse) modified from
the averaged wavelet from RBecord 7.19 and a modification of the
same wavelet smoothed so as to have gradually increasing ampli-
tudes before its first positive maximum (compare wavelets on
Figs. 19 and 20), The cosine transforms for both of these re-
ciprocal amplitude spectrums were computed eand are also shown on
Figse. 17 and 18, In order to investigate the contraction proper-
tiés various lengths of these symmetric operators were then con-
volved with the smoothed and sharp-front wavelet. In Fig. 19
the symmetric operator formed from the sharp-front wavelet to
49, 25 and 15 terms was convolved with the sharp-front wavelet.
These results show very good splking for all three lengths of
the operator with similar forms and amplitudes in each case.

The dependence on operator length was evident in Fig. 20 where we
convolved 49, 25 and 15 terms respectively of the symmetric oper-
ator(formed from the smoothed wavelet) and the smoothed wavelet
itself. Here we notice that the 25 term and 49 term operators
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produce relatively low leading and trailing amplitudes in comp-
arison with the results of the 15 term convolution. The leading
and tralling amplitudes for the convolutions in these two ex-
periments were small compared with the amplitude found with the

25 and 15 term convolutions shown in Fig., 21 where the symmetric
operator developed from the sharp-front wavelet was convolved with
the smoothed wavelet, In this experiment the 49 term operator pro-
duced a usable spike despite the variation in waveform. This

seems to indicate that this method is at least less sensitive

to small variations in wavelet shape than our inverse approach,

It was hoped that we might be able to decrease the leading
and tralling amplitudes by smoothing our sygmetric operator, A
method of Cééaro sums was used on our operator formed from the
sharp-front wavelet giving zero initial and terminal values and
welghting each of the ordinate values linearly from these zero
extremes to the maximum at the point of symmetry., The convolution
of this revised symmetric operator (taken to 49, 25 and 15 terms)
Wlth the smoothed wavelet resulted in a drastic reduction in con-
traction as is shown in Fig., 22, It was concluded that the
amplitudes of leading and trailing terms of the operator could
not be diminished by this process without a marked loss in con-
traction and this variation was dropped.

It was noticed that the symmetric operator formed from the
sharp-front wavelet to 49 terms produced a spike when convolved
with the smoothed wavelet and that the symmetric operator formed
from the smoothed wavelet to 25 and 49 terms produced similar re-
sults when convolyed with the smoothed wavelet., Now inasmuch as
a smoothed wavelet seems to be more physical than one with a
sharp-front - and since the convolutions from the latter's oper-
ator seem to be somewhat better - it was decided that the 25
term operator from the smoothed wavelet and the 49 term operator
from the sharp-front wavelet would be used in further experiments
concerning this method,
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In an attempt to find how our contractor operators would
behave on an actual selsmic record we convolved 25 terms of the
gymmetric operator formed from the smoothed wavelet and 49 terms
of the symmetric operator formed from the sharp-front wavelet With
alternate traces from Record 7.19 over the interval from 0,91
seconds to 1,16 seconds (refer to Fig, 12). These results are
ghown in Figs, 23 and 24 respectively, and are both encouraging
and discouraging. The results are noticed to be very similar
and in this experiment there seems little advantage of one oper-
ator over the other., It is seen that the first event or re-
flection is evident when looking at the filtered record section
as a whole, but that the second event, expected at about 1.07
seconds, is obscured. This may be attributed to the fact that
our second waveform on Record 7.19 i1s a complex and is probably
much different from our first wavelet (see Fig. 15), In practice
we might then find the cosine transform of the reciprocal of the
amplitude spectrum for the second wgveform and use it as an oper-
ator over the same interval in order to pick out the second
event. Carrying out these two independent operations on the
complex on Record 7.16 we might then expect to find the onset
times of the two events,

Another note of interest in connectisn with Figs, 23 and
2L 1s that the splking appears to die out on certain traces
where there was an identiflable waveform on the original records.
T™is suggests again the possibility of phasing and nolse effects,

In order to study the effects of phasing, ordinate values
of the smoothed wavelet were interpolated for each 1/8 th
spacing (original time intervel = 2,5 milliseconds, here we in-
terpolated an ordinate for every Zgi milliseconds interval).

The convolutions were then performed of 25 terms of the symmetric
operator formed from the smoothed wavelet and 49 terms of the
symmetric operator formed from the sharp-front wavelet with the
smoothed wavelet with ordiante values corresponding to a shift

of 1/4, 1 /2, and 3 /4 data spacings (by a similar arrangement
to that shown in Fig. 10). These results are shown respectively

47~
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in Figs. 25 and 26, Here we notice that the spacing and relative
breadth of our waveform are very oritical. As expected, the worst
resolution was produced with the half shift where the convolution
in both cases produced two diminished spikes instead of the single
event which was produced 1n the convolutions where there was no
shift. It would be very difficult to tie down the onset of the -
first event let alone pick out the onset of the second over-
lapping event on any single trace if the onset of the first
signal satisfied this worst case., With the present phase-
dependent convolutions we must depend on the ensemble of convolutions
across the record for resolution, welghting more strongly the re-
sults of the in-phase traces.

It was hoped that we might eliminate the phasing effects
by decreasing our data spacling and therefore another phase test
was set up. The values of our symmetric operators, the 25 term
operator formed from the smoothed wavelet and the 49 term oper=-
ator formed from the sharp-front wavelet, were interpolated for
half spacing. These new operators were then convolved with the
smoothed wavelet with 1 /2 spacing shifted 1 /8, 1/4, and 3 /8
of the originsal 2,5 millisecond spacing. The results are shown
in Figs. 27 and 28 and, as the results are similar for all members
of the two sets, we can conclude that finer spacing will solve
the phasing problem., However, it 1s also noticed that there hsas
been a decided decrease in the contraction, This may quite
probably be due to the inaccurscles of the interpolation used
to form the symmetric operators for the half spacing and hence
to the difference of the interpolated values from actual values
which could be calculated exactly. It is felt that the 1/2
spaced operators will be more sensitive to changes in wave
shape but that with a more accurate computation of the symmetric
operator the resolution should be slmost as good for any shift
with 1 /2 spacing as it is for the exact fit with regular spacing.
Mathematically 1t can be shown that the above relationship holds
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and is only in the nature of our data handling that we have
failed to produce the desired contraction. For completeness

We also convolved the smoothed wavelet and the symmetric operator
from the sharp-front wavelet to 1 /M4 spacing (Fig. 29), These
results show a larger decrease in the coniraction than 4id the
experiments at 1 /2 spacing and further indicate that our in-
terpolations were not yielding accurate ordinate values,

Further investigation is proposed inasmuch as there is a
good possibility that, with closer calculation of the cosine
transform of the reciprocal of the amplitude spectrum for the
half spaced wavelet data, we can produce sn operator which will
have little or no phase dependence and which will contract the
wavelets, If, due to the nature of our data, we are unable to
obtain an operator which has the gbove properties and is also
fairly insensitive to small changes in wavelet shape, our
method may still be of some value. Looking at an ensemble of
selsmic traces operated on by one of the symmetric operators
such as in Fig. 23 or 24 the contraction obtained with using
data of the original type (spacing = 2.5 milliseconds) may be
enough to plck out the first event. Subsequent operation with
an operator designed to contract a second event may likewise in-
dlcate the time of occurrence of that event. Adding the results
found in both operations and taking into account the overall ef-
fects we may be able to obtain the desired informstion as to
the boundaries of our thinning bed,
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LEAST SQUARES METHOD OF KESOLVING
OVERLAPPING SEISMIC SIGNALS

The above approaches to solving our general problem seem
to have limitations and therefore a method of least squares
fitting is also proposed. This method is computationally much
more involved than any plan set up thus far in this paper. It
is therefore suggested that the method, mathematically set up
below, be programed for a diglital computer and tested. If the
resolving power is good enough it 1s then suggested that,
economics having been weighed, specisal purpose analog equipment
be bullt to do the same work. This analog system would of course
run large amounts of data much more economically than a digital
machine to the accuracies required.

st S r I Method of Resolv Ov D S m
Slzgnals

In applying a method of least squares we first will de-
scribe the procedure using functional notation and then will
develop the discrete form which we will have to desl with in

an anslysis by digital means.
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We will in general be interested in extending the re-
solution of reflections from two horizons from an area A
where these two events are distinguishable on seismic re-
cords to an area B where the reflectors are close enough to-
gether that their weveforms overlap and where one or both of
their onsets can not be distinguished., (see Fig. 30.) We
further assume that in area A the two events are reoresented
by the onset of two distinct waveforms W(t) and U(t) re-
spectively, These two events may be determined by an averag-
ing process over records in area A, (See Fig. 31) requiring
that similar filters are used, it is assumed that the average
wavelet representing the reflectlon of a horizon in area 4
will remain constant in amplitude and duration for the same
reflector in area B. This 1s of course a first approximation
which might be relaxed later if more information were available,

Our two averaged waveforms W(t) and U(t) can be expressed

v v

we) ued

Fig. 31
as distinct time functions and their existence at set times
after an arbitrary origin may be represented as W(t - x) and
Uu(t - y)

Vane -

Fig. 32

-58=



Short Interval of Seismic Interest

As we are only interested in z short interval of the re-
cords in area B renresenting that period of time over which
reflections from the two horizons are possible, we may set up
a new time origin and 1limit encomvassing this interval (Fig. 33).
7 »| L, ' 4
~ - / fraee

5 X

. wddie trace

| — T‘

Fig. 33 Interval of Interest on Seismic Record

This restriction to a short selsmic interval will allow us to
deal with such narameters as veloclties, normasl move-out, and
assoclated the geometries as constants. This will simoplify
our computation greatly. Likewise we will later realize
simplification if we can restrict ourselves to small angles
of dip.

tio R onships nterv of tere

Over this short interval we can then express the con-
tribution of the first wavelet W(t) on the £th trace as
Wit - T, - e’(a)). ‘Vhere T, is its time of onset on the
middle trace from the time origin O and e?(2) is the move-
out time to the 4th trace for an angle of dip of the first

4 1s a known function of

reflector (a). Here we see that e
a.for the £th trzce, Likewlse we may reoresent the comvonent
of the £th trace due to the second wavelet as U(t - T, - a%(b))

where T2 1s agein the onset time on the middle trace and



a%(b) 1s the move-out time associated with the Zth trace
and the angle of dip b. of the second bed.

The £th trace may now be renresented from O to P as the
time series i) = n(e) e Wt - T, -e Y(a)) + u(t - T, - 4 £(p))

Here N (t) represents the noise function from O te P
Let us define p
£4(t) = W(t - T, - ef(a)) + ult - T, -4 (8))

where T,, T,, Q, 5 are arbitrary functlons. Then if the
noise function NY(t) is uncorrelated with

Wt - 7, - ef(a))mhu(s - T, - at(p))

on the average we can set up an error function
Ez(rl, To, @, B) = 2‘; fi (F4(t) - £4(£))% at
and expect to find a minimum as
Tl-_ﬂ>.1i )
12-——a.T2

simultaneously
A —> g

p—> Db

o
In practice there is of course no unique minimum and

there will probably be several over the interval., If we re-
strict ourselves first to a certain range of a's and B's and

to possibilities that TZ>'71 our field 1s somewhat simplified.
Making a good guess as to Tl, Toy @, and B from information
available in area A will be our best aid to solution. Having
found the error function for the values of our first guess

we next the gradient of this error function and use it to
determine a new set of variables. With this new set of vari-
ables g new error function is calculated and the procedure
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1s cycled until the variations reach a lower designated
limit., The function E2 is seen to be dependent on four
independent variables and thus in finding the gradient
E2 we have the direction of steepest descent in four dimen-
sions,
Discrete Notation

Using the same geometries we now proceed to setting up
the problem in a discrete form. We may consider the /4th

trace from O to P to be represented by

()~ FY  o%inep h = spacing

Sovr Lo ih i
We consider our geophone-shotpoint configuration to be an in
line split-spread set up with 2M recorders each svaced a
distance s apart all occurring on a horizontal plane (i,e. our

data has been assumed oorrected to a plane surface as in Fig,
34).

Sho"'?'u\
..mnm [ mnm«\--. . ... tﬂ-ua.m

g ...
VA G A A S v o v v &7 . W ///q '|//////////' Suvfaee

\iﬂ
\)0‘

'
~—7

S= 1¢¢phomv m‘fcrv’(

Top of
?e‘r\ftfn\f‘
bed

. s
7

Fig. A4 Geometrical Configuration



2D
Ty will now be Ty = vr%bscxwhere V 1s the average velocity

considered for the interval O to P, The move~out time

e‘(a) is somewhat more complicated. Considering the number-
ing of Jugs from the down dip side to the up dip side sepa-
rately (as shown in Section 4, Report 10b, MIT GAG)@).

(1:4»20(&)) - (M-g)ﬁ-‘-\v‘ + Cosa n-\x]Ms down ‘A‘\’
" (M-1) V cosa

(’;: +€%x)) . (/.M)Ms(‘/%'gj - eosx 61110()
“ (M=1) V eosx

up dtr

sehovizant al d‘m'\'anc.e. between jeopkov\es
subse,n‘vfs L ana 4 vcm-esen'f Aown dip

dnd up dyp re spce/u/eé’

From these expressions we can find the exact move-out
times for any angle of dip and any trace number, For a
first approximation, in order that we might simplify the
computation, we assumed that our move-out times were linear
functions of the trace numbers. That is to say, that the
onset times of a gilven event on all the traces on one side
of a split spread were assumed to lie on a straight line

rather than along a curve (Fig. 35)
Avvival Lhe of Assumesf ,4”,””'"‘76,”‘

% Aetual Cavve of Arrival
end frace

N N T T

Fig. 35 Arrival of a Reflection Across a Seismogram
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This assumption leads to relatively small errors (de-

creasing with depth) when compared with anomolous times of
arrival due to small perturbations (MIT GAG Revort 10b,
Section 4 (2)),

ML‘-"'(-,%-S-'- + o5 Shng(‘)

1
3 (3 = = :
("+e’() . (M-|) V o5
For the end traces X (MS - Cos & m«)
~ am M's 4D,
N+ €& ®)) =

% Q\ﬂ—l) V cosa

the middle trace (’r’ + e"{«)) = -—%Bl-—
' V Cosa

an assumption which improves with depth.
The move-out times of our interval of interest

t M
el(:o(): M s(..E% r Coso ':mox) -2D, (M-l)

(M-1) V eosa
62'&)( )k ] Mls(ﬂ%l - dos & «s-v\o() - éD, (M—')
\(M-I)V cos o
elxy % o

Now the move-out time per trace on the down dip side of the
record will be -

@, |1 (8, eore m) 2D (*1)
M(M-ﬂ) V Cos
e le (__%‘_g: - Cogol SMO(> __aD’(M-n)
u p—
M(M-l) V eos o
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It 18 seen that these functions can be found for any angle

if we assume a value for V and D. The step-out on the trace
is now (m - £) <& (a)L or (£ - m)-é‘(on)u depending on which
side we are cslculating. These move-out times when general
Wwill not produce integers and these quotients must be rounded
of f in order that the poilnts of the digitalized traces will
coincide. Otherwise a method of recalculating the amplitude
values on the traces for each non-integer shift

(m - 2)€ (a),fs (4 - m)f(a)!
h or h

would be necessary,
Likewlise we find the move-out time per trace for our

second wavelet
le (._.-ML‘SD + eos(ﬁ smP >... 2. (M-—l)
k3

(N\-\‘) v (cos(s)

down SKP)L =

At‘o

ms (55, ~emp enp) - 2D, (M)

o Cp) = -
AR (DR
These move-out times may also be represented in discrete

units of h. We shall consider these shift to be represented
on the Zth trace as

4 (a) at ()

e
W
T and —q

where these functions will be rounded off to the nearest

integers,
We now transfer our functional representations of our

wavelets W(f)) {/(?/) I/V/T’—a’) )amx é/(zl-/?}

into discrete notation,
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W(‘t) = WL for t=(h h . ‘)?N,wu‘ w\‘\evv;‘

)= U, for t=th

W('L*o()e W(L"—:;) forts (h

A {t’a,) 2 M(“ _. fovrt:=th (5¢¢ c\iuvtf

%)

Assume that W(t) is Q; units of h long and that U(t)
is Q2 units of h in duration,

R T +ee@L)h s 1 .
i 5 And _%:= i a:\ (p).
Then Y
W(:t"d) = W{f‘#"e@():) = ‘4{ v J.e@u“ £ ov ‘A
h
foo (TR ()
dad l((-r.»e‘éc)“) = 0 h
e (> % e @f)“
h &
Likewise {
/ fov
M¢—»@ = U(t-1-4d ))- ¢ - rdes ),
el - -
for P4 </’\l: +d (Ej“,
u _ h
and (0 dg ) ) =0 p
-+ :‘E “ A
R C)‘/‘ikd Vidk: +
h

'st'l"sz)



We may now also set up £#(t) in discrete form.

for fne 1 teace

¢ ¢ .
“'(_‘t) - &C {:o\r ’t= Li\
¢ o '
{."(“; W(f~7‘,"_e(«)) + Lf((z‘-lz_"é‘/@))
{“or ‘Zlef‘A

4
‘Ff = “- = V\f'_-__ T +e{oc).: + u‘t.'—* T +APa
") n

Vs

¢ L
and ';‘::0 i'\ﬂ
L) _/}:‘;_M)‘ﬁ + Qo
h

]

e, , /
4 _‘_":._*_?:_‘__(_f“&-*&t> [+ € (x)e + a

h
Having formed f‘(t) we now proceed to find the error function.
/z/}/ Z‘-‘/D 2 {:P
¢, ¢ £ E T
. ‘«\, L F. -f.
E *, ‘L)K,7p>:> ; (/L: ) o (% &)
;‘ L
=/ f:’ f"f"—’? Z‘;Q

where subscripts u and L again denote up and down dip.
Steepest descent method svplied to discrete datg

Estimating Tys Ty @ and B from what we observed in
area A and using these values in the above error function
a value of Ez(Tl, T,, @ and B) 1s calculated. To improve
this first estimate the gradient of the error function is
taken at these values and we proceed along the gradient to
our next estimate, This process is repeated until tolerances
are met., In discrete notation we wlll proceed to this end by
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means of variations. First we vary T by a small amount and
calculate E2(T1 + A, 1,, a, a) holding the other functions
at the origlinsl estimated values. Likewlse we do the same
thing for Toy O, and B increasing each of these by the same
increment while holding the other variables constant.

a) Subtracting the four new error functions from the original,

E (T8, T,x,p) (7 x,p) =
El(t)tfd)m)ﬁ)— (:? L 5 )[3) y

(T, M, &+ d,0) -E‘\('r,’*r,_) x,p) =W

e (T, T, % pra) - ETCT, T, B0V

b) Finding the square root of the sum of the squares of these
remainders,

\/x‘+y‘ FWT s VT

¢) Find the ratios
X % W
Z 3 Zz
an increment of change H 1s chosen >> A

Y
Z

a) Multiply this incremental change (H) by & end change T, by
this amount, Similarly multiply % times the increment %
times the increment and % times the increment and add these

values algebraically to'the ?riginal estimates,
e) With these new values 7 1s Tz, @' and B' recompute the

error function and call it

f) Compute E? - 1E? and proceed to form "¢¥ 1in a similar
memmer from the values o£ :Ez. T4, 73, o} B} and cycle

T +~t
the process until £ - E" is within tolerances,

The values of TlN + l, 12N + l, aN + 1, 3 N+1 are then

the estimates of Tl, T,, a, and b respectively. The value

of “E*-"*"£* at which the iterative method 1is stopped

would be determined previouvsly.
-



ons Wh n_Jig e _enlorcea n_orde.l Qg€ Z QEE
If we no longer relax the assumption that any event
occurs in general at non-integral values of spacing onthe
trace and furthermore falls on a curve rather than a stralght
line we may come closer to the exact values of Ty Toy O Be
To utilize this information all data must be readjusted. We
assumed that there is no curvature across our record and that
there was no change in shape or amplitude of g wavelet from
area A to area B. It is seen that these assumptions may be
dropped with an increase of course in computational labor, It
i8 felt however that the method proposed above will yield
values of Tys T2s % B which are as reliable as our seismioc
records permit for small angles of a and B and for non-shallow
reflections,
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CONCLUSIONS AND SUGGESTIONS FOR FUTIURE STUDY

From the experiments concerning the inverse we may con-
clude that this approach will be of most use in separating two
events when the onset snd shape of the first are known and where
the difference in onset times from that of the first wavelet to
thet of the second waveform does not exceed the length of the
time interval during which the terms of the inverse of the first
wavelet are not greatly divergent. We must further specify a
low noise level, There may also be specific instances in which a
form of an inverse may be used as an operstor over an interval
longer than itself with good results but this would depend on
the occurrence of fairly singular wavelet shapes.,

From the experiments concerning the use of a symmetric
operator, formed from the cosine transform of the reciprocal of
the amplitude spectrum of a wavelet, our conclusions are not
quite as definite. The possibilities for applications of this
approach, however, appear to be more numerous and more promis-
ing. With the limited experimental background we can only say
that if enough data 1s avallable we can visually correlate the
events spiked by the symmetric operator and neglect nill traces,
considering them to be the result of phasing. It appears also
that the phasing problem can be solved., Thus in the case where
we have a section of a seismic record with low noise level and a
complex of two similar wavelets we would exvect that convolution
with a symmetric operator determined for these wavelets should
produce two splkes considerably larger in amplitude than the
other out-put, Likewise for two different wavelets in a low
noise casew expect that it will be vossible to use two dif-
ferent operators and obtain the two spikes and hence relative
times of arrival on successive convolutions,.

It is suggested that the above experiments be continued
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and that the least squares approach, developed qualitatively in
this thesis, be set up for a digital computer and be evaluated

in several experiments., From these results it 1s hoped that
there will be conclusive evidence as to the areas of applicability
and valldity of each of these approaches,
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