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Abstract

Locomotion of biological systems have fascinated physicists and engineers alike for
centuries. In particular, we are interested in the motion of self-propelling bodies
near an air-water interface in the low Reynolds number limit. To investigate this
problem, we take two very different approaches. We first consider the locomotion of
a specific organism, namely, a water snail, that exhibits a striking ability to "crawl"
beneath the free surface. By modeling the foot of the snail as undergoing a simple
sinusoidal motion, we apply lubrication approximations for small deformations to
rationalize this peculiar mode of transport and its dependency on surface tension.
Inspired by this study, the second part of my thesis focuses oii the general two-
dimensional model of an organism that utilizes a free surface to propel itself. Based
on conformal mapping techniques, we are able to derive exact solutions describing the
highly nonlinear coupling between the motion of the swimmer and the free surface
deformations, without putting any limits on the deformation size. These closed-form
solutions are then applied to optimization questions. In the high Reynolds number
limit, swimming near the free surface is known to increase drag on the swimmer due
to the cost associated with creating surface waves. However, we find that, for a low
Reynolds number swinmer that utilizes the free surface to move, a different power law
relation between the distance from the interface and the swimming efficiency exists,
implying that the presence of the free surface can be beneficial in certain parameter
regimes.
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Chapter 1

Introduction

Locomotion of biological systems through different fluid media is an active area of

research for physicists and engineers alike. The motivation for such study varies widely

from a simple curiosity about how organisms move to a more practical one, namely,

taking cues from nature to engineer better systems. One commonplace example

of locomotion is swimming. Often one is interested in reducing drag to enable more

efficient locomotion. For instance, much research is being conducted to design a better

swimsuit to reduce drag for elite swimmers [69, 64, 70, 8, 21, 17]. The magnitude

of the drag force is not only a product of the swimmer's inherent properties (i.e., its

shape and skin texture) but also depends largely on the external factors, such as the

fluid properties and surrounding geometry. One particular environmental factor we

are interested in is the presence of an air-water interface, since different biological

swimmers, ranging from humans to eels, are often observed to swim near the free

surface [32]. This seemingly innocuous act of being close to the free surface tends

to increase drag for swimmers of moderate to large Reynolds numbers, where the

Reynolds number (Re) is the ratio of inertial to viscous effects [32].

With advances in technology that allow one to investigate a world at a microscopic

level, we can now ask the same set of questions about both biological and man-made

swimmers on much smaller scales [25]. Termed low Re swimmers, these tiny organisms

occupy a, world much different from their high Re counterparts and are subject to var-

ious challenges associated with propulsion [68, 56, 42, 10, 13, 18]. Any time reversible



or reciprocal motion generated by these swimmers, isolated in an unbounded fluid,

cannot give rise to locomotion. This constraint is known as the Scallop Theorem [56].

Going back to locomotion near the free surface, we are especially interested in how

low Re swimmers transport themselves under the influence of surface tension in this

inertialess world. More specifically, we investigate here a kind of low Re swimmers

that utilize the presence of the free surface to move forward. Within this framework,

the influence of the free surface on the swimming efficiency may be favorable, contrary

to what is commonly known for high Re swimmers. In other words, the swimmer's

proximity to the free surface may be more energetically favorable for its locomotive

efficiency. Furthermore, we calculate the swimming protocols and corresponding free

surface shapes that minimize the viscous drag.

We begin by looking at nature and considering a specific organism that employs

a very curious mode of locomotion near the air-water interface. Some freshwater

and marine snails have been observed to "crawl" underneath the free surface that is

unable to sustain shear stresses [14, 47, 29, 22, 19, 20]. A specific type of water snails

that we study -- Sorbeoconcha physidae - is believed to undulate its foot in some

fashion and consequently deform the free surface above. It also leaves a trail of mucus

when it travels, leading one to postulate that a thin layer of mucus exists between

the foot of the snail and the free surface at all times. Based on these observations,

we develop a two-dimensional lubrication model for the surface tension driven flow

inside the thin mucus layer and tie it to the external flow around the snail to derive

the relationship between the propulsion of the snail and the shape of the interface

[39].

Motivated by the study of water snails, we then consider a completely general

swimmer that is not constrained by geometrical factors, such as a thin layer of fluid

between the free surface and the swininier. Instead, we look at a swimrimer in a semi-

infinite fluid bounded by an air-water interface, again in two dimensions. Because we

are more interested in the large-scale flow field generated by this swimmer, rather than

the detailed swimming patterns, we model the swimmer as a suni of mathematical

singularities. These simplifications allow us to employ conformal mapping techniques,



in which we use a known invertible map z(() that relates the physical space z to the

conformal space (, the unit circle. Then in this conformal space, we can obtain exact

solutions describing the flow and map them back to the physical domain. Once these

solutions are known, one can delve deeper into a number of interesting problems, such

as the energetic cost associated with this type of locomotion.

In the limit of low Reynolds number, the presence of the free surface can be used

to give rise to propulsion. This thesis consists of two different approaches to this prob-

lem one that considers a specific organism and a simplified mathematical model

(Chapter 2), and the other that explores a more general and robust mathematical

analysis of swimming near the free surface (Chapter 3). The first part satisfies the

scientist's curiosity of finding problems in nature and figuring out how a particu-

lar swimmer achieves its motion. The latter provides a more rigorous framework to

understand free surface swimming that can potentially be used to manipulate the

presence of interfaces for more efficient locomotion. This question of efficiency and

optimization is investigated in Chapter 4, followed by a conclusion in Chapter 5.





Chapter 2

Water snail locomotion

'Engineers often look to nature's wide variety of locomotion strategies to inspire new

inventions and robotic devices [11, 16, 1. 53]. More generally, scientists across all

disciplines are interested in understanding the physical mechanisms behind different

styles of biolocomotion. The mechanism of terrestrial snail locomotion has been

investigated and elucidated over the last couple of decades; conversely, the propulsion

of water snails that crawl beneath a free surface has yet to be considered. The purpose

of this chapter is to propose a propulsive mechanism for water snails.

Gastropod locomotion has been of scientific interest for more than a century [63,

72, 50]. Three distinct modes of locomotion have been examined: ciliary motion,

pedal waves, and swimming. Ciliary locomotion, characterized by the beating of

large arrays of cilia on the animal's foot, is usually distinguished from pedal waves

by indirect means, such as lack of visible muscle undulation, uniform adherence of

the foot to the substrate, and a uniform gliding of the snail body [4]. This particular

type of locomotion is mostly employed by various marine and freshwater snails.

A significant effort has gone towards understanding pedal wave locomotion by

terrestrial snails. Lissmann [44, 45] was a pioneer in constructing a mechanistic

model of the snail foot undergoing such locomotion. In Ref. [44], lie studied three

species of terrestrial snails (Helix, Haliotis, and Pomatias), all of which use waves of

'This chapter appeared as Crawling beneath the free surface: Water snail locomotion in Physics
of Fluids 20, 082106 (2008).



contraction that propagate in the direction of their motion ("direct waves"). Waves

traveling in the opposite direction ("retrograde waves") were examined by Jones and

Trueman [34]. A vital insight was later provided by Denny [23], who turned the focus

of study from the snail foot to the properties of the pedal mucus. Pedal mucus has

a finite yield stress that, allows it to act as an adhesive under small strains and to

flow like a viscous liquid beyond its yield point. Thus, the snail is able to create

regions of flow in the mucus by locally shearing it while the rest of the mucus is

effectively glued to the solid substrate; these regions (or shear waves) propagate along

the length of the foot, enabling the snail to move. Denny used the nonlinear nature

of the mucus to rationalize the locomotion of Ariolimax columbianus, a terrestrial

slug [24]. Recently, it was found that mucus with shear-thining properties results

in energetically favorable locomotion [37], which is well-supported by experimental

studies of the mucus properties. A detailed investigation of the rheology of mucus

was conducted by Ewoldt et al. [26], who also tested different synthetic shines. The

versatility of snail locomotion also inspired Chan et al. [16] to build a robotic snail,

the first mechanical device to utilize the nonlinear properties of this synthetic mucus.

Terrestrial snails that employ adhesive locomotion are only a fraction of species

in the class of gastropods. Traditionally, gastropods have been divided into four

subclasses: prosobranchia, opisthobranchia, gymnnomorphia, and pulnonata, the lat-

ter of which consists primarily of terrestrial snails. Many species have not been

thoroughly investigated but exhibit interesting locomotive behavior. For instance,

opisthobranchs, that have reduced or absent shells, swim [27] or burrow [2, 3]. A still

more puzzling mode of locomotion is observed in certain species of water snails.

In 1910, Brocher [14] remarked on water snails that can swim inverted beneath

the water surface; since then. other qualitative descriptions have been reported.

Milnes and Milnes [47] observed the foot of a pond snail "pulsing with slow waves

of movement from aft to fore along its length," suggesting that direct waves are

employed for propulsion. The presence of a trail of snail mucus was also reported.

Goldacre [29] measured the surface tension of this thin trailing film to be approxi-

mately 10 dynes/cmn; lie also remarked that the creature was "grasping the film" as



evidenced by the film's being pushed sideways as the snail advanced. Deliagina and

Orlovsky [22] made similar observations while studying feeding patterns of Planorbis

corneus. This particular freshwater snail crawls at about 15 mm/s, a speed compara-

ble to that on land, while the cilia apparent on the organism's sole "beat intensely."

Cilia-aided crawling beneath a free surface was observed on marine snails as early

as 1919. Copeland [19] concluded that the locomotion of Alectrion trivittata, which

crawls upside down on the surface, relied solely on the ciliary action. He conducted a

similar study on Polinices duplicata and Polinices heros, both of which were observed

to use both cilia and muscle contraction for locomotion on hard surfaces [20]. Only

ciliary motion was employed by the young Polinices heros when crawling inverted

beneath the surface.

It is therefore clear that freshwater and some marine snails have the striking

ability to move beneath a surface that is unable to sustain shear stresses. In this

chapter, we attempt a first quantitative rationalization of these observations. We

use a simplified model based on the lubrication approximation to show that a free-

moving organism located underneath a free surface can move using traveling-wave-

like deformations of its foot. We first present our observations of the propulsion of

the freshwater snail, Sorbeoconcha physidae in §2.1. We introduce our model based

on the lubrication approximation in g2.2, and present solutions for small-amplitude

motion of the foot. The physical picture for the generation of propulsive forces is

discussed in 2.3, together with the main conclusions and a summary of the simplifying

assumptions used in our analysis.

2.1 Observations

Several common freshwater snails, Sorbeoconcha physidae, were collected from Fresh

Pond, Massachusetts. About 1 cm in length, this particular snail can crawl beneath

the water surface at speeds as high as 0.2 cm/s, comparable to its speed on solid

substrates, and perform a 180' turn in 3 seconds. It is rendered neutrally buoyant by

trapping air in its shell.



Figure 2.1.1: Snail (Sorbeoconcha physidae) crawling smoothly underneath the water
surface while the surface deforms. Note the surface deflection associated with the
undulatory waves propagating from nose to tail along its foot.
David Hu and Brian Chan (MIT).

Photo courtesy of

Figure 2.1.2: A trail of mucus behind the snail crawling upside down beneath the free
surface. Photo courtesy of David Hu and Brian Chan (MIT).

The undulation of the snail foot causes surface deformations with a characteristic

wavelength of 1 mm and amplitude of 0.2 - 0.3 mm (see Figure 2.1.1). This defor-

mation appears to travel in the opposite direction of the snail motion, suggesting the

generation of retrograde waves, contrary to observations of Milnes and Milnes [47).



Another notable feature of water snail propulsion is the presence of a trail of mucus

(see Figure 2.1.2). For land snails, this mucus layer is typically 10 -20 pm in thickness

[26]; as with land snails, its rheological characteristics may also play a significant role

in underwater locomotion. Since these water snails are also able to crawl on solid

substrates, one might venture that their mucus properties do not differ too greatly

from those of land snails.

2.2 Model

2.2.1 Assumptions

The crawling of water snails beneath the free surface has four distinct physical fea-

tures: a free surface with finite surface tension, o-, a layer of (presumably) non-

Newtonian mucus, coupled deformations of the foot and the surface, and a matching

of the flow inside the mucus to that around the snail. To isolate the critical influence

of the first feature, we consider in this paper a simplified model system characterized

by a Newtonian mucus layer and small deformations of the foot and the interface,

with hopes of providing physical insight into the propulsion mechanism.

2.2.2 General equations

Choosing a characteristic velocity U ~1 cm/s, a mucus thickness II 20 jim, and a

(post-yield) mucus viscosity / ~ 10-2 m2/s [26] suggests a Reynolds number of the

flow within the mucus layer to be Re - UH/v ~ 10-. Thus, we neglect inertia and

start with incompressible Stokes equations:

V - v = 0, V - H = 0, (2.2.1a, b)

where v is the velocity field inside the mucus and H the stress tensor. Normal and

tangential stress boundary conditions at the surface may be expressed as

n . -_ =oI t -H -n = 0, (2.2.2a, b)



where n and t denote, respectively, unit vectors normal (outward) and tangent to

the free surface, and - = -V -n, denotes the curvature of free surface. We limit

our attention to the two-dimensional case, for which the interface shape is given

by y = h(s) (see Figure 2.2.1) and 2 may be expressed as hj/(1 +h) 3 /2 where

the "lhat" notation denotes dimensional variables. The mucus is assumed to be a

Newtonian fluid; thus, the stress tensor is given by

11 = -JI + 2pe, (2.2.3)

where e -{(Vv) + (Vv)T} is the rate-of-strain tensor.

In the frame moving with the snail, we assume that the gastropod foot undergoes

periodic deformations in the form of a traveling wave moving at a speed V,. Our

approach is as follows: given the shape of the foot, we solve for the shape of the liquid-

air interface together with the velocity field in the mucus layer, and then calculate

the resulting propulsive force on the snail.

2.2.3 Lubrication Analysis

To eliminate temporal variation, we consider the frame of reference moving at the

wave speed L' relative to the snail (Fig. 2.2.1). We define V,, and the (unknown)

snail speed, V, to be positive when the snail moves in the positive 3-direction while

the wave travels in the opposite direction.
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Figure 2.2.1: A close-up view of the mucus and the snail foot undergoing a simple
sinusoidal deformation of wavelength 27rA. The prescribed shape of the snail foot is
denoted as hi; the resultant shape of the free surface, h2 , is to be solved for. The
known constant speed of the wave, VI, is set relative to the snail that is translating
with an unknown speed, V. In the laboratory frame (a), the wave is moving in the
negative i-direction with V,,, - V, while the snail is moving in the positive 2-direction
with V. In the frame moving with the wave (b), the snail body appears to move in
the positive i-direction with VW.

The thickness of the mucus (tens of microns) is observed to be small relative to a

typical wavelength of foot deformation (millimeters). Thus, we apply the lubrication



approximation [57, 48, 49, 38] and reduce the governing equations based on H/A -

a < 1, where H is the characteristic thickness of the mucus filn, and A the wavelength

divided by 2r. More specifically, terms of order a or higher are discarded in the

equations of motion. The governing equations and boundary conditions (Eq. 2.2.1 -

Eq. 2.2.3) are non-dimensionalized using the following set of characteristic scales:

r~= Ax,

y = Hy,

(It 'C = V (u, av),

Vs V %VSf

g= - "p.
H2

(2.2.4a)

(2.2.4b)

(2.2.4c)

(2.2.4d)

(2.2.4e)

Based on standard lubrication theory, the equations of motion are reduced to the

following:

Dux0 = t
0x X

Dv

dy
Op 82U

0O= -+
Ox Dy 2 '

(2.2.5a)

(2.2.5b)

(2.2 .5c)

while the boundary conditions may be expressed as

=1, at y = hi,

v = 0, at y hi,

0-- = ,at y = h 2,

ah2,xxCa

(2.2.6a)

(2.2.6b)

(2.2.6c)

(2.2.6d)= -p, at y - h2,

where x and y are horizontal and vertical coordinates of the system while z points out

of the page, and i and v are velocity components in x- and y-directions, respectively.



The shape of the snail foot is prescribed by hi (x) while h2 (x) denotes the unknown

free surface shape. Note that Ca =_ pV,/o is not a capillary number in the traditional

sense since V,, is not necessarily the characteristic speed of the flow in the lubrication

layer. In order to allow surface tension effects to remain relevant in the current

problem, the curvature term in Eq. (2.2.6d) is retained despite being multiplied by

a3 ; this is a standard practice in thin film problems with surface tension (see, e.g.,

Goodwin and Homsy [30]).

For convenience, we define a modified capillary number, Ca jV/a 3 - = Ca/a 3

so that the normal stress condition becomes

1
~ 2.x~ = -p, at y = 2. (2.2.7)

Ca

Then by integrating Eq. (2.2.5b) twice with respect to y, and applying necessary

boundary conditions, we obtain an expression for the velocity field in the mucus

layer,

u(x, y) = ,2r.( h 2Y - I2 + h11, - h2 h) + 1. (2.2.8)

The resulting volume flux through the layer,

Q = 112 - h + h2  (172 - / 1 )2 i + 12 + hi (12 - hi) hi - 12 ,
(2.2.9)

is constant since the mucus thickness does not vary with time in this moving reference

frame.

In order to obtain the motion of the snail, it is necessary to consider the forces

acting on the organism. Since its motion occurs at low Reynolds numbers, the snail

is force-free; hence, the forces from the (internal) mucus flow and those from the

external flow around the body must sun to zero:

Filit + Fext = 0. (2.2.10)

More specifically, Fext is equal to -Fragex, where Frag is the magnitude of the drag



force from the external flow; Fit is the traction caused by the flow in the mucus

on the foot of the snail and can be expressed as the integral of I . nj, where nj is

outward normal to the foot of the snail. In the lubrication limit, Eq. (2.2.10) reduces

to
pV" 2n dh1 dut< j p_ + dx = Fdrag, (2.2.11)

(a ) O dx dy Il

which is a scalar equation representing force-balance in the x-direction. Here n is

the number of waves generated by the foot and i- is the width of the foot in the

z-direction. Physically, the left hand side of Eq. (2.2.11) is the propulsive force that

arises from the internal flow of the mucus and balances the drag from the external

flow. Note that Eqs. (2.2.10)-(2.2.11) implicitly neglect the overlap regions between

the internal mucus flow and the external flow around the organism; we will derive in

@2.2.8 the asymptotic limit in which this is a valid assumption.

2.2.4 Solution for small-amplitude motion

In order to solve the model problem, we consider the following limit for foot defor-

mations. If All denotes the typical amplitude of the foot deformation, we define

AH/A, and assume it to be small. Note that E is a parameter independent of the

geometrical aspect ratio, a, as can be seen by considering the case where = - 0; in

this limit, the dimensionless parameter, E, is zero when the foot surface is flat, while

a remains finite. We choose the foot shape as

hi = E sin x, (2.2.12)

and solve for the associated layer profile, h2 , order by order as

h2 1 1+ E2) ± 3). (2.2.13)



The resulting expression for the flux is given by

-1+
1+ E (h1) - sinx + c2h( 2)

(h + 2h 1 + ±
Sh -sinx) + E2h(2)) 2 (1 h + 1

(h~ ± 2h)
sinx (I + h1 - sinx) +2h() ( I 1 1 sinx) +c2h))

(2.2.14)

where Q =Q(O) + cQ(1 ) + E2Q(2) ± 0(c3). Collecting terms of the same order, the

leading order 0(1) simply states that Q(O) - 1, and then at order O(E) we obtain

Q(1) = h_ + h 1 xx - sin x.
3Ca

This third order linear ODE has an analytic solution given by

h= Ql) -M+ A1 exp C

+ A3exp (2C/3) s C3

+ A2 exp (2 C o3) s 2C3

C cos x + sill x
+ C2 + 1

where C , and A1, A2 , and A3 are unknown constants. For convenience, Q)
3Ca'

is set to zero by arbitrarily setting Q = 1. Note that Q corresponds to the rate of

mucus production by the snail.

2.2.5 Boundary conditions

The real challenge lies in identifying the three independent boundary conditions re-

quired to solve for A1, A 2, and A 3. As a logical starting point, we proceed by applying

sinx ) +2h2)1 -

(2.2.15)

(2.2.16)



mucuis

p(21rj) p(21r(j + 1))

Figure 2.2.2: Free body diagram of a perfectly periodic mucus layer over one wave-

length between nodes j and j + 1. Pressures at these nodes, p(27rj) and p(27r(j + 1)),
as well as the heights, h2(27rj) and h2(27r(j + 1)), are equal by the periodic boundary
conditions. Above the mucus layer is open to atmosphere with patni set to zero.

periodic boundary conditions over each wavelength:

h2,(27rj) = h2,,(27r(j + 1)), (2.2.17a)

h2,xx(27rj) = h2 ,xx(27r(j + 1)), (2.2.17b)

h2,xxx(27rj) = h2,xx(27r(j + 1)), (2.2.17c)

where j ranges from 0 to n - 1. In this limit, A1 , A2, and A3 vanish, and these

boundary conditions yield no motion of the snail, regardless of the value of Ca.

Conducting a force balance on the mucus layer over one wavelength (as shown in

Fig. 2.2.2) offers a simple explanation for this result: the periodic boundary conditions

ensure that the pressure forces acting on the side control surfaces of the mucus layer

precisely cancel. Since the top control surface of the mucus is exposed to ambient air

pressure, there can be no net force that acts on the bottom control surface. Thus, no

equal and opposite force acts on the snail foot ([1] in Fig. 2.2.2), suggesting that no

net propulsive force is generated under strictly periodic boundary conditions.

Instead, the three boundary conditions should be selected by the physical con-

straints on snail locomotion. Since the moving gastropod is force- and torque-free,

. .... ..................



the first two conditions should naturally be

E F,= 0, (2.2.18a)

ET= 0, (2.2.18b)

where F, refers to forces in the y-direction while T is a torque in the z-direction. In

all generality, the sum of all forces and torques acting on the snail must vanish at low

Reynolds number: the forces and torques from the thin film of mucus must therefore

balance the forces and torques generated by the external flow around the body and

those arising from gravity. For this analysis, we assume the snail does not rotate, and

that its shape is sufficiently symmetric that the external viscous torques and y-force

vanish. We also assume the organism to be neutrally-buoyant and homogeneous,

so the forces and torques due to gravity are zero. As a result, Eqs. (2.2.18a) and

(2.2.18b) only require the y-force and z-torque arising from the thin film to vanish.

The final boundary condition arises from consideration of the matching between

the internal and the external flow around the organism. By symmetry, we expect the

swimming speed of the snail to be of order V, ~ E2. Since we are in the Stokes regime,

pressure differences across the moving gastropod should scale linearly with the free

stream velocity, and occur at order E2 as well. Thus, the pressure difference between

the front and back of the snail is zero at O(F), the order of our formulation, and the

third boundary condition becomes:

p(O) = p(2nr). (2.2.19)

These three boundary conditions allow one to obtain a complete expression for

h) and subsequently solve for the dimensionless propulsive force, Fprop at O(c2)

Frop = [p + | cidx

2n[
= C-h csx b.h -sin x ) + h a)'', dx. (2.2.20)



Note that the integral of h 21xx vanishes by the matching pressure boundary condition,

which is equivalent to h 2,x.,(O) = h2 ,(2rn7). Referring back to the constants in

Eq. (2.2.16), Ai, in particular, is a non-trival function of Ca. Hence, unlike the

strictly periodic boundary condition case, the expression for h1.( now contains a non-

periodic function that gives rise to a non-zero propulsive force.

2.2.6 Crawling speed

To balance the thin-film propulsive force, it is necessary to evaluate the external drag

Fdrag caused by the motion of the snail. For simplicity, the snail is modeled as approx-

imately spherical, with radius R. Although approximate, this model yields an order

of magnitude approximation for the speed of our model snail. Non-dimensionalizing

Fdrag by piV, i,, the right hand side of (2.2.11) becomes Fdrag 6wrV,/p*, where V

is the snail speed scaled by V, and p1* - /patpr, the viscosity ratio of mucus to

water. A correction factor f accounts for the aspherical shape of the snail as well as

the influence of the free surface on the drag coefficient; for the present analysis, f will

be treated as known for a given crawler. By combining this scaling with the O(E2)

term in the force on the foot generated by the mucus layer, the following expression

for V, is obtained:

V, ~ Fprop(Ca,'n), (2.2.21)
af

where Fprop, the total propulsive force function, is plotted in Fig. 2.2.3(a) for different

values of n. The exact formula for Forop is not reproduced in this paper because it is

long and not informative for the purpose of this analysis, but it is straightforward to

calculate with symbolic packages. Note that the width of the snail foot, 10, is taken

to be on the same order as R; thus, they drop out of Eq. (2.2.21).

2.2.7 Results

Fig. 2.2.3 shows that the propulsive force vanishes in the limits of both large and

small surface tension. In the limit of infinitely large surface tension (Ca -* 0), the

interface between air and mucus is undeformable and so is analogous to a flat surface
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Figure 2.2.3: (a) Dimensionless propulsive force, Fprp normlzdb the number of

wavelengths, n, as a function of the modified capillary number, Ca =_ /aV/alu, where

the values of n range from 5 to 30 in increments of 5. In (b) and (c), the absolute
value of the dimensionless force, Fprop, is plotted on a logarithmic scale to show the

power-law decay in the limits of Ca -* 0 and C -+oc respectively. The propulsive
-1 -3

force exhibits a Cadecay for large C~a, while it decays as Ca for small Ca.

that cannot sustain shear stress. A snail would simply slip on such surfaces. The

detailed behavior for small values of Ca is shown in Fig. 2.2.3(b). The dimensionless

-

force follows the power-law decay Fprop c- Ca 3for decreasing Ca for all values of ni.

With zero surface tension (Ca --+ oc), a pressure difference across the interface

cannot be sustained and so cannot drive the flow within the mucus; hence no propul-

sive force can be generated in this low surface tension limit either. In this case, the
-- I

force follows for all n the power-law decay lFpropIi-' Ca as shown in Fig. 2.2.3(c).

Note that the propulsive force goes from positive to negative at a moderate value
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Figure 2.2.4: Absolute magnitudes of components of dimensionless propulsive force

due to pressure (solid line) and due to shear (dashed line) as a function of Ca for

n = 10. (note that the shear force is negative). Hence, the total propulsive force which

is the sum of these two forces is non-zero only when there is a difference between the

two.

of Ca that, in the case of n = 10, is around 0.3. Physically, this implies that the

snail switches from retrograde waves to direct waves at this critical Ca. In addition,

Fig. 2.2.3(a) shows that the propulsive force exhibits two distinct maxima for retro-

grade and direct waves, at values of Ca corresponding to 0.15 and 0.8, respectively.

Since the maximum propulsive force for the direct waves is higher than that for the

retrograde, the direct waves may be a faster mode of locomotion for water snails.

This points to a possible biological advantage of direct over retrograde waves.

Fig. 2.2.4 quantifies the components of propulsive force due to pressure and shear.

It is important to note that the force due to shear (dashed line) is negative. In the low

Ca limit, these two components precisely cancel, leading to no motion. When Ca is

high, they both vanish. For intermediate values of Ca, a difference in the magnitudes

of these forces results in a net propulsive force. Note the existence of a finite value of

Ca for which the propulsive force reaches zero.

Going back to the dynamic boundary condition Eq. (2.2.7), one can calculate

the pressure and shear stress distribution to O(E) inside the mucus layer. These are
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Figure 2.2.5: Dimensionless pressure (a, dashed line) and shear stress (b, dashed line)
within the mucus over two wavelengths for t = 10. The single dotted line in both

(a) and (b) is the shape of the foot, hI while the solid lines describe the shape of

the interface, 12 for different values of Ca. Black arrows indicate the direction of
increasing Ca.

plotted in Figure 2.2.5 for n = 10 along with the shape of the interface, 1 . In

the large Ca limit, the interface shape exactly conforms to the shape of the foot

h1 ; in the small Ca limit, the interface becomes flat. At intermediate Ca, there

exists an asymmetry in the interface shape, associated with the exponential term

in Eq. (2.2.16), that gives rise to the non-trivial propulsive force. The interface

shape, pressure and shear stresses are plotted for the first wavelength and the last

(corresponding to the front and end of the snail) for n = 10 in Fig. 2.2.6. As shown in

this figure, the mucus thickness at the ends deviates substantially from extrapolated
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Figure 2.2.6: Dimensionless pressure (dashed line) and the interface shape (solid line)
in the front (a) and end (b) of the snail for n = 10. The dotted line is the shape of
the foot, and black arrows are in the direction of decreasing surface tension.

periodic values creating an asymmetry between the head and the tail. Thus, although

the pressures at the ends of the crawler are equal at O(e), there exists a net 0(E2)

pressure force acting on the side control surfaces, owing to the a O(e) difference in

thickness of the mucus layer (see Fig. 2.2.7). To balance this net force, there has to

be a force acting on the bottom surface of the mucus layer; thus, there exists an equal

and opposite force acting on the foot of the snail, corresponding to the propulsive

force.

As suggested by Fig. 2.2.3, surface tension is the essential ingredient in this mode

of locomotion, and the propulsive force vanishes in both limits of asymptotically small

(large Ca) and large (small Ca) surface tension. The snail would therefore have to
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Figure 2.2.7: Free body diagram of an asymmetric mucus layer across the foot of
the snail. (For simplicity, n = 1 in this diagram.) Pressures at the ends, p(O) and
p(2nir) are equal by the boundary condition; however, they act over two different
mucus thicknesses, resulting in a net pressure force.

IA:

Figure 2.2.8: Schematic of the snail with three distinct flow regions. The layer of
mucus above the snail foot is denoted as 'internal' while the ambient flow around the
snail's body is 'external.' The two dashed boxes (labeled A) enclose the matching
regions that connect the internal and external flows.

tune the way it deforms its foot to exploit the property of the fluid-air interface.

As the foot is deformed, it forces a lubrication flow in the mucus layer above which

leads to the deformation of the free surface. The resulting topography of the free

surface, regularized by surface tension, is then exploited by the organism to generate

a propulsive force.

matching

intprnal

external



2.2.8 Matching internal and external flows

In our analysis, we have neglected the fluid forces on the organism, Fmatch, arising

from the intermediate matching region between the internal (mucus) and the external

flows. Since the propulsive force of the snail mostly arises from the asymmetric shape

of the free surface at the head and tail of the foot, this requires further comment.

Physically, since we are calculating the internal and external flows separately, both

need to be considered. In order to first estimate the magnitude of Fiatchi due to the

external flow, we refer to the work by Berdan and Leal [9] who studied the motion of

a sphere near a deformable fluid-fluid interface. As an extension of previous work in

which the interface is assumed to be flat [40, 41], the work in Ref. [9] considers the

limit of small interfacial deformation and its effects on the translating body. Unlike

our current analysis, the velocity of the sphere is not governed by the shape of the

free surface but is fixed as U. The small parameter in this paper, , reduces to a

capillary number, e = pU/u, when gravitational effects are not included. Berdan

and Leal showed that in the case of a sphere moving parallel to the free surface, the

deformation of the interface only has a vertical force contribution at O(s). Inl the

current analysis, Fint and Fxt, the forces considered in Eq. (2.2.10), are of O(Q2).

Therefore, in order to neglect Fmnatc, consistently, the following condition has to be

satisfied:

2 < 2 (2.2.22)

which requires one to have a look at how and E are defined. Since U is V, in our

problem, we have c ~ p V/a. Recalling from 62.2.3, the capillary number, Ca, is

defined in terms of the wave velocity, Vw. Because it has been shown that V, = V/Vv

scales as E2, e camn be expressed as

jtV 32/W ,, 2 Ca. (2.2.23)

When one replaces Ca with a3 Ca and rearranges the terms, the criterion to neglect



Finatch in Eq. (2.2.22) reduces to

2~62
SaCa-<1 (2.2.24)

Since a and E are both small parameters asymptotically approaching zero in the lu-

brication analysis in the limit of small deformation amplitude, E2 a6 < 1, Eq. (2.2.24)

represents a weak constraint on the validity of neglecting forces from the intermediate

region.

The second matching force to consider is that induced by the internal flow. Since

there is, in general, a height difference between the mucus at the front and the back of

the snail, the fluid surface will be distorted at either end to match with the flat surface

far away. Our work will therefore be valid in the limit where the capillary forces

resulting from these distortions can be neglected, corresponding to an asymptotic

limit which we now characterize.

The two relevant length scales to consider for matching the distorted fluid interface

to the flat free-surface in the far-field are the capillary length, Lc ~ uo/pg (p is the

fluid density), and the width of the snail, ii.The fluid interface will be distorted over a

length, f, into the fluid, where E ~ min(Ec, 7b). The typical curvature pressure arising

from surface distortion will be on the order of ~ gohj' 2 , acting on typical height

difference h between the free surface near the snail and the far-field height of the

free surface, and therefore contributes to a force on the snail (per unit width) on the

order of ~ u(Jh)2 /f 2 . Since 6h ~ Ef EaA, the capillary force is on the order of

~ (E2a2 2 /2. This force has to be compared with that arising from the external

flow, given by etR h (again, per unit width) where pe,, is the typical magnitude of the

pressure outside the organism as it is crawling. Since pet ~[I/R we have pejR 
p p E29. The matching condition becomes therefore TE2a2 2/t2 K<&2pg which

is equivalent to

N2 /2 < a Ca n2, (2.2.25)

where we have used the estimate R ~nA. The second matching condition, Eq. (2.2.25),

requires that the number of wavelengths along the snail's foot, n, be sufficiently large.



2.3 Discussion

Here, we have presented a simplified model of water snail locomotion. The physical

picture that emerges is the following: the undulation of the snail foot causes normal

stresses that deform the interface and drive a lubrication flow. The resulting stress

distribution couples to the topography of the snail foot, leading to a propulsive force.

This force vanishes in the limit of Ca -' 0, where the interface is flat, and of Ca -- oc

where the topographies of the interface and the snail foot precisely match. A finite

propulsive force is obtained for intermediate values of Ca. This interplay between the

free surface and the snail foot distinguishes water snail locomotion from that of their

terrestrial counterparts. For the latter, the solid substrate on which the snail crawls

is fixed; hence, the shape of the snail foot alone determines the pressure and shear

stresses generated within the mucus layer. For water snails, however, the interface is

deformed due to the flow created in the imicus by the foot undulation; the interface,

in turn, affects the dynamics within the mucus layer, creating pressure and shear

stresses that act on the foot. This nonlinear coupling between the foot geometry,

surface tension, and dynamics within the mucus layer makes the water snail crawling

strategy a less straightforward mode of locomotion.

A direct analogy exists between the thin film comprising the mucus layer of water

snails and those arising in coating flows; for example, those used in photolithographic

processes to fabricate various electronic components. This class of fluids problem

has been well studied, both experimentally [65, 66, 52] and theoretically [65, 66, 54,

55, 60, 58, 28], an example of which includes spin coating. Kalliadasis et al. [35]

used lubrication theory to show that in the limit of small Ca, the interfacial features

become less steep, an effect also captured by our model. Mazouchi and Homsy [46]

demonstrated that, for large capillary number, the shape of the free surface nearly

follows the topography. In the context of water snail locomotion, we saw in @2.2.4

that the free surface conforms to the shape of the foot in the same limit.

Our study is only the first step towards a quantitative understanding of gastropod

crawling beneath free surfaces. It is significant in that we have demnonstrated the



plausibility of locomotion with the minimal ingredients: Newtonian fluids and small

amplitude deformations. Nevertheless, outstanding issues remain. In the case of

adhesive snail locomotion on land, the non-Newtonian properties of snail mucus, such

as a finite yield stress and finite elasticity, play an essential role [23]. Non-Newtonian

mucus is likewise expected to have a significant effect for water snails. Furthermore,

there need to be more systematic observational studies to identify which water snail

species exhibit which modes of "inverted crawling". As reported by Copeland [19, 20]

and Deliagina and Orlovsky [22], some species of water snails rely entirely on cilia for

propulsion beneath the free surface. If such ciliary motion results in no free surface

deformation, the physical mechanism examined in this paper is of little relevance, and

a closer look at the cilia-induced flow is suggested. Alternatively, the non-Newtonian

properties of the mucus may prove to be significant in this case. Categorizing different

species according to their propulsion mechanism of crawling (i.e. cilia versus muscle

contraction) and the constitutive properties of their mucus would provide a more

complete physical picture of this intriguing form of locomotion.





Chapter 3

Point Swimmer

We are now interested in a general description of low Reynolds swimmers that use a

free surface to move forward. While answering questions about a specific organism,

the preceding analysis of the motion of water snails contains restrictions that prevent

generalization to other types of swimmers that take advantage of the free surface. For

instance, the foot of the water snail is assumed to be very close to the free surface,

separated only by a thin layer of mucus. In addition, in order to linearize the problem,

we only considered asymptotically small free surface deformations. In this chapter,

we discuss a new description of the low Reynolds swimmer that no longer contains

these geometrical constraints. Instead, the only mathematical simplifications are to

consider a two-dimensional swimmer and to model it as a "point".

A two-dimesional description of our swimmer is feasible because the well-known

Stokes Paradox does not apply to self-propelling bodies in a, Stokes flow. The para-

dox is that the motion of a cylinder in a viscous fluid yields a finite fluid velocity

in the far-field and is, therefore, not physically realistic. G.I. Taylor discussed the

difference between a cylinder moving in a viscous fluid and a 2D self-propelling body

[68]. He showed that unlike the cylinder, the influence of the motion of the self-

propelling organism extends only a short distance from the body and, therefore,

quiescent boundary conditions at infinity can be satisfied. In mathematical terms,

this implies that the cylinder consists of logarithmic singularities that do not decay

in the far-field, while the self-propelling body contains only higher order singularities



since it is force-free. In the following analysis, our swimmer is modeled as a sum of a

force-dipole, or a stresslet, and other higher order poles.

Modeling the low Re swimmer as a point singularity is not a new concept. In par-

ticular, the stresslet singularity has been widely used to model the collective behavior

of swimming microorganisms [51, 62, 31, 59]. Interestingly, the sign of the stresslet

strength has important physical implications. When the stresslet is less than zero, the

microorganism (termed a "pusher") swims using its tail. If the strength is positive,

the swimmer pulls on the surrounding fluid in some fashion to move forward and

is accordingly called a "puller". This distinction manifests itself in the large-scale

behavior of swimmers: pushers align themselves with the local flow and facilitate

mixing, while pullers act to dissipate disturbances [59].

This singularity description of our swimmer is consistent with the spirit of our

analysis in that we are no longer interested in a specific organism, or the geometrical

details of the swimmer's motion. Instead, our focus is on the far-field flows for a given

free surface shape and the role of the free surface in propulsion of the swimmer.

3.1 Conformal map

Our analysis is restricted to two-dimensions as it relies heavily onl the use of conformal

mapping techniques. In simple terms, a conformal map locally stretches and rotates a

given two-dimensional domain into a simpler one while preserving the angle between

any pair of intersecting curves. The advantage of using this map is that all of the

geometrical complexity of a given problem gets "absorbed" in this map, rendering the

exact mathematical analysis of complicated geometries more tracktable [6]. The single

most important theorem regarding conformal mapping may be Riemann's Theorem

which guarantees the existence of conformal transformations between any two simply

connected contours [15]. The real challenge then lies in identifying such a map for

a given system. Unfortunately, there exists no clear guideline for finding conformal

maps, apart from one's intuition, experience, and, in many cases, a bit of good fortune.

In recent years, this mathematical technique is finding its place in applied sciences,



especially in interfacial dynamics which often consist of time-dependent free moving

boundaries, such as viscous fingering and solidification [6]. In addition, conformal

mapping is being applied to other two-dimensional problems in material sciences,

examples of which include brittle fracture and viscous sintering, as well as stochastic

problems, such as diffusion-limited aggregation. One particular application of the

conformal map that is of significance to us is the work by Jeong and Moffatt [33].

In their seminal paper, they modeled the flow generated by two counter-rotating

cylinders beneath a free surface in the low Reynolds limit as a single potential dipole

placed on the axis of symmetry. This flow results in symmetric deformations of

the free surface above, which were calculated for a given dipole strength and fluid

properties using the conformal map methods. It is noteworthy that the conformal

map approach to this physical system allowed them to produce exact solutions for

large nonlinear deformations of the free surface. Furthermore, their analytic results

exhibit remarkable agreement with the experimental data of free surface deformations

for different rotation rates of the cylinders.

Inspired by this work, we similarly use a conformal map to solve for the shapes

of a free surface regularized by surface tension. The flow that leads to the surface

deformation is generated by the "squirming" [43, 12] of the swimmer that under-

goes a, steady translation underneath the free surface. As previously discussed, the

swimmer's motion is represented by a linear combination of singularities, such as a

stresslet, potential dipole and quadrupole. This seemingly minor point sets our work

apart from that of Jeong and Moffatt in that we are able to find a class of generalized

exact solutions even upon the inclusion of a rotational stresslet singularity. In addi-

tion, our problem includes asymmetric deformations, requiring multiple parameters

to describe the shape of the interface. Jeong and Moffatt fixed the dipole strength

and solved for a shape parameter that uniquely defines a free surface shape for a

given dipole strength. In our case, we have multiple singularities that describe the

swimmer's motion and more than one parameter that determines the free surface

shape. Another complication comes from the fact that only certain combinations of

singularities lead to a steady motion of the swimmer and a fixed free surface shape



translating with it; this combination is not known a priori. In order to circumvent

these difficulties, we approach our problem in the inverse manner from Jeong and

Moffatt. Naimely, we fix the swimmer's steady state velocity and the interfacial shape

as input and solve for the corresponding singularity types and strengths that satisfy

the given steady state condition.

Another difference between these two systems is that in the flow generated by the

counter-rotating cylinders, the amount of power one can put in is essentially unlimited

and is only restricted by the experimental setup. In our system, however, the power

is generated by the swimmer itself, which, in biological systems, is often motivated to

preserve energy. We focus on this very point in Chapter 4 and study the free surface

shapes that result in the most energetically favorable motion. The current chapter

then consists of the derivation of exact solutions for our model problem.

3.2 Governing equations - complex variables

In the incompressible Stokes regime where inertia is negligible, the Navier-Stokes

equations may be written in terms of a streamfunction / that satisfies the following

biharmonic equation

( 0. (3.2.1)

Introducing the coniplex-valued coordinate 2 = +iy, the solution to this bilharmonic

equation takes the form of

V = Im[zf (+) + y(2)]. (3.2.2)

Referred to as Goursat functions [15], f .1(2) and y (2) are analytic functions of

2 inside the fluid region except at isolated points where singularities are deliberately

introduced.

All the physical variables that describe a flow [36] can be expressed in terms of



these two functions:

K- ic. = 4f'(2),

n + is = -f(2) + 2f'(2) + '(2), (3.2.3)

in + id 2 = /f"(2) + #"(),

where n is the fluid pressure with p as the dynamic fluid viscosity, C' is the vorticity,

(i, ) is the fluid velocity, and dij is the fluid rate-of-strain tensor. Primes denote dif-

ferentiation with respect to 2, overbars denote complex conjugates, and hats indicate

dimensional variables.

In our model problem, the two-dimesional fluid domain is bounded by an air-water

interface, (D, regularized by surface tension, o-. On this interface, we apply the usual

stress boundary condition balancing the pressure jump and viscous stresses with the

free surface curvature:

-pni + 2pdijnj = o-kni, (3.2.4)

where k is the surface curvature, and ni is the outward unit vector normal to the

interface.

All the variables in our problem are non-dimensionalized as follows:

2 =hz, hzi, + i = U(u -+ iv), = Uh@,
(3.2.5)

= f, y=Uhg, p= , ,
h

where 2 d is the dimensional location of the swimmer, h is the magnitude of 2 d or the

vertical distance of the swimmer from the interface, and U is a characteristic speed

of translation. Going back to the stress boundary condition, the dimensionless form

Eq. (3.2.4) is equivalent to

dH i d2 z (3.2.6)
ds 2Ca ds2'



Figure 3.3.1: The idea of the singularity model: a finite-body swimmer beneath a
free surface is modelled as a point stresslet singularity.

where ds is a differential element of arc length along the free surface and

H f(z) + zf'(z) + g'(z). (3.2.7)

Hence, after integrating once with respect to s, Eq. (3.2.6) becomes

f(z, t) + zf (f) + i() = . (3.2.8)
2Ca ds

Note that one important dimensionless number that comes out of this non-dimensionlization

is the capillary number Ca, which reflects the ratio of viscous to surface tension effects,

Ca = y. (3.2.9)

3.3 The swimmer - singularity description

As briefly discussed, the Goursat functions f(z) and g(z) are analytic everywhere

inside the fluid domain, except at specific singular locations. In our problem, f(z) and

g(z) contain singularities at the swimmer location, Zd (as illustrated in Figure 3.3.1),

and the type and strength of these singularities determine the effective "squirming"

motion of the swimmer. Since all the physical variables are written in terms of these

two functions (see Eq. (3.2.3)), one can easily see that the choice of a particular

singularty has an immediate effect on the flow as well as the shape of the interface.

interface, 6D (a)
air

g h

fluid
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interface, 6D (b)

IMW 
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U= I fluid

point singularity
located at zs = -i



For instance, inclusion of a logarithmic singularity of f(z) corresponds to a stokeslet,

or point force singularity, which is not allowed in order to ensure that the swimmer

exerts no net force on the flow. Instead, we take the next order singularity, and f(z)

is allowed to have a simple pole at Zd (the derivative of the logarithm),

s*

f(z) = + analytic. (3.3.1)

Then in order to ensure that the resultant velocity field decays as 1/1z - zal, not

1/1z - Zd| 2 , we must also have

g'(z) = 2 + analytic. (3.3.2)
( Z - z1)2

This combination of singularities in f(z) and g'(z) is known as a stresslet of strength

s* at Zd. Similarly, inclusion of a logarithmic singularity of g(z) is not allowed since it

leads to a net torque on the fluid, violating the torque-free condition of the swimmer.

In order to understand the physical implication of a stresslet, we revisit the differ-

ence between a passive object (i.e. a cylinder) and a self-propelling body both moving

at a constant speed in Stokes flow in more detail. In both cases, the net force acting

on the body must sum to zero; however, the resultant flow fields around each body

are very different. In the case of a cylinder, the forces around it account for both

the viscous drag from the fluid and an external force pulling the body, represented

as a stokelet. On the other hand, the self-propelling swimmer only has viscous forces

acting on the body, leaving no clear distinction between the drag versus propulsive

forces. To better distinguish the two., one may imagine a sperm whose oscillating tail

provides a net forward force and whose head experiences an equal and opposite force

of drag. These two separate forces may be modeled as stokeslets, and as they are

brought infinitesimally close together, they resemble a force-dipole, or a stresslet.

Going back to our mathematical formulation of the swimmer, there are two im-

portant points to consider. First, we allow g'(z) to have other higher order poles at

zd, while limiting the singularty of f(z) to be a simple pole. This degree of freedom is

necessary to ensure that the free surface boundary condition is satisfied while yielding



a steady state motion of the swinmer. Thus, we seek to discover the nature of the

effective potential multipoles that a swimmer must generate in order to swim steadily

beneath a free surface. The other important point pertains to the steady state na-

ture of our solution, mean ing that the net motion, the free surface shape, and the

singularities are all independent of time. Here an important distinction needs to be

made between the work by Trouilloud et al.[71] and our current model. Trouilloud

et al. considered reciprocal swimmers subject to the Scallop Theorem [56, 42, 13]

by modeling them as stresslets oscillating in time. They found that these swimmers

rely on temporarily asymmetric free surface deformations to move. These reciprocal

swimmers, when averaged over time, yield zero singularities, and their net motion

comes strictly from the unsteady nature of the free surface deformation. Thus, we

cannot consider our current model as a time-averaged version of that of Trouilloud

et al. Instead, it is more accurate to imagine our swimmer as an organism that acts

on the surrounding fluid only in a completely symmetric fashion at all times (i.e..

an "imaginary" swimmer with two corkscrews that rotate symmetrically about its

head). This implies that the swimmer, modeled as a. permanent singularity, would

not be able to generate motion in an unbounded fluid. Rather, its motion is enabled

by the presence of the free surface and may be enhanced by deformations.

3.4 Swimming beneath free surface - conformal

map approach

3.4.1 General solutions

Based on the Riemann mapping theorem, one may find z(() that maps a unit disc

( < 1 to the fluid region beneath the free surface (see Figure 3.4.1). Accounting

for a pole due to the free surface extending to infinity (mapped to ( = -i), the most

general form of this mapping is

z(() ka (3.4.1)
(+ k O
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Figure 3.4.1: Conformal mapping z((() from the unit (-disc to the fluid region beneath

the interface. In this mapping, ( = 0 maps to the swimmer at z = zd, and ( = -i

maps to the interface at infinity. The variable s denotes the arclength and is defined

positive going from positive to negative infinity.

where a and {ak} are complex coefficients. For a one-to-one function, the condition

dz/d( -# 0 must hold inside the unit disc. We also prescribe the swimmer's position

Zd to be the image of (= 0,

Zd = z(0). (3.4.2)

Moving reference frame and far-field condition

Because we are only concerned with steady state solutions where the swimmer moves

at a constant velocity and the free surface shape relative to the swimmer is fixed,

we move to the co-travelling frame of the swimmer in which the swimmer and the

shape of the free surface are both stationary. In this reference frame, the kinematic

condition on the interface becomes

u -n = 0. (3.4.3)

If the normal vector n = (n, ny), the complex normal n + iny is -idz/ds, where

s increases along the interface from positive infinity to negative (see Figure 3.4.1).

. ............ .. ................
A



Using this fact, Eq. (3.4.3) can be expressed in complex form as

Re ('a + iv)iL1 = 0.
Ids]

(3.4.4)

Then by combining the stress boundary condition (3.2.8) with this kinematic bound-

ary condition (3.4.4), the following must hold on the interface

Wf(z) + g(z) = 0, (3.4.5)

which is equivalent to the interface being a streamline in physical terms. Note that

this expression provides a simple relationship between the two Goursat functions to

be re-visted in our analysis. In addition, assuming the swimmer moves at U = -1 (in

the negative horizontal direction) implies a unit far-field velocity. As z -- oc, f(z)

and g(z) are given by

(1)
fl + f0"A -...+

(1)
amid g'zQcg x 9 -+ ., (3.4.6)

and recalling the definition of the velocity field in terms of f(z) and g(z),

u + it) -> -f, + D;;- + 0(I zI-'). (3.4.7)

Then, as a consequence of the moving reference frame, it follows that

-f ±, + ; = 1. (3.4.8)

After some manipulation using equations (3.2.8), (3.4.5), and (3.4.8) (as shown in

Appendix A.1), we obtain

1i
and go = .C

2 4Ca

1 i
f = - +

2 4Ca
(3.4.9)



Solving in the (-plane

As mentioned previously, the advantage of the conformal mapping method is the

ability to solve a given problem in a much simpler geometry, in this case, a unit

circle. In order to do so, we now introduce the counterparts to the Goursat functions,

f (z) and g(z), in this new domain:

F (() -= f(Z(() G(() -- g(z(()). (3.4.10)

It is important to note that, as f(z) has a simple pole at the position of the swimmer,

the Goursat function F(() must have a simple pole at ( 0. Therefore, F(() takes

the form of
FdF() = + Fo + (() (3.4.11)

for some constant Fd to be determined later. Recognizing that the kinematic condition

(3.4.3) on the boundary can be written as

Re 2fi -) =- (3.4.12)
1 ds)_ 2Ca'

when combined with the stress boundary condition, this can be expressed equivalently

in the (-plane as E2F(() 1 1Re = 1 (3.4.13)( 2Calzc|'

where z . When one subtracts off terms of 1/(2 and 1/( from this kinematic

boundary condition, Eq. (3.4.13) becomes

ReLF(() _D C 41~DCz1-Re = -R ]- 3e [D+ =] - Re [D(2+C .%
"z 2 (_ 4Calz| _(2 ( 4Calz1

(3.4.14)

Because F(() has a simple pole at ( 0, the function in the square brackets on the

left-hand side of Eq. (3.4.14) is analytic everywhere inside (, with the suitable choice

of constants C and D. Consequently, because the real part of an analytic function



is now known on the boundary of the unit circle, we may apply the Poisson Integral

Formula to obtain

F(() = (c() S'(()Ca

D C -2 K
+ 2 + - -D( -C(+ (3.4.15)

where b is some real constant and

(3.4.16)= 1 ( d (' ( + ( 1
I( F) = 1= .' ( 0ZW)I

Note that the Poisson Integral Formula gives the analytic function everywhere inside

a simply connected domain, given the real part of that function on the boundary.

Thus, once the map z(() and the constants b, C and D are known, we have an explicit

expression for F((). Then, if the map is known a priori, one needs to consider the

far-field behavior of F((), in order to determine the unknown constants.

Due to a second-order pole of z((() at, ( = -i (3.4.1), the quantity inside the

brackets in expression (3.4.15), and its derivative must vanish at ( -i so that it

remains analytic at ( -i. Therefore, in this limit, we have

[(() D
+- -

Ca (2

C - 2 - 2
+ (- D(2 - C(+ib =A(( +i)2 + ... (3.4.17)

for some complex constant A which is related to f,. by

iaA = f,

based on F Jf -+ as z(( -* -i) -+ oc. This signifies that

I(-i) - -
-- D + D + iC + iC + ib = 0,Ca

and, after differentiating once,

I(--i) + 2iD + C + 2i - C=0,
Ca

(3.4.18)

(3.4.19)

(3.4.20)



eliminating b from the expression. Then by differentiating the left hand side of

Eq. (3.4.17) twice and evaluating it at ( -i, we obtain

1 IFU(-i) -
A = + 6D - 2Ci - 271, (3.4.21)

2 Ca

which, combined with Eq. (3.4.18), leads to

1 [ia (-i)
= Re 2+6D - 2Ci - 2D1. (3.4.22)

2 2 LeaI

These equations, along with the steady state condition, come together to yield values

for C and D. The case for n = 1 will be explicitly worked out in @3.4.2.

When the expression for F(() is found, we can now solve for G(() by Eq. (3.4.5),

or

G(()= -J(- 1)F(). (3.4.23)

This condition shows there exists some constraint on the singularities of G(() imposed

by the singularities of the conformal mapping function z(() and by F((). If we allow

z(() to be written as
n

=a .+ a + aUk(* (3.4.24)
+k-i( + 1 k=1

where n > 1 is some positive integer, then

((1) =+ + . (3.4.25)
k=1

Since F(() =O((1) as - 0, combining equations (3.4.43) and (3.4.25) indicates

that, near ( = 0, G(() behaves as

G(() G(n1) + + - - + Go + G1(+ (3.4.26)

corresponding to

g(z) = +-1 + higher order terms (3.4.27)
(z- zd)r?+
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Figure 3.4.2: The geometrical significance of parameters a and c for n = 1. The flat
interface corresponds to a = 2, c = 0. Increasing (decreasing) a above 2 with c = 0
(along the horizontal axis) moves the interface up (down) in a left-right symmetric
fashion. Non-zero values of c (along the vertical axis) introduce left-right asymmetry.

near Zd in the physical domain, which has physical implications. For instance, for

n = 1, g(z) has a potential dipole and a quadrupole. Interpreting n as a measure

of the perturbations in the free surface away from a flat state, we see that g(z) will

have increasingly higher-order singularities with increasing n. In physical terms, the

swimmer is required to generate more complex swimming patterns (corresponding to

multipoles of g(z)) in order to swim beneath free surfaces of various and possibly

more complicated deformations.

3.4.2 Complete solution: n=1

In the simplest non-trivial case of n = 1, the conformal map reduces to

z(() = . + ao + a1 (, (3.4.28)
( + 1

...................... ............. ........................



where a, ao and a1 are complex numbers. The map has three degrees of freedom, two

of which pertain to the swimmer's position corresponding to the origin of the unit

circle (i.e. z( = 0) - -i). This complex condition leads to

ao = (a - 1)i. (3.4.29)

The third degree of freedom matches the position ( -i to the point at which the

free surface extends to infinity in the physical domain. Accordingly, one can see that

z(() becomes singular as - -i. Furthermore, in this limit, the interface is expected

to be flat, meaning the imaginary part of z(( -+ -i) should vanish. This is equivalent

to z(() - T(1/() = 0, where 2(1/() can be written as

a J1(1/()= a+ do + ia +a. (3.4.30)
(+ 1

Then by combining this far-field condition with ao = (a - 1)i yields

Re[a1] = a , (3.4.31)
2

and now the map can be determined completely by two real parameters, a and c:

z(() = .+ i(a - 1) + - 1 + ic)(. (3.4.32)

where a and c describe the size and asymmetry of the free surface deformations,

respectively. When a = 2 with c = 0 the interface is flat; increasing a above 2

corresponds to a symmetric upward deformation of the interface; decreasing a below

2 leads to a symmetric downward deformation. Changing the value of c away from

zero introduces left-right asymmetry of the free surface deformation about a vertical

axis through the swimmer, as illustrated in Figure 3.4.2.

Letting 'n = 1 places a constraint on the types of singularities that model the

swimmer. Specifically, we know that the swimmer is a stresslet with a superposed



potential quadrupole and dipole, meaning

q*__ (--is* + d* )
(z) = 2 + + go + g1(Z + i) +.

(Z + i)2( + i)
(3.4.33)

near the swimmer position zd = -i. Here, s* and q* correspond to the stresset and

quadrupole strengths, respectively, while d* is the dipole strength after the contribu-

tion -s*-d = -is* associated with the stresslet at Zd = -i has been subtracted off

(see Eq. (3.3.2)).

Because we are in a co-moving frame, the velocity of the swimmer should vanish,

which is equivalent to the finite part of u + iv at z = zd being zero. Since, for n = 1,

z +1
g z) = + +go +g1(z+i) +.

(z + i)2 (z + i)

(3.4.34)

the finite part of the velocity at z = zd is given by

-fo + zdfi + g- = 0.

Based on the Residue Theorem, the terms fo, fi and gi are written as

(3.4.35)

F(() dz d

r (Z(( -zd) d( '

I F(() dz
27i r (z(() -z02 d(

where F is any simple closed curve surrounding (= 0.

As previously mentioned, we first fix the free surface shape (i.e. the values of a, c

known) and state state velocity U. The values of the constants C and D can then be

found by simultaneously solving

-fo + bzjfi + V = 0,

1
fo =

(3.4.36)
1 -1(11()F(() dz,

27i r z()-a2 d(

(3.4.37)



which is a complex equation, together with the real equation (3.4.20), i.e.,

+ 2iD + C + 2Di - C = 0, (3.4.38)Ca

and finally the real equation

1 [i Ict(-i)
- = Re -- + 6D - 2Ci - 2 . (3.4.39)2 12 1Ca

Once C and D are found accordingly, the Goursat functions F(() and G(() can be

fully determined in the closed form. This means that cvcrything about the flow field

is now known, since all the physical variables, such as pressure and velocity field, can

be expressed in terms of f(z) F(() and g(z) G((). The associated singularity

strengths - stresslet, dipole and quadrupole, can be readily computed also; here they

are calculated for a = 2, c = 0 (the flat interface case):

s* = 2i, d* = -4, q* = 0, (3.4.40)

which correspond precisely to the results derived using the method of images for the

same interface, as shown in Appendix A.2. Keep in mind that the method of images

is only valid for flat interfaces, and our analysis has generalized it for arbitrary shapes

of the free surface.

Summary of results: n = 1

In this section, we list the key formulae and results for n = 1 for clarity and complete-

ness. The conformal mapping that transforms the unit (-disc to the physical domain

is given by
aa

z(() . + i(a - 1) + 1 + ic( (3.4.41)
(+ i 2



Re(a')
)v 3.50 5

1-2 1-3

Im(f) Im(g')

0 0

-2 -1.5

(a) (b)

Figure 3.4.3: For an interface shape a = 2.1 and c = 0.1 (n = 1), the corresponding
functions f(z) and g'(z) are shown in (a) and (b), respectively.

where a and c are real parameters. The corresponding Goursat functions determining

the associated steady-state velocity field are

((( )
F()=(zc(() Ca

C -+-(-D( - CC + ibl

The integral 1(() is given by

I() =
87ri io=1 C' C' - C|zc((')|'

the constant b is given (from Eq. (3.4.19)) by

b = - iD + iD - C - C,Ca

and

D

(2
(3.4.42)

G(C)= -z -)F ). (3.4.43)

(3.4.44)

(3.4.45)

.......... .......
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Figure 3.4.4: For an interface shape a = 2.1 and c = 0.1 (7 = 1), the resulting

streamlines are plotted in (b). The flow inside the domain is described completely by

two complex functions, f and g, obtained analytically using the conformal mapping

technique. The resultant pressure field as well as the vorticity field is shown in (a).

Note that low pressure underneath the "bump" is generated by viscous stresses that

dominate over capillary effects, as illustrated in (c).
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Figure 3.4.5: The singularity strengths, (a) stresslet Is*| (b) dipole Id*| and and (c)
quadrupole |q*| as the interface transitions from a downward deformation (a < 2)
to an upward deformation (a > 2) with c = 0. Note that the quadrupole is absent
(q* = 0) when a = 2 (the flat interface case) but its strength increases for a f 2 (the
deformed interface case).

and C and D are two complex constants determined from the linear system of (four

real) equations:

0 = + 2iD + C + 2Di - C, (real equation)Ca

2 = R I2 2CCa + 6D - 2Ci - 2D , (real equation) (3.4.46)
2 e [2o [ C ii +
o=-f - if1 + g- (complex equation),

where fo, fi and gi depend linearly on C and D. Putting them in a physical context,

the first equation in (3.4.46) stems from the analyticity of F(() in the far-field, while

the second equation is enforced by the finite velocity condition (in the co-translating

frame) at infinity. The last complex equation is derived from the steady state motion

of the swimmer. Solutions for a specific interfacial shape (i.e. a = 2.1, c = 0.1) are

plotted in Figures 3.4.3 and 3.4.4.

One fact becomes immediately clear from the new solutions. From the method of

images analysis in Appendix A.2, it is known that a point stresslet with a superposed

potential dipole can translate steadily beneath ain undeformed (i.e. flat) free surface.

However, as soon as the interface becomes deformed, it is necessary for the stresslet

and potential dipole to be supplemented with a higher order potential singularity. In

the case of the n = 1 solutions this singularity is a quadrupole. Figure 3.4.5 shows



graphs of the magnitude of the stresslet, dipole and quadrupole strengths for the

n = 1 case as functions of a (with c = 0, so the free surface profiles are all left-right

symmetric). Note that the quadrupole strength vanishes when a = 2 (the flat state)

but necessarily becomes non-zero when the interface deforms (a # 2).

The approach we have taken here differs from many swimming formulations in

which the deformation of the swimmer is prescribed and the resulting swimming ve-

locity (and interfacial deformation) is computed. Instead, we find that it is more

convenient to specify the swimming velocity and interface shape and determine the

corresponding squirming protocol. We assume the steady state velocity of the swim-

mer as well as the shape of the interface (fixed by two parameters. a and c for n = 1)

as known and solve for the singularities (s*, d*, and q* for n = 1) that satisfy the

given steady state condition. This is the inverse of a typical swimming problem in

which one assumes that the swimmer only has a direct control over its own deforma-

tions ("squirming"), which leads to the deformation of the free surface as determined

by the fluid properties as well as the local flow created by the swimmer (see Fig-

ure 3.4.2). This "forward" approach (given a swimmer, find the swimming velocity)

is practical in the analysis of a particular swimming organism or device. However,

for questions related to design, synthesis, and optimizations, frequently the inverse

approach is more useful as one can specify a desired output and compute the corre-

sponding required forcing (i.e. singularity strengths). Our formulation is particularly

well-adapted for the inverse approach since the analysis becomes linear as seen in

Eq. (3.4.46).

Mechanism of symmetry-breaking

It is easy to lose sight of the physics amongst all the details of the analysis. In

order to re-orient ourselves, we spend a minute here to elaborate on the physical

mechanism of swimming. As stated in the introduction, the model swimmer is able

to generate only completely symmetric "squirming" motions so that it is unable to

swim in an unbounded fluid. In other words, any kind of geometrical variation in the

environment (such as the presence of any surface) will create the necessary asymmetry
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Figure 3.4.6: The swimmer creates a local flow by "squirming", represented mathe-
matically by singularities (i.e. for n = 1, a stresslet, dipole, and quadrupole). De-
pending on the fluid properties such as surface tension o and viscosity p, this local
flow interacts with the free surface, and this interplay advects the swimmer. Thus,
the arrow (i) represents a "forward" (analysis) approach to the problem. However,
we solve the inverse (synthesis) problem (represented by arrow (ii)).
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Figure 3.4.7: The solutions f(z) and g(z) for a flat interface a = 2 and c = 0 (n = 1)
are shown in (a) and (b), respectively. These plots can be thought of the effective
behaviors of the singularities of f(z) and g(z), in this case, a stresslet and a potential
dipole



in the system essential for propulsion. It is important to recognize that the present

surface (for example) does not need to contain asymmetry. This means that the

surface does not even need to be deformable in our framework to enable motion, and in

particular, does not need to be deformed (either symmetrically or asymmetrically) for

the swimmer to generate motion. In order to understand this subtle point, we examine

the Goursat solutions plotted in Figure 3.4.7, that correspond to the completely flat

interface case.

If one considers the real and imaginary parts of f(z) and g(z) separately, there

appears to be nothing in the system to break the left-right symmetry directly. How-

ever, when the parts of f(z) and g(z) are superimposed, one can see that, overall,

the singularities must act at roughly 45 degrees off the vertical. If the interface were

not present, the system would still be completely symmetric. However, the interface

interacts with the singularities acting at an angle, which breaks the left-right symme-

try. In essence., the swimmer pulls and pushes on the fluid at an angle towards the

interface. If such swimmer acted either completely perpendicular to or parallel to the

(flat or symmetric) interface, it would not be able to break the left-right symmetry to

move forward. But by doing so off the axes, the swimmer is able to take advantage

of the free surface and propel itself.

To summarize, we have developed a robust framework for analyzing swimming

near free surfaces. The swimmer squirms in some fashion (modeled as a sum of

mathematical singularities) and creates a local flow that affects the shape of the

interface. Because this interaction between the swimmer's squirming, the free surface,

and the subsequent motion of the swimmer is highly nonlinear, the derivation of

closed-form solutions to describe this phenomenon is a, non-trivial task. By employing

conformal mapping techniques, we obtain these solutions in the steady-state limit,

without putting any geometrical constraints on the free surface. The usefulness of

these exact solutions is highlighted in Chapter 4, as we apply them to answer more

physically relevant questions that pertain to optimization.





Chapter 4

Optimal swimming near free

surfaces

4.1 Optimization in low Reynolds locomotion

Low Reynolds locomotion is an active area of study, especially in light of the growing

interest in the mechanics of microorganisms and small-scale robotics in biological

applications. Such studies include questions related to optimization, which often

focus on a particular type of swimmer. One example is the three-link swimmer,

introduced by E. M. Purcell [56] as the simplest imaginary swimmer that can break

symmetry in the Stokes regime. Made of three slender rods connected by two hinges,

this swimmer propels itself by moving its front and rear segments alternatively, as

shown in Figure 4.1.1. Because of its simplicity, the three-link swimmer was an ideal

subject for optimization studies. Becker et al. [7] calculated the optimal stroke angles

that minimize the total mechanical work required to generate motion. The optimal

angles were shown to depend on the length of the two outer rods relative to that

of the inner rod. In contrast to this study which optimized the geometry of the

swimmer, Tani and Hosoi [67] considered a device with a fixed geometry and sought

the most optimal stroke patterns that maximize the swimming efficiency and speed,

respectively.

Low Re swimming can be modeled by representing the swimming stroke as a series
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Figure 4.1.1: (a) Purcell's three-link swimmer, as introduced in his lecture, consists of
three rods and can generate non-reciprocal motion by moving the rods alternatively
(image reproduced from [56]. One example of a swimming sequence is shown in (b)

[7].

of changing geometries. Focusing on this idea, Shapere and Wilczek [61] found that

swimmer geometries associated with the maximum efficiency are symmetric about the

axis of propulsion. This work was generalized by Avron et al. [5] who used conformal

mapping techniques to include large deformations of the body. They showed that the

swimming efficiency tends to decrease both for small and large deformations of the

body, while intermediate deformations are optimal.

In all of these cases, the question of optimization is limited to an isolated low

Reynolds swimmer moving in an unbounded fluid. While these studies have been

instrumental in understanding the fundamental mechanism of self-propulsion in the

Stokes regime, one may wish to consider variations in the swimming environment,

such as the presence of external surfaces. In general, the presence of a deformnable

surface, such as an air-water interface, complicates the analysis due to the nonlinear

coupling between the evolving shape of the interface and the swimmer's motion. Now

thanks to the closed-form solutions derived in Chapter 3, we can extend the question

of optimization to include the effects of free surfaces. This is particularly interesting

in light of the known effect of "free surface swimming" in moderate to high Reynolds

number flows. Due to the energetic cost associated with creating surface waves,

swimmers in this Reynolds regime tend to swim less efficiently as they approach the

free surface [32]. However, for a low Reynolds swimmer that utilizes the free surface,

we prove in this chapter that its proximity to the free surface is energetically favorable.



Furthermore, we solve for the optimal free surface shapes that correspond to the most

efficient modes of swimming.

4.2 Mathematical setup

What is optimal?

Every optimization procedure contains at least one parameter that one hopes to either

minimize or to maximize, depending on the context. It is very common to maximize

efficiency, where efficiency is most generally defined as the ratio of useful work to

total work. More specific to locomotion, efficiency is usually the power required to

pull the swimmer at some translational speed (i.e. the product of the drag force on the

swimmer and its velocity) divided by the total power dissipated. However, because

our solution guarantees that the swimmer translates at a unit speed, the numerator

is a fixed value. Hence, we seek to minimize the denominator, or the rate of total

viscous dissipation in the fluid domain.

4.2.1 Calculating and minimizing the rate of viscous dissipa-

tion

There exists an inherent difficulty in calculating the total dissipative power, due to

the presence of singularities in our system. A singularity causes the dissipation to di-

verge, overwhelming any dissipative differences in our integrated flow fields generated

by different combinations of singularities. In order to circumvent this problem, we

regularize the rate of total dissipation by taking a finite sized hole of dimensionless

radius R -- around the swimmer, as shown in Appendix B. While this approach
h

may not be the most sophisticated way to regularize our solution, R introduces a new

length scale into our system which can be interpreted as restoring a finite-size to the

swimmer relative to its distance from the interface. Strictly speaking, in order for

the singularity description of the swimmer to be valid, the circle around the swimmer

needs to be well separated from the interface, meaning R < 1.



For a given free surface shape, one can find f(z) and g(z) (see Chapter 3). These

solutions lead to an expression for the rate of viscous dissipation E in the domain OD

bounded by a free surface and a hole of size R:

1£ - - - 1~ _
E= [zzf"f' - zf"f + zg"f'+ g"g] dz - - zg"f'd, (4.2.1)

2i J2i
DD OD

and tile dletailed calculation is shown ini Appendix B. By comparing the values of

dissipation for different free surface shapes (i.e. varying shape parameters, a and c),

we find the rate of minimum viscous dissipation Emmi along with the corresponding

shapes of the free surface. aopt and co0 t. In the previous works mentioned in @4.1, the

goal is often to find tile detailed swimming strokes that yield the most energetically

favorable motion. With a swimmer's stroke represenlted as a sum~ of singularities in

our formulation, we can equivalently ask which linear conmbinlation of singularities,

or which free surface shape (a0 pt and c0pt) results in the least anmonlt of viscous

dissipation. Recall that there is a one-to-onle corresponldenlce between a unique set

of singularities which describe the swinmning stroke and a steady state solution of

the free surface shape. This alpproach not only adldresses tile relationship between

tile swinmmer's stroke and tile overall power dissipation, but it also higihlights tile

role of the free surface in our problem. In sunnary, one can 11w pose the following

two questions: "Is it ellergetically favorable for a swimer translating enaet a

free surface to deform the surface? And if so, wmat is tlhe resultant optinal free

surface shape?" The answers to these questions will be discussed in 64.3.2. A more

fundamental question pertais to te swimmners proxiity to thie free surface, namely
"Is it energetically favorable for thie swimmer to be close to the surface?" wilich wiii

be answered in tie following sectioll
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Figure 4.3.1: The rate of minimum dissipation, Emin, in the system is shown to vary
as R 4 (where R is the "cutoff" radius), independent of the the capillary number, Ca.

4.3 Results

4.3.1 Proximity to the interface

Figure 4.3.1 shows the power law relationship between the rate of minimum dissipa-

tion, Emin and the cutoff radius, R, which holds true independent of capillary number,

Ca. Recalling that Em1 in has been scaled by pU 2 , this minimum dissipative rate can

be expressed in dimensional terms as:

Emiin ~ 4 1 ,(4.3.1)

indicating that with increasing viscosity, p, and increasing swimming speed, U, the

rate of total minimum viscous dissipation increases. The strong dependence of Emin

on the distance to the interface is particularly revealing. The minimum dissipative

rate is shown to decrease (to the fourth power), the closer the swimmer is to the



free surface, relative to its size. Thus, for a low Reynolds swimmer that relies on the

presence of the free surface to swim, it is energetically favorable for the swimmer to

be closer to the surface.

This result can be compared to a low Reynolds swimmer moving at speed U in an

unbounded fluid. The viscous dissipation for this swimmer scales as p1U 2 , implying

that for < 1, the swimmer near the free surface dissipates less energy than

its counterpart in an unbounded domain. Keep in mind that this result needs to be

considered with caution since our solution requires that R a < 1. Finally, it is

noteworthy that surface tension, o. does not appear in this expression of dimensional

minimum dissipation. However, as we will see, surface tension plays an important

role in the swimmer's selection of optimal free surface shapes.

4.3.2 Optimal free surface shapes

As shown in Figure 4.3.2, the optimal free surface shapes depend on both the fluid

properties - in the form of capillary number Ca -- and R, the cutoff radius. At

low values of Ca, the interface is difficult to deform (high surface tension). Not

surprisingly, in this limit, the optimal interface shape is shown to be flat (Aaolt = 0,

where Aaopt = 2 - aept, and capt = 0), regardless of the value of R. As Ca increases

above some critical value (Cacriti), the free surface forms a small symmetric "dip"

toward the swinner (Aaopt > 0 and capt = 0). Finally when Ca reaches another

critical limit (Cacrit2), the deformation saturates at some maximum value. These two

distinct sets of critical capillary numbers are shown in Figure 4.3.3 and exhibit a

linear dependence on R. While the magnitude of aopt varies with R (Figure 4.3.2

and 4.3.4), it consistently shares the same general trend in Ca for all values of R, the

implications of which will be investigated shortly.

The fact that the optimal free surface shapes are completely symmetric (i.e.

Copt = 0) provides a way to simplify the exact solutions. Because the existing exact

solutions for general asymmetric deformations are extremely long and complicated,

the only practical way to extract physical intuition from them (such as power laws)

is by plotting them. Fortunately, when c 0, these equations reduce considerably,
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Figure 4.3.2: The value of AaOpt = 2 - apt, the measure of deviation from the

flat interface, as a function of the capillary number, Ca for different values of R.

As expected, in the limit of low Ca (high surface tension) as well as R -+ 0, the

interface remains flat (i.e. Aanpt = 0, c = 0). As Ca increases (low surface tension),
a small dip (AaOPt > 0) begins to grow. As Ca continues to increase, this deflection

saturates at some maximum Aaot value that varies with R. The free surface shapes

that correspond to the most energy efficient steady state solutions as a function

of capillary number, Ca are shown in the inset. In all cases, copt, the measure of

asymmetry, remains approximately zero.

allowing one to derive asymptotic solutions in the limit of small deformations. The

full equations for both general asymmetric deformations and symmetric ones are in-

cluded in Appendix C.1. The insight provided by the asymptotic solutions will be

highlighted in the following sections.

Bump up versus down

A concise answer to the question -"is it better for a swimmer to deform the free sur-

face or not?"- depends on the capillary number and the swimmer's relative distance

to the interface. However, when deformation does occur, the optimal free surface

shapes are always pulled symmetrically towards the swimmer. This result can be

predicted readily by perturbing the exact solutions in the limit of small symmetric
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Figure 4.3.3: The value of AaOpt shares the common trend of starting off at 0 and
decreasing until it saturates at some maximum value. The two distinct transitions
(from flat to deformed, and from deformed to maximum deformation) are marked by
two sets of critical capillary numbers, as plotted here for varying values of the cutoff
radius R. These critical values, Cacrit,1 and Cacrit,2, both increase linearly with R.

Figure 4.3.4: The dependance of the deformation size on the characteristic swimmer
size is demonstrated for two different relative values of R.

deformations, a - 2 + E + Q(g2), where E < 1. A positive value of E implies the

surface deformation is away from the swimmer (bump up), while a negative value

corresponds to deformation towards the swimmer (bump down). By comparing the
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total viscous dissipation E for positive and negative E, we see that deformation to-

wards the swimmer (E < 0) is more energetically favorable (see Figure 4.3.5). Note

this solution only considers terms to the first order of E: E = 8 (- + #) + Eh(R),

where h(R) is a positive function. (The asymptotic solutions to the second order

include the dependency on Ca, and are shown in Appendix C.1.1.)

106.21

E

swimmer location

10-1 R 0-1.174

Figure 4.3.5: The rates of viscous dissipation for an asymptotically small bump up
(dashed) and down (dotted) are plotted against the cutoff radius R, confirming that
the bump down is more energetically favorable. Since this plot includes only the first
order effects of the small perturbation solutions, it highlights the usefulness of the
asymptotic analysis in predicting the physical results.

It is not immediately obvious why a bump down is more favorable than up for free

surface locomotion. However, the physical reasoning may be found by borrowing ideas

from the method of images approach. The method of images - valid only for flat

interfaces in the strict, mathematical sense - states that the free surface problem can

be transformed into an unbounded one with two swimmers: one actual singularity

and its "image" singularity located across the interface. The two swimmers then

interact in such a way that the free surface boundary condition is satisfied at the

........: . ..f . ......



center line between them. As shown in Figure 4.3.6, the bump down interface lowers

the position of the image singularity. Since the motion of the swimmer is generated

by the interaction of the image and swimmer singularities, a shorter distance between

them implies that lower singularity strengths are needed to yield the same swimming

velocity, reducing the viscous dissipation. However, there also exists an energetic cost

associated with deforming the interface, which increases the total dissipation in the

system. Due to these competing factors, the optimal surface deflection Aapt plateaus

at high Ca (or low u).

image in
undeformed Ng

interface (approximate) image
in deformed

------------------ interface

*point swimmer

Figure 4.3.6: Deforming the interface downwards can be interpreted as bringing the
image singularity closer to the swimmer. The flow is generated by the interaction
between the swimmer and its image, which consequently induces the horizontal mo-

tion of the swimmer. Thus, with the image singularity closer to the swimmer, smaller
singularity strengths yield the same horizontal speed (leading to reduced dissipation).
However, there is also an energetic cost of deforming the interface downwards. This
competition explains why the optimal downward deformation does not grow indefi-
nitely but saturates at a critical capillary number.

Three regimes of optimal deformations

We have shown that the optimal surface shapes (expressed in terms of a size param-

eter, Aa0 pt) depend on both the capillary number Ca and the cutoff radius R. When

Aaopt and Ca are rescaled appropriately with R, our solutions collapse onto a single

curve as shown in Figure 4.3.8. The rescaled parameters, denoted with tildes, are

Aop Aat 2 - aopt (4.3.2)

Ca (4.3.3)
R'
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Figure 4.3.7: The deviation from the flat interface, 2 - aopt, is denoted as Adopt after

it has been scaled by R2. Similarly, Ca - C is the rescaled capillary number. This
particular pair of rescaling results in collapsing Aa0 pt versus Ca plots into one curve,
from which one can extract interesting scaling relations. (The numerical data for small

Ca is better shown in the inset (a) on a linear vertical scale.) Three distinct regimes
emerge from this plot, denoted as [A], [B], and [C]. The regime [A] corresponds to the
flat interface as the optimal free surface shape, and [B] shows the optimal deformation
growing with surface tension, while the last regime [C] is the optimal deformation
saturated at a maximum value.

where Aaopt is the resealed deviation from the flat interface. In Figure 4.3.8, Aaopt is
~2

shown to increase as Ca at moderate values of Ca and then reaches a maximum and

remain constant for high Ca. In this limit of Ca -* oc, we see that Aa0 Pt ~ constant,

or in dimensional variables:

(4.3.4)

Since AaOpt is a measure of free surface deformation (i.e. Aaopt = 0 for zero de-

formation), Eq. (4.3.4) implies that the optimal deformation is only a function of

the swimmer's distance from the interface relative to its size only in this limit, and

[C]

Aaopt ~
h12



not of the fluid properties. Specifically, the optimal deformation increases when the

swimmer is closer to the interface, consistent with Figure 4.3.4.

Ca

Figure 4.3.8: An approximate expression for Aiopt (plotted as dotted lines) is derived
from asymptotic solutions and shows a good overall agreement with the full solutions,
despite a clear shift at the transition from flat to deformed interfaces (Cacrit).

However, this dependency on the relative distance from the interface does not
-2

appear at moderate Ca at which Aaopt ~ Ca , or equivalently,

AaPt ~ 2 _ (4.3.5)

As the optimal free surface shapes transition from flat to deformed, they exhibit a

stronger dependence on surface tension, viscosity, and the swimmer speed. These

simple scaling relations are useful in providing a rough picture of the underlying

physics; however, a more detailed examination of our results can follow by deriving



an approximate expression for this function Aaopt in terms of R and Ca.:

24R 2 +52.8
18R 4 + 103.92R 2 + 0.1352 + 48'

Ca

This optimal deflection (derived from asymptotics) is plotted in Figure 4.3.8 as a set

of dotted lines on top of the full solution for comparison. Although it consistently

predicts the initial transition point from the flat interface to the deformed (Cacriti)

below the actual value, this approximate solution effectively captures the overall trend

of the optimal deformation and also accurately predicts the maximum value of A3opt.

With the mathematical tools in place, one can delve into the physical implications

of the three distinct regimes of the optimal free surface shapes as shown in Figure

4.3.7. The first regime [A] marked by Ca = < 10-3 corresponds to the optimal free

surface being flat, or Aaopt -+ 0. Not surprisingly, the limit of high surface tension (or

low Ca) falls in this regime. Furthermore, regardless of Ca, the limit of R R -+ 0

also corresponds to this flat interface case. Since R can be interpreted as the finite

size of the swimmer, this result implies that if a swimmer is sufficiently small, or

equivalently, sufficiently far from the interface, the undeformed interface results in

the most efficient locomotion, regardless of the fluid properties.

The second regime to consider (denoted as [C] in Figure 4.3.7) is Ca > 1 when

the deformation reaches its maximium size, and corresponds to low surface tension:

ao 24R 4  52.8R (4.3.7)
18R 4 + 103.92R 2 + 48

It is important to note that even in the limit of zero surface tension, as long as R -+ 0,

the optimal free surface shape remains flat. Finally, the last regime of interest [B]

falls between the two said regimes and holds a power law relation of Aaopt ~ Ca2 , as

discussed earlier. This power law is valid for the values of Ca ranging from 10-2 to

10-1, corresponding to moderate values of the capillary number and R.



4.4 Discussion

We have investigated the motion of a low Reynolds swimmer near a free surface

thanks to conformal map techniques that yield exact solutions even for large interfacial

deformations. With these known solutions, we are able to study the energetic cost of

such locomotion and the shapes of the free surface associated with optimal swimming.

At mid to high Reynolds numbers, swimming near free surfaces tends to increase drag

on the swimmer due to the energy cost associated with generating surface waves.

However, for a low Reynolds number swimmer, the presence of the free surface may

be beneficial.

Our study quantifies this difference by considering swimmers that utilize the free

surface to obtain a steady state translation. Within this framework, we find that

proximity to the interface increases efficiency. More specifically, the rate of mini-

mum dissipation scales as h4 , where h is the swinuner's distance from the interface.

This total dissipation does not depend explicitly on surface tension, but instead, is

proportional to the square of viscosity y and the translation speed U.

Given that our swinimner's locomotion relies on the presence of the free surface, but

not on its deformation, it is an interesting exercise to classify the optimal shapes of the

free surface. The optimal free surface shapes, in general, are left-right symmetric and

are pulled toward the swinuner. As a function of increasing capillary number Ca, the

free surface initially stays flat and at some critical Ca, forms a symmetric bump down

toward the swimmer. This bump size increases as o -2, where o is surface tension,

but saturates when Ca reaches its second critical value. In this limit, the optimal

deformation size is shown to be inversely proportional to the swimmer's distance

from the interface to the second power, h2. We also perform a small perturbation

analysis of the full solutions and show that these approximations work remarkably

well in this simple limit.

The study of optimal swimming near the air-water interface can be extended in

various ways. For instance, one may improve the way we regularize the total dissi-

pation in the fluid by considering the two regimes (near versus far fields) separately



and matching them. More importantly, here we have shown only one application of

using the exact solutions given by the conformal map. These solutions can be im-

proved by including a finite body of the swimmer. One can also broaden this study

by considering different types of surfaces in order to provide a theoretical basis for

understanding and controlling low Reynolds number locomotion, in geometries where

the swimmer has the ability to modify its environment.





Chapter 5

Conclusion

Our investigation of free surface swimming was first inspired by water snails that

exhibit a very peculiar form of locomotion. Separated from the free surface by a thin

layer of viscous mucus, these snails use surface tension to drive a flow in their mucus,

leading to propulsion. Extending this interplay between the free surface and the swim-

mer's motion to a general low Reynolds swimmer was motivated by a recent renewal

of scientific interest in low Reynolds locomotion, driven by applications in biology

and engineering. Although low Reynolds number locomotion is a fairly well studied

problem, a mathematical model that includes the free surface has not been offered,

apart from the work by Trouilloud et al. [71]. While their work focuses specifically on

overcoming the Scallop Theorem by deforming the free surface asymmetrically in the

limit of asymptotically small perturbations of the interface, we are interested in the

steady state motion of a swimmer that breaks symmetry by the presence of the free

surface, not necessarily by deformations. Considering the swimmer in this manner

allows us to avoid the unsteady nature pertaining to the Scallop Theorem and focus

on a general swimmer translating beneath a free surface. Large deformations of the

swimmer are captured exactly using the conformal mapping techniques.

Following the study of swimming mechanism, the question of optimization arises

naturally in investigating locomotion of any biological system. While it is not possible

to fully understand the motivation of a given organism in adapting its locomotive

strategy, one relevant conjecture is that the swimmer is interested in preserving energy



since a biological organism's power generation is constrained physiologically. Based

on this idea, we considered how a low Reynolds number swimmer exploits the free

surface to propel itself while minimizing the viscous dissipation. The questions we

asked range from fundamental - "is the proximity to the interface beneficial for

the swimmer?" - to more specific, regarding the optimal shape of the interface.

Our results show that the swimmer dissipates less energy by being closer to the free

surface. In addition, apart from the cases of extremely high surface tension and the

swimmer being far away from the interface (relative to its body size), it is favorable for

the swimmer to pull the interface symmetrically toward itself. In a physical context,

for most micoorganisms swimming in a mucus-like fluid, the capillary number is

sufficiently low (high surface tension) and their body length is sufficiently small that

no deformation of the free surface is the most optimal solution for their locomotion.

However, one needs to be aware of two important limits in our formulation. First, our

model cannot capture accurately the asymptotic limit of the swimmer approaching

the free surface, since the singularity description of the swimmer requires that the

swimmer be sufficiently far from the interface. More fundamentally, our swimmer is

modeled to generate only a completely symmetric "squirming" motion, guaranteeing

that its only means to break symmetry comes from its interaction with the free surface.

While this is an effective way to isolate the dynamics between the free surface and the

swimmer motion, this also biases the presence of the free surface to be energetically

favorable for the swimmer. In other words, it may be possible for a general low

Reynolds swimmer that is unaware of the usefulness of the free surface to find the

presence of the free surface hinders its motion and hence is energetically unfavorable.

We here hope to have painted a comprehensive picture of low Reynolds locomo-

tion near free surfaces, starting with a specific organism and generalizing it to "small"

swimmers that rely on a free surface to move, and investigating the role of this en-

vironmmental factor in locomotive efficiency. In the larger context of low Reynolds

number locomotion, we have demonstrated a umatheiatical framework to model a

swimmer in complicated geometries that interact with the swimmimer in a, nonlinear

fashion. For instance, one may analyze the motion of a microorganism near a de-



formable (elastic) solid boundary as a way to understand how a sperm travels inside

the reproductive system. Such modeling approaches, coupled with a scientist's cu-

riosity, can be instrumental in understanding the rich physics still to be uncovered in

low Reynolds locomotion.





Appendix A

Details from the point swimmer

A.1 Far field condition

Different iating the boundary z along the arclength s corresponds to

dz i( zf

ds z|

In particular, as - -i, it can be shown that

(A.1.1)

(A.1.2)
ds |al

Then, the stress boundary condition (3.2.8) at infinity becomes

1ia
o ± g =Ca a. (A.1.3)

Since ( = 1, the conjugate of z, z((), is equivalent to 2(1/(; in the limit of -- i

z(1/() reduces to

(A.1.4)1-+ 6o + = .+ id+ a++ ,(+ (iY
a Z



Recalling the steady state boundary condition

f +(z) + =(z) 0,

and the far-field behaviors of f(z) and g(z),

1)

(A.1.5)

(1)
-CY + ... ,and g'(z) - go + (A.1.6)

one can now relate go to f, as

(A.1.7)

From the far-field velocity condition (3.4.8), it follows that

(A.1.8)a
-fo - _ 1.

In order to ensure that this velocity is purely real, a needs to be real as well, leading

Eq. (A.1.8) to

(A.1.9)

Furthermore, combining equations (A.1.3) and (A.1.7) yields

fee - fJa=c ,
2Ca

which results in (3.4.9), or

i
+4Ca and1

2

(A.1.10)

(A.1.11)

- foo' - foo = 1.

4Ca



Figure A.2.1: The method of images: to satisfy the boundary condition on the free
surface an image singularity must be introduced at the reflection of the point swimmer
position.

A.2 Steady swimming beneath a flat interface:

method of images

We use the method of images to analyze the motion of a point swimmer translating

at U = -1 near a flat interface. For convenience, we work in the frame of reference

moving with the swimmer, which allows the local velocity at the swimmer's position

Zd = -i to vanish.

The function, f(z), is expected to be in the following form

* s*

f(z) = .+ .+fo
z+1 z-i

(A.2.1)

which consists of an image stresslet at z = i, in addition to the stresslet at z = -i (see

Figure A.2.1). These singularities, as well as the constant fo, need to be calculated.

By the stress boundary condition (3.2.8) on - = z, g'(z) is related to f(z) by

I

' -f(z) - zf'(z) + 2Ca' (A.2.2)

which, when combined with Eq. (A.2.1), becomes

is*
g'(z) = ~ i 2

(Z + i)2
+ -) 2 +Ago,)

(z - 1)2

&-image singularity

U= I
interface --

fluid region
Zd = point singularity

... ......... .......... ........ ...... ...........

(A.2.3)



g'(z) i)2 Z- .

2is* 2is*
- - + - + go.
(z1 + i)2 (Z - 1

The velocity in the far-field must be 1 in the co-moving frame of reference. Substitut-

ing equations (A.2.1) and (A.2.2) in the expression for the velocity (3.2.3) at infinity

produces the following condition:

-fo+ o 1. (A.2.5)

Then, one can collect the constant terms in the stress condition (A.2.2) to find

1 i
fo = + ,C

2 4Ca'

1i
go =

2 4Ca'
(A.2.6)

Going back to the swimmer, the finite part of the swimmer velocity must be zero,

meaning
*

(-2i)

so that

is* is*

-Af + -
(-4)

2i.

(A.2.7)
(-4)

(A.2.8)

With the functions f(z) and g'(z) known, everything about the flow is also known.

Furthermore, the condition that the free surface is a streamline can be verified by

using Eqs. (A.2.1) and (A.2.2):

is* is* zs*
g(z) + zf (z) =+ zgo +

(z+ i)- (z--) + (z+i)

zs*
+ .- fo]

(z - 1)

= 2Re[s*] = 0. (A.2.10)

In summary, we have shown that a point singularity can translate steadily with

a unit horizontal speed underneath a flat free surface (at any capillary number) if

it is a point stresslet of strength 2i with a superposed potential dipole of strength

2is* = -4. It is noteworthy that this solution is not limited to the case of Ca < 1 in

which one would expect interfaces to remain flat. Instead, we solve for singularities

(A.2.4)

(A.2.9)



(i.e., stresslet and potential dipole) that would yield a steady motion while keeping

the free surface flat, regardless of how deforiable the surface is. Not surprisingly, the

result is shown to be independent of the capillary number because the curvature of

the flat interface is everywhere zero. For a deformed interface, however, the capillary

number plays a crucial role.





Appendix B

Calculating the rate of viscous

dissipation

Taking the scalar product of the well-known Stokes questions,

VP= p V2u, (B.0. 1)

with the fluid velocity u and integrating over the entire domain D produces the

following expression for the rate of work:

[-u . V + pu. V 2u] dV. (B.O.2)0 =f

D

After some manipulation, this can be rewritten in the index notation as

( B.0.3)0 = cf ri (-+nu + 2p'ynj ) ds - 2p 1 ffi dV,

OD D

where OD corresponds to the surface of the fluid domain and s- =(2 + L) is

the strain rate tensor. Keep in mind that the Gauss' theorem allows the first integral

in Eq. (B.O.3) to become a surface integral. Non-dimensionalizing the equations and

recognizing that the OD consists of both the free surface and the "hole" of radius R



around the swimmer, Eq. (B.O.3)s reduces to

0o- au u n ds - p02 u (-pnj + 2Cijnr ) ds - 2p 2  Je dV, (B.0.4)

aDint ODswi D

where DD = ODiet - Dswimi. Note that the first integrand has been replaced by the

equivalent expression for the curvature on the free surface, while a minus sign in front

of the swimmer surface integral is necessary in order to keep the positive orientation.

In the physical context, this particular surface integral can be considered the amount

of work generated by the swimmer, or 4 in the dimensional form:

PU pU2 'uj (-pnj + 2ejnj) ds = o- Ku* n ds - 2pU2 j/ ei* dV
DDswim OD at D

(B.0.5)

After 0 is scaled by tU 2 , the typical expression for the swimmer power in an un-

bounded Stokes flow, one obtains

Ca u. n ds - 2 Ie dV . (B.0.6)
ODilnt D

Now the first integral in Eq. (B.O.6) is shown to vanish, indicating that there is no

time rate of change in work the swimmer generates to deform the free surface. This

bodes well with our steady state description of the problem in which the free surface

shape does not evolve in time. The second integrand can be expressed in terms of

our known solutions, f(z) and g(z):

2 I -, - -) - 8g1I+gvI
C J zf"(7f - f) + zg"f + g'+ [z"f'] , (B.0.7)

based on e11 + iC12 g"(z) + zf"(z).

Recalling the complex form of the divergence theorem, one can turn Eq. (B.O.7)



into two separate surface integrals,

fO[zf"T -z
D

+ zg"T + g"] dz + f'd.

This above expression corresponds to the rate of work generated by the swimmer, #,

or equivalently, the rate of total dissipation, E, in the fluid domain. We then solve

for the free surface shapes that minimize this quantity (or yield Emin) in Chapter 4.

e dV (B.0.8)



----------



Appendix C

Details from the optimization

C.1 Full equations

The complex functions F and G that describe the physical system exactly are deter-

mined by a pair of complex constants, C = C, + iq, and D = Dx + iDy, as shown

below:

711o

DY - o

ma

_ a

C 4 =4D - II
2Ca

+ I Re(iIce (-i))
Ca,

+ I Re (il( (i))
Ca f

Re(iIce (-i)) - ,1

+ iI (-i)+
Ca Cal

+ M5 H +7iI6 (-i)+
Ca Ca

C, = -2Dx + I((-i)

(C.1.1)

(C.1.2)

(C.1.3)

(C.1.4)
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(C.1.6)

(C.1.7)

(C.1.8)

(C.1.9)

(C. 1. 10)

2T2

(C.1.11)

where

3a
ai = - 1 - ic,

2

a 2 = a - 1 + ic

a3 = a - 1 + ic.

(C.1.12)

(C.1.13)

(C.1.14)

Since they are often very long and complicated functions of the conformal map, or

the shape parameters, a and c, obtaining physically relevant information from C and

D often proves to be a fruitless task. However, in the case of symmetric deformations

+ ia )(1(0) -I(-i))

(a2 a,1 (Ic(0)



(c - 0), C and D reduce to

= a - 5 (C.1.15)
2a(a - 1)'

C, = -[(2bi + - iI (-i) - 2b2  (C.1.16)
Ca 2

Dx = [IbIij(-i) + b2] , (C.1.17)
Ca

Dy = 7a - 6 (C.1.18)
8a(a -1)'

where

I() = LI d((I±( (C.1.19)

bi a (3a - 2) (3a - 4) (C.1.20)
4(a - 1) 4a 2 (a - 1)

IM(J (0)) (3a - 2) 2 (a - 2) (3a - 2)(a + 2)
b2=I(_) 8a3- (1(0) - 1(-i)) a2 . (C.1.21)

Apart from the integral [(() that needs to be solved numerically, C and D are

now relatively simple functions of a. Since the optimal free surface shapes are found

to be approximately symmetric (c ~~ 0), these equations can be studied more closely

to help understand results found in Chapter 4.

C.1.1 Asymptotics

Keeping c -_ 0, we now consider asymptotically small symmetric deformations. By

setting a = 2 + E + O(E2), we obtain

7
C=- + C + O(E2), (C.1.22)

4
1

C 8= a eC' 0(62), (C.1.23)*8C~a"

D_ = ED(1 ) + 0(E2), (C.1.24)

1
D = -+ EDO) + 0(E2 ). (C.1.25)



Furthermore, a simplified expression for the rate of dissipation is obtained by con-

sidering the singularities that satisfy our optimal solutions in an uinbounded fluid

domain.

121q*12  2|12 +
R6 ft4

2
4+

4 
)R?2

1
+ (12Re(s*q*)

R4 '
+ 4Im(s*d)), (C.1.26)

s* (3a - 2)2 D,

d 3a - [2iD(a2 - 3a -
8

(a - 2)(3a - 2) 3 D
16

2) + C((3a2 - 8a + 4)] ,

where s*, d, and q* are stresslet, dipole, and quadrupole singularities, respectively.

Although this simplified expression for the viscous dissipation rate, E, does not fully

capture the effect of the free surface, the resulting trends are shown to correspond

remarkably well to the full expression. Now E is perturbed in the limit of small

surface deformations to yield:

Ek0) =8 (

E1) (D0))2

E2) (D0))2

+ 2),
R2

64
R?4 1 + D(0)D)

R? Y Y

{192
R6

512 408)
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208
Rt4

± (Y9 R4

±128+ D(OD(4 + (256
+ D( (2) 2 R 6

f128

64
+ (D 0) C D C + D1 )C(o)

where E = E) + EEM + 22) + 0(63), with E0) corresponding to the rate of the

viscous dissipation in the limit of a flat interface. Note that the dependence on Ca

comes in through DXY' and (,N() both of which appear only at 0(t2)

and

(C.1.27)

(C.1.28)

(C.1.29)
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Critical capillary numbers

One needs to consider the asyniptotic solution at O(c2 ) to explore the dependence on

Ca. As shown in Figure 4.3.3, Cacrit is the transition point from the flat state to the

deformed state, while Cacrit2 corresponds to the capillary nunber at which the maxi-

mum optimal deforniation is reached. In particular, the initial transition (Cacriti) can

be fairly well predicted by considering the asymptotic solution to O(E2 ) as a function

of varying R. In Figure C.1.1, Cacriti for both the full solution and asymptotics is

shown to increase linearly with R, while the asymptotic solution consistently yields

lower values of Cacritl. Such discrepancy is to be expected riot only due to the nature

of asymptotic analysis but also due to the iniprecise way we extract the critical cap-

illary nunbers from the full solution. The critical capillary numbers are obtained by

fitting linear functions to three distinct regions of o'opt (see the inset of Figure 4.3.3)

and calculating where they intercept Despite that, the close correspondence espe-

cially in the general trend between the full and the analytic solutions demonstrates

the usefulness of investigating the small perturbation limits.
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Figure C.1.1: Considering the asymptotic solutions to O(E2) allows one to predict
the values of Cacriti for varying R, as plotted here. (The solid dots correspond to the
asymptotic equations, while the empty squares are the full results.) The asymptotic
solutions are in a good agreement with the exact equations, but they tend to be
consistently lower.
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