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Abstract

This thesis investigates the use of generalized belief propagation (GBP) and belief propagation
(BP) algorithms for distributed inference. The concept of a network region graph is intro-
duced, along with several approximation structures that can be distributed across a network.
In this formulation, clustered region graphs are introduced to create a network "backbone"
across which the computation for inference is distributed. This thesis shows that clustered
region graphs have good structural properties for GBP algorithms. We propose the use of
network region graphs and GBP for location-aware networks. In particular, a method for
representing GBP messages non-parametrically is developed. As an special case, we ap-
ply BP algorithms to mobile networks without infrastructure, and we propose heuristics to
optimize degree of network cooperation. Numerical results show a five times performance
increase in terms of outage probability, when compared to conventional algorithms.
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Chapter 1

Introduction

The increasing demands of modern information systems call for the use of ever-more accu-

rate inference algorithms. At the same time, modern networks are exploding in size which

necessitates distributed algorithms.

Self-inference is a developing field in which a network must infer states about all or

a subset of nodes within itself. Self-inference algorithms have one of two subtly different

objectives; to estimate the joint probability distribution function (PDF) of the entire network

or to estimate the joint PDFs of only subsets of nodes in the network. This thesis will focus

exclusively on the latter case. The simplest case in this scenario is that the target subsets

are simply each individual network node, in which case only the marginals of each node need

to be estimated.

Large networks often have a large state space with a joint PDF that has non-trivial

structure; this makes it prohibitively complex to optimally estimate target distributions [3].
To reduce algorithmic complexity, we search for PDFs that approximate the true PDF, but

with simpler structure for computational tractability. A variety of graphical models have

successfully been used to understand the structures that govern network-inference problems

and to generate inference approximations. This includes directed graphical models such as

Bayesian networks and region graphs, and undirected models such as Markov random fields

and factor graphs [4]. This manuscript will focus on region graphs, which are constructed



from factor graphs.

Message passing algorithms are a class of algorithms that run across various graphical

models and BP is a popular member of this class that runs across factor graphs. The

"messages" in message passing algorithms are always sent from each node in the graphical

model to a subset of its neighbors. The importance of this class of algorithms is evidenced

by both their successful application in a variety of fields, as well the retrospective casting

of classic algorithms as specific instances of message passing. For example, the Viterbi

algorithm [5,6], the Kalman filter [7], and the sum-product algorithm for low-density parity

check codes [8] can be cast as message-passing algorithms closely related to BP.

It has been shown that a factor graph with a large number of short cycles often causes BP

algorithms to behave unpredictably; both in terms of convergence and inference accuracy.

Significant work has been done to analyze the difference between the true marginals and

those estimated by BP on arbitrary graphs with cycles, and then to develop bounds on the

approximation error. For instance, it has been shown that the errors between the true and

estimated marginals increase as the the divergence between the true PDF and its approximate

tree representation [9]. This fact has also been observed by the empirical finding that BP

performs well on graphs that are well approximated by trees.' Further, it is known that when

measured under a tree distribution, the functions between variables that interact weakly

within the graph have little effect on the accuracy of BP [9].

A general method of reducing the negative effects of short cycles in a factor graph F

is to cluster or stretch random vertices that form short cycles into single factors in F [10].

However, the computational complexity of any algorithm that runs across F will increase

exponentially with the number of variables in a cluster, or equivalently the size of a cluster.

As an extreme case, if all variables in F are included in one cluster, then the inference

problem can only be solved using a centralized and "brute-force" method.

One recently successful class of inference algorithms is generalized belief propagation

(GBP) and the corresponding "region graph" approximation, as presented in [11]. GBP

'An example of a graph that is well approximated by a tree is one composed of a tree with the addition
of a small number of long cycles.



algorithms run across region graphs, which are a class of graphical models constructed from

factor graphs. The notion of grouping factors and variables of a factor graph into sets, as

described above, is extended in GBP algorithms by allowing these sets to contain common

elements. Non-disjoint groups allows GBP to exploit structure between random variables

within a single group, which cannot be done when grouping variables in BP. As the name

implies, BP is a special case of GBP, and GBP is a method of potentially overcoming the

limitations of BP in factor graphs having many short cycles. The region graph method is

extremely flexible but not every region-based approximation is accurate. It is still an open

area of research as to how variables in a factor graph can be optimally grouped using region

graph approximations, and this is a key problem in the development of GBP algorithms

[11-15].

In their ordinary form, centralized GBP algorithms cannot be used for self-inference. In

self-inference problems a graphical model represents some physical network graph and thus

distributed, as opposed to centralized, inference algorithms are usually required. Cooperative

networks are an emerging paradigm that enable distributed inference. Nodes in cooperative

systems, each with unique objectives, cooperate or pool together their resources for mutual

benefit.2 A variety of cooperative techniques have been proposed for distributed inference,

including Monte Carlo sequential estimation [16] and distributed belief propagation [17].

In self-inference systems the factors and variables in a factor graph can be divided into

disjoint sets where each set represents a unique physical network node. If a message in the

factor graph travels between two elements that are both associated with the same node,

then that message is communicated internally within that node. On the other hand, if a

message travels between two elements that are associated with different physical nodes, then

that message is physically communicated between two different nodes. This method of dis-

tributed processing makes the computation of each node's marginal particularly elegant by

multiplying the messages along each edge. Example applications include distributed localiza-

tion [1,18,19], time-aware networks [20], relaying [211, and network discovery problems [22].

2This is in contrast to "collaborative" networks in which nodes pool their individual resources to achieve
a common objective in a distributed manner.



When performing self-inference in location-aware networks, it is usually not feasible to do

so in a centralized manner. This can be due to a lack of network infrastructure or limited

computational resources. Further, location-aware networks in ad-hoc environments using

distributed algorithms can operate more effectively due to their inherent robustness to fail-

ure.

There has been recent interest in BP-based algorithms for location-aware networks due to

orders of magnitude increases in performance when compared to traditional methods [191. In

particular, a distributed BP algorithm for large-scale mobile networks called SPAWN (sum-

product algorithm over a wireless network) was introduced in [1]. The SPAWN algorithm

can deal with general network structures and it simplifies the computational complexity

by not requiring computing ratios of messages. Although the SPAWN algorithm and the

algorithms presented in this thesis are agnostic to the underlying communication technology,

we evaluate the performance of these algorithms for location-aware networks employing ultra-

wideband (UWB) transmission [23]. UWB is an attractive choice for simultaneous ranging

and communication due to its ability to resolve multipath and penetrate obstacles [24,25].

Despite the recent performance gains of BP algorithms for localization, no algorithm has

yet come close to the performance bounds for such systems. Specifically, Fig. 1-1 compares

the performance of the SPAWN algorithm [1] in UWB-networks to its performance bounds [2]

in terms of outage probability, a common measure of localization performance. The key

observation to be made here is that the performance of BP is still an order of magnitude away

from the bound, and thus there exists potential opportunity for improved algorithms. This

performance gap is due to large number of short cycles that the factor graphs representing

location-aware networks contain. A class of distributed self-inference algorithms based on

GBP could overcome this limitation. Furthermore, a GBP algorithm would provide direct

access to the joint beliefs of groups or teams of network nodes for use in applications such

as coordinated decision-making and path planning. Such information cannot be obtained

using classic BP algorithms.

The goal of this thesis is to develop a distributed GBP algorithm for self-inference prob-
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Figure 1-1: Outage probability comparison between the BP-based localization algorithm
presented in [1] and the bound for TOA-based localization, as per [2]. Outage probability
is defined as P(e) = E{I[Ii - i > e] }, where I [P] is the indicator function. The variable

i is the estimated location of node i, and e is the error threshold for the system in meters.
Numerical results were obtained for networks of 100 nodes over 50 random topologies in a
homogeneous environment. The BP-based algorithm is still an order of magnitude from the
limit.

lems. This includes both the construction of distributed RGs as well as the execution of

distributed GBP with arbitrary message structure. Finally, in the context of location-aware

networks, existing BP algorithms are extended to account for mobile agents.

The main contributions of this thesis are the following:

* We introduce the notion of a network region graph (NRG), which allows inference

algorithms such as GBP to be distributed across networks.

" We demonstrate that subgraphs forming CDGs can be used as "network-backbones,"

across which favorable NRG properties can be guaranteed. In particular, it is shown

that CDG subgraphs that form trees or single cycles guarantee maxent-normality.

* We develop a method for representing GBP messages using particles, allowing for the

representation of beliefs with arbitrary structure.

* Finally, we explore the use of BP-based algorithms, a special case of GBP, for mobile



location-aware networks and demonstrate a five times improvement in outage proba-

bility when compared with conventional techniques.

The remainder of this thesis is organized as follows. In Chapter 2 we present a set of

mathematical and conceptual preliminaries. Chapter 3 introduces the notions of network-

and clustered-region graphs. Chapter 4 develops an algorithm for representing GBP mes-

sages using particles in the context of location-aware networks. Chapter 5 presents BP

algorithms for location-aware networks and selected numerical results. Finally, conclusions

and directions for future work are presented in Chapter 6.



Chapter 2

Preliminaries

This chapter will introduce selected topics in inference including region graphs, maxent-

normality, node clustering and particle-based functions. It will also introduce the reader to

techniques that generate factor graphs from network graphs and techniques that generate

region graphs from those factor graphs.

Let X = {X1, .. . , XN} be a set of discrete-valued random variables (RVs) that represent

the state of a system of interest, and let xi and x be realizations or states of Xi and X,

respectively. For brevity and when there can be no confusion, we denote xi simply as i. The

PDF of interest px (x1, ... , XN) is denoted as p(x). We assume that the PDF can be written

in the general form

p(x) = fa(xa) , (2.1)
aEA

where Z is the normalizing partition function, a is an index from A = {1, 2,.. ., A} for A

functions, and where each fa(Xa) is a positive and well-defined function of some subset of

x [26]. Generally, we are interested in the PDF of subsets of the variables X: if X, is some

subset of X, then denote the joint PDF of those variables as p(x,) which can be computed

by

p(x8 ) = p(x) (2.2)
x\xs

where x\x, denotes imiarginalization over all variables not in S.



A factor graph is a graphical representation of a global function of several variables in

terms of its factors and their variables [10, 27]. Specifically, a factor graph is a bi partite

graph containing both variable and factor vertices, where an edge connects a variable to a

factor vertex if that factor is a function of that variable.1 Although factor graphs provide a

general tool applicable to a wide range of problems, in this manuscript we deal exclusively

with functions which are (scaled) probability distributions.

2.1 Network Inference

In network inference, we are given a network graph 9 = (V(g), E(g)), where V is a set of

physical nodes and E C V x V is a set of edges connecting V. If two nodes can physically

communicate over the network then an edge exists between them. In self-inference the goal

of 9 is to infer some state of itself based on some incomplete and noisy information. As

defined previously, let p(x) be the PDF for the state of 9, where p(i) is the state of node

i E V(g). We define b as a PDF that approximates p and refer to b as the belief of p. For

instance, b(i) is the belief of node i.

To capture the probabilistic dependencies in 9 we generate a factor graph from 9. Each

pair of connected nodes (i, j) in 9 can extract information from one another and we denote

the PDF of the information extracted by node i from node j as #g (i,j).2 As an example,

consider the network and corresponding factor graph given in Fig. 2-1. In this case, we write

the joint belief of this three-node network as

b(1, 2, 3) = b(1) b(2) b(3) #12 (1, 2) #21(2, 1) #23(2, 3) #32(3, 2) . (2.3)

When given a network graph, we can always "expand" each edge in E(!) using the same

method as in Fig. 2-1(b). Specifically, each variable vertex i is connected to a single belief

'For instance, a function with factorization f (1, 2, 3) = fA (1, 2) fB (2, 3) fc (3) gives rise to a factor graph
with 3 factor vertices (fA, fB and fc) and 3 variable vertices (1, 2 and 3), where variable 1 is connected to
vertex fA, variable 2 is connected to vertices fA and fB, and variable 3 connected to vertices fB and fI.

2It is not necessary that #ij is the same as #ji, i.e., it is possible that 4ij(i, j) # #ji(j, i)



(a) A trivial network graph with only
three nodes.

Qb1 b3

(b) A factor graph that corresponds to the network graph in
Fig. 2-1(a). Factors are denoted by rectangular vertices and
variables by circular vertices.

Figure 2-1: A three-node network graph and the corresponding factor graph.

vertex b(i) and each edge (i,j) E E(!) has two associated functions #iy(i,j) and #Oj(j, i).

Note that if #i5 (i, j) = 0 then no information is extracted from node i by node j so #5ij(i, j)

can be removed from the factor graph. We refer to the above process as a factor graph

expansion of network graph g.

2.2 Region Graphs and Region-based Approximations

This section defines region graphs and free energy functions. We then explore the design of

region-based approximations using free-energy functions.

As discussed in Chapter 1, one method of reducing the effect of short cycles in a factor

graph is to cluster vertices into disjoint sets. This can be generalized by allowing vertices

to be members of more than one cluster or, equivalently, we can define hyper-edges over the

factor graph's vertices. The common nodes between these clusters are made apparent using

region graphs [11].



Definition 1. A zone r of a factor graph is a set of factor vertices A, and a set of variable

nodes V, such that if factor vertex f E Ar, then all neighboring variable nodes of f are in

Vr.

Let x, be the collective set of variable nodes in zone r. The PDF of all variables in r is

given by p(x,) and the belief approximating p(Xr) is denoted by b(xr).

Definition 2. A region graph is defined as a labeled directed graph R = (V(R), E(R), L(R))

that is composed of a set of vertices V, a set of directed edges E C V x V, and a set of

labels L, where each vertex is assigned to a unique label. Each label contains a zone from a

factor graph and a counting number, and each vertex is referred to as a region.

Throughout this manuscript we abbreviate r E V(R) as r E R. In a region graph, if a

directed edge points from vertex u to vertex v, we say that u is a parent of v, and that v is

a child of u. Further, if there exists a directed path from u to v we say that u is an ancestor

of v and that v is a descendant of u. The set of regions in R with no parents are referred

to as outer regions Ro and all others are referred to as inner regions [28]. Further, the set

r E Rk denotes all regions for which k is the length of the largest path from each r to any

element in Ro.

Each region's label contains a region and a "counting number." The counting number

for region r is denoted by c, and is computed using

Cr 1 - c , (2.4)
jGA(r)

where A(r) is the set of ancestors for region r. If a region has no ancestors, then its counting

number is equal to one. Eq. (2.4) ensures that each factor f and variable i in the factor

graph is "counted" only once in R, i.e.,

ZCrI(f C Ar) ZcrT(i E Vr) = 1 (2.5)
,ER rER

where I is the indicator function.



There are numerous RGs that can be generated from any given factor graph. Each RG

will dictate or constrain the set of beliefs {b,} for which we perform inference. The design

of RG generation algorithms therefore requires an understanding of the expected errors due

to constraining our beliefs through R. This process of constraining our beliefs is referred to

as a region-based approximation to p.

Error analysis for region-based approximations has historically been pursued in the field

of statistical physics using free-energy functions: these functions provide key insight into

expected inference errors, thereby guiding RG construction. Equations (2.6)-(2.14) in the

following, together with the maxent-normal property, help steer the RG generation process,

and the maxent-normal property will play a pivotal role in subsequent chapters.

The energy E of a random variable x is given by

A

E(x) = - In fa(xa). (2.6)
a=1

Given some belief b, the variational free energy of a system F(b) is defined as

F(b) = U(b) - H(b) (2.7)

where U(b) is the variational average free energy given by

U(b) = 1 b(x)E(x) , (2.8)
x

and H(b) is the variational entropy given by

H(b) = - b(x) In b(x) . (2.9)
x

Using the above definitions it directly follows that

F(b) = -In Z + D(b|p) (2.10)



where D(b Ip) is the KL-divergence given by3

D(b Z p) - b(x) In b(x) . (2.11)
pxx

This implies that the minimization of the variational free energy F(b), with respect to b(x),

will also minimize the divergence between p and b. If b is unconstrained, (2.10) is minimized

when b = p and the partition function Z will be recovered. On the other hand, when beliefs

are constrained through a RG R, the region-based free energy Fl(.) is defined as

Fz({br}) = Ui({br}) - HR ({br}) (2.12)

where Uiz({b,}) and Hqz({br}) are the region-based average energy and the region-based

entropy, given respectively by

Ui({b}) =3 Cr Ur(br) (2.13)
rCR

and

Hi({b}) Z CrHr(br). (2.14)
rER

To find the set of beliefs {br} that is closest to p, we wish to minimize F7a. Further, it

has been shown that if the beliefs {br(X,)} are equal to the corresponding exact marginal

probabilities {pr(Xr)}, then Uiz({br}) = U(b), i.e., the approximation made by region-based

average free energy is exact irrespective of the functional form of b.

On the other hand, the region-based entropy does not have a similar property: it is cer-

tainly not guaranteed that the region-based entropy is equal to the variational entropy. The

magnitude of the error encapsulated by the region-based entropy is highly dependent on the

structure of the corresponding RG R, and its analysis is considered key in the development

of region-based algorithms [11].

The amount of error due to the region-based entropy depends not only on the structure

3KL-divergence D(b||p) is based on a local and proper cost function that measures the closeness of b top.



of 7Z but also on the functional form of b. Recall from (2.12) that we are interested in

the set {b,} that results in large values of Hz. Note also that If the region-based entropy

is not maximized when all the beliefs take on a particularly simple functional form, then

it is highly unlikely that 7Z will generate good approximations when b has more elaborate

structure [29]. One of the simplest belief structures is if all beliefs are independent and

identically distributed. Since all variables are discrete, and if all variables have the same

domain, then the above motivate the following desirable property of RGs [11,28].

Definition 3. (Maxent-normality) Suppose a region graph 7Z is over set of discrete RVs.

The graph 7Z is considered to be maxent-normal if its region-based entropy HR. is maximized

when all beliefs are uniform.

Note that the maxent-normal (MN) RGs do not guarantee to provide the best region-

based approximation over all 7. For any factor graph there can be numerous MN RGs.

However, if a RG is MN then the region-based free-energy does reliably give more accurate

estimates of marginal probabilities than the corresponding "Bethe approximation," used by

BP algorithms. The interested reader is referred to [9] for details.

2.3 Clustering

Clustering algorithms are commonly used in the communications and networking community

for applications such as routing and efficient bandwidth sharing [30]. Suppose we are given

a network graph G, distributed clustering algorithms aim to divide all vertices V(!) into

subsets or clusters (which are not necessarily disjoint), such that certain constraints are met

or a particular cost function is optimized.

A common problem is to identify a subset of V(!), called a dominating set (DS), such

that each network node is either in the DS or is directly connected to at least one member

of the DS. A connected dominating set (CDS) of g is a DS V(D) such that D induces a

connected subgraph. The minimum connected dominating set (MCDS) of is the CDS that

contains the minimum number of nodes i E V(g). Network nodes i E V(D) are referred



to as dominating nodes and all other network nodes j V(D) are referred to as unmarked

nodes. For each node i E V(9), a "marking function" is defined as

m(i) (D), (2.15)
F otherwise.

For arbitrary graphs, finding the MCDS is NP-complete [311, but there exist distributed

algorithms for finding approximations to the MCDS [30,32]. Similar ideas for approximating

the MCDS will be used in this manuscript.

2.4 Particle-based Functions

Functions that cannot be represented algebraically in closed-form can often be represented

non-parametrically using particles. Suppose we wish to represent a belief b(i) as N, weighted

particles, {i(k), W(k) }, where i(k) is a sample drawn from some distribution with the same

support as b(i), and w(k) is the appropriate weight of i(k). Throughout the manuscript we

use the terms particles and samples interchangeably.

If
N.,

Zw(k) = 1 (2.16)
k=1

and
N,

w(k)g((k)) ~ g(i)b(i)di (2.17)
k=1

for any integrable function g, then we can represent b non-parametrically.

There are different ways to obtain a set of weighted samples. Popular choices are (i) di-

rect sampling, where we draw N, independent samples from b(i), each with weight 1/N.; (ii)

importance sampling (IS), where we draw N, independent, identically distributed (i.i.d.) sam-

ples from a sampler distribution q(i), with a support that includes the support of b(i), and



set the weight corresponding to sample i(k) as

w(k) - b(I(k)) q(i(k)) . (2.18)

In both cases, it can easily be verified that the variance of the approximation reduces with

N, (and for IS that it depends on q). However, it is important to note that when using

particles the variance does not depend on the dimensionality of i. A list of N, equally-

weighted samples can be obtained from {i(k), W(k) } through resampling, by drawing from

{i(k)} with associated probabilities {w(k)} [33].

When approximating b(i) using particles, it is often required to interpolate between each

sample. Given a sample representation {i(k), W(k)} we approximate b(i) as

Ns

f(i) = W(k)K,(i - (k)) (2.19)
k=1

where K, is the so-called kernel with bandwidth a, and (2.19) is the so-called kernel density

estimate (KDE). The kernel is a symmetric distribution with an adjustable width parameter

a. For instance, a Gaussian kernel is given by

K,(x) = 2 exp ( IIX2  (2.20)
27ro- 20.2

While the choice of kernel affects the performance of the estimate to some extent, the crucial

parameter is the width o-, which needs to be estimated from the samples {i(k), W(k) }. A large

choice of o- makes b(i) very smooth, but may no longer capture the interesting features of

b(i), while a small choice of a may result in b(i) exhibiting artificial structure not present in

b(i) [34].
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Chapter 3

Network Region Graphs

The goal of this chapter is to develop a graphical model which allows inference algorithms

such as GBP to be distributed across networks. We begin by discussing general distributed in-

ference problems with RGs, and will later restrict our treatment to distributed self-inference.

In regular distributed inference problems with RGs, we are given some pre-existing region

graph (RG) R that may or may not contain probabilistic information contained within g.

Our goal is to develop a structure called a NRG that enables the computation of GBP

algorithms to be distributed across g.

Definition 4. (Network region graph) Let A be a set of indices for variable and factor

vertices in a factor graph and let g be a network graph. A network region graph is defined

as a labeled and directed graph R = (V, E, (L, h,)) that is composed of a set of vertices V,

a set of directed edges E C V x V, and a set of labels L, where each vertex is assigned to

a unique label I c L. The label I of vertex r includes a controlling node through the label

vector h, = i E V(G), a zone of A, and a counting number cr. As a slight abuse of notation,

we refer to each vertex in r E R as a region.

A NRG is then an existing RG in which the control of each region is mapped or assigned to

a unique network node. Any network node may be assigned control of multiple regions, while

other network nodes may have no regions assigned to them; thus and so the computation of

GBP is distributed across a subgraph of g.



An example of a NRG and its associated network graph is shown in Fig. 3-1. Network

graph g is composed of three nodes a,#, and -y. We will describe the notation of the

NRG through example in the following. The pre-existing RG contains six regions overall:

three outer regions with no parents and with counting number equal to one, and three

inner regions. The top-left region is an outer region that contains factors bb, be, which are

a function of variables b and c, respectively. The computation and control of the top-left

region is assigned to network node h, = a. In this example, the control of each region in R

has been assigned to either a or 0, and thus only a subgraph of g controls R. Note that the

variables and factors contained in R do not directly correspond to variables and factors in

g, but only to some pre-existing factor graph that is not shown.

We now shift our focus to the design of NRGs for self-inference problems, i.e., to NRGs in

which the contained factors and variables correspond to the state of g itself. In self-inference

problems, we are given a network graph g from which we first generate a factor graph, and

we then generate R from this factor graph. To perform distributed self-inference, both the

construction of R as well as the message passing across R need to be distributed. We

generate RGs directly from network graphs through a systematic, but implied, factor graph

expansion as described in Chapter 2.1. It should be understood that each RG generated

from a network graph is done through factor graph expansion, even if the corresponding

factor graph is not shown explicitly. This will simplify our discussions of RGs and of the

distributed processing for GBP.

We divide the design of a RG generation algorithm into two sub-problems in the fol-

lowing. Sec. 3.1 develops the desired structure of the RG generated from the given network

graph. Sec. 3.2 then develops a distributed algorithm to generate a NRG-with the structure

identified in Sec. 3.1-in which the control and computation for regions in R is assigned to

network nodes.
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(a) An example NRG R in which each region in r E R
has been mapped to a controlling node in the network
graph g, shown in Fig. 3-1(b), through a controlling func-
tion h,(r). The factor graph from which 1R was generated
is not shown.

0 0y
(b) An example network
graph g where physical nodes
are represented by vertices
and edges denote communi-
cation between nodes. The
control of each region r E R
has been mapped to a unique
node in g.

Figure 3-1: A toy network graph made up of three nodes labelled a, 0, and 'Y. A corre-
sponding network region graph is also shown, where each region contains a set of factors and
variables. Factors are denoted by b's and the associated variables for each factor are denoted
by subscripts.

3.1 Clustered Region Graphs

We introduce the notion of a clustered RG which will be used to systematically generate

a RG from any given g in a centralized manner. The reader is reminded that in our final

algorithm this clustered RG R must be generated in distributed form. We are interested in

structures that are guaranteed to be maxent-normal (MN). Unless otherwise stated, we will

use the set notation as described in Table 3.1. (The terms in Table 3.1 not yet fully defined

will be clarified later in this chapter.)

A key consideration when designing a RG generation algorithm, be it distributed or

not, is that different regions in the same graph are usually generated using different sub-



Table 3.1: Description of set notation used throughout the manuscript.
Set Description
g a network-graph

E(B) the set of edges in graph B
V(B) the set of vertices in graph B
NV(i) the set of nodes that neighbor node i E V(9)
./v[i] NA(i) Ui

D a CDG and subgraph of g
Dt a spanning tree across D
R a region graph
Ro the set of outer-regions of R

R(i) the set of regions in R controlled by node i

algorithms. In particular, once a set of outer regions is defined, then standard techniques exist

for generating the respective inner regions. However, standard methodologies to generate

outer regions Ro is still an open research problem. We will develop a technique to generate

Ro. The inner regions will be constructed by the commonly used "Kikuchi method," as

described in [35-37].

The number of factors in each outer region should be kept as small as possible to minimize

the complexity of our GBP algorithm. On the other hand, an increase in the number

of factors in each region will likely improve the accuracy of our marginal estimates. As

described in [11], this well-known trade-off motivates keeping the number of factors in each

region small, whilst capturing a large number of short cycles in each region.

We propose to use of a subgraph D, which forms a CDG, to act as a "network inference

backbone:" the subgraph D C g will be used as a basis from which we generate our RG.

Throughout the paper, we insist on our subgraph D to have the inter-cluster property, which

will serve to guarantee the maxent-normality of our generated RGs.

Definition 5. (Inter-cluster property) Suppose a subgraph D of a network graph g is a

CDG. An unmarked node i (i ( V(D)) is called an inter-cluster node if each neighboring

dominating node j (j E Af(i) n V(D)) is connected to all other neighbors of i. If every node

i is an inter-cluster node, we say that the graph pair (9, D) has the inter-cluster property.

We now generate a clustered RG using a CDG with the inter-cluster property.



Definition 6. (Clustered region graph) Let (g, D) have the inter-cluster property. A RG is

called a j-clustered region graph (C-RG) if the kth outer region contains exactly all factors

and variables associated with edges in G that connect nodes within j hops of dominating

node k, and inner regions are defined using the Kikuchi method.

Remarks:

" Any graph pair (g, D) maps to a unique C-RG.

" In the following, we will consider C3-RGs in which j = 1. This choice minimizes the

computational complexity of GBP, whilst still capturing a large number of short cycles

in the underlying factor graphs (FGs).

We will now analyze the properties of C 1-RGs. As previously discussed, MN is a desirable

property of a RG for improving estimates of marginals. We will systematically identify the

structures of C1-RGs that are MN, and this process can be simplified by identifying nodes

and edges in (g, D) that have no effect on the MN of 7Z. We begin by analyzing the effect

of edges between unmarked nodes in G on the MN property, and then analyze the effect of

adding and removing unmarked nodes in g.

Lemma 1. Suppose we have a C'-RG 7Z that is MN. Removing edges between unmarked

nodes in g does not affect the MN property of 7Z. Further, adding edges that do not violate

the inter-cluster property between unmarked nodes in g does not affect the MN property of

7Z.

Proof. See Appendix A.

Lemma 2. Suppose we have a C1 -RG 7? that is MN. Attaching any number of new unmarked

nodes to the CDG does not affect the MN property of 7.

Proof. See Appendix A.

Theorem 1. A C1 -RG generated from network graph (!9, D) is MN if and only if the C1 -RG

generated by only D is MN.



Proof. Suppose a C1-RG generated from (D, D) is MN. Without loss of generality, we can

reconstruct g from D by attaching any number of unmarked nodes to D. By Lemma 2, a

C1 -RG generated from (9, D) is MN.

Suppose a C1 -RG generated from (9, D) is MN. Without loss of generality, we can remove

edges and unmarked nodes from (9, D) until only D remains. By Lemma's 1-2, a C1-RG

generated from (D, D) is MN.

Remark: Theorem 1 allows one to test for the MN property of a C1 -RG by only looking

at the structure of D. We now systematically identify the structures of Cl-RGs that are

MN.

Lemma 3. If g is associated with a D that forms a chain of finite length, then any C1-RG

generated from (9, D) is MN.

Proof. See Appendix A.

Remark: It is apparent from the proof of Lemma 3 that we can always use the mutual

information of the an outer region to rewrite the negative entropy term from each region in

R1 since |Rol > |R1|, where each region in R 1 has c, = -1.

Lemma 4. If g is associated with a D that is a cycle of finite length not equal to four, then

any C1-RG generated from (9, D) is MN.

Proof. Let D3 C G form a single cycle of length three. The C1-RG R generated from (9, D 3)

is trivially MN because R will contain three outer regions each with counting number equal

to 1 and only a single inner region r1 with counting cr = -2. Considering the region-based

entropy H-, we can cancel the negative term - 2Hr, by rewriting the entropy of two outer

regions as a mutual information term and a positive entropy whose variables does not include

those in ri. The region-based entropy will then be a sum of positive entropy and negative

mutual information terms so the C1-RG is MN. Now let D4 C 9 form a single cycle of length

4, as depicted in Fig. 3-2. The C1-RG generated from (9, D 4 ) will contain four regions in

R-o, but six regions in R1, implying that the graph may or may not be MN.



Now let D C 9 form a single cycle of length i, where i > 5. In this case, the C'-RG R

has the same structure as that generated from a chain D of length i, except that Ri I = IRo|,
due to the extra edge in Di connecting the beginning and end of the chain. The counting

numbers for r E Ro will be c, = 1 and the counting numbers for each r E R1 will be c, = -1.

Since the magnitude of the sum of the counting numbers of the inner regions does not exceed

the sum of the counting numbers of the outer regions, we can again rewrite each term using

the definition of mutual information, as per the proof for Lemma 3. E

Remarks

" The MN of single cycle CDGs mirrors the accurate performance of BP in factor graphs

that form a single cycle.

" It was observed in [11] that GBP performs poorly in Ising models, which are lattice

factor graphs with multiple cycles of length four. Lemma 4 provides some insight as

to the reasons why this is so from a graph theoretical perspective.

Figure 3-2: An example network graph that contains a cyclic CDG D of length four.

We now shift our analysis to subgraphs that form trees. Trees are a particularly attractive

because there exist distributed algorithms to construct trees from arbitrary network graphs.

Theorem 2. If 9 is paired with both a D and a corresponding subgraph Dt that forms a tree

of finite size, then any C 1-RG generated from (9, D) that does not include edges in Dc n D

is MN.

Proof. We only need to consider the structure of D, by Theorem 1. Each i E V(D) generates

one unique r E Ro. The region r will have a common zone with other regions generated by its



neighbors dominating nodes. Without loss of generality, we only need to analyze nodes with

connectivity strictly greater than 2 due since the C1 -RG generated by each chain segment

in D is MN, by Lemma 3. Let the ith dominating node (DN) have ni > 2 neighboring DNs,

and let ND be the number of DNs in D.

Consider the structure and counting numbers for all regions in R 1. Since Dt is a tree,

|V(R 1)| = ND - 1, each r1 E 7Z1 has 2 parents in R 0, and thus r1 will have cr, -1.

Consider the structure and counting numbers for all regions in R 2. Node i will generate a

single r 2 E 7Z2 , with a zone that only contains bi, and r 2 will have ni parents, each from R 1 .

The tree structure of Dt implies that ni + 1 regions in Ro will be ascendants of r2 , thus

cr2 - E Cj

jEA(r2)

= 1 -c, + c,

jERinA(r2) jE7zonA(r2)

= 1- {-ni + ni + 1} = 0. (3.1)

Each region in Z2 contains only a single belief, thus the C'-RG is composed of only three

"layers" R, RI1, and RI2. All regions in Z2 have counting number 0, and |E1Z, cr >

I E 7 i cr 1, thus R is MN.

Remarks

" Numerous distributed algorithms exist that efficiently construct spanning trees, includ-

ing depth-first and breadth-first search variants [31]. This allows algorithms such as

Dijkstra's algorithm to be used as a pre-processor for creating a tree that can be used

to generate a C1-RG.

" A number of trees and rings cannot be connected arbitrarily whilst still guaranteeing

MN because it is known that every connected graph decomposes canonically into 2-

connected subgraphs (and bridges) which can be arranged as a tree. Every 2-connected



subgraph can be constructed from starting with a single cycle and then adding suc-

cessive H-paths to that graph [38]. However, if D contains only a single cycle then a

C'-RG generated from (g, D) will be MN, by Theorem 2 and Lemma 4.

The notion of C1-RGs allows us to systematically generate an MN RG from a given g.

In the next section we propose a distributed algorithm to generate these Cl-RG.

3.2 Network Region Graph Generation

The previous section identified a C1-RG as the structural form of our target RG that will

be generated from g in a distributed manner. In this section we will design a distributed

algorithm that (1) generates our target C1-RG from g and (2) assigns control of each region

to form a NRG.

3.2.1 Problem Statement

Given a network graph g, we consider that each physical node i E V(9) has (1) knowledge

of the set of neighboring nodes NA(i) from which i can receive information; (2) has access to

bidirectional communications with each of its neighbors; and (3) has a prior distribution or

marginal belief b(i). Our goal is to construct a NRG R with the same structural form as

C1-RG using a distributed algorithm.

3.2.2 Algorithm Design

To generate R requires assigning a controlling network node to each region. The role of any

i E V(g) that has "control" of r E R is as follows. Node i will be assigned to physically

receive all incoming GBP messages into r, and it will be assigned to compute all messages

outgoing from r, while simultaneously computing the joint belief of all nodes contained in r.

We propose to use of a subgraph Dt, which forms a CDG, to act as a "network inference

backbone" and to control all regions in R. Each node i E V(D) will be used to generate one



outer region r C Ro, and node i is naturally assigned control of that region. All other inner

regions will also be generated and controlled by nodes in V(D).

Prior to discussing details of generating a RG using D as a basis, we describe some

advantageous properties of using CDGs, from a network-design perspective:

" A dominating graph ensures all network nodes are within at most one communication

hop of the backbone. This simplifies network communication overhead as the routing

requirements are minimized.1

" A connected backbone means that marked nodes can communicate between themselves

without requiring assistance from unmarked nodes; this can further simplify network

communications.

* If each DN in a dominating graph forms a team with nodes around it, then each

unmarked node can trivially determine which teams it belongs to.

Using network graph g, we propose constructing a CNRG, which is simply a NRG with

the same structural properties as a C1-RG.

Definition 7. A clustered network region graph (CNRG) R is defined as a 1-clustered region

graph in which the control of each region r E R has been assigned to one dominating node

t E V(D).

To demonstrate the value of CNRGs, we describe a set of CNRG properties that can

simplify algorithm design. Each node i E V(D) that controls an r E R, whether r is an

inner or outer region, naturally has access to at least the following information: (1) the IDs

of all node variables j E Ar; (2) all regions in the RG to which i belongs; (3) the set of

neighboring regions to r, NA(r) and (4) the directions of the edges that connect r to each of

its neighbors.

The assignment of every region to a controlling node i E V(D) is relatively simple because

every region in our target C1-RG contains at least one DN variable.

'If the backbone is not a dominating graph then communication across the network is still possible, but
it would require the use of unmarked nodes as relays to route all information into D.



Proposition 1. Each region in a CNRG contains at least 1 DN variable i.

Proof. Suppose there exists a region r E R that does not contain any DN variables. Since

r is non-empty, r contains at least one unmarked network node variable j. Since all r E Ro

must contain at least one DN variable, then r ( Ro, implying that r is an inner region.

Thus r must have at least two ancestor regions that do contain DNs m and n. Hence, in the

network graph j must be connected to nodes m and n such that (m, n) V E(g). This implies

that j is not an inter-cluster node, contradicting the inter-cluster property of (9, D). 3

Further, the controlling node i E V(D) for region r E R can locally and efficiently

compute the counting number Cr as follows: if all nodes connected to i exchange their

neighbor sets with node i, then i knows all DNs connected to its neighbors. In particular,

node i knows which of its neighbors are connected and hence it knows all inner regions that

have common zones with r. The set of common zones includes the ancestors A(r) of r, which

is required in (2.4).

It is now apparent that a CNRG is a natural construction for a maxent-normal (MN)

NRG generated from g. To design an algorithm to create this CNRG we take the following

three steps. First, from g we generate Dt in a distributed manner, and use Dt to generate

Ro. Second, from Ro we generate all other regions in R. Third, we allocate control of each

region and allocate edges in the NRG to carry messages either internally within a physical

node, or externally between two nodes.

The first step is to generate Dt from g. A variety of algorithms exist for generating the

subgraph Dt; for an example see Algorithm 1. We assume that every network node i has

a unique identifier 1(i). Lines 2-7 in Algorithm 1 are similar to the clustering algorithm

in [32]. Line 3 of Algorithm 1 forms a CDG and thereafter, lines 5-10 decrease the size of

this initially constructed CDG.

In the following, we show that Algorithm 1 generates a CDG with the inter-cluster

property. Line 8 generates a set of DNs that are super-set of the DNs generated by the

algorithm described in [32), thus Algorithm 1 creates a CDG. We now show that Algorithm

1 creates a Dt with the inter-cluster property.



Algorithm 1 A distributed Dt generation algorithm, in which Dt has the inter-cluster
property.

1: Every node v exchange NV(v) with its neighbors
2: if i,j: i,j E .A(v), (i,j) E(G) then
3: Mark v as a DN, m(v) <- T
4: end if
5: if u, V E V(D), N/[v) c N[u], and I(v) < I(u) then
6: m(v) <- F
7: end if
8: if u and w are two marked neighbors of v E V(D), N(v) C fi(u) UK(w), (u, w) E E(G)

and ID(u) = min {I(u), 1(v), I(w)} then
9: m(v) <- F

10: end if
11: Create a spanning tree Dt C D

Proposition 2. Any (G, D) pair generated using Algorithm 1 has the inter-cluster property.

Proof. After running Algorithm 1, suppose we have two connected unmarked nodes i, j E

V(g), such that k E V(D), ij E M(k), i.e., i or j are not inter-cluster nodes. To generate

this Dt, the algorithm proceeded as follows: (1) m(i) = m(j) = T because i and j must

have unconnected neighbors; (2) without loss of generality, let 1(i) < I(j), causing j to

remain a DN, because I(j) - min {I(i), 1(j), .. .}, by Line 8. This is a contradiction, thus

(i, j) E(G).

Line 11 generates a graph Dt that is a spanning tree of D. This will guarantee the MN

of the C1 -RG generated from the pair (G, Dt), by Theorem 2. Note that the final step of

transforming D into Dt requires the construction of a spanning tree across D. We propose

the construction of a minimum spanning tree, for which numerous distributed algorithms

exist. The corresponding weights on each edge of D can be defined using a several metrics. In

the context of location-aware networks one can use, for example, signal-to-noise ratio (SNR),

ranging information intensity [39], or the entropy of the distributions along each edge.

The second step is to generate the set of outer regions Ro using the factors and variables

in the factor graph expansion of G. This done as per the definition of clustered RGs. The

third step is to define all inner regions in R, which are generated from RO using the Kikuchi



method. To accomplish this, we need to determine which variables and factors in the FG will

be allocated to each inner region. Region r E o is composed of the set of variables V, which

includes its controlling node i, {m E PV(i): (i, m) E Dt}, and {n E V(i)n V(D)c}. Region r

also contains the set of factors made up of {b(j): j E V}; {#im, #mi}; and {# n, #ni, #kn, #nk

k V , k C V(D)0 }.

We generate the remainder of the region graph 7Z in a distributed fashion using Algorithm

2. Specifically, each node i E V(D) that controls a outer region r E 7Zo determines the

common zones that exist between it and neighboring dominating nodes in Dt (lines 2-15).

Finally, lines 20-22 describe the procedure to assign control of each region and to determine

which messages in the RG will be sent between physical nodes, and which messages will

remain internal to a particular node.

An example of a NRG generated using Algorithm 2 is shown in Fig. 3-3(a): the FG

expansion of this network is shown in Fig. 3-3(b). In Fig. 3-3(d) we introduce a compressed

notation for NRGs, from which the corresponding variables and factors in each region can

be inferred. This notation will be utilized in more elaborate RGs later in the manuscript.

As per Theorem 2, using a C1-RG together with a CNRG will create a NRG that is

MN. In Algorithm 2 we are making a trade-off between MN and the use of all information

available in the network: line 11 in Algorithm 2 does not utilize the information in any edges

in the subgraph D that are not also contained in Dt. Intuitively the information in these

discarded edges could aid in inference accuracy. However, as others have observed with GBP

algorithms [11,40], attempting to fuse large sets of information can actually hinder inference

performance. The design of distributed self-inference algorithms based on GBP that operate

at optimal points along this continuum-exploiting all information versus removing "hinder-

ing" information-remains an open problem. Nonetheless, the amalgamation of Theorem 2,

Cl-RGs, and CNRGs provide access to a new operating points in this spectrum.



Algorithm 2 Network region graph generation
1: for r E Ro do
2: Let h,(r) = i. For j E Ro, j # r node i finds the largest set of variables {zk} such

that Zk E r, Zk E j. Denote this set Or.
3: Append to 0 r as follows, without duplication:
4: for Zk E Orj do {Subregion creation}
5: if (i, zk) E (E(g) n E(D)c) U E(Dt) then
6: Orj <- {bi,bzk,#izk,#z i}.

7: else
8: Or+- bz .
9: end if

10: if Zk E .A(i), z1 E AV(i), (zk, z1) E E(Dt) U (E(g) n E(D)c) then
11: Org <- {b, bz ,k #iZk , #zki}
12: end if
13: Let r' E R1, r' <- Orj. Connect arcs in the NRG from r to r' and from j to r'.
14: end for
15: end for
16: for r E Ri do
17: Let h,(r) = i. For j E 1, j 5 r node i finds the largest set of variables and factors

{Zk} such that Zk E r, Zk E j'. Denote this set Orj.
18: Let r' E R 2 ,r' +- Orj. Connect arcs in the NRG from r to r' and from j to r'.
19: for j E V(Dt) n {r} do {Control of subregions and internal vs. external message flags}
20: if ID(j) = min {ID(ji), .. , ID(jm)}, where j, is the nth DN in r then
21: j determines which DN in r will control this region, according to a uniform prob-

ability law.
22: end if
23: end for
24: end for
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(a) An example network graph composed of four nodes,
in which nodes 1 and 2 make up the CDS.

I413 21~ L24
b3 1 b b4I

(b) A FG expansion of the network graph shown in Fig. 3-3(a). The belief of node i is represented as bi, and
#i, represents the uncertainty from information sharing between nodes i and j.

bi, b2 , b3
412, #21,0#13,0431

c=1
= 1

b2 , bi, b4

412, #21, #24, #42

hV= 2

(1, {2,3})
c=1

h, 1

(2, {1,4})
c=1

h= 2

(c) Region-graph of Figs. 3-3(a) and 3-3(b), in which we
have three regions: two controlled by node 1 and the third
controlled by node 2.

(1,2)
C = - 1

(d) A redrawn region-graph of Fig. 3-3(c), in
which we have three regions: two controlled
by node 1 and the third controlled by node
2. Notation has been compressed for read-
ability, such that the relevant factors and
variables can be inferred from the included
edges. For example, the edge set (2, {1, A})
denotes edges (2, 1) and (2, A) in E(9).

Figure 3-3: An example of a network graph that is expanded to a factor graph, which is in
turn mapped to a 1-clustered region graph.
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Chapter 4

A Detailed Example: Distributed

GBP for Location-aware Networks

The algorithms presented thus far can be applied to general self-inference problems that

utilize region graphs. Different self-inference problems require different variants of GBP

and different techniques for message represenatation. In this chapter we will determine an

appropriate variant of GBP and an appropriate message representation by applying our

framework to location-aware networks. Two primary issues are addressed herein. First, the

information extraction model that network nodes are subject to when performing localization

is briefly described. Secondly, a technique for representing GBP messages non-parametrically

is developed. Although these message representation techniques are designed for location-

aware networks, it is likely that ideas in this chapter can be applied to other network-inference

problems.

4.1 Information Extraction Model

The measurement model used in this thesis is a ultrawide bandwidth (UWB) ranging model

that is utilized in [1, 18,41,42]. It operates as follows. Node i obtains information from each

of its neighbors j C Ar(i) to estimate the physical distance between nodes i and j. Let dj



be a ranging estimate message sent by node j to node i, containing a ranging measurement

related to the true distance d = ||xi - xjll. Node i uses TOA ranging to form its estimate

dji of the true dyi; let the PDF 5ji = p(djiId =_ |xi - xj 11) characterize the uncertainty in the

ranging measurements.

To accurately characterize the ranging uncertainty 5ji we use the empirical set of distri-

butions developed in [42] for UWB-based TOA ranging in cluttered indoor environments.

This distribution has multiple convenient properties. For example if #ij is represented non-

parametrically see Sec. 4.3-we can then generate samples from E #jjb(i) using IS. Rang-

ing uncertainty is represented through a Gaussian mixture sampler distribution with param-

eters that are a function of dji. Node i can draw a set of N, samples {d( } from a sampler

distribution q(djjldjj). (The distribution q can be sampled from trivially because node i has

knowledge of d$i.) The parameters of q and a more detailed discussion of this model can be

found in [42]. To compute the weights for each d we use

p (d& dk)
W (k) 0( (d Id) (4.1)

q d ji)

which can be evaluated exactly using a parametric representation of q.

4.2 GBP Algorithms

There exist a number of known GBP algorithms that minimize the same free-energy cost

function. The two most common variants are the parent-child and the two-way algorithms

[11]. In the parent-child algorithm messages in R only travel from parent regions to their

children. On the other hand, in the two-way algorithm messages in 7Z travel both from

parents to regions and from regions to parents. Each GBP variant has its own advantages and

disadvantages that depend on the structure of the RGs encountered and on the application

of interest.

We now describe selected details of both the parent-child and two-way algorithm to



determine which of these variants is best suited for distributed processing in the context of

location-aware networks. For this discussion, define P(r) as the set of parents of region r,

and C(r) as the set of children of r.

In the parent-child algorithm, mp, denotes the message that travels to region r from

parent region p E P(r). The message mp, is constructed using the following sets. The set

s(r) consists of all descendants of r, and s[r] consists of r and all the descendants of r, i.e.,

s[r] = s(r) U {r}. Let (i, j) be a connected pair of regions in R. The set s(p, r) is then

defined as'

s(p, r) A {(i, j): i E s[p]\s[r], j E s[r]}\{p, r}} , (4.2)

and the set n(p, r) is defined as

n (p, r) A (i, j) : J E s[p), j s s[r], i V s [p]} (4.3)

The message mpr is then defined as

mpr(xr) = 3 11 fa(Xa) 1 mij (xj) 171 mi(xj) . (4.4)
xp\x, aEAp\Ar (i,j)En(p,r) (i,j)Es(p,r)

We now describe the equivalent message construction for the two-way algorithm to deter-

mine which of these GBP variants is most suitable for location-aware networks. The messages

for the two-way algorithm are constructed in the following order. Let q, A (1 - cr)/IP(r)|,

and #or 1/(2 - qr). 2 To construct GBP messages firstly compute

fe(Xr() a fa(xa) . (4.5)

(aE A, C

Pseudo-messages no and me are then constructed between region r and each parent region

p or child region c, respectively. The structure of these messages is closely related to ordinary

'The reader should note that the definition of s(p, r) differs from the equivalent definition proposed in [11]
2When a region has no parent, i.e. P(r)I = 0, we set q = fOr 1.



BP messages. Specifically,

n' (x,) = f,(xr) T m,,,(x,) 11 ncr(xc) , (4.6)
p'GP(r)\p cEC(r)

and

m0c(xc) Z [ ff(Xr) 1 mpr(xr) 17 nclr(xc/). (4.7)
Xr\Xc pEP(r) c'EC(r)\c

Note that message n, does not require marginalization because by definition {Xc} C {X.}.

The final GBP messages to be passed along the edges of R are given by

nrp(Xr) (n'p(Xr))1Or (m,(xr))Or1 (4.8)

and

mrc(xc) (n,(xc))Q (M c(x))/'3. (4.9)

The belief of region r can then be computed using

br(Xr) = fr(Xr) 11 ncr(Xc) 1 mpr(xp). (4.10)
cGC(r) peP(r)

To compare the parent-child and two-way algorithms in the context of distributed pro-

cessing and location-aware networks, we make the following remarks.

" Unlike the two-way algorithm, the parent-child algorithm requires knowledge of mes-

sages in addition to those that travel directly in and out of region r through the sets

s(p, r) and n(p, r). This can create complications for the controlling node i for region

r, because i needs to obtain all messages mi, where (i, j) E s(p, r).3

* Unlike the parent-child algorithm, the messages for each region r in the two-way algo-

rithm require knowledge of counting number Cr.

3 Node i could could obtain these messages through routing information in G.



* As shown in (4.4), the messages in the parent-child algorithm require taking ratios of

messages, which can be non-trivial depending on the representation of messages [17].

Although, the two-way algorithm does not require taking ratios of messages, it requires

the exponentiation of some intermediate or pseudo-messages.

The two-way algorithm is particularly attractive for distributed processing due to each region

r E R only requiring knowledge of messages going directly into r. For this reason, we

will exclusively use the two-way algorithm for distributed location-aware networks in the

remainder of this manuscript.

4.3 Message Representation Techniques

As per the previous chapter, the messages that are transmitted in GBP are functions of

probability distributions, and these distributions must be represented in a manner that can

be transmitted as packets by physical network nodes. Ultimately, the chosen technique of

message representation has a high effect on the accuracy of inference and on the complexity

of the algorithm under test. In traditional communications problems, such as decoding,

messages can be represented efficiently and exactly through, for instance, log-likelihood ra-

tios [43]. Due to the complexity of GBP messages, exact parametric representation is not

feasible in a large class of inference problems, so we must resort to approximate message

representation [1,18]. Any representation must be able to capture the salient properties of

the true message, and must enable efficient computation of the algorithm's key steps. We

consider three types of message representation: parametric, discretized, and sample-based.

4.3.1 Parametric Message Representation

If messages can be represented exactly using parametric functions then the manipulation of

GBP messages is greatly simplified and can become highly computationally efficient. In the

context of location-aware networks, there is no known method of representing beliefs para-

metrically in an optimal fashion, so messages can instead be approximated using functions.



For example, in [41], we exploited the known shape of singe-agent beliefs in two-dimensions

by constructing a parametric D-distribution for a each agent's belief. The D-distribution is

only applicable in homogeneous environments of infinite size. The PDF of each node's belief

is defined as

D(x; mi, m 2, , p) oc exp 2a2 ( - mi)2 + (X2 - M2 )2 - P] , (4.11)

where [Mi, M2] is the midpoint of the distribution, p is the radius, o2 is the variance, and

the proportionality sign denotes a normalization constant not shown. As a special case, note

that if p = 0 then (4.11) collapses to a two-dimensional Gaussian.

Analysis of the errors introduced into the localization process by such approximations is

an open problem and, when beginning to explore the use of GBP algorithms for location-

aware networks, this motivates alternative message representations that will increase local-

ization accuracy, even at the sacrifice of some computational complexity.

4.3.2 Discretized Message Representation

A simple method of representing the beliefs {b(i)} and ranging functions #Li is to uniformly

discretize the domain of each function. For example, to represent the belief b(i) of node i, we

divide the environment up into a set of N quantized points { 1,. . . , N, }. The distribution

b(i) is then approximated as a finite list of values, {b(i)}.

The main complications of discretized message representation are that (1) N, scales

exponentially with the dimensionality of i; and (2) an extremely large number of points is

required to capture the fine features of GBP messages and joint beliefs. Due to the accurate

ranging of UWB transmission, the number of points required to capture ranging estimates

is prohibitively high in UWB-based location-aware networks. For example, in a 100m by

100m environment with 1 cm resolution-typical for a UWB system-N, = 100 million is

required. This is not only impractical from a computational standpoint, but also infeasible

to communicate messages with so many values between nodes. These drawbacks motivate



us to find an alternative method of representing beliefs as a discrete set of samples.

4.3.3 Particle-based Message Representation

In location-aware networks, the flexibility and computational scalability offered by particle-

based messages makes this implementation strategy particularly attractive. Our particle

methods will be based on IS due to the low-dimensionality of region messages and due to

the existence of natural sampling distributions for each #ij, as discussed in Sec. 4.1.

If all joint beliefs {b,} are represented using equally-weighted samples, then we need

to manipulate these samples as described by (4.5)-(4.9). The following section describes

techniques to represent such messages.

4.4 GBP Message Construction

We assume that each node i has belief b(i) represented by N, equally-weighted samples. As

per (4.5), a set of particles needs to be multiplied together and then exponentiated by cr.

Each term fa(xa) is either an agent's belief bi(i) or a ranging distribution #i$(i,j), and

to multiply each fa(xa) we take the following steps. We arrange the functions in A, into

disjoint "sampling groups." Specifically, let {Bi} be a collection of disjoint subsets of A,

such that Ui Bi = A,. For each belief bi E A, we construct a unique Bi = <bi U bi, where

i = {i (i, ji), ... ,#(i,jjN)}, i-e., Bi is made up of node i's belief and all factors that

represent transmissions going out of node i. To sample from Bi = bi(i)#i$ (i, ji) - ij (i, iN)

we use IS. Set b (i) as the sampler distribution and then let

w(k) - 0,((k), 3 ) -. j- (k),*(k)) (4.12)

Similar to [421, we now sample from ]EV Bi using IS with the sum EicV Bi as a sampler

distribution. This creates N, equally weighted samples that represent f,(b,). The interested

reader is referred to [42] for details.



The next step in constructing a GBP message requires exponentiating the N. equally-

weighted particles that represent f,(j) = ]~J fa(xa) by cr, as per (4.5).4 Raising a belief to

a positive power should concentrate the distribution toward the regions with a high density

of particles. We propose the following method to raise a set of particles to a power. Similar

to [1, 17, 18], we use kernel density estimation (KDE) to approximate f,(j) as a Gaussian

mixture, i.e.,

f,(j) Zw(k)Jv(j(k), 2 ), (4.13)
k

where a2 is the variance as per KDE and A(p, u2) is a Gaussian PDF with mean A and

variance a2. When the number of samples N, is large then computing f,(j) for each sample

k directly becomes computationally expensive so we require a simplifying approximation for

this step; we do so as follows. Taking logs of both sides of (4.13) we obtain

ln f,(j) = ai + ln { exp(AV k)) exp (-(j - j(k)) 2 /2U2 )
k

ai + +( (j) A),... , L(Nrs (j) + 1(NS)) (4.14)

where L(k)() (- j(k))2/ 2 2, W(k) = exp (A(k)), a1 is a constant, and M is the Jacobian

logarithm defined as

(x) . . (Ns) )ln{ exp(X(k))}. (4.15)

Note that A is also recursive, i.e., MA(x(l), ... 7x(N)) - A4(X( 1),A4(X( 2),.. .,X(Ns))). In

typical location-aware networks, the number of samples N, used to represent f,(j) is small

so |IL) + A) - L(k) - A(k) is usually large if i / k. (Typical systems use 500-2000

samples [18,19, 43].) Substituting the kth sample j(k) E {f,(j)} into (4.14) and using the

recursive property of M we obtain [44,45]

1n f,(j(k)) = a 2 + max {L(1)(I(k)) + C), .... , L(Ns)( -(k)) + A(Ns) (4.16)

41n this case j is a random vector that includes all variables in Vr.



where a 2 is a constant. Eq. (4.16) is similar to approximating a Gaussian mixture distribution

by its most dominant component. Now let us define Lax(j(k)) - max {(-(i) - j(k))2}, and

if we have equally weighted samples then

In f,(j(k)) -a 2 + Lmax(j(k)) + A(k) (4.17)

This shows that we can approximate the height of f,(j(k)) in the log-domain as a function

of Lmax(j(k)). We use this fact to approximate the height of f,(j(k))c- by defining W(k)r -

exp {(Cr - 1)Lmax(j(k)) }; intuitively, if c, is positive then the closer the nearest sample to

j(k), the greater its weight will become. The weight of the exponentiated distribution will

then be focused around regions in which samples are close to one-another, as desired. If c,

is negative, then the opposite effect will occur. Algorithm 3 summarizes the exponentiation

of a set of equally weighted samples to approximate f (x,).

Algorithm 3 The exponentiation of equally-weighted samples {f,(j(k))} to a power Cr.

1: Perform KDE on the equally weighted samples and obtain a variance o2

2: for samples k = 1 to N, do
3: Find Lmax(j(k)) - ax _(j(i) - j(k))2}

k~i

4: Find weights:
w(k)c - exp {(Cr - 1)Lmax(j(k))}

5: end for

The next step in manipulating the set of particles {xk) } is to multiply {xrk)} with sets of

messages incoming to r, as per (4.6) and (4.7). To multiply messages we first approximate

each message in the sets P(r) and C(r) using KDE (this allows us to evaluate the multi-

plication of these messages at any given point). Finally, the messages nrp(Xr) and mrc(xc)

are computed by exponentiating this set of samples by or, as per (4.8) (4.9). Algorithm 4

summarizes these steps to construct a particle-based GBP message.



Algorithm 4 The two-way GBP algorithm for region r.
1: Multiply factors in r using KDE and then resample to create a set of equally weighted

particles
2: Compute ff(Xr) using Algorithm 3
3: Receive all incoming messages from neighboring regions
4: Multiply incoming messages with fC(Xr) as per (4.8) and (4.9)
5: Use KDE to approximate the multiplication of these messages and then resample to

create a set of equally-weighted particles
6: Compute /3r
7: For each sample in mo,,(xc), discard dimensions of (4.9) that are not required
8: Exponentiate the pseudo-messages by or and or - 1, as per (4.8) and (4.9)
9: Multiply the exponentiated pseudo-messages using KDE and then resample to create a

set of equally weighted particles
10: Compute the belief of region r by using (4.10)

4.5 An Example of Particle-based Message Represen-

tation

We now describe an example CNRG that was generated from a network graph using a

subgraph Dt. We then give instances of GBP messages that flow in this CNRG.

Consider Fig. 4-1, which shows a network graph of 10 nodes. The shaded nodes form

a CDS and a subgraph Dt c g is denoted by shaded nodes and double-line edges. The

subgraph Dt was generated using Algorithm 1, as outlined in Sec. 3.1. In this location-aware

network, agents/nodes that do not know their position are denoted by numbers 1-3 and

anchors that know their position are denoted A-G. The subgraph Dt forms a tree so the

edge (1, B) will not be included in the CNRG, and this guarantees the CNRG generated

from (0, Dt) will be MN. Note that both agents and anchors may be dominating nodes

included in V(D). In a location-aware network, each agent requires at least three links to

localize without ambiguity, and Fig. 4-1(a) meets this requirement. Anchors A G know

their positions a priori so no ranging information needs to be transmitted to them by their

neighboring agents. This means that the edges connecting anchor i to agent j consist of only

a single #g (i, j) function from i to j, and that 4ji(j, i) - 0.

We now turn our attention to Fig. 4-1(b), a CNRG generated from Fig. 4-1(a) that is



MN by Theorem 2. The set of outer regions Ro is shown in the first two rows of Fig. 4-1(b).

Each r C Ro is generated by clustering or grouping the neighbors of one DN. All remaining

regions are generated using the Kikuchi method, as per Algorithm 2.

To construct GBP messages using Algorithm 4, let us denote the following three regions

each in Ro: let r12A denote the region containing edges (1, A) and (1, 2), let T23G denote the

region containing edges (2, G) and (2, 3), and let r32B denote the region containing edges

(3, 2) and (3, B). As an example, we define the sets A, for these regions explicitly,

Ar=2 A {bi, b2 , bA, #M1, 012, #21} (4.18)

AT23G b1 , b2 , 3 , bG, 12, 2 1, OG 2, 0 23,7 32 } (4.19)

Ar 3 2 B {b 3, b2, bB, bE, bF, 023, 032, 03B, OB3, OE3, OFE} - (4.20)

The next step requiring constructing the set {Bi} for each Ar above. As an example, let us

consider only r32B, so AT3 2 B = UJ Bi is constructed as

Ar32B {b 3 , #32, #3B} U {b 2 , #23} U {bB, #B3}

U {bE, OE3} U {bF, OFE} - (4.21)

The other {Bj} sets associated with each region can be constructed in a similar manner.

The sampling distribution for B 3 = b30 3203B is then b3 and the weight of the kth sample of

b3 is given by

w(k) - p/q

= b3 0p32 (X3k)X2 )#3B(X3k ))/b 3 (X3k)

= # 3 2 (I(k) (k) ) 3B(2k) (k)

The remaining sets and samples are constructed accordingly and Algorithm 3 is then used

to compute fr 3 2 B(Xr 3 2 B) as per (4.5).

Let us now construct a message from the region r 23 containing the edge (2, 3) in R 1, shown



in the third row of Fig. 4-1(b). To construct this message, let r 3 denote the region in R2

containing only node 3 and let r 2 denote the region in R 2 containing only node 2. Let us now

construct the message mr2 3 r 2 . We compute 3
r3 = 1. As per (4.9), mr0(xr) =m ) (xr2)

and

mr23 (xr2 ) = f 23 (X2, X3)mr 23Gr23 (X2, X3)mr 32Br 23 (X2, X3)flr 3 r2 3 (X3) 423
X3

The belief of region r 23 is given by

br23 (x 2, X3) = f 3 (x2 , X3)nrr2r23 (X2)nr 3 r23 (X3)mr 21 Gr23 (X2 ) X3)Mr 32Br 23 (X2 cc3)

Note that when implementing GBP in any location-aware network it is only required to

compute the beliefs of the outer regions. For instance, to compute the belief br2 3 (X2 , cc3), one

can equivalently compute the belief br23 through br3 2 B (X2, cX1, X3, zG)

br3 2B (X2 , cc1 , c3, XG) = fr 32B (X2 , X1, X3 , i G) 11 n(c)(r 23)(Xc) - (4.25)
cEC(r 2 3 )

The beliefs of r23 would then be represented by 4-dimensional samples and so to compute

br2 3 one can discard the dimensions that represent X1z, cG-
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(a) A network graph for cooperative localization. Nodes that do not
know their position are denoted by the numbers 1-3 and anchors
that have knowledge of their position are denoted by the letters A-G.
Nodes 1-3 have at least three neighbors each so that they can all be
localized without ambiguity.

(1, {2, A})

h,=1

(1, 2)
c =-1I
hK = 1

K

(b) A CNRG generated from the network graph G, as depicted in Fig. 4-1.

Figure 4-1: An example of a mapping from a network graph to a CNRG.

A



56



Chapter 5

Variants of BP for Location-aware

Networks

Chapter 3 developed a framework for GBP algorithms for self-inference problems, and Chap-

ter 4 demonstrated the GBP algorithms with particle-based messages for location-aware net-

works. The goal of this chapter is to show the performance of simplified GBP algorithms,

that use particle-based messages, and to compare them with conventional localization algo-

rithms.

There is a large number of parameters that need to be optimized when implementing

any GBP-based algorithm in location-aware networks. Numerous questions remain about

how to find optimized or appropriate parameter values for such networks. This holds true

for both GBP as well as BP algorithms, GBP's simplified counterpart. For BP algorithms

in particular, issues such as agent mobility parameters, methods to overcome the potential

lack of localization infrastructure, the degree of inter-agent cooperation, and computational

complexity are all open questions. Prior to addressing these issues for GBP algorithms, such

areas should be understood for the simplified BP counterparts. Hence, to begin exploring

this space and to shed insight on these issues, in this chapter we will simplify our GBP

algorithms to BP.

Key strides can be made to the full deployment of BP algorithms by overcoming the



following two key limitations. First, all previously proposed BP algorithms for location-

aware networks have been restricted to static networks. However, the majority of location-

aware networks are highly mobile. Second, there exists a lack of understanding of the

effect of varying degrees of cooperation a key component of computational complexity -on

localization accuracy.

This chapter will explore the issues of mobile networks and computational complexity by

" extending and quantifying the performance of existing BP-based algorithms for lo-

calization [1], by allowing for mobile agents and by removing all fixed infrastructure;

and

" proposing a set of heuristics that reduce the computational complexity of BP-based

algorithms by systematically reducing the quantity of messages passed in the network.

The algorithms explored in this chapter are those presented by the author in [1, 18,41].

In these papers, the inference back-bone defined by subgraph D is equal to g, and as shown

in [11], all BP region graphs are maxent-normal (MN). We now address the following

problem.

Consider a wireless network of N nodes. We denote the position of node i at the beginning

of time slot t as (0), and the aggregated positions at time t as x(t. In general x(t) may include

other information such as orientation and velocity for all or for a subset of the nodes. The

set of nodes from which node i can receive transmissions at time slot t is denoted by N.()
At time t node i receives packets from node j E Af(t) and extracts signal metric d. Further,

node i may estimate its own movement from time slot t - 1 to time slot t using a local signal

metricd (t), (obtained from an odometer, for example). We represent all measurements in

the network up to time t by' a(l:0, which can be decomposed into a(':') and d (t). The vector

d(lt) denotes all intranode measurements while dlt) denotes all internode measurements.

'Similarly, x(Ot) denotes [x(), , x(0 ].



5.1 BP in Mobile Networks

In this section we extend and quantify the performance of existing BP-based algorithms for

localization [1], by allowing for mobile agents and by removing all fixed infrastructure. The

results presented in this chapter can be found in [18]. In [1], a BP-based algorithm was

presented for self-tracking with anchors or existing infrastructure. In this work, the work

in [1] is extended to remove the infrastructure/anchor requirement.

We assume that each node i knows the following probability distributions:

eb(iCm)h

p(t) (-1) ,sl) for t > 0; and

e p(d( Qi( , j( ) for t > 0.

The goal of each node i is to estimate its position () at time t.

5.1.1 BP Algorithm Description

The reader is reminded that although BP is a special case of GBP, it is natural for BP

messages to be defined as traveling across a factor graph, as opposed to a region graph. We

use this convention here and so factor graph messages will be denoted by p (as opposed

to m, which is reserved for the region graph counterparts in earlier chapters). Our BP

algorithm is derived as follows: we create a factor graph of the factorization of p(x(Ot) I(1:t))

and map this factor graph onto the network topology. The factors are then grouped via the

local information available at each node, as demonstrated in Fig. 5-1. We then introduce a

message schedule that accounts for time-varying network connectivity.

Due to conditional independence, p(x(0:0| d(1:0) can be written as

t

(0(:t) (1:t)) a (U) (U--1) am )Pa ju)
n=1
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(a) An example network of homogeneous nodes at time
t operating within some environment, where each node
is depicted as a circle. Four nodes in the network i, j,
k and 1 are highlighted and their network connectivity
is shown as internode lines, e.g.) .N') = {j, k}.

(b) A segment of the time-varying factor graph that corresponds to of Fig. 5-1(a). The clouds in the figure
indicate the remainder of the factor graph outside of i and j.

Figure 5-1: A network of nodes placed in an environment. A subset of the network connectiv-
ity is shown in Fig. 5-1(a) and a portion of the corresponding factor graph is shown in Fig. 5-
1(b). The partial factor graph of a p(x( le(t)) shows only the vertices that are mapped

to nodes i and j. We have introduced h(') = p(i( t +l) i()0), dJt ) and # =p( iC, j(0)
The thin arrows denote messages within a node while the bold arrows indicate internode
messages.

where p(x(*)|x("--), dsl) and p(a) Ix(u)) can further be factorized as p(I(") d(-l

and IN21 fjjVc p(d) i(), j(u)), respectively.

At time t nodes only have available past signal metrics d(1:) so messages on the factor

graph must flow from past to present (from top to bottom in Fig. 5-1). In Fig. 5-1, we



have abbreviated p(i(t+1)gi(t) ) dtslf ) by hi) . At time t, node i first computes p-'ht1)i(t) ( )

based on the message pit1 1 (~1)) and its own mobility model p(i(o i(t-1) c P)f ); no

information from other nodes is required. We call this the prediction step. Node i then

uses the message ph -)i(t) (C0)) and all the relative signal metrics at time t to compute

Pi(t)h(t) (i(t)). We call this the correction step. The exchange of information between nodes is

depicted in Fig. 5-1 by bold arrows. By proper scheduling, the internode messages sent by

node i do not depend on the recipient node, and thus node i can broadcast its messages.

Algorithm 5 Outline of BP-based localization for mobile networks

1: nodes i = 1 to N in parallel {prediction step}
2:

p h - 1X (t) a E(t) (t- 1) P j ( t- 1))
(,-1)ise) 1Xt1)ht1)

3: b ) (i0)) (iXt) )
1-(t-l)

4: end parallel
5: node i receives packets from j E A/) and extracts signal metrics d Vi, j
6: for 1 = 1 to Niter do {iterative correction step}
7: nodes i = 1 to N in parallel
8: broadcast b(1 1 (i0))

9: Vj E Nt): receive b('- 1 (j'(0) and convert to a distribution over iC)

p (i)) oc p EP |dj9imtj(0 b(1-1 (j-m)

10: update belief

b0) (i)) oc 11 yoit (i)) bW- (i0))

11: end parallel
12: end for
13:

TheBP-ase a() = b (Niter) ( w bt) ) p c

The BP-based algorithm at time t is outlined in Algorithm 5, with both the prediction



step (lines 1 4) and correction step (lines 6-13). Due to cycles in the factor graph, the

correction step is iterative. In Algorithm 5, we have introduced bW (i)), the belief of node

i at iteration I of the correction step during time slot t.

5.1.2 Numerical Results

We now evaluate the performance of the BP-based algorithm, relative to the commonly used

cooperative least squares (CLS) algorithm used in [46], for location-aware networks with

mobile agents without infrastructure. Variations of the CLS algorithm can be found in [47,48]

and a more general overview of least squares techniques in the context of localization can

be found in [49]. CLS is an iterative algorithm whereby nodes exchange point estimates

of their position, and update their position estimates to minimize the least-squares cost

function. While CLS is not a Bayesian algorithm, CLS can cope with limited mobility by

setting initial position estimates at every time slot to be the final position estimates from

the previous time slot. The BP algorithm uses the minimum-mean-square-error (MMSE)

estimator to obtain a position estimate after each time step. The performance criterion to

compare algorithms is outage probability: for a certain scenario (mobility model, number of

agents, time index t), and a certain allowable error e (say, 1 meter) an agent is said to be in

outage when its position error ||i - il exceeds e. The outage probability is then given by

Po1 t (e) = E [IT{i - ill > e}] (5.1)

The expectation in (5.1) is taken with respect to the locations of the agents. Results have

been obtained via Monte Carlo simulations with a network of 100 mobile agents located in a

100m by 100m area. All results are averaged over 30 random network topology instantiations.

Every agent i moves from time slot t - 1 to time slot t in a direction 0 ) that is uniformly

drawn from [0, 27r) and crosses a distance d(') that is drawn from a Gaussian distribution

with mean zero and standard deviation Umob c {1, 10} meters. Agents move independently

both with respect to one another and between time slots. At time t = 0, every node is



assumed to have perfect location knowledge, i.e., the a priori distribution b(i( 0)) is a Dirac

delta function Vi. Agents do not know in which direction they move, but they do know the

distance they travel, i.e., dt) d(t) and
i, self -

The distribution p(df j(t), J(0) is based on the experimentally derived ranging model de-

scribed in Chapter 4.1. Messages are represented using samples: 500 samples for internode

messages and 1000 samples for intranode messages. Finally, the BP algorithm was simulated

with only Niter = 2 whereas CLS was simulated with Niter =50.

In Fig. 5-2 we show the outage probability at t = 20 for both the CLS and BP. Observe

that in general, the lack of infrastructure allows fewer nodes to localize in the CLS setting.

CLS is comparable to BP in this case because CLS is highly sensitive to initial location

estimates, and when nodes move slowly, these are fairly accurate. Hence when mob = 1,

BP provides only marginal improvement compared to CLS. However when nodes are highly

mobile (Umob = 10) then initial location estimates at each time step may be poor and BP

provides considerable improvements in terms of outage probability. For example, with an

allowable error of 2m and when omob = 10, CLS provides outage in approximately 25% of

cases, whereas the BP-based algorithm provides outage in only 5% of cases (i.e. in this

scenario BP provides a factor of 5 improvement in terms of outage probability).

5.2 Degrees of Cooperation

This section proposes a set of heuristics that reduce the computational complexity of BP-

based algorithms by systematically reducing the quantity of messages passed in the network.

Equivalently, these heuristics systematically reduce the degree of inter-node cooperation.

When a set of network nodes pass messages cooperatively in order to localize, it is intuitive

that not all messages are equally important. Additionally, if each message is made up of a

high number of samples, based on techniques described in Chapter 4, then passing a high
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Figure 5-2: Comparison of outage probability at t =20 for BP and CLS self-tracking in a
network with 100 mobile agents, with Umob = 1 and o-mob = 10. For CLS Niter = 50 whereas
for BP Niter = 2. Results are averaged over 30 randomly deployed networks.

number of messages may have prohibitive computational complexity. For each network node,

the algorithm complexity scales linearly in the number of neighbors. On the other hand,

information from neighbors may not always be useful: (i) when the receiving node's belief is

already very informative (e.g., tight around the mean); or (ii) when the transmitting node's

belief is very uninformative.

To understand the degree of cooperation that is most beneficial, we will consider different

levels of cooperation. Let us first introduce the following terminology: a distribution is said

to be "sufficiently informative" when 95% of probability mass is located within 2m of the

mean; a node becomes a virtual anchor when its belief is sufficiently informative; a virtual



bi-anchor is a node with a bimodal belief, with each mode being sufficiently informative; a

node that is neither a virtual anchor nor a virtual bi-anchor will be called a blind agent. We

are now ready to introduce four levels of cooperation at every iteration:

" Level 1 (Li): Virtual anchors broadcast their beliefs, while all other nodes censor

their beliefs. Virtual anchors don't update their beliefs;

" Level 2 (L2): Virtual anchors and virtual bi-anchors broadcast their beliefs, while

blind nodes censor their beliefs. Virtual anchors don't update their beliefs;

" Level 3 (L3): All nodes broadcast their beliefs. Virtual anchors don't update their

beliefs; and

" Level 4 (L4): All nodes broadcast their beliefs. All nodes update their beliefs.

In terms of cooperation, note that L4 is more cooperative than L3, L3 is more cooperative

than L2, and L2 is more cooperative than L1. In this sense, the different levels of cooperation

are strict subsets. Our results will demonstrate how localization performance varies the level

of cooperation (LI, L2, L3, or L4).

All simulations were performed in a 100m x 100m homogeneous environment, with 100

uniformly distributed agents that do not know their position and 13 fixed anchors with known

positions in a grid configuration. Every node can range to other nodes within 20 meters. To

decouple the effect of mobility with the message representation, we consider a single time

slot, where every agent has a uniform a priori distribution over the environment S. The

algorithm was run for Ni = 20 iterations, though convergence was generally achieved well

before 10 iterations. We also quantify the localization performance using outage probability.

To estimate outage probability, we consider 50 random network topologies.

First of all, to establish comparison, we consider the computation time and outage per-

formance of the BP-based algorithm as a function of the number of samples S, and the level

of cooperation. Fig. 5-3 shows the comparative running time (all running times have been

normalized for comparison purposes) averaged over 20 iterations and 50 random networks.



The figure demonstrates that as S increases, the running time of the algorithm significantly

increases. In particular, when L4 is used with S = 4096, the running time per network is

over 100 times that of the L2 parametric version.

Fig. 5-4 shows the comparative outage probability at e = im after 10 iterations. L1,

L2, and L4 cooperation are not very sensitive to S, and generally outperform L3, especially

when S is small. This is because the more complex distributions that are broadcast by L3,

as compared to L2, cannot be well represented by few samples. In L4, this effect is offset

by the fact that nodes keep updating their beliefs at every iteration, thus avoiding early

convergence. We will provide intuitive reasoning as to why L3 is outperformed by Li and

L2 later in this section. In the remainder of this chapter we set S = 2048.

Fig. 5-5 shows the effect of the level of cooperation on the outage probability using the

BP-based algorithm after Nit = 20 iterations. In general, L4 has the best performance in

terms of accuracy and outage probability floor. Intuitively, one might expect L3 to have the

next best performance, followed by L2, and then L1. However, Fig. 5-5 demonstrates that

L3 has poorer accuracy than L2 and a similar outage floor. This effect can be explained as

follows. The outage probability curve is a function of the number of agents in each network

that have become virtual anchors, and the accuracy of each virtual anchor's belief. The

fraction of agents that do not become virtual anchors within Nit = 20 is 1.7% for L1, and

0.3% for both L2 and L3.2 This creates an outage probability floor, as those agents tend to

have large localization errors. Since L2 and L3 have a similar fraction of agents that do not

become virtual anchors, they have similar outage floors. The accuracy of beliefs belonging

to agents that have become virtual anchors turns out to be highest for L1, followed by L2,

and then L3. This is because L3 uses less reliable information than L2, which in turn is

less reliable than L1. The final performance depends both on the fraction of virtual anchors

(lowest for Li), and the accuracy of those virtual anchors (highest for LI). Note that we

cannot compare L4 to L3 in this context, since there is no concept of a virtual anchor in L4.

In Fig. 5-6 we evaluate the outage probability for the BP algorithm as a function of the

2 Note that for L4 there is no concept of virtual anchor.



allowable error and the iteration index, respectively, for different levels of cooperation. L3 is

outperformed by L2 and L4 (as we expect from Fig. 5-4), and even by L1 (for e > 2 m).

In summary, our results show that more cooperation leads to faster improvement in

terms of accuracy. The lowest level of cooperation, L1, is consistently slower to converge

and achieves less accuracy. However, higher levels of cooperation also require the compu-

tation and representation of more complicated distributions. As a possible consequence,

convergence issues may occur for L3 and L4 cooperation.
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Figure 5-3: The effect of the number of samples S and the degree of cooperation on the
running time per network in the BP-based algorithm. All running times are normalized for
comparison purposes.

L1 Sample-based

L2 Sample-based

L3 Sample-based

L4 Sample-based

- 4Sml-ae



Li Sample-based
L2 Sample-based

L3 Sample-based

L4 Sample-based

2048

S
4096

Figure 5-4: The effect of S and the level of cooperation in the centralized algorithm, on the
outage probability at e = 1 meter. All results are after Nit = 10 iterations.
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Chapter 6

Conclusions and Future Research

Network region graphs (NRGs) and GBP algorithms hold promise as a solution to self-

inference problems. This paper introduced NRGs which allow GBP algorithms to be dis-

tributed across physical networks. A physical "backbone" or subgraph of any connected

network graph is formed across which the computation for GBP is distributed. Clustered

region graphs were developed as a method of generating RGs from network graphs. It

was shown that all clustered region graphs that form trees and single cycles are maxent-

normal. We then developed a distributed algorithm that generates a clustered region graph

and passes messages for GBP. As a case-study, a method for representing GBP messages

non-parametrically for location-aware networks was derived. Finally, as a special case, we

quantified the performance of BP algorithms in mobile networks, as well as in static networks

with varying degrees of cooperation.

Future work includes completing the performance quantification of the presented network

region graph algorithms in networks with multiple hundred nodes. The maxent-normality of

our generated region graphs ensures superior performance when compared to BP, but there

may exist other region graph structural forms that can guarantee maxent-normality. The

identification of such structures could lead to the design of new NRG algorithms. Finally,

the ability to generalize the maxent-normal property may simplify the design of both GBP

as well as BP algorithms.



72



Appendix A

Proofs of Chapter 3 Lemmas

Proof of Lemma 1. Let i, j E V(9) be unmarked nodes where (i, j) E E(G). Let 7Z be an

MN C-RG, and r1 , r 2 E 7? include either bi or bj. Due to the inter-cluster property, the

smallest common zone included within both r1 and r2 must include {bi, bj, #ij, #5j}. Thus

every child region that has both r1 and r2 as parents also contains this common zone.

Removing (i, j) from E(g), only removes #ij and 3i from the common zone. This

implies that |V(7Z) and E(R) remain invariant through this edge removal, and thus {c,}

also remains invariant. Therefore, a modified C1-RG R', generated from a modified g by

removing (i,j), is also MN.

Assume an MN C1-RG RZ is generated with (i,j) ( E(g). Suppose we add (i, j) c E(9)

without violating the inter-cluster property, and then generate a new C1-RG R' from this

newly modified g. Comparing 7Z with R', we see that V(R) = V(R') and E(R7) = E(R),

thus {cr} also remains invariant though this edge addition. Therefore, a modified C1-RG R'

is also MN. L

Proof of Lemma 2. We first consider the addition of any number of unmarked nodes to the

CDG such that the connectivity of each of these new nodes is one. Note that each of these

unmarked nodes is singly-connected to only one DN. Factors and variables associated with

this single edge will be added only to one r E Ro. The remaining regions and edges in 7?

will not be affected by these additions, and thus the MN property will not be affected.



Suppose we add an unmarked node i with connectivity greater than one to the CDG,

without violating the inter-cluster property. Without loss of generality, we only need to

analyze the connections to DNs since, by Lemma 1, connections to other unmarked nodes

will not affect the MN property. By the inter-cluster property, all these neighboring DNs

must form a clique. Only the labels in R will be modified by the addition of this i, so the

modified C1-RG remains MN.

Proof of Lemma 3. An example of a CDGs that forms a chain of length k and its associated

C1 -RG is shown in Fig. A-1(a). The region-based entropy for the C1-RG Fig. A-1(b) can be

written as

Hiz({b}) = C cHr(br)

= H(1, 2,-,. -) + H(1, 2, 3, , -) + H(2,3, 4, -, -)+ - - -+ H(k, k - 1,, )

-H(1, 2) - H(2,3) - ... - H(k - 1, k) (A.1)

The mutual information between random variables is given by [50]

I(X; Y) = H(X) + H(Y) - H(X, Y) (A.2)

so using this we can rewrite the Hr(br) for each r E Ro in terms of mutual information.

For example, we simplify ( (A.1)) by grouping the variables [1,2, -,-] into X = [1, 2), Y =

[1, 2, -, -, \1, 2], and write

(1, 2, - H(1 2) + H(1, 2,1 2) - H(1, 2, (A.3)

Writing the mutual information in the same fashion for each region r E R 0 , where each r

has counting number Cr = 1, and then substituting these terms into (A.1) gives

H-({br}) = -1(1, 2,-,) - 1(2,3, 4,-,) - - I(k, k - 1,.,.)



+ H(1, 2,-, -\1, 2) +H(1, 2, 3,-, -\2, 3) + - -+ H(k, k -1,-, -\k, k -1) . (A.4)

Note that in general the entropy of H(X,) is maximized when the distribution b(xy) is

uniform. Additionally, the mutual information I(Xj) is minimized when b(xj) is uniform [51].

Since HR is a linear combination of negative mutual information terms and positive entropies,

each of which are maximized when their beliefs are uniform, HR is maxent normal.

I |

(a) A small network graph, in which dominating
nodes are shaded. The subgraph D forms a chain
of length k. Unmarked nodes are unlabeled.

bi, b2,7 bi, 7b2, b3, b2, b3, b4,7, bk-1, bk, -,
C= C= c= C=

b1, b2 b2, b3 b _.1, bk

(b) The C-RG generated from the the network-graph depicted in Fig. A-1(a). Dotted arrows denote
breaks in the graph.

Figure A-1: A network graph that forms a chain of length k and its associated C1-RG. For
the sack of discussion, when analyzing chain structures, when suppress the O5j functions in
our RG as they are not relevant to our analysis.
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