Fibronectin Domain Engineering

by

Benjamin Joseph Hackel

B.S., Chemical Engineering

University of Wisconsin-Madison, 2003

Submitted to the Department of Chemical Engineering

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN CHEMICAL ENGINEERING

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARCHIVES
MASSACHUSETTS INSTITUTE|
September 2009 OF TECHNOLOGY ‘
© Massachusetts Institute of Technology 2009 JUN 0 2 2010
All Rights Reserved
LIBRARIES

Signature of Author:

Certified by: <

Department of Chemical Engineering
« August 13,2009

Accepted by:

K. Dane Wittrup
Professor of Chemical Engineering
Thesis Supervisor

William M. Deen
Professor of Chemical Engineering
Chairman, Committee for Graduate Students



Fibronectin Domain Engineering
by
Benjamin Joseph Hackel

Submitted to the Department of Chemical Engineering on August 13,2009 in partial fulfillment

of the requirements for the degree of Doctor of Philosophy in Chemical Engineering

ABSTRACT

Molecular recognition reagents are a critical component of targeted therapeutics, in vivo
and in vitro diagnostics, and biotechnology applications such as purification, detection,
and crystallization. Antibodies have served as the gold standard binding molecule
because of their high affinity and specificity and, historically, because of their ability to
be generated by immunization. However, antibodies suffer from several shortcomings
that hinder their production and reduce their efficacy in a breadth of applications. The
tenth type III domain of human fibronectin provides a small, stable, single-domain,
cysteine-free protein scaffold upon which molecular recognition capability can be

engineered.

In the current work, we provide substantial improvements in each phase of protein
engineering through directed evolution and develop a complete platform for engineering
high affinity binders based on the fibronectin domain. Synthetic combinatorial library
design is substantially enhanced through extension of diversity to include three peptide
loops with inclusion of loop length diversity. The efficiency of sequence space search is
improved by library focusing with tailored diversity for structural bias and binding
capacity. Evolution of lead clones was substantially improved through development of
recursive dual mutagenesis in which each fibronectin gene is subtly mutated or the
binding loops are aggressively mutated and shuffled. This engineering platform enables
robust generation of high affinity binders to a multitude of targets. Moreover, the
development of this technology is directly applicable to other protein engineering

campaigns and advances the scientific understanding of molecular recognition.



Binders were engineered to tumor targets carcinoembryonic antigen, CD276, and
epidermal growth factor receptor as well as biotechnology targets human serum albumin
and goat, mouse, and rabbit immunoglobulin G. Binders have demonstrated utility in
affinity purification, laboratory detection, and cellular labeling and delivery. Of
particular interest, a panel of domains was engineered that bind multiple epitopes of
epidermal growth factor receptor. Select non-competitive heterobivalent combinations of
binders effectively downregulate receptor in a non-agonistic manner in multiple cell
types. These agents inhibit proliferation and migration and provide a novel potential

cancer therapy.

Thesis Supervisor: K. Dane Wittrup, C.P. Dubbs Professor of Chemical Engineering

and Biological Engineering
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Chapter 1: Background

1. BACKGROUND

Protein Scaffolds

Molecules capable of specific, high affinity binding to a molecular target are vital to
targeted therapeutics, in vivo and in vitro diagnostics, and biotechnology applications
such as purification, detection, and crystallization. Antibodies have been the binding
reagent of choice because of their binding capacity and ability to be generated naturally
by immunization. However, antibodies suffer from several shortcomings that reduce

their efficacy in a breadth of applications and hinder their production.

Full immunoglobulins are large (~150 kDa), glycosylated molecules comprising multiple
domains connected by hydrophobic interactions and disulfide bonds. The reduced
diffusivity resulting from its large size impedes in vivo delivery, such as solid tumor
uptake.! The large size and neonatal Fc receptor interaction slow clearance, which is
beneficial for sustained therapeutic use, but detrimental for in vivo imaging. Size also
limits the effectiveness of antibodies for Forster resonance energy transfer by separating
the binding site from the fluorophore. Glycosylation, disulfide bonds, and multi-domain
structure complicate production, which is generally conducted in expensive mammalian
cell culture. Structural complexity hinders protein fusion such as for bispecific formats
or display technologies for protein engineering. Moreover, the presence and importance
of disulfide bonds generally precludes use in the reducing intracellular environment.
Multiple cysteines also complicate thiol-based conjugation, which would otherwise allow
simple inclusion of reporter moieties for diagnostics, immobilization for biotechnology
applications, or attachment of therapeutic payloads such as radionuclides, toxins, or
proteases. Antibodies also suffer from moderate instability. Resultant degradation and
aggregation of in vivo diagnostics and therapeutics reduces potency and can elicit an
immune response. Antibody shelf-life is suboptimal, reducing efficacy and elevating
costs. Instability also limits the robustness of antibodies in biotechnology applications

such as the stringent washing steps of purification and detection.

The opportunity for improvement over antibodies has not evaded the scientific

community as a multitude of alternative scaffolds have been investigated. Molecular
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recognition scaffolds are conserved structural frameworks tolerant of targeted amino acid
variability enabling diverse binding function, and thus include antibodies and their
subdomains. However, alternative scaffolds can be smaller, single domains, more stable,
cysteine-free, more easily produced, simpler to engineer, or tailored for a specific
application. Numerous scaffolds have been investigated;”* a few of the more successful

and well-characterized are highlighted here (Figure 1.1).

(€

(D)

Figure 1.1 Protein scaffolds for molecular recognition. (A) Designed ankyrin
repeat protein (PDB ID: 2JAB). (B) Anticalin (PDB ID: 1RBP). (C) Affibody (PDB
ID: 2B88). (D) Fibronectin domain (PDB ID: 1TTG) (E) Single-chain antibody
fragment (PDB ID: 1X9Q). Residues that are generally diversified to generate
novel binding function are depicted in red with semi-transparent spheres. Images
were created in MacPymol.

Designed ankyrin repeat proteins are composed of several 33 amino acid modules that
each forms a B-turn, antiparallel at-helices, and a loop (Figure 1.1A).* The cysteine-free
proteins have high thermodynamic stability (~10 kcal/mol), are produced at 200 mg/L in
E. coli, and are readily crystallized. Targeted diversification of surface residues along
with mutation during ribosome display screening has yielded nanomolar to picomolar

binders to a variety of protein targets. Although their fully synthetic origins raise
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concerns about immunogenicity for in vivo use, early experimental evidence suggests that

this concern may not be substantiated.

Anticalins, based on natural ligand-binding lipocalins, are 160-180 amino acid {3-barrels
with a pocket formed by four loops (Figure 1.1B).> The concave binding pocket is best
served for hapten binding yet variation in the four loops has yielded nanomolar binders to
multiple targets including digitoxigenin and cytotoxic T lymphocyte antigen 4. On the
down side, the scaffold contains several disulfide bonds, is only moderately stable (~6

kcal/mol), and has low bacterial expression (0.5 mg/L).

Another scaffold is the affibody, a 58 amino acid, three-helix bundle derived from the Z
domain of staphylococcal protein A (Figure 1.1C).° Diversification of thirteen residues
on the surface of two antiparallel helices has yielded binders to multiple targets; however,
binders are characterized by high association and dissociation rates generally resulting in
micromolar affinity, though mid-nanomolar binders have been identified. The cysteine-
free domains are produced in E. coli at up to 200 mg/L, but instability has been
problematic including the presence of molten globules with a 30% reduction in helicity

and 37° thermal destabilization relative to wild-type.

An additional scaffold under study is based on the tenth type III domain of human
fibronectin (Fn3). The scaffold is small (94 amino acids, 10 kDa), stable (7.5-9.4
kcal/mol, T, = 90°C),” ® soluble to 15 mg/mL, free of cysteines and expressed at ~50
mg/L in E. coli’ Depending on the degree of modification, it is reasonable to expect low
immunogenicity in vivo due to stability and natural abundance, as the Fn3 domain occurs
in ~2% of animal proteins.'® In addition, both solution'' and crystal'? structures of Fn3
have been determined enabling rational elements of design. The scaffold contains three
solvent-exposed loops on either side of parallel B -sheets, somewhat akin to the
immunoglobulin fold (Figure 1.2). Significant evidence exists that Fn3 loops can tolerate
diversity to potentially function in analogous fashion to complementarity-determining
regions of antibodies. Sequence analyses reveal large variations in the BC and FG loops

(Fn3 loops can be referenced by the two peripheral -strands) with moderate variation in

9
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DE loop sequences. NMR spectroscopy indicates significant flexibility of the FG loop as
well as moderate flexibility of BC.”” Moreover, elongation by insertion of four glycine
residues is moderately well tolerated (1.2, 2.3, and 0.4 kcal/mol destabilization of BC,
DE, and FG)." The opposing loops, AB, CD, and EF, offer potential for a bispecific
scaffold but are neither as well arranged nor as tolerable of insertion as the other loops.

In short, Fn3 provides numerous biophysical advantages over antibodies and is an

attractive scaffold for engineering binding proteins.

1 VSDVPRDLEV VAATPTSLLI
21 SWDAPAVTVR YYRITYGETG
41 GNSPVQEFTV PGSKSTATIS
61 GLKPGVDYTI TVYAVTGRGD
81 SPASSKPISI NYRT

Figure 1.2 Fibronectin domain. The solution structure (PDB ID: 1TTG) of Fn3 is
presented with 90° rotations. The wild-type sequence is indicated. The BC (red),
DE (green), and FG (blue) loops are highlighted.

Use of this scaffold as a binding protein has been proven in several applications. The
native scaffold is a natural binder as the FG loop contains the Arg-Gly-Asp tripeptide

critical in integrin binding."” In the initial use of the domain as a scaffold for molecular

recognition, randomization of the BC loop and a shortened FG loop yielded micromolar

10
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binders to ubiquitin.'® This study demonstrated the ability of Fn3 to accommodate
mutations in loop residues without notable structural change and the ability to introduce
novel binding function. However, reduced stability and solubility and non-specific, low
affinity binding characterized the Fn3 variant. Screening of a library with more extensive
randomization of the BC, DE, and FG loops yielded binders to tumor necrosis factor o
and vascular endothelial growth factor receptor 2 (VEGF-R2) of nanomolar affinity % °
Further maturation resulted in binders of sub-nanomolar affinity demonstrating the
potential for high affinity binding with Fn3. Engineered Fn3 variants have been used
intracellularly,"” as inhibitors in cell culture,'® in protein arrays,’” and as labeling reagents
in flow cytometry'® and Western blots.” An anti-VEGF-R2 Fn3 is progressing through

clinical trials.

Fn3 shows great promise as a scaffold for molecular recognition and has been
substantiated in a variety of cases. However, reported binding variants are generally
characterized by substandard biophysical parameters. More thorough understanding of
the protein, both in terms of inherent biophysics and mode of molecular recognition, as
well as improved search of scaffold sequence space should advance Fn3 from isolated
successes to a robust scaffold for molecular recognition therapeutics and reagents.
Scaffold development should provide broad impact into protein engineering technology
and further the understanding of molecular recognition and protein sequence/function

relationships.

Protein Engineering

Engineering novel binding proteins requires identification of a functional primary protein
sequence from the enormous number of possible sequences (e.g., for a protein the size of
Fn3, there are 20* = 10'? possible proteins). Neither sequence/structure nor
structure/function relationships are understood well enough to enable robust de novo
theoretical design; thus, screening and evolution of combinatorial libraries provides the
most effective route to protein engineering of novel binders. This process involves three
key elements: naive library design, selection of functional clones, and sequence

diversification of lead clones (Figure 1.3).

11
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Selection

ncﬁun
4 throughput )

Naive

Library ;

DESIgn chemical diversity '\
structural diversity
high functionality

Lead
_ Clones

Library

C \ high functionality

Diversification

Figure 1.3 Protein engineering by directed evolution. A naive combinatorial
library of protein clones undergoes selection or screening to identify the lead
clones. These clones are diversified via mutagenesis or informed library
synthesis to yield a next generation library. This cycle continues until the desired
functionality is achieved.

Naive library design requires the balance of creating sufficient conformational and
chemical diversity to yield high affinity binding to myriad epitopes while providing a
high frequency of functional clones such that the limited searchable sequence space
contains clones with the appropriate phenotype. The essence of library design is
summarized in two questions: In which amino acid positions should diversity be

included? Which amino acids should be included at those positions?

Clones with the desired functionality can be identified from the library of protein variants
with high throughput selection via linkage of genotype and phenotype. Though this
linkage can be achieved through a multitude of display formats™ such as phage display
and mRNA display, yeast surface display is the superior method.”' In vitro technologies
tout high theoretical library sizes because of the absence of cellular transformation, which
can limit library size. Yet in a recent comparison of yeast surface display and phage

display using the same antibody DNA library and target antigen, yeast surface display
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identified three times more clones than did phage display and did not miss a single phage
clone revealing that constructed size and functional size can differ substantially.” Yeast
surface display may also enable selection of stable clones because of the quality control
apparatus of the eukaryotic secretory system.” Fluorescence-activated cell sorting of

yeast allows quantitative discrimination of clone functionality 2

In yeast surface display, tens of thousands of copies of Fn3 are tethered to the exterior of
an individual Saccharomyces cerevisiae yeast cell while the genetic information for the
Fn3 clone is maintained in the cell interior. The cell-protein linkage begins with the
Agalp subunit of a-agglutinin, which anchors in the cell wall periphery via P -glucan
covalent linkage.” The Aga2p subunit, secreted from the yeast cell as a fusion to Fn3,
attaches to Agalp via two disulfide bonds. The peptide bond in the fusion protein thus
completes the linkage resulting in 'display' of Fn3 on the yeast cell (Figure 1.4A). Aga2p
and Fn3, linked by a (G,S),; peptide, are followed by HA and c-myc epitopes,
respectively, to enable analysis of the display of Aga2p and the full-length protein fusion.
Display is achieved through transformation of DNA encoding for the Aga2p-Fn3 fusion
(Figure 1.4B) followed by cell growth and induction of both Agalp and Aga2p-Fn3
protein expression using a galactose-inducible GAL promoter. The displayed clones can
be screened for their ability to bind to a target of interest using flow cytometry or

captured by immobilized antigen.

Selected clones can be evolved through partial diversification of their sequence followed
by selection for mutants that exhibit improved functionality. Error-prone PCR to
introduce random mutations throughout the gene is the most common method of
diversification. Yeast surface display also enables gene shuffling via homologous

recombination.”®
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(A) (8)

| GAL | Agazp |Xa|HA]Linker Fn3 myc122 ferm.|

yeast cell

E N B X

Figure 1.4. Yeast surface display. (A) Schematic of yeast surface display. The
Aga2p subunit is tethered to the yeast cell via two disulfide bonds to Aga1p,
which is anchored in the yeast cell wall. The protein of interest is connected to
the Aga2p subunit through a flexible peptide linker as a result of genetic fusion.
HA and c-myc epitope tags flank the protein of interest on the N- and- C-termini
enabling detection of each displayed molecule using fluorophore-conjugated
antibodies. Depending on the protein of interest and induction conditions, tens of
thousands of these fusions are displayed per cell. (B) pCT-Fn3wt Vector.
ARSH4: autonomously replicating sequence H4; CEN6: centromeric sequence 6;
ampR: ampicillin resistance gene; colE7: colicin E1 origin of replication; GALT:
GAL1 promoter; E: EcoRlI site; Aga2p: agglutinin 2p protein subunit; Xa: factor
Xa cleavage site; HA: hemagluttinin epitope; linker: (GlysSer); linker; N: Nhel
site; Fn3: fibronectin tenth type Il gene; B: BamHI site; myc: c-myc epitope; ZZ:
TAATAG stop codons; X: Xhol site; term: alpha mating factor terminator; f1(+): f1
origin of replication; Trp7: Trp1 gene. The lower representation is not to scale.

Epidermal Growth Factor Receptor

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase in the ErbB
family. The receptor comprises three regions: extracellular, transmembrane, and
intracellular, which consists of a juxtamembrane domain, kinase domain, and a C-
terminal tail containing phosphorylation sites (Figure 1.5A,B). The extracellular region
consists of four domains of which domains I and III are leucine rich repeat folds and
domains II and IV are cysteine-rich domains. The receptor is predominantly present in a
tethered conformation on the cell surface. Binding of ligand, including epidermal growth
factor, transforming growth factor o, epiregulin, amphiregulin, {3-cellulin, and heparin-
binding epidermal growth factor, stabilizes an open conformation of the receptor.

Resultant dimerization enables kinase activation and phosphorylation of the intracellular

14
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domain. Phosphorylation sites enable docking of adaptor proteins that initiate signaling
cascades such as the mitogen-activated protein kinase pathway activated by Ras and Shc,
the Akt pathway activated by phosphatidylinositol-3-OH kinase, and the protein kinase C
pathway activated by phospholipase Cy. These pathways form a complex signaling
network that impacts multiple cellular processes including differentiation, migration, and
growth?” (Figure 1.5C). Activated EGFR is endocytosed within several minutes and a
fraction undergoes fast recycling from the early endosome. The alternate fraction persists

to the late endosome resulting in slower recycling or degradation (Figure 1.5D).”

(A) (B)

P -\ ’../ o -
130 "zf'.;.,c e @%E} % '@,.,,- IlLLergfaokflkm J

n }:ﬁ{&\: f ' S n }@\ » < &39'_}'”

2 . ) ,{-cm‘;w |
I...ar , > F (Mﬂ-{lﬂuuﬁr‘l UbinKe e
v 2 pd v k A v L Ut-nke
) 7 ‘“’-..""-i< y y 3
A (=e '\&‘ Do ¥
f ] s 31
i YRAL[974- ]
i s— 977) ‘M'M”' &
2. " LL1010/11 —":"W:I'J
N S 5 sn-l:r'n]—- PY 10458 s 1046047, e _;!
o ’ 4 >
2 V ] pY 1068
Grb2 binding -
- NE— pY 1086
tethered extended
monomer dimer 1186



Chapter 1: Background

( ) TGFa?0 ¢ EGF

’

B e SR (B

CCP -

I\

Recyciing

P

Stow
Recycling
complexes

@ Ubiquitin

® usD

® Phosphorylated tyrosine
* AP-2 binding sile

Figure 1.5. EGFR structure and function. (A) The extracellular region of EGFR,
consisting of four domains, switches from a closed to open conformations upon
EGF binding. Figure reproduced.”® (B) The juxtamembrane, kinase, and
phosphorylation tail domains of the EGFR intracellular region are shown. Key
phosphorylation sites are highlighted. Figure reproduced.” (C) A systems-level
schematic of ErbB signaling is depicted. Figure reproduced.”” (D) EGFR
trafficking is detailed. Figure reproduced.?®
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Given the impact of EGFR on a variety of cellular processes, it is perhaps predictable that
aberrant signaling from the receptor is implicated in multiple cancers. Dysregulation is
observed in breast, bladder, head and neck, and non-small cell lung cancers.”’  An
analysis of 15 years of published literature on EGFR expression and cancer prognosis
revealed that receptor overexpression is associated with reduced survival in 70% of head
and neck, ovarian, cervical, bladder, and esophageal cancers 2% Autocrine production of
transforming growth factor o and epidermal growth factor (EGF) correlate with reduced
survival in lung cancer.”® Receptor mutation is also implicated in cancer. EGFRVII,
which lacks amino acids 6-273, is observed in glioblastoma, non-small cell lung cancer,
and cancers of the breast and ovary.” This mutant is unable to bind ligand yet is
constitutively active, posing a unique therapeutic challenge, particularly for ligand
blocking agents. Ectodomain point mutants in glioblastoma yield tumorigenicity.”

Kinase domain mutations observed in non-small cell lung cancer hyperactivate kinase.™

As a result of the involvement of EGFR in cancer, there has been substantial effort spent
developing receptor inhibitors as therapeutics. The U.S. Food and Drug Administration
has approved two monoclonal antibodies and two tyrosine kinase inhibitors targeting
EGFR. Cetuximab (Erbitux, Bristol-Myers Squibb), approved for colorectal and head
and neck cancer, and panitumumab (Vectibix, Amgen), approved for colorectal cancer,
are antibodies that compete with EGF for receptor binding. However, the relative impact
of ligand competition, receptor downregulation, and antibody-dependent cellular
cytotoxicity is unknown (note that panitumumab is an immunoglobulin G (IgG) 2a
molecule and thus incapable of triggering cellular cytotoxicity). Both antibodies exhibit
modest efficacy. In treatment of metastatic colorectal cancer refractory to irinotecan
tyrosine kinase inhibitor, only 11% of patients respond to cetuximab alone and only 23%
respond to cetuximab and irinotecan in combination.” In the treatment of head and neck
cancer, the addition of cetuximab to radiation extends median survival from 29 to 49
months yet only increases responsiveness from 45% to 55% and improvement is only
evident for oropharyngeal cancer but not hypopharyngeal or laryngeal cancers.
Moreover, metastases were present at comparable amounts with and without antibody.*

In metastatic colorectal cancer, panitumumab extends progression-free survival from 64
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days to 90 days; yet the overall response rate was only 8% and there was no improvement

in overall survival.”’

While this efficacy validates EGFR as a useful therapeutic target, it begs the search for
improved understanding of receptor biology and the development of improved therapy.
Potential causes of the modest efficacy include inability to effectively compete with
ligand, especially in the presence of autocrine signaling; insufficient downregulation of
receptor; lack of inhibition of constitutively active EGFRVIII; and mutational escape.
Thus, novel binders capable of downregulation and/or inhibition via different modes of
action would be beneficial. Small, monovalent binders would enable improved
biophysical studies via specific inhibition or Forster resonance energy transfer. Such
small binders could also be useful for in vivo imaging to study receptor localization and

trafficking.

Thesis Overview

In this work, a platform for engineering Fn3 domains as binding reagents was developed.
The efficacy and efficiency of the maturation of lead clones was vastly improved
(Chapter 2). Parallel weak mutagenesis of the entire gene and strong mutagenesis of the
loops with forced shuffling enhanced both the breadth and quality of sequence
diversification. The quality was further enriched through focusing of error-prone PCR on
ideal conditions identified by mathematical modeling. Naive library design progressed
through improvement of multiple elements: inclusion of loop length diversity (introduced
in Chapter 2 and substantiated in Chapters 3 and 4), investigation of constrained amino
acid diversity (Chapter 3), design and validation of tailored amino acid diversity for
complementarity and stability (Chapter 4). In addition, though absent from this thesis
since the project was led by colleague Margaret Ackerman, a magnetic bead selection
method was developed to improve isolation of low affinity binders as well as selection
throughput and removal of reagent binders.™ In total all key elements of protein
engineering by directed evolution were improved to produce a platform enabling the

rapid and robust isolation of high affinity binders from the Fn3 scaffold. Importantly,

18
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these technological developments are broadly applicable to the field of protein

engineering.

The final platform has enabled isolation of binders to eight targets: cancer targets human
EGFR, human A33, mouse A33, and mouse CD276; immunological targets Fcy receptors
Ia and IIla; and biotechnological targets mouse IgG and human serum albumin (HSA).
In addition, binders to lysozyme, carcinoembryonic antigen, goat IgG, and rabbit IgG
were engineered during platform development. Collectively, these binders represent

useful reagents for biotechnology, scientific, and clinical applications.

Most notably, EGFR binders were incorporated into a novel bispecific format. Selective
non-competitive heterobivalent constructs are capable of receptor downregulation. Select
constructs inhibit cell proliferation and migration, particularly in combination with a

ligand-competitive antibody, and therefore have strong therapeutic potential (Chapter 5).
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2. EVOLUTION THROUGH RECURSIVE MUTAGENESIS AND LOOP SHUFFLING
Introduction

Fn3 has been demonstrated as an effective scaffold for molecular recognition."”
Modification of the amino acid sequence in these loops can impart novel binding capacity
on the scaffold. Koide and colleagues have diversified the BC and FG loops and
screened libraries by phage display to yield a 5 uM binder to ubiquitin* and a 250 nM
binder to Src SH3 domain;> FG loop libraries yielded improved intregrin binders® and
novel estrogen receptor binders, the latter of which was identified by a yeast two-hybrid
screen. Phage display and yeast surface display were used to screen a three-loop library
with tyrosine/serine diversity to isolate binders of 5, 7, and 30 nM to yeast small
ubiquitin-like modifier, human small ubiquitin-like modifier 4, and maltose-binding
protein, respectively.’ mRNA display was used to screen three-loop libraries to identify a
20 pM binder to tumor necrosis factor o’ and a 340 pM binder to vascular endothelial
growth factor receptor 2. Lipovsek, et al. used yeast surface display to engineer a 350

pM binder to lysozyme from a library with diversified BC and FG loops.°

Though wild-type Fn3 is highly stable and monomeric, previously reported high affinity
Fn3 clones are oligomeric or unstable. Two clones with 300 pM and 1 nM affinity for
tumor necrosis factor o exhibited midpoints of proteolysis susceptibility at approximately
30° and 42°, respectively.” A clone with 340 pM affinity for vascular endothelial growth
factor receptor 2 exhibited T, values of 32-52°; a different clone was more stable but only
40-50% monomeric and was of moderate affinity (13 nM).” Stability engineering yielded
a stable, monomeric 2 nM binder. The ability to engineer Fn3 domains with high affinity
and stability represents a critical need in scaffold development since both properties are

required for clinical and biotechnological applications.

Synthesis errors during our previous library creation resulted in rare clones with non-
wild-type loop lengths.® These loop length variants were preferentially selected during
binder isolation and binding titrations revealed their critical importance to binding
(Figure 2.1). Moreover, sequence analysis reveals non-wild-type lengths in tumor

necrosis factor o binders’ and carcinoembryonic antigen binders (data not shown). The
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rarity of these length variants in the initial library resulted in very low coverage of
theoretical length variant sequence space. These results suggest that more extensive
sampling of length variant sequences could improve the binding capabilities of the Fn3
scaffold. This hypothesis is supported by the fact that CDR length diversity is already an
acknowledged component of antibody engineering,'” ' and it has been demonstrated that
antibody affinity maturation is improved with the inclusion of length diversity.'* "* Koide
and colleagues incorporated loop length diversity in a recent Fn3 library and successfully
obtained binders with length variation.” From a structural perspective, Batori et al.
demonstrated that the BC, DE, and FG loops can tolerate insertions of four glycine
residues while maintaining a native fold." In addition, phylogenetic analysis reveals
significant length diversity in each of the three loops across different fibronectin type 111
domains in multiple species (Figure 2.2). Thus, we hypothesize that loop length diversity
will be stably tolerated and improve the functional binding capabilities of the Fn3

scaffold and perhaps could improve the stability/affinity relationship.
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Figure 2.1. Impact of loop length on affinity. Biotinylated lysozyme-binding Fn3
domains of non-native loop length (circles) were compared to reversion mutants
(squares) of wild-type length. Loop sequence is indicated.
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Figure 2.2. Loop length variability of fibronectin type Il domains. The relative
frequency of loop lengths of the BC (white), DE (gray), and FG (black) loops of
sixteen type Ill domains of fibronectin, relative to the tenth type Il domain
(10Fn3) of human fibronectin, are shown. Values and error bars represent the
average and standard deviation for five species: human, cow, rat, mouse, and
chicken.

Yet loop length diversity increases theoretical sequence space, which is already immense,
increasing the demand for efficient protein engineering methods both in terms of clonal
selection and sequence diversification. Yeast surface display enables quantitative
selections using fluorescence activated cell sorting (FACS) and correspondingly fine

'S The eukaryotic protein processing of yeast also improves the

affinity discrimination.
functional stringency of selections.'® One potential limitation of yeast surface display is
that cellular transformation efficiency constrains library size to 10’-10” without excessive
effort. In vitro display methods enable larger theoretical library size which correlates
with selection of improved binders;'” '* however, as has been shown for phage display,
nominal library size does not necessarily equate with functional diversity'®. The intrinsic
mutagenesis from the requisite PCR step in mRNA and ribosome display is a key
contributor to the success of these display technologies.”” We hypothesized that an
increase in the frequency of mutagenesis during directed evolution would improve the

efficiency of cellular display methods by increasing the breadth of the sequence space

search in the vicinity of many lead clones, rather than only a select few.
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Another important engineering component is the manner in which selected sequences are
diversified throughout directed evolution.  Successful techniques include DNA
shuffling,”® CDR shuffling > 2> CDR walking,”* and error-prone PCR mutagenesis* either
towards the entire gene or directed to suspected paratopes. In the current work, we
combine error-prone PCR and an analog to CDR shuffling, both directed at the expected
paratope and throughout the Fn3 domain, to yield both mild and significant changes in

sequence space.

We demonstrate that loop length diversity and a novel affinity maturation scheme enable
robust and efficient selection of stable, high affinity binders to lysozyme. The binders are
characterized in terms of binding, stability, and structure including detailed analysis of

the molecular basis of binding of a picomolar affinity clone.

Results

Fn3 library construction

A library was created in which eight, five, and ten amino acids of the BC, DE, and FG
loops, respectively, were diversified both in amino acid length (Figure 2.2) and
composition (Figure 2.3). Amino acid composition was randomized using NNB
degenerate codons to yield all 20 amino acids with reduced stop codon frequency. Four
different loop lengths were chosen for each loop based partially on the loop lengths
observed in fibronectin type III domains in multiple species (Figure 2.2). The library of
Fn3 genes was incorporated into a yeast surface display system by homologous
recombination with a vector incorporating an N-terminal Aga2 protein for display on the
yeast surface and a C-terminal c-myc epitope for detection of full length Fn3 2 Library
transformation yielded 6.5x107 yeast transformants. Sixteen of 26 clones sequenced
(62%) matched library design. Nine (35%) contained frameshifts and one (4%) was
annealed improperly or underwent unintentional homologous recombination in yeast.
NNB diversification of the loops yields stop codons in approximately 44% of clones.
Thus, 34% (16/26 x (1-0.44)) of transformed cells should display full length Fn3. This
percentage was verified by flow cytometry analysis (data not shown). The library

contains approximately 2.3x10” (6.5x10" x 0.34) full-length Fn3 clones.

)
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Loop Residues Wild-type Sequence Lengths*

BC 23-30 DAPAVTVR -2,-1,0, +1
DE 52-56 GSKST 1,10, #1, ¥2
FG 77-86 GRGDSPASSK -5,-4,-2,0

* amino acid length relative to wild-type

BC

Figure 2.3. Library design. The naive library is randomized in the BC, DE, and
FG loops (structure schematic derived from Main, et al®') at the indicated
positions to four possible loop lengths each.

Population mutagenesis design

A negative side effect of loop length diversity is a further increase in the vastness of
possible protein sequence space to 10* possible amino acid sequences for the three loops.
Thus, the 2.3x107 clones in the original library grossly undersample sequence space.
Therefore, an extensive diversification method was desired to broadly search sequence
space during affinity maturation. Error-prone PCR directed solely at the solvent-exposed
loops was used to focus diversity on the likely paratope. Additionally, to make
substantial changes in sequence, a loop shuffling approach was developed. Fn3 genes
were constructed with conserved wild-type framework sequence and randomly shuffled
mutated loops from the pool of selected clones. Yet, as effective clones are selected,
such substantial sequence modification is not desired. Thus, error-prone PCR without

shuffling was also employed. This mutagenesis targeted the entire gene to also enable
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selection of beneficial framework mutations. Both mutagenesis strategies were used in
parallel at each mutagenesis step throughout affinity maturation (Figure 2.4). Analysis of
selected clones after the fact indicates that both loop shuffling and whole-gene error-

prone PCR contributed to improved phenotypes.

The Fn3 library was screened using yeast surface display and FACS. Plasmids from
thousands of lead clones in a partially screened yeast population were collected by yeast
zymoprep. Quantitative real-time PCR revealed that full population diversity was
recovered (data not shown). Both error-prone PCR of the full gene and shuffling of
mutagenized loops were successfully employed to diversify the population of lead clones
(Figure 2.4B). Gene mutagenesis was performed by error-prone PCR with nucleotide
analogs.”® Independent error-prone PCRs were conducted for each of the three loops
using primers that overlap either the adjacent loop primer or the plasmid vector. This
overlap enabled shuffled gene reconstruction via homologous recombination during yeast
transformation (Figure 2.4C). The number of diversified transformants during affinity
maturation ranged from 2 to 20 million (mean 8.1 million) for full gene mutagenesis and
0.1 to 6.5 million (mean 2.5 million) for loop mutagenesis. Sequence analysis exhibited
mutagenesis that matched the desired 1 to 5 amino acid mutations per gene (data not
shown), which was achieved with a single combination of nucleotide analog
concentration and number of PCR cycles determined by mathematical modeling

(Appendix A).
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Figure 2.4. Affinity maturation scheme. (A) The naive library is sorted three times by FACS
for binding to lysozyme. The partially sorted population (i.e., the population is still diverse) is
mutated by error-prone PCR (epPCR) of the entire gene or of the loops alone, which are then
shuffled during gene formation by homologous recombination. These two mutant populations
are combined with the unmutated population to yield a new sub-library. The process of FACS
and mutagenesis is then cyclically repeated. The rounds of affinity maturation are named for
the number of mutagenesis cycles they have faced; thus sorting of the naive library is round 0,
followed by rounds 1, 2, .... A typical round of isolation and mutagenesis requires about one
week although kinetic sorting as well as equilibration at picomolar concentrations lengthens
the duration. Rounds 0-3 were completed in two months and rounds 4-8 were completed in
two additional months. The highest affinity clone present in each round of maturation is
identified by further sorting and sequence analysis. (B) Error-prone PCR is used to introduce
random mutations either into the entire Fn3 gene or the three loops (separate PCRs).
Arrowed lines indicate PCR primers; matching shades correspond to primers in a single PCR
reaction. The framework (fw) and loop regions of the gene are indicated. Zigzag lines
represent nucleotide mutations. Smaller unlabeled images are used to emphasize that PCR
templates and products are part of a repertoire based on many gene variants. (C) Two yeast
sub-libraries are created by transformation via electroporation. During transformation, the full
plasmid is created by homologous recombination of the linearized vector with either the single
mutated gene insert or the three mutated loop inserts.
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High affinity binder engineering

The efficacy of the new library and affinity maturation scheme was tested by engineering
binders to lysozyme, a model protein that we have previously used as an Fn3 target with
different library and maturation approaches. The naive library was sorted three times by
FACS using multivalent biotinylated lysozyme preloaded on streptavidin-fluorophore
conjugates. The resultant population was diversified by both gene and loop mutagenesis.
Transformed mutants as well as the original clones were sorted twice by FACS yielding
enrichment of evident lysozyme-binding clones (Figure 2.5). Four additional rounds of
isolation and maturation, each consisting of 2-3 FACS selections followed by
mutagenesis (Figure 2.4), were conducted using monovalent lysozyme, ranging from 1
1M to 20 pM lysozyme. Labeling at low picomolar concentrations while maintaining
stoichiometric excess of target to Fn3 would require impractically large volumes.
Therefore, kinetic competition sorting was used for the final three rounds of isolation and
maturation. The final two sub-libraries were sorted an additional three times and the

collected populations were sequenced to identify the highest affinity clones.

fw | e

Lysozyme Binding

Fn3 Display

Figure 2.5. Binder isolation and affinity maturation. Yeast libraries displaying
Fn3 were labeled with mouse anti-c-myc antibody followed by goat anti-mouse
fluorophore as well as biotinylated lysozyme and streptavidin-fluorophore and
analyzed by flow cytometry. (A) Yeast population during second round of
isolation and maturation labeled with 50 nM multivalent lysozyme preloaded in a
3:1 stoichiometry on streptavidin-R-phycoerythrin. (B) Yeast population during
sixth round of isolation and maturation labeled with 0.5 nM monovalent lysozyme
followed by streptavidin-AlexaFluor488. (C) Yeast population during eighth
round of isolation and maturation labeled with 2 nM monovalent lysozyme for 15
min. followed by 35 h of dissociation and labeling with streptavidin-R-
phycoerythrin. Polygonal regions represent sort gates for cell selection.
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Three dominant clones were identified by sequence analysis (Table 2.1). Affinity
titrations indicate that all three clones have comparable equilibrium dissociation constants
(K,) for binding to biotinylated lysozyme: 2.6 + 0.6 pM (clone L7.5.1), 2.9 + 1.4 pM
(L8.5.2), and 2.8 + 0.5 pM (L8.5.7) (Figure 2.6A, Table 2.1). The high affinity binding
was validated using purified Fn3 domains in an equilibrium competition titration, which
indicated an affinity of 6.9 £ 0.3 pM for L7.5.1 (Figure 2.6B). Dissociation rates for the
three clones range from 2.5-5.4 x10° s, which correspond to dissociation half times of
36-78 h (Figure 2.6C). The association rate of L'7.5.1 was measured experimentally as
20 +0.5 x10°M's” (Figure 2.6D). The calculated value of &,/ k,, is 1.2 £ 0.3 pM,
which is reasonably consistent with the experimentally measured K, of 2.6 £ 0.6 pM. In
addition to high affinity, the clones exhibit target specificity as they do not show

appreciable binding to an array of other molecules (Figure 2.7).

Table 2.1. Characterization of wild-type, L7.5.1, L8.5.2, and L8.5.7.

Amino Acid Sequences T. [°C]

Clone K4 [PM] 10° g™ Monomer T,
BC Loop DE Loop FG Loop Framework Forl ! DsC cp 2 [C]
WT  DAPAVIVR  GSKST GRGDSPASSK . >107 n/d 99% 857 842 nd
L7541  RGYPWAT GVIN RVGRTFDTPG  P15S, R33G, T35I, P44L, V50M 26106 0.25+0.02 99% 58.1 588+16 55701

R33G, 134V, N42S, P44L,

L85.2  RGCPWAI GVTN RVGRMLCAPG V45A, V5OM, K63E, KOBR 29+14 0.3210.01 80% n/d 525+02 50605
D3G, L18I, R33G, N42S, P44L, o
1857  RDRPWAI GVTN RLSIVPYA V50M, Y73H, N91T, S100P 28205 0.54 +0.06 93% 54.5 n/id 53.0£04
K, equilibrium dissociation constant at 25°
ke dissociation rate constant at 25°
Monomer: percent of purified protein present as monomer in analytical size exclusion chromatography
T midpoint of thermal ion curve as ined by differential scanning calorimetry (DSC) or circular dichroism (CD)

T, midpoint of thermal denaturation curve as determined by yeast surface display residual activity assay
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Figure 2.6. Determination of binding parameters for high affinity clones. L7.5.1,
L8.5.2, or L8.5.7 was displayed on the yeast surface and assayed for binding to
biotinylated lysozyme at 25°. Different symbols indicate replicate experiments.
Solid lines indicate theoretical values. (A) Fraction of displayed L7.5.1 binding to
biotinylated lysozyme at equilibrium. Only L7.5.1 is shown for simplicity. (B)
Relative binding of 20 pM biotinylated lysozyme to displayed L7.5.1 at equilibrium
in the presence of indicated amount of soluble L7.5.1 competitor. <« indicates
samples without biotinylated lysozyme. (C) Fraction of displayed L7.5.1 (
squares), L8.5.2 (diamonds), or L8.5.7 (triangles) binding to biotinylated
lysozyme after dissociation at 25° for the indicated time. (D) Fraction of
displayed L7.5.1 binding to biotinylated lysozyme after association at 25°
biotinylated lysozyme was present at 49 pM (crosses), 96 M (triangles), 185 pM
(diamonds), or 345 pM (squares). Results are presented from a single
experiment, which is representative of triplicate experiments performed at
different sets of concentrations.
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Figure 2.7. Binding speczfrcn‘y. Wild-type Fn3 (wt), L7.5.1, L8.5.2, or L8.5.7 was
displayed on the yeast surface, washed, and incubated with 100 pM biotinylated
lysozyme (black) or 100 nM of non-target molecules: Dbiotinylated
carcinoembryonic antigen (bCEA, dark gray), biotinylated EGFR domain IV
(bEGFR, light gray), biotinylated huntingtin peptide (bHtt, white), or streptavidin-
R-phycoerythrin (strep, striped). Binding was detected with streptavidin-R-
phycoerythrin secondary labeling and flow cytometry. The data are presented as
the mean fluorescence units from binding (PE signal) normalized by Fn3 display
(AlexaFluor 488 signal). Values and error bars represent mean + standard
deviation of duplicate measurements. * indicates a value less than 0.005.

Since previously reported high affinity clones were unstable or oligomeric, it was desired
to examine the behavior of the current Fn3 domains. The clones were produced in
bacterial culture and purified for biophysical characterization. Analytical size exclusion
chromatography indicated that all three clones are predominantly monomeric with only
L8.5.2 present in a significant oligomeric state (80% monomeric, Table 2.1, Figure
2.8A). L8.5.2 contains two cysteine residues and intermolecular disulfide bonding
contributes to oligomerization as indicated by non-reducing SDS-PAGE (data not
shown). In addition, far-UV circular dichroism analysis reveals no significant differences
in secondary structure between wild-type Fn3 and L7.5.1 indicating that despite loop
mutation and length variation the structural integrity of the domain is maintained (Figure
2.8B). The thermal stabilities of the proteins were analyzed by differential scanning
calorimetry (DSC) and circular dichroism of purified protein as well as thermal
denaturation of protein displayed on the yeast surface (Table 2.1, Figure 2.9). L7.5.1 is
the most stable clone with midpoints of thermal denaturation ranging from 55.7-58.8° for
the three methods. Denaturation of L7.5.1 is not reversible because of aggregation at

high temperatures. Both other clones are also stable with 7, values over 50°.
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Figure 2.8. Biophysical characterization. (A) Size exclusion chromatography elution
profiles. Clones L7.5.1, L8.5.2, and L8.5.7 were analyzed on a Superdex 75
HR10/300 column. The absorbance at 280 nm of the elution is normalized for each
clone. (B) Far-UV circular dichroism. Ellipticity was measured from 250 to 190 nm
for 8-10 uM solutions of wild-type (thick solid line), L7.5.1 (dashed line), or Cons0.4.1
(thin solid line). Spectra are presented as mean residue ellipticity (8mw), Which is
obtained by factoring in molecular mass, concentration, and 1 mm path length.
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Figure 2.9. Thermal denaturation. (A) Thermal denaturation on the yeast cell
surface. Yeast displaying L7.5.1 (squares), L8.5.2 (diamonds), or L8.5.7 (triangles)
were incubated at the indicated temperature for 30 min. followed by a flow cytometric
assay for biotinylated lysozyme binding. (B) Differential scanning calorimetry.
Protein was heated from 25° to 95° at a rate of 1° per minute. The buffer scan is
subtracted from the protein scan; heat capacities are normalized for each clone.
Irreversible aggregation of L7.5.1 occurs at high temperatures. (C) Circular
dichroism. The ellipticity at 216 nm was measured from 25° to 95°. Diamonds
represent experimental data. Solid lines represent a two-state unfolding curve.
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Analysis of intermediate populations

Intermediate populations were investigated to elucidate the progress of affinity
maturation. Each sub-library (i.e., library of mutagenized clones created during affinity
maturation) was sorted by FACS without mutagenesis to identify the highest affinity
clone at each stage of affinity maturation. The highest affinity clone was identified as the
dominant clone by sequencing several clones from the extensively sorted sub-libraries.
Sequences, equilibrium dissociation constants and dissociation rate constants were
determined (Table 2.2). The highest affinity binder in the original library exhibits
apparent mid-micromolar affinity. However, affinity maturation progressively improves
binding performance to yield nanomolar and then picomolar binders (Figure 2.10). It is
noteworthy that affinity maturation exhibits a relatively consistent correlation to the
number of clones analyzed throughout the course of affinity maturation until the final
round of directed evolution. A steady increase characteristic of a consistently progressing
affinity maturation scheme is observed rather than one single exceptional increase in

affinity indicative of a fortuitous mutation or recombination.

Table 2.2. Highest affinity Fn3 domains in each sub-library.

Amino Acid Sequences

Round K [pM] kon [10° 57] tiz [N]
BC Loop DE Loop FG Loop Framework
0 RDCPWAT WTPVCF SSQRGCM none >>100,000 n/d n/d
1 SLDNQAN GQsD RCEPSRNSAV none >100,000 n/d n/d
2 same clone as round 1
3 SLDNQAN GVTN RVGRMLDTPG P448, V50M 7600 + 1100 460 0.04 h
4 SLDNQAK GATN RCKPFRNSAV P44S, V50M, T971 330 ¢ 50 n/d nid

V1A, S1P, T14A,

5  RDCPWAI  GVIN  RVGRMSCTSG Rase, Pt Voo 1646 4503 42:03h
6 RGCPWAI  GVIN  RVGRMLCTPG ';ﬁi 5:?)?,1 e 6613 0.7240.07 27+3h
7  RGYPWAT  GVIN  RVGRTFDTPG P15§447_?3,656L35" 26106 0.25+0.02 78 1h

8(A) RGCPWAI  GVIN  RVGRMLCAPG Rsf‘,fé}i“&’é%?ﬁé?é‘“’ 2914 0.32+0.01 60£1h

8(8) RDRPWAI GVIN RLSIVPYA  D3G.L18LR33G, NS, PAdL, 4,05 0.54 £ 0.06 3614

VS0M, Y73H, N91T

Round: number of mutagenesis cycles (round 0 indicates naive library)
K, equilibrium dissociation constant at 25°

k. dissociation rate constant at 256°

t,2: time for 50% dissociation of Fn3:lysozyme complex at 25°

n/d: not determined

b Two clones with similar affinities were identified from round 8
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Figure 2.10. Affinity maturation progress. The highest affinity clone in each
affinity maturation sub-library was identified by FACS. The equilibrium
dissociation constant of the first three clones could not be determined accurately
by yeast surface display titration because of the relatively low affinity. Thus, an
estimated range of possible affinities consistent with equilibrium labeling at high
nanomolar concentrations is indicated. The equilibrium dissociation constant of
the latter six clones was determined by titration and is represented as the mean *
one standard deviation of replicate measurements. The number of total clones
analyzed is the cumulative total of the number of full-length clones in the naive
library and total yeast transformants in all affinity maturation sub-libraries.

The impact of loop shuffling is evident in multiple cases. The BC loop from the round 1
clone is recombined with new DE and FG loops in round 3 to yield an 8 nM binder. A
mutated version of the FG loop present in round 1 is then recombined with mutated BC
and DE loops from round 3 to achieve picomolar binding. The highest affinity clones in
rounds 5-8 result from apparent shuffling of the BC loop observed in round 0 and the DE
and FG loops observed in round 3 as well as multiple framework mutations. The
appearance of point mutations is also apparent, both within the loops and in the
framework region. The impact of these framework mutations was investigated in more

detail in the context of L'7.5.1.

L7.5.1 analysis
L7.5.1 was selected for more thorough analysis because it has the fewest framework
mutations and is the most stable of the high affinity clones. The engineered elements of

the clone were analyzed for their impact on affinity and stability. Each randomized loop
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and framework mutation was independently restored to wild-type sequence and both
affinity and stability were measured using yeast surface display. Reversion of the FG
loop had the strongest effect on binding as wild-type restoration decreased affinity to the
micromolar level. Conversely, DE loop reversion had a nearly negligible effect on
binding, and the BC loop reversion had an intermediate effect with a 4700-fold reduction
(Figure 2.11A). Both BC and DE loop reversion significantly destabilize the domain
(Figure 2.11B). Though these loop sequences confer high thermal stability in the wild-
type context, modification of adjacent loops apparently adjusts the intramolecular
contacts. Thus, during multi-loop diversification, selected sequences must provide not
only proper intermolecular contacts for high affinity binding but also proper
intramolecular contacts for structural integrity and stability. The stability of the FG loop

reversion could not be accurately determined by this method because of its weak binding.

Three of the five framework mutations in the selected clone (T351, P44L, and V50M) are
relatively conservative mutations and were beneficial to both affinity and stability (Table
2.3). Conversely, R33G replaces a large, positively charged side chain with a single
hydrogen; this mutation provides 28-fold stronger binding without a substantial effect on
stability. Perhaps the arginine side chain was not accommodated sterically and/or
electrostatically at the Fn3:lysozyme interface or the glycine enables a beneficial
backbone conformation. The P15S mutation had only a very minor affinity improvement
but substantially destabilized the domain. The lack of impact on binding is reasonable
given its distance from the expected paratope, and the substantial destabilization is not
surprising given the removal of the backbone-constraining proline in the loop between
the A and B strands. Selection of this mutation was likely coincident with another
beneficial mutation as it does not impart significant benefit. It should be noted that while
the most beneficial mutations, R33G, P44L, and V50M, are consistently observed
throughout maturation (Table 2.2), P15S and T35I are rare. Overall, these data suggest
the paratope is focused on the BC and FG loops as well as potential key contacts on the C

and D strands of the {} sheet.

RY{)
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Figure 2.11. L7.5.1 loop analysis. Each engineered loop of L7.5.1 was
independently restored to wild-type sequence and the resultant clones were
displayed on the yeast surface. Filled and empty symbols indicate replicate
experiments. (A) Binding to biotinylated lysozyme at 25° was quantified by flow
cytometry. Clone and equilibrium dissociation constant: L7.5.1 (squares): 2.6 +
0.6 pM; L7.5.1wtBC (diamonds): 12.4 + 0.7 nM; L7.5.1wtDE (triangles): 3.7 + 1.4
pM; L7.5.1wtFG (crosses): 1.6 + 0.2 pM. (B) Yeast displaying Fn3 were
incubated at the indicated temperature for 30 min. followed by a flow cytometric
assay for biotinylated lysozyme binding. Clone and midpoint of thermal
denaturation: L7.5.1 (squares): 55.7 + 0.1% L7.5.1wtBC (diamonds): 37.4 + 1.5°%
L7.5.1wtDE (triangles): 44.5 £ 0.1°.
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Table 2.3. Affinity and stability of framework mutation reversions of L7.5.1. The
five framework mutations of L7.5.1 were individually reverted to wild-type amino
acids. Binding affinity and thermal stability were determined by yeast surface
display.

AA WT L7.5.1 Ky [PM] T2 [°C] Location
L7.5.1 - Parent Clone 26+0.6 55.7 + 0.1 -

15 Pro Ser 3.4+01 59.5+0.7 AB loop
33 Arg Gly 74 £23 56.2+0.6 C strand
35 Thr lle 58+1.6 545+ 05 C strand
44 Pro Leu 14.3+4.0 50.3+1.2 CD loop
50 Val Met 25+ 16 53.7+1.8 D strand

AA: amino acid position

WT: wild-type side chain

L7.5.1: clone 7.5.1 side chain

K;: equilibrium dissociation constant at 25°

T, midpoint of thermal denaturation as determined by yeast surface display

Focused mutagenesis

The conservation of the DE loop sequence throughout much of the affinity maturation
(Table 2.2) despite its relatively low impact on affinity relative to wild-type prompted
further study of this loop. The functionally tolerable diversity and the potential for
improved binding were explored through re-randomization of the loop sequence. Within
the context of L7.5.1 S15P, the loop was randomized using NNB nucleotide diversity and
the same four loop length options as the original library. Labeling the library with 30 pM
lysozyme, which yields 90% binding to the parent clone L7.5.1 S15P, yields many clones
that provide effective binding indicating that the loop can tolerate significant diversity
while maintaining binding. Specifically, 7% of clones exhibit binding at 75% of
maximum, which is characteristic of a 10 pM K, or within three-fold of the parent clone
(Figure 2.12). Yet, 30% of the full-length clones bind at less than 1% of maximum
indicating that many loop sequences can greatly hinder binding either through direct
interaction with the binding partner or through structural modification of the Fn3

paratope.

a8
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In addition, the library was sorted for binding to biotinylated lysozyme using FACS.
Sequence analysis after four selections identified a single clone, DEO 4.1, with GDLSHR
replacing GVTN in the DE loop. Binding and stability analyses indicate a 3.Ix
improvement in binding to 1.1 pM at the expense of an 8.5° decrease in the T, (Table
2.4). The maintenance of glycine at position 52 from wild-type to L7.5.1 to DEO 4.1 is
noteworthy for possible future library design especially considering the adjacent amino
acid is proline. The proline-glycine pair provides an effective turn motif to begin the DE

loop.

7%

R-Phycoerythrin (Lysozyme Binding)

10° 10 10% 10° 10

AlexaFluor488 (Fn3 Display)
Figure 2.12. L7.5.1 S15P DE loop randomization library binding analysis. The
DE loop of L7.5.1 S15P was randomized using NNB codon diversity with four
loop lengths. The yeast surface display library was labeled with 30 pM
biotinylated lysozyme and mouse anti-c-myc antibody followed by streptavidin-R-
phycoerythrin and goat anti-mouse antibody conjugated to AlexaFluor488.
Percentages indicate the relative number of c-myc positive clones with blLys
binding : c-myc display signals with 75% of maximum (7%), 1-75% of maximum
(63%), or <1% of maximum (30%).

Table 2.4. Affinity and stability of clones from focused mutagenesis.

Amino Acid Sequences

Clans BCLoop  DE Loop FG Loop Framework Ka [PM] Tz ['C]
L7.5.1 S15P RGYPWAT GVTN RVGRTFDTPG R33G, T35I, P44L, V50M 34401 595+ 0.7
Cons 0.4.1 REDPWAK GVTN RVGWASYTLG R33G, T35I, P44L, V50M 1.1+06 59+ 3

DEO04.1 RGYPWAT GDLSHR RVGRTFDTPG R33G, T35l, P44L, V50M 1.1+05 51+3

K,: equilibrium dissocialion constant at 25°

T, midpoint of thermal denaturation curve as determined by yeast surface display residual activity assay
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Lack of improvement from round 7 to round 8 in conjunction with sequence similarities
during affinity maturation prompted investigation into a complementary method of
affinity maturation. Since only a fraction of protein sequence space is accessible through
single nucleotide mutations, a library was constructed in which the DNA encoding non-
conserved amino acids in the BC and FG loops was randomized by degenerate
oligonucleotides. Non-conserved amino acids were identified as the positions of L7.5.1-
homologous clones at which sequence diversity was observed in any sequence during
affinity maturation or sub-library analysis. The non-conserved amino acids were
randomized in two modes: either to all 20 amino acids using NNB codons or to amino
acids observed during sequence analysis using tailored codons at each position. The
library was sorted for binding to biotinylated lysozyme using FACS. Sequence analysis
after four selections yielded a single clone, Cons0.4.1. The affinity of Cons0.4.1 was
measured as 1.1 £ 0.6 pM by yeast surface display titration and 0.33 = 0.15 pM by
equilibrium competition with purified Fn3 domain. The midpoint of thermal denaturation
was measured as 52.5 £ 2.1° by circular dichroism analysis and 58.8 + 3.4° by yeast
surface display thermal resistance assay. Far-UV circular dichroism indicates that
Cons0.4.1 maintains a secondary structure similar to that of the wild-type Fn3 domain
(Figure 2.8B). Two of the eight codon changes were not possible with a single
nucleotide mutation making this clone unlikely to be reached by error-prone PCR. Thus,
while error-prone PCR provides a highly effective means of diversification, an
improvement was observed through more thorough searching of a focused region of

sequence space once a consistent binding motif was identified.

Discussion

In this work we explore the impact of multiple components of engineering a high affinity
binding site in the Fn3 scaffold. The combination of loop length diversity and recursive
mutagenesis including mutated loop shuffling enabled selection of the highest affinity
Fn3 domains yet reported despite a relatively modest initial library size of 2.3x107 full-
length Fn3 clones. The results extend the affinity attainable by this single domain

scaffold further validating its use as a molecular recognition scaffold. In addition,
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insights were gained for both Fn3 design and engineering and protein engineering in

general.

Analysis of the highest affinity binders in each sub-library (Table 2.2) demonstrates
deviation from wild-type loop lengths in all three loops implicating the importance of this
diversity element in Fn3 library design. Interestingly, the observed BC loops are all one
amino acid shorter than wild-type, which is observed both in other fibronectin type III
domains (Figure 2.1) and in a previously engineered binder.® DE loops are observed with
either one less or one more amino acid than wild-type. Clone DEO.4.1 and the highest
affinity clone from the naive library (Table 2.2) justify inclusion of a six-amino acid DE
loop despite its lack of existence in native fibronectin type III domains. FG loops of
wild-type length as well as both two- and three-amino acid reductions were observed.
The observed length diversity, as well as the success of length diversity in a restricted
diversity Fn3 library published during this thesis,” support the inclusion of length
diversity in all future Fn3 engineering. Moreover, the combination of phylogenetic
analysis and sequence analysis of engineered binders should continue to elucidate the

relative preference of each length to further improve library design.

Loop length diversity increases sequence space to 10* possible amino acid sequences for
the three loops though only 2.3x10" clones are present in the yeast library. The two
modes of diversity introduced during recursive mutagenesis effectively search this large
sequence space despite the sparse sampling. Sequence and binding analyses indicate that
each of the elements of the mutagenesis method were beneficial. The loop mutagenesis
path of the diversification was effective as both loop shuffling and loop-focused point
mutations are evident (Table 2.2). In addition, the gene mutagenesis path was
advantageous as an effective loop combination was maintained in rounds 5-8 and
beneficial framework mutations were introduced throughout (Tables 2.2 and 2.3). The
importance of diversifying many clones during each round of maturation is evident since
homologs of the eventual DE and FG loops were not present in 30 sequences from the
enriched populations from the naive library. As a result of these combined components,

affinity maturation rapidly and efficiently progressed to yield the clones with 3 pM



Chapter 20 Evolution

affinity without rational intervention. The affinity maturation procedure is
straightforward and simple; plasmid recovery, mutagenesis, amplification, and yeast
transformation can be achieved in one to two days. The increased frequency of
mutagenesis is applicable to any protein engineering method and is strongly
recommended both to improve the speed of binder isolation as well as the overall
efficacy. Shuffling can be implemented in any analogous protein scaffold provided the
regions of interest are relatively proximal at the DNA level to enable overlap for
homologous recombination. Yeast surface display provides an effective system for
shuffling because DNA fragments can be recombined with high fidelity during cellular

transformation simplifying the method.

The sequence diversity of the highest-affinity clones is striking. L8.5.2 has two cysteines
at locations consistent with formation of an inter-loop disulfide bond, as was found
previously from a different Fn3 library screened by yeast display®. However, unlike in
that case, the disulfide is dispensable for high affinity binding, since L7.5.1 has highly
related loop sequences but lacks both cysteines. A third clone with similar affinity
(L8.5.7,2.8 pM) was found with a substantially different FG loop, but conserved DE and
BC loops.

It is noteworthy that the focused mutagenesis results indicate the potential for mild
improvement of affinity maturation through targeted randomization at multiple residues
identified as variable through sequence analysis. It is not yet clear if the success of this
avenue of affinity maturation resulted from the relatively high number of mutations from
the parent clone (eight amino acid changes in the two loops) or the ability to reach amino
acids that would require more than one nucleotide mutation. Regardless, the fact that a
secondary, semi-rational approach was only able to yield 3.1x enhancement in affinity is
indicative of a relatively effective search of sequence space by the initial affinity

maturation.

Diversification of the DE loop is an important aspect of Fn3 engineering. As the shortest

and least flexible wild-type loop, it is unclear if the binding potential gained by
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diversification offsets the possible structural destabilization. Thus, analysis of the
contribution of the DE loop to binding and stability are valuable to clone maturation and
future Fn3 library design. The originally selected DE loop, GVTN, stabilizes clone
L7.5.1 relative to wild-type but does not significantly aid binding. Though loop reversion
analysis suggests that the binding paratope is dominated by the FG and BC loops, the DE
loop can be engineered for improved binding (DEO.4.1) albeit at the expense of stability.
Since selections were explicit for affinity, the lack of binding performance from the
L7.5.1 DE loop likely resulted from a lack of DE loop diversity after a few rounds of
directed evolution (Table 2.2). Thus, a future improvement on loop shuffling will be to

incorporate a small percentage of naive loops with the engineered loops.

A broader uncertainty regarding the DE loop is the extent to which it should be
diversified in future Fn3 libraries. Previous binders have been engineered with wild-type
DE loops with 350 pM affinity for lysozyme.® 30 nM for maltose-binding protein,’ 250
nM for Src SH3 domain,? and approximately 5 uM for ubiquitin.* The DE reversion of
L7.5.1 represents a 3.7 pM binder with a wild-type DE loop. Collectively, it is clear that
binders can be engineered without DE loop diversity. Conversely, engineered DE loops
in the L7.5.1 context can either improve the affinity to 1.1 pM or stabilize the molecule
by an 11° increase in T, the latter of which is not surprising given its extensive contact
with the BC loop residues as well as the shortened BC loop length. Moreover,
engineered vascular endothelial growth factor receptor 2 binders require their engineered
DE loop for binding though it destabilizes the molecule by 2.0 kcal/mol or ~30° decrease
in T,,.” Consequently, as expected, DE loop impact is context-dependent. One possible
general approach would be to introduce mild DE diversity in the original library to allow
for binding constraint removal and structural complementation of selected BC loops as
well as the possibility of beneficial binding contacts. After binder selection, affinity or
stability maturation could be employed with more diverse DE loop shuffling in the

context of effective BC and FG loops.

Unlike several examples of previous high affinity Fn3 binder engineering, the selected

high affinity clones are relatively stable and monomeric. L7.5.1 is a 2.6 pM binder and



Chapter 20 Evolution

>99% monomeric with a midpoint of thermal denaturation of 56-59°. Moreover,
reversion of serine to proline at position 15 improves the T,, to 60°. In addition,
Cons0.4.1 is a 1.1 pM binder with 7,, = 53°, and L8.5.7 is a 2.8 pM binder, is 93%
monomeric, and has a T, of 53-55°. Though stability was not an explicit element of
selection, the eukaryotic secretion machinery of yeast provides some level of quality
control against misfolded proteins.”” *® In general, Fn3 clones of higher stability are
displayed at high densities on the yeast cell surface (data not shown). Thus, unstable
clones are slightly selected against based on the two-color sort regions. It remains to be
seen if stable clones will generally result from selections by yeast surface display or if
this was a fortuitous result; regardless, yeast surface display provides a means for

stability engineering either during or after binder selection.

Overall, the method can be further improved through refinement of naive loop length
distribution, an increase in magnitude of the initial library, inclusion of naive loops
during loop shuffling, and perhaps more expansive mutation than attainable by error-
prone PCR with nucleotide analogs. Nevertheless, the combination of yeast surface
display, loop length diversity, and dual mode affinity maturation rapidly yielded stable,
high affinity binders. The method should be valuable towards development of Fn3
binders to additional targets as well as transferrable to engineering of other proteins for

any screenable functionality.

Materials and Methods

Fn3 library construction

Oligonucleotides were purchased from MWG Biotech (High Point, NC) and Integrated
DNA Technologies (Coralville, IA). The Fn3 library was constructed to produce wild-
type sequence in the framework regions and to randomize the BC, DE, and FG loops of
tenth type I1I domain of human fibronectin. The DNA encoding for amino acids 23-30
(DAPAVTVR) was replaced by (NNB), where x = 6,7, 8, or 9 to yield a loop length that
is -2, -1, 0, or +1 amino acids relative to wild-type. Similarly, the DNA for amino acids
52-56 (GSKST) was replaced by (NNB), where y =4, 5, 6, or 7 and the DNA for amino
acids 77-86 (GRGDSPASSK) was replaced by (NNB), where z =5, 6, 8, or 10.
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The library was constructed by sequential annealing and extension of eight overlapping
oligonucleotides.® The following components were combined in a 50 pL reaction: two
oligonucleotides (0.2 uM a2, b3n,,,, c6t, or d7n,;, + 0.4 uM al, b4n, c5n,;,, or d8n,
respectively), 1x Polymerase buffer, 0.2 mM dNTPs, 1 mM MgSO,, 1U KOD Hot Start
DNA Polymerase (Novagen, Madison, WI), IM betaine, and 3% DMSO. The mixture
was denatured at 95° for 2 min. followed by ten cycles of 94° for 30 s, 58° for 30 s, and
68° for 1 min. and a final extension of 68° for 10 min. Forty pL of the products (al+a2,
b3n,,+b4n, c5n,;,+cbt, or d7n,,;,+d8n) were combined and thermally cycled at identical
conditions. Two pL of this product was combined with 0.4 uM primer (al-b4n amplified
with pl; c¢5n,,;-d8n amplified with p8) in a new 100 pL reaction and thermally cycled
under identical conditions to amplify the appropriate strand. The products were
combined and thermally cycled at identical conditions. The final products were
concentrated with PelletPaint (Novagen). The plasmid acceptor vector pCTf1f4%" ¥ was
digested with Ncol, Ndel, and Smal (New England Biolabs, Ipswich, MA). Multiple
aliquots of ~10 ug of Fn3 gene and 3 pg plasmid vector were combined with 50-100 pL
of electrocompetent EBY100 and electroporated at 0.54 kV and 25 pF. Homologous
recombination of the linearized vector and degenerate insert yielded intact plasmid. Cells
were grown in YPD (1% yeast extract, 2% peptone, 2% glucose) for 1 h at 30°, 250 rpm.
The number of total transformants was 6.5x107 cells as determined by serial dilutions
plated on SD-CAA plates (0.1M sodium phosphate, pH 6.0, 182 g/L. sorbitol, 6.7 g/L
yeast nitrogen base, 5 g/L casamino acids, 20 g/L glucose). The library was propagated
by selective growth in SD-CAA, pH 5.3 (0.07M sodium citrate, pH 5.3, 6.7 g/L yeast
nitrogen base, 5 g/L casamino acids, 20 g/L glucose, 0.1 g/L kanamycin, 100 kU/L
penicillin, and 0.1 g/L streptomycin) at 30°, 250 rpm.

Fluorescence-activated cell sorting

Yeast were grown in SD-CAA, pH 5.3 at 30°, 250 rpm to logarithmic phase, pelleted, and
resuspended to 1x10 cells/mL in SG-CAA, pH 6.0 (0.IM sodium phosphate, pH 6.0, 6.7
g/L yeast nitrogen base, 5 g/L casamino acids, 19 g/L dextrose, 1 g/L glucose, 0.1 g/L
kanamycin, 100 kU/L penicillin, and 0.1 g/L streptomycin) to induce protein expression.

Induced cells were grown at 30°, 250 rpm for 12-24h.
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Round 0 (three FACS selections) and round 1 (two FACS selections) were conducted
with multivalent lysozyme prepared by incubating streptavidin-fluorophore (R-
phycoerythrin, AlexaFluor488, or AlexaFluor633, Invitrogen, Carlsbad, CA) with
biotinylated lysozyme (Sigma, St. Louis, MO) in a 1:3 ratio in PBSA. Yeast were
pelleted, washed in 1 mL PBSA (0.01M sodium phosphate, pH 7.4, 0.137M sodium
chloride, 1 g/L bovine serum albumin), resuspended in PBSA with 10-40 mg/L. mouse
anti-c-myc antibody (clone 9E10, Covance, Denver, PA), and incubated on ice. Cells
were washed with 1 mL PBSA and resuspended in PBSA with multivalent lysozyme (0.5
uM for first four sorts and 50 nM for fifth sort) and goat anti-mouse antibody conjugated
to R-phycoerythrin, AlexaFluor488, or AlexaFluor633.

Intermediate FACS selections were conducted with near-equilibrium labeling with
monovalent lysozyme. Three, two, two, and three selections were performed in rounds 2-
5, respectively. Yeast were pelleted, washed in 1 mL PBSA, resuspended in PBSA with
biotinylated lysozyme (ranging from 1 uM to 20 pM) and mouse anti-c-myc antibody,
and incubated on ice. Cells were then washed with 1 mL PBSA and resuspended in
PBSA with streptavidin-fluorophore and fluorophore-conjugated goat anti-mouse

antibody.

FACS selections of very high affinity populations were conducted with Kinetic
competition. Two, three, and two selections were performed in rounds 6-8. Yeast were
washed and incubated briefly with 1-2 nM biotinylated lysozyme. Yeast were then
washed and resuspended with PBSA with 140 nM unbiotinylated lysozyme (to prevent
further association of labeled target) and incubated at room temperature for 2 h to 7 days
to enable dissociation of biotinylated lysozyme. Cells were washed in PBSA,
resuspended in PBSA with mouse anti-c-myc antibody, and incubated on ice. Cells were

washed and labeled with secondary reagents as in equilibrium labeling.
In all cases, labeled cells were washed with 1 mL PBSA, resuspended in 0.5-2.0 mL

PBSA and analyzed by flow cytometry using either a MoFlo (Cytomation, Carpinteria,
CA) or Aria (Becton Dickinson, Franklin Lakes, NJ) cytometer. C-myc” cells with the
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top 0.2-3% of lysozyme binding : c-myc display ratio were selected. Collected cells were
grown in SD-CAA, pH 5.3 at 30°, 250 rpm and either induced in SG-CAA, pH 6.0 for

further selection or used for plasmid recovery.

Fn3 Mutagenesis

Plasmid DNA from 1x10® cells was isolated using two columns of Zymoprep kit II
(Zymo Research, Orange, CA) according to the manufacturer's instructions except for
additional centrifugation of neutralized precipitate. The zymoprep elution was cleaned
using the Qiagen PCR Purification kit (Qiagen, Valencia, CA), and eluted in 40 pL of
elution buffer. Error-prone PCR of the entire Fn3 gene was performed in a 50 pL
reaction containing 1x Tag buffer, 2 mM MgCl,, 0.5 pM each of primers W5 and W3, 0.2
mM (each) dNTPs, 5 pL of zymoprepped DNA template, 2 mM 8-oxo-dGTP (TriLink,
San Diego, CA), 2 mM dPTP (TriLink), and 2.5U of Tag DNA polymerase (Invitrogen).
In parallel, error-prone PCR of the loop regions was performed via three separate 50 puL
reactions with 20 mM 8-0xo-dGTP and 20 mM dPTP and primers BC5 and BC3 for the
BC loop, DE5 and DE3 for the DE loop, and FG5 and FG3 for the FG loop. The
reactions were denatured at 94° for 3 min., cycled 15 times at 94° for 45 s, 60° for 30 s,
and 72° for 90 s, and finally extended at 72° for 10 min. Multiple preliminary
mutagenesis reactions of the wild-type plasmid were conducted at different nucleotide
analog concentrations. Sequence analysis and comparison to a theoretical framework
(Appendix A) indicated the aforementioned conditions yield 1-5 amino acid mutations
per gene. The PCR products were purified by agarose gel electrophoresis and each
amplified in four 100 pL PCR reactions containing 1x Taq buffer,2 mM MgCl,, 1 uM of
each primer, 0.2 mM (each) dNTPs, 4 pL of error-prone PCR product (of 40 pL from gel
extraction), and 2.5U of Taqg DNA polymerase. The reactions were thermally cycled at
the same conditions except that 35 cycles were used. Reaction products were

concentrated with PelletPaint (Novagen) and resuspended in 1 pL of water.
Plasmid pCT-Fn3 was digested with Pstl, Btgl, and BamHI to create linearized vector

pCT-Fn3-Gene with the entire Fn3 gene removed. Plasmid pCT-Fn3 was digested with
Bcll, Btgl, and Pasl to create linearized vector pCT-Fn3-Loop with the wild-type gene
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removed from the BC loop through the FG loop. 100 pL of electrocompetent EBY 100
were combined with 0.5-2.0 pg of pCT-Fn3-Gene and the gene-based PCR product and
electroporated at 0.54 kV and 25 pF in a 2 mM electroporation cuvette. Similarly, 100
uL of electrocompetent EBY100 were combined with 0.5-2.0 ug of pCT-Fn3-Loop and
the three loop-based PCR products and electroporated. Homologous recombination of
the linearized vector and mutagenized insert(s) yielded intact plasmid. Cells were grown
in YPD for 1 h at 30°, 250 rpm. The medium was switched to SD-CAA to enable

selective propagation of successful transformants via growth at 30°, 250 rpm for 24-48 h.

DNA sequencing

Plasmid DNA was isolated using the Zymoprep kit II, cleaned using the Qiagen PCR
Purification kit, and transformed into DHS5oa (Invitrogen) or XLI1-Blue E. coli
(Stratagene, La Jolla, CA). Individual clones were grown, miniprepped, and sequenced

using BigDye chemistry on an Applied Biosystems 3730.

Measurement of K, k,,, and k

The equilibrium dissociation constant for a clone was determined essentially as
described.”” Briefly, yeast containing the plasmid for a Fn3 clone were grown and
induced as for FACS selection. Cells were washed in 1 mL PBSA and resuspended in
PBSA containing biotinylated lysozyme in concentrations generally spanning four orders
of magnitude surrounding the equilibrium dissociation constant. The number of cells and
sample volumes were selected to ensure excess lysozyme relative to Fn3. For clones of
low picomolar affinity, this criterion necessitates very low cell density, which makes cell
collection by centrifugation procedurally difficult. To obviate this difficulty, uninduced
cells are added to the sample to enable effective cell pelleting during centrifugation with
no effect on lysozyme binding of the Fn3-displaying induced cells. Cells were incubated
at 25° for sufficient time to ensure that the approach to equilibrium was at least 98%
complete. Cells were then pelleted, washed with 1 mL PBSA, and incubated in PBSA
with 10 mg/L streptavidin-R-phycoerythrin for 10-30 min. Cells were washed and

resuspended with PBSA and analyzed with an Epics XL flow cytometer. The minimum
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and maximum fluorescence and the K, value were determined by minimizing the sum of

squared errors.

For determination of the dissociation constant, k., clonal cell cultures were grown,
induced, and washed as above. Cells were incubated in PBSA with a saturating
concentration of biotinylated lysozyme at 25°. At various times, an aliquot of cells was
washed with PBSA with excess unbiotinylated lysozyme, resuspended in PBSA with
excess unbiotinylated lysozyme, and incubated at 25°. Simultaneously, all samples of
differing dissociation times were washed with PBSA and incubated in 10 mg/L
streptavidin-R-phycoerythrin for 10-30 min. Cells were washed and resuspended with
PBSA and analyzed with an Epics XL flow cytometer. The minimum and maximum

fluorescence and the k,; value were determined by minimizing the sum of squared errors.

For determination of the association constants, k,,, clonal cell cultures were grown,
induced, and washed as above. At various times, an aliquot of cells was resuspended in
biotinylated lysozyme and incubated at 25°. Simultaneously, all samples of differing
association times were washed with PBSA with excess unbiotinylated lysozyme and
incubated in PBSA with 10 mg/L streptavidin-R-phycoerythrin for 10-30 min. Cells
were washed and resuspended with PBSA and analyzed with an Epics XL flow
cytometer. The maximum fluorescence and k,, were determined by minimizing the sum
of squared errors assuming a 1:1 binding model. The experimentally determined value of

k. was used to determine the effective association rate, k,,/Lysozyme] + kg

The equilibrium dissociation constant was also determined for the soluble forms of
L7.5.1 and Cons0.4.1 by equilibrium competition titration. Varying concentration of
purified Fn3 domains were incubated with 20 pM biotinylated lysozyme in 50 mL of
PBSA. Yeast displaying L7.5.1 were added and incubated for 7 days to near equilibrium.
Cells were then pelleted, washed with 1 mL PBSA, and incubated in PBSA with 10 mg/L
streptavidin-R-phycoerythrin for 15 min. Cells were washed and resuspended with

PBSA and analyzed with an Epics XL flow cytometer. A two-state binding model was
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assumed and the minimum and maximum fluorescence and equilibrium dissociation

constant were determined by minimizing the sum of squared errors.

Fn3 Production and Biophysical Characterization

Fn3 clones were produced as previously described.’ Briefly, BL21(DE3)pLysS E. coli
(Invitrogen) containing the pET-24b-based Fn3 plasmid were grown in Luria-Bertani
medium with 50 pg/mL kanamycin and 34 pg/mL chloramphenicol at 37°, 250 rpm to an
Ay of 0.1-0.2 and induced with 0.5 mM IPTG for 18-24 h at 30°, 250 rpm. Cells were
lysed by sonication and the insoluble fraction was removed by centrifugation at 19,000g
for 40 min. His,tagged Fn3 was purified from the soluble fraction with TALON
Superflow Metal Affinity Resin (Clontech, Mountain View, CA), dialyzed against PBS,
and concentrated to 0.5 mL with an Amicon Ultra centrifugal filter (Millipore, Billerica,

MA).

The oligomeric state was analyzed by size exclusion chromatography on a Superdex 75
HR10/300 column (Amersham Pharmacia Biotech, Piscataway, NJ). Monomer was
isolated for biophysical analysis. PBS standards or monomeric protein in PBS was
thermally denatured from 25° to 95° at a rate of 1°min. in a differential scanning
calorimeter (VP-DSC, MicroCal). Irreversible aggregation of L7.5.1 occurs at high
temperatures. The midpoint of thermal denaturation for this clone is identified as the
temperature of maximum heat capacity. Samples were dialyzed in 10 mM sodium
phosphate buffer, pH 7.0 and diluted to 8-10 puM for far-UV circular dichroism analysis.
Ellipticity was measured from 250-190 nm on an Aviv 202 spectrometer (Aviv
Biomedical, Lakewood, NJ) with a quartz cuvette with a 1 mm path length (New Era,
Vineland, NJ). Thermal denaturation was conducted by measuring ellipticity at 216 nm

from 25° to 95° and calculating 7,, from a standard two-state unfolding curve.

Thermal stabilities were also determined using a yeast surface display thermal
denaturation assay derived from Orr, et al.** Fn3 was displayed on the yeast surface as
for measurement of kinetic and equilibrium binding constants. Cells were washed and

resuspended with PBSA, incubated at 20-85° for 30 min., and incubated on ice for 5 min.
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Biotinylated lysozyme was added at a saturating concentration (e.g., 20 nM for L7.5.1)
and mouse anti-c-myc antibody was added at 40 mg/L and incubated on ice for 20 min.
Cells were washed and incubated in PBSA with 10 mg/L streptavidin-R-phycoerythrin
and 25 mg/L AlexaFluor488 conjugated goat anti-mouse antibody. Cells were washed
and resuspended in PBSA and analyzed on an Epics XL flow cytometer. The minimum
and maximum fluorescence (F,,, and F,,.), the T,,, and the enthalpy of unfolding at 7,
(AH,) were determined by minimizing the sum of squared errors between experimental

data and theoretical values according to a two-state unfolding equation:

-1
F-F_ AH 1 1
. min =J1 +ex —Tm -
Fmax _Fmin fﬁ’“ed { ’ R [Tm T) }

L7.5.1 Reversion Clone Construction

Reversion of engineered loops of L7.5.1 to wild-type sequence was accomplished by
annealing and extending two PCR products created with a gene-terminal primer and a
primer that annealed adjacent to the loop of interest but was extended to include wild-
type sequence. Specifically, one PCR reaction contained a 5’ gene terminal primer and a
primer that annealed to the 25 nucleotides immediately 5’ of the loop of interest but
included a non-annealing ‘tail’ encoding for the wild-type loop sequence. In parallel,
PCR was performed with a 3’ gene terminal primer and a primer annealing to the 25
nucleotides immediately 3’ of the loop and including a non-annealing tail. The first PCR
product encodes from the start of the gene to the loop of interest and the second PCR
product encodes from the loop of interest to the end of the gene. These two products are
annealed and extended to yield the full Fn3 gene containing the wild-type sequence in the
loop of interest. Framework reversions were introduced by standard site-directed
mutagenesis using the QuikChange Mutagenesis Kit (Stratagene) according to the

manufacturer's instructions. Clone construction was verified by DNA sequencing.

Focused library construction

The DE randomization library was created in a similar manner to the L7.5.1 loop
reversion clones. One PCR amplified the L7.5.1 S15P gene fragment 5' of the DNA
encoding for the DE loop. A second PCR amplified the gene 3' of the DNA encoding the
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DE loop using a primer that included a degenerate (NNB) DE loop sequence and 20
nucleotides of overlap with the other PCR product. The PCR products were annealed,
extended to produce the full gene, and amplified. This process was conducted
independently with four oligonucleotides encoding the four different DE loop lengths.
The gene fragments were electroporated into electrocompetent EBY 100 along with pCT-
Fn3-Loop vector. The resulting library encoded for L7.5.1 S15P with a fully random DE

loop of length 4, 5, 6, or 7 amino acids.

A library randomizing the unconserved residues of clones similar to L7.5.1 was
constructed by PCR of L7.5.1 S15P. The 5' primer contained 17 nucleotides 5' of the BC
loop, 21 nucleotides to encode the BC loop, and 22 nucleotides to anneal 3' of the BC
loop. The 3' primer contained 19 nucleotides 3' of the FG loop, 30 nucleotides to encode
for the FG loop, and 10 nucleotides 5' of the FG loop (note that the nucleotides encoding
the first three conserved amino acids of the FG loop also enable annealing during PCR).
The PCR products were amplified with extended primers to increase the length of the
conserved sequence flanking the loops to improve homologous recombination. The gene
fragments were electroporated into electrocompetent EBY 100 along with pCT-Fn3-Loop
vector. Two versions of the BC and FG loops were included. One oligonucleotide
completely randomized the unconserved residues using NNB degeneracy (BC:
RXXPWAX; FG: RVGRXXXXXG). The other oligonucleotide restricted diversity to
amino acids observed during affinity maturation (BC: R(D/G)(C/H/R/Y)PWA(I/T); FG:
RVG(R/W)(A/M/T/V)(F/L/P/SY(C/D/G/Y )(A/T)(L/P/S)G/S).
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Chapter 3: Constrained Diversity

3. CONSTRAINED PROTEIN DIVERSITY WITH A TYROSINE/SERINE CODE

AND DE LoOoOP BIAS

Introduction

Ultra high affinity binding is enabled with three-loop diversification of the Fn3 scaffold,
but the resultant expansion of theoretical sequence space necessitates efficient library
design. Early molecular recognition library designs incorporated all twenty natural
amino acids. However, it has been demonstrated that tyrosine can dominate molecular
recognition in antibody domains" * and that a serine/tyrosine binary code is sufficient to
generate nanomolar affinity interactions in an antigen binding fragment.’ This library
approach has been successfully applied to generate low- to mid-nanomolar binders with
the Fn3 scaffold.* Yet while the binary amino acid code greatly reduces theoretical
sequence space enabling isolation of functional clones, it also reduces the potential
structural and chemical complementarity of the binder-target interaction. As such, it is
not clear which library design is superior for the generation of high affinity binders. A
hybrid design with all twenty amino acids yet bias towards tyrosine, serine, and glycine
was investigated in an antibody library;’ this library yielded more high affinity binders
than a strictly serine/tyrosine library. This comparison was performed with an antibody
domain binding to a single target. The current study directly compares full diversity to
serine/tyrosine diversity in the context of the Fn3 domain in two binder engineering

campaigns.

In parallel with the study of library design, we sought to develop useful reagents with
advantageous biophysical properties. High-yield bacterial expression enables
inexpensive production of Fn3 domains. The absence of lysines near the engineered
binding surface and the cysteine-free sequence permit both amine- and thiol-based
conjugation chemistries for immobilization or fluorophore coupling. The small, single-
domain architecture facilitates multifunctional protein fusions. Engineered Fn3 domains
have demonstrated utility as detection agents. Biotinylated o, 3; integrin binders were
used as a primary label in flow cytometry.® Alkaline phosphatase fusions of Src-binding
Fn3 domains were effective in Western blotting.” The Src binders were also effective in

pull-down experiments, and estrogen receptor binders were effective in affinity
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chromatography.® Thus, Fn3 domains that bind immunoglobulin G (IgG) may be broadly
useful in these applications as well as in protein microarrays and as adaptors for
nanoparticles or other supramolecular assemblies. In this study, high affinity binders to
both goat and rabbit IgG were engineered. The resultant binders are characterized in
terms of affinity, stability, and specificity and are demonstrated as useful reagents for
purification and detection. In addition, both library designs were employed in the

generation of binders to carcinoembryonic antigen (Appendix B).

Results

Library Design and Construction

Two libraries, NNB and YS, were constructed for comparison. In both libraries the BC,:
DE, and FG loop sequences of Fn3 were diversified. The NNB library has been
previously described.” Eight, five, and ten residues in the BC, DE, and FG loops were
randomized using NNB codons; four loop lengths, selected based on phylogenetic
occurrence, were included in each loop. The YS library diversified nine, five, and ten
residues in the BC, DE, FG loops. The BC and FG loops were randomized between
serine and tyrosine. BC loop diversity was extended to include Y31 because it is a large
side chain with potential steric conflicts and inclusion of serine only increases the
theoretical diversity twofold. The DE loop was diversified with a wild-type bias to
improve structural integrity while enabling some diversity to either eliminate detrimental
interactions or provide beneficial interactions. Biased nucleotides were synthesized to
yield a library with approximately 50% wild-type and 50% of the other 19 amino acids at
G52, S53, S55, and T56. K54 was randomized using an NNB codon because the large,
charged side chain is potentially sterically and electrostatically detrimental. Four loop

lengths were allowed in each loop. Library design is summarized in Table 3.1.

The libraries of Fn3 genes were transformed into a yeast surface display library by
homologous recombination with a vector including an N-terminal Aga2p protein for
yeast surface tethering to Agalp and a C-terminal c-myc epitope for full-length Fn3
detection. Electroporation yielded 21.5x107 and 25x10” transformants from the NNB and

YS libraries, respectively. Sequencing and flow cytometry analysis (data not shown)
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indicate 34% and 60% of clones encode for full-length protein resulting in 7.3x10” and

15x10” Fn3 in each library.

Table 3.1. Library Designs

Library BC Loop DE Loop FG Loop

WT DAPAVTVRY GSKST GRGDSPASSK
NNB Xg-9Y X4-7 Xs,6,8,10

YS (S1Y)7-10 gsXo,1,35t (S1Y)e,7,8,10

WT: wild-type sequence; X: any amino acid; S|Y: either serine or tyrosine; g:
50% glycine, 50% any other amino acid (analogous for s, f); subscripts refer to
number of amino acids

Binder Engineering

The efficacies of the NNB and YS libraries were compared for their ability to generate
binders to goat IgG and rabbit IgG. The libraries were pooled to enable direct clone
competition and eliminate any experimental bias. The libraries were sorted twice for
binding to biotinylated IgG immobilized on streptavidin-coated magnetic beads followed
by a fluorescence-activated cell sort (FACS) for c-myc” clones that represent full-length
Fn3. The selected population was diversified by both full gene mutagenesis and focused
loop mutagenesis with shuffling as described’. The transformed mutants, mixed with the
original clones, underwent two bead selections and a FACS followed by mutagenesis.
Two bead selections were followed by a FACS for both c-myc and binding to
biotinylated IgG, detected by streptavidin-fluorophore. Two additional rounds of
mutagenesis and FACS with decreasing IgG concentrations were performed. At this
point, the population sorted for binding to goat IgG exhibited binding to 500 pM goat
IgG; the population sorted for binding to rabbit IgG exhibited binding to 50 pM rabbit
IgG (data not shown).

Each intermediate population used for mutagenesis was also sorted three or four

additional times without mutagenesis to identify the best clones during each round of

affinity maturation. The naive library was excluded from this analysis because the
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populations did not exhibit substantial binding until after mutagenesis. Several clones
from each final population and two intermediate populations were sequenced (Table 3.2).
Both the goat and rabbit IgG binder engineering yielded one dominant clone after four
rounds of mutagenesis although extensive sequence diversity appears in intermediate

populations.

Table 3.2. Binder Sequences

Goat IgG Binders Rabbit 1gG Binders
Clone # BCLoop  DE Loop FG Loop Framework Clone # BC Loop DE Loop FG Loop Framework
wT - DAPAVTVR  GSKST  GRGDSPASSK - WT - DAPAVTVR  GSKST  GRGDSPASSK
Round 1 Round 1
gl1.51 1 ALPRSE GIRS AHKSVL S2P, T581 1151 1 VRPSYSRL  STATT GYGGRRVQ PS1A, G61R, Y73C
gli.5.2 1 HSYYSYY GFYST MDGASPLQ D7G rm.5.2 1 ATTGKAPL  KGATA SYYDYHS Q46K, S60R
gli.5.3 2 KMRAAR RFRS GDGHGG 7581 f11.5.3 4 VATSCL ATWVK HYDDTLS -
gll.54 1 NLEIFPR GIRS RTRVI P51S, T581 r11.5.4 2 ATTGKTPL  RSAEM HYDDTLS
gl1.5.5 1 NLGIFPR GIRS RTRVI T581 rl1.5.8 1 VATSCL ATWVK HYDDTLS N42G
ri1.5.9 2 ARASNPCL  ATWVK GYGGKRVQ Q46R, S60R, K98E
Round 2 Round 2
gl2.51 1 TNLSSS NWTS SYGLVISN T581, V6BA r12.51 1 VRSPYRRL  RSARS GYGGRRVQ
gl2.5.2 1 ALPRSE NWTS SPGLVLGA T581 rl2.5.2 2 VNGDSCL  ATWVK GYGGKRVQ S60R
9i2.53 2 TRAYFAP GSLSS SYGLVITD P51S, 7581, 188T 253 1 VRPSYSRL  PTHFF GYGGKRVQ S60R
gl2.54 2 YSSYSYY GFRPT YYSSSYY T35A, E38G, S89P ri2.54 1 ARPSYSRL  ATWVK GYGGKRVQ
gl2.55 1 RMPVTD truncation - ri2.55 2 VRPSYSRL ~ ATWVK GYGGKRVQ -
gl258 1 RLPRSA NWTS SPGLILGA T58I, 190T r2.56 1 VRPSYSRL  KGATV GYGGKRVQ P51S
gl2.59 1 YCSYSYY GFRSG FDGVAF - 259 1 VRPSYSRL  ATWVK GYGGERVQ
ri2.5.10 1 VATSCL RSATS GYGGKRVQ P51S
Round 3 Round 3
gid.2.t 2 TARMRSP NWTS SPGLILGA T581 ri3.62 1 VRPSYSRL  RSWTS GYGGKRVP S60R
gl3.2.2 2 ALPRSE NWTS SPGLVLGA T581 ri3.63 2 SRARNACL  ATWVK GYGGKRVQ G61R
ri3.6.4 2 VRPSYSRL  RSARS GYGGERVQ P51S, S60R
gl3.5.1 5 TRAYFAP GSLSS SYGLVITD P51S, T58I, 188T ri3.6.5 1 AHAPNPCL  ATWVK GYGGKRVQ S60R, 190T
ri3.6.6 2 ATTGKAPL  KGATA SYYDYHS Q46K, S60R
r3.6.10 1 ARPSYSRL  GSAHV GYGGKRVQ P51S, S60R, G61R
Round 4 Round 4
gl4.5.1 S5 TRAYFAP GSLSS SYGLVITD P51S, 7581, 188T rMma.s3.1 2 ATTGKTPL  RSAEM HYDOTLS -
rM4.33 1 ARASNPCL  ATWVK GYGGKRVQ S60R
ri4.34 1 VNGDSCL  GSAHV GYGGKRVQ  P51S, S60R, G61R, A74T
r4.35 1 AHAPNPCL  AAWVE GYGGKRVQ S60R
r14.5.1 4 ATTGKAPL  ATWVK HYDDTLS S60R, K9BE
rl4.5.5 1 ATTGKAPL  ATWVK HYDDTLS S60R

Clones are named as (g/r)Ix.y.z where g or r indicate goat or rabbit species
specificity, x is the number of mutagenesis steps, y is the number of selections
after the most recent mutagenesis and z is the clone number in that population.
# indicates the frequency of occurrence of the indicated clone.

Sequence analysis reveals a strong preference for the NNB library. Since loop shuffling
during mutagenesis can recombine loops from multiple sources, loop sequences were
analyzed individually. Thirty-nine of 42 clones (93%) have BC loops of NNB origin.
Ninety-three percent have FG loops of NNB origin. The DE loop, which was fully
randomized in the NNB library and biased towards wild-type in the YS library, exhibited
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less preference; 65% of clones had DE loops more likely to originate from NNB whereas
23% were more likely to originate from the wild-type bias of YS and 13% were
ambivalent. In fact, only a single clone, gI2.5.4, retained all three loops of apparent YS

library origin.

Framework Mutations

The dominant clones, gI2.5.3 (which is identical to gI3.5.1 and gl4.5.1) and rI4.5.1, each
contain multiple framework mutations (Figure 3.1A,B). The impact of these mutations
was investigated in terms of binding and stability. Each framework mutation in the two
clones was individually reverted to the wild-type side chain and clonal cultures were
assayed for stability and binding. The relative number of Fn3 molecules displayed on the
yeast surface after induction at 37°, which correlates to protein stability,'” was determined
by flow cytometry. Binding to 10 nM goat IgG and 100 pM rabbit IgG was assayed by
flow cytometry. None of the gI2.5.3 framework mutations significantly impact stability
(Figure 3.1) but two of three are important for binding. Reversion of isoleucine to
threonine at amino acid 58 ablates binding at 10 nM IgG while reversion of serine to
proline at position 51 decreases binding five-fold. Conversely, threonine and isoleucine

at position 88 yield indistinguishable results.
The E98K reversion of rl4.5.1, which was also observed as clone rl4.5.5, does not

significantly affect binding or stability. The R60S reversion maintains stability but has

slightly decreased binding.
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Figure 3.1. ¢/2.5.3 and rl4.5.1 framework mutations. (A) P51, T58, and 188 are
presented in the wild-type Fn3 structure 1TTG". (B) S60 is presented in the
wild-type Fn3 structure. E98 was not included in this structure, but the C-
terminal amino acid of the structure, T94, is indicated. (C) The indicated clone,
with a c-myc epitope tag, was displayed on the surface of yeast with 37°
induction. Cells were labeled with chicken anti-c-myc antibody followed by
bovine anti-chicken phycoerythrin conjugate and analyzed by flow cytometry.
The phycoerythrin signals above background were normalized to the gl2.5.3
sample and are presented as Fn3 per cell. Cells were labeled with 10 nM goat
IgG-FITC conjugate and analyzed by flow cytometry. The FITC signal above
background was divided by the relative number of Fn3 per cell, normalized to the
gl2.5.3 sample, and is presented as /gG Binding. Values are the mean =
standard deviation of at least duplicate experiments. (D) As in (C) except
samples were labeled with 100 pM rabbit IgG and were normalized to rl4.5.1.

Affinity Analysis

The affinities of several clones were determined by titration using yeast surface display
and soluble IgG. Although avidity effects resulting from multivalent display of Fn3
binding to homodimeric IgG can enable improved binding at low concentrations relative
to a monovalent interaction, it has been demonstrated that the concentration of half-
maximal binding corresponds to the monovalent equilibrium dissociation constant, K.
The highest affinity goat IgG binder, gI2.5.3T88I, has a K, of 1.2 = 0.4 nM (Figure 3.2,
Table 3.3). Clones gI2.5.2 and gI2.54, the YS clone, have mid-nanomolar affinities.
The highest affinity rabbit IgG binder, rl4.5.5, exhibits 51=4 pM affinity (Figure 3.2,

Table 3.3). Other clones demonstrate picomolar to low nanomolar affinities.
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Figure 3.2. Affinity titrations of g/2.5.3T88/ and rl4.5.5. Yeast displaying

gl2.5.3T88l (A) or rl4.55 (B) were incubated at 22° with the indicated
concentration of FITC-conjugated goat IgG or AlexaFluor633-conjugated rabbit
IgG. The cells were washed and analyzed by flow cytometry. The signals
relative to non-displaying yeast were normalized to the maximum signal.

Table 3.3. Binding Affinity

Amino Acid Sequence

Clone Kg [NnM]
BC DE FG Framework
Goat IgG Binders
gl2.5.3T881 TRAYFAP GSLSS SYGLVITD P51S, T58I 1.2+04
gl2.5.2 ALPRSE NWTS SPGLVLGA T58I 32+ 21
gl2.5.4 YSSYSYY GFRPT YYSSSYY T35A, E38G, S89P 35+ 16
Rabbit IgG Binders
r14.5.5 ATTGKAPL ATWVK HYDDTLS S60R 0.051 + 0.004
ri4.3.1 ATTGKTPL RSAEM HYDDTLS = 0.117 £ 0.006
rI3.6.6 ATTGKAPL KGATA SYYDYHS Q46K, SG60R 0.187 £ 0.034
r14.3.4 VNGDSCL  GSAHV  GYGGKRVQ PG56115|,:!5A67()4RT' 0.30 £ 0.12
ri3.6.4 VRPSYSRL RSARS GYGGERVQ P51s, S60R 0.63 £ 0.07
r14.3.3 ARASNPCL ATWVK  GYGGKRVQ S60R 1.08 + 0.38
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Stability Analysis

Thermal stabilities were analyzed using a previously validated yeast surface display
assay.” '> The highest affinity binders, g2.5.3T88I and rI4.5.5, have midpoints of
thermal denaturation of 63.9 + 0.3° and 49.1 = 0.5°, respectively (Figure 3.3). The
serine/tyrosine clone gl2.5.4 has a T, of 57.3 = 0.9°. 114.3 4, the second highest affinity
rabbit IgG binder without sequence homology to 114.5.5,has a 7, of 44.8 = 1.9°. gl2.5.2
has a midpoint of denaturation of 59.3 = 2.5°. 113.6.4, which has FG loop homology to
114.3 .4 but novel BC and DE loops, has a T, of 49.5 £ 0.5°.

Relative Activity

_0.2 . - -~ — ~ ~ -— - -— e
20 30 40 50 60 70 80 90

Temperature [C]

Figure 3.3. Thermal stability. Yeast displaying gl12.5.3T88I (diamonds) or rl4.5.5
(triangles) were incubated at the indicated temperature for 30 minutes, returned
to ice, labeled with FITC-conjugated IgG, and analyzed by flow cytometry. The
FITC signal relative to non-displaying cells was normalized by the 22° sample.
Data represent the mean = standard deviation of triplicate samples.

Specificity Analysis

The specificity of binding was assayed by flow cytometry. None of the tested clones
bind the non-cognate proteins lysozyme or streptavidin (Table 3.4). rI3.6.4,rl4.3.4, and
114.5.5 exhibit unique specificity for rabbit IgG with no detectable binding to bovine,
chicken, goat, human, or mouse IgG. Conversely, all three goat IgG binders tested also

bind bovine IgG. Clone gI2.5.3T88I also binds mouse IgG.
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Table 3.4. Binding specificity.

Target gl2.5.2 gl2.5.37881 gl2.5.4 rI3.6.4 ri4.3.4 ri4.5.5

Bovine IgG + + + - - -
Chicken 1gG - - - - - -

Goat IgG + + + - - -
Human IgG - - - - - -
Mouse IgG - + - - - -
Rabbit IgG - - - + + +
Lysozyme - - - - - -

Streptavidin - - - - - -

Yeast displaying the indicated clone were labeled with 100 nM protein and
analyzed by flow cytometry. The presence (+) or absence (-) of binding is
indicated.

Utility in Affinity Purification

The utility of the engineered Fn3 domains in affinity purification from complex mixtures
was investigated. Fn3 domains were produced in E. coli and biotinylated on exposed
amines. To increase biotinylation potential, a two-lysine tail was included. Also, the two
engineered lysines in rl4.5.5 were reverted to serine (rl4.5.5K27S/K56S) to avoid
biotinylation of the paratope. Affinity analysis reveals that these mutations only increase

the K, threefold thereby maintaining picomolar affinity.

Goat or rabbit serum was applied to a column containing biotinylated Fn3 (gI2.5.3T88I
or 114.5.5K27S/K56S) immobilized on streptavidin agarose. The column was washed in
PBS and bound protein was eluted with 0.1M glycine pH 2.5. Elution fractions contain
pure IgG of the expected 150 kDa molecular weight (Figure 3.4).
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Figure 3.4. Affinity purification. Goat (A) or rabbit (B) serum was purified on an
affinity column composed of streptavidin-agarose and biotinylated Fn3
(912.5.3T88I or rl4.5.5K27S/K56S). The serum (S), flowthrough (F), washes
(W1-W3), and elution (E) were separated by polyacrylamide gel electrophoresis
and stained with SimplyBlue SafeStain. (L) indicates the protein ladder.

Utility as Detection Reagents

The fluorophore DyLight633 was conjugated to amines on gI2.5.3T881 and
14.5.5K27S/K56S. These fluorophore-Fn3 conjugates were used as secondary reagents
in flow cytometry. Yeast displaying HA—Fn3—c-myc (irrelevant Fn3 clone) were
labeled with anti-HA goat IgG followed by gI2.5.3T88I-DyLight633 and analyzed by
flow cytometry. The cells displaying HA —Fn3 —c-myc are clearly labeled whereas cells
that lost plasmid (see Materials and Methods) or cells without primary antibody have
only background signal (Figure 3.5A). Likewise, rl4.5.5K27S/K56S-DyLight633
effectively labels yeast initially labeled by anti-c-myc rabbit IgG (Figure 3.5B).
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Figure 3.5. Flow cytometry detection. (A) Yeast displaying HA—Fn3—c-myc
(irrelevant Fn3 clone) were labeled with PBS (empty) or anti-HA goat IgG
(shaded) followed by DyLight633-conjugated gl2.5.3T88I and analyzed by flow
cytometry. (B) as in (A) except anti-c-myc rabbit IgG and rl4.5.5K27S/K56S were
used. Note that the two peaks in the IgG-labeled samples correspond to cells
with and without plasmid, which serves as an effective internal control.

Discussion

Library creation and screenable throughput limit the number of clones that can be
analyzed in a combinatorial library. Thus, the aim of library design is to enable sufficient
shape and chemical diversity, within this limited sequence space, to provide high affinity
binding to any desired epitope. Full amino acid diversity enables better shape and
chemical complementarity but the vastness of sequence space may include sufficient
nonfunctional sequences such as to reduce the overall frequency of binders in the
screened library. Conversely, well-designed reduced diversity can improve the frequency
of binders, but may not be able to mediate an interaction of equally high affinity. The
current work provides direct competition of minimal and maximal diversity libraries in
the fibronectin scaffold for molecular recognition of immunoglobulin G. Multiple
binders of picomolar affinity for rabbit IgG and multiple binders with nanomolar affinity
for goat IgG were isolated with a dominant preference for clones from the full diversity
library. It is important to note that this comparison includes an effective dual
mutagenesis approach for the evolution of lead clones enabling a more efficient broad
search of sequence space. Though a serine/tyrosine binary code is effective in isolating

binders of mid-nanomolar affinity, > * extensive diversity is more effective at generating
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low nanomolar to picomolar binding. Nevertheless, it remains true that amino acids have
varied functionality and some, in particular tyrosine, are better suited for molecular
recognition. Thus, the current results support the growing opinion that the ideal synthetic
library design is a hybrid of full diversity and a binary serine/tyrosine code in which
tyrosine is present at an increased level but more extensive alternatives than serine are

included.”

The relative lack of library dominance in the DE loop (65% full diversity, 23% wild-type
bias, 13% ambivalent) supports the hypothesis that the serine/tyrosine versus full
diversity comparison was not largely affected by differences in the DE loop. In fact,
given the prevalence of full diversity BC and FG loops in the selected binders, the
increased presence of wild-type biased DE loops from the other library suggests that a
wild-type bias is superior to random full diversity in this loop. This result is expected
given its position on the edge of the diversified region as well as the ability of previously

engineered Fn3 domains to bind with fully wild-type DE loops as previously discussed.’

The selected clones also demonstrate the importance of loop length diversity. BC loops
of 6,7, and 8 amino acids are observed multiple times. DE loops of wild-type length and
one amino acid shorter occur. FG loops of all possible lengths except wild-type are
observed. It is noteworthy that the longest allowed lengths in each loop were not
observed in the sequenced binders. Longer loops are observed in nature as well as
previously published binders and, thus, are tolerable in the scaffold. However, one could
speculate that longer loops could be less structured resulting in entropic penalty upon
binding. This phenomenon will require further monitoring as the collection of

engineered fibronectin domains increases.

The efficacy of the engineered Fn3 domains in purification and detection further
exemplifies the utility of this alternative scaffold for biotechnology applications and
provides two useful high affinity reagents. The small size, single-domain architecture,

and lack of disulfide bonds in Fn3 domains provide potential benefits over antibody-
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based reagents. Moreover, their facile production in bacteria and ease of site-specific

labeling through amines or thiols simplify their use.

Materials and Methods

Fn3 Library Construction

Oligonucleotides were purchased from MWG Biotech and IDT DNA Technologies. The
NNB library was previously constructed as described.” In the NNB library, the
oligonucleotides encoding the BC, DE, and FG loops were replaced by NNB codons;
specifically, the DNA encoding amino acids 23-30 (DAPAVTVR), 52-56 (GSKST), and
77-86 (GRGDSPASSK) were replaced with (NNB), where x = 6, 7, 8, or 9 for the BC
loop, x =4, 5, 6, or 7 for the DE loop and x = 5, 6, 8, or 10 for the FG loop. The YS
library replaced the DNA encoding amino acids 23-31 (DAPAVTVRY) and 77-86 with
TMY codons that encode for serine and tyrosine in equal frequency. Loop lengths of 7,
8, 9, or 10 in the BC loop and 6, 7, 8 or 10 in the FG loop were included. Earlier
selections from the NNB library rarely yielded FG loops of five amino acids, thus the YS
library was constructed with a seven amino acid option rather than five. The DNA
encoding amino acids 52-56 was replaced by a set of biased codons designed to yield
50% wild-type amino acid at G52, S53, S55, and T56. K54, because of its potential for
steric and electrostatic hindrance of binding, was replaced by NNB, where x =0, 1, or 3.
The degenerate portion of the oligonucleotide was ggBtcBNNBtcBacB where g, ¢, g, and
t represent mixtures of 70% of the indicated nucleotide and 10% of each of the other

three.

Full Fn3 genes were constructed by sequential annealing and extension of eight
overlapping oligonucleotides. =~ A 50 uL reaction was prepared with 0.2 uM
oligonucleotide A (a2, b3, c6, or d7), 0.4 uM oligonucleotide B (al, b4, c5, or d8), 1x
polymerase buffer, 0.2 mM deoxynucleotide triphosphates, 1 mM MgSO,, 1U KOD
HotStart DNA Polymerase, 1M betaine, and 3% dimethyl sulfoxide. The mixture was
denatured at 95° for 2 min., cycled ten times through 94° for 30 s, 58° for 30 s, and 68° for
1 min., and finally extended at 68° for 10 min. Forty microliters of products (al+a2,

b3+b4, c5+c6, d7+d8) were combined and thermally cycled at identical conditions. The
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appropriate strand (sense for al+a2+b3+b4 and anti-sense for cS5+c6+d7+d8) was
amplified with 0.4 uM primer (pl or p8) in a 100 uL reaction. The products were
combined and thermally cycled under identical conditions. Full Fn3 genes were purified
on an agarose gel, amplified by pl and p8 in 100 uL reactions, and concentrated with
PelletPaint. The plasmid acceptor vector pCTf1f4'* was digested with Ncol, Ndel, and
Smal. Multiple aliquots of ~10 ug of Fn3 gene and ~3 ug of plasmid vector were
combined with 50-100 pL of electrocompetent EBY100 and electroporated at 0.54 kV
and 25 uF. Homologous recombination of the linearized vector and degenerate insert
yielded intact plasmid. Cells were grown in YPD (10 g/L yeast extract, 20 g/L peptone,
20 g/L glucose) for 1 h at 30°, 250 rpm. The total number of transformants was
determined by serial dilution plating on SD-CAA plates (0.1M sodium phosphate, pH
6.0, 182 g/L sorbitol, 6.7 g/L yeast nitrogen base, 5 g/L. casamino acids, 20 g/L glucose).
The library was propogated in SD-CAA, pH 5.3 (0.07M sodium citrate pH 5.3, 6.7 g/L.
yeast nitrogen base, 5 g/L casamino acids, 20 g/L glucose, 0.1 g/L kanamycin, 100 kU/L
penicillin, and 0.1 g/L streptomycin) at 30°, 250 rpm.

Binder Selection and Affinity Maturation

Yeast were grown in SD-CAA at 30°, 250 rpm to logarithmic phase, pelleted, and
resuspended to 1x107 cells/mL in SG-CAA (0.IM sodium phosphate, pH 6.0, 6.7 g/L
yeast nitrogen base, 5 g/L casamino acids, 19 g/L galactose, 1 g/L glucose, 0.1 g/L
kanamycin, 100 kU/L penicillin, and 0.1 g/L streptomycin) to induce protein expression.

Induced cells were grown at 30°, 250 rpm for 8-24h.

Magnetic bead sorts consisted of a negative selection for clones that do not bind
streptavidin-coated beads followed by a positive selection for clones that bind
biotinylated IgG complexed to streptavidin-coated beads as described . 0.75 pg of
biotinylated goat or rabbit IgG (Rockland Immunochemicals, Gilbertsville, PA) was
added to 4x10° streptavidin-coated magnetic Dynabeads (Invitrogen) in 1 mL PBSA
(0.01 M sodium phosphate, pH 7.4, 0.137 M NaCl, 1 g/L bovine serum albumin) and
incubated at 4° for 12-24 h. Beads were washed using a Dynal magnet with PBSA.
Yeast displaying Fn3 were washed, resuspended in PBSA, and incubated with 4x10° IgG-
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free streptavidin beads for 2-12 h at 4°. A magnet was applied to the cell/bead mixture
and unbound cells were collected. The washed IgG-labeled beads were added to these
cells and incubated at 4° for 2-12h. The beads were applied to the magnet and washed
with PBSA. The beads and attached cells were transferred to SD-CAA for growth.

The naive library was sorted twice (zero washes at 4°, one wash at 4°) with growth and
induction after each sort. The resultant population was labeled with 150 nM mouse anti-
c-myc antibody (clone 9E10) followed by 25 nM goat anti-mouse phycoerythrin
conjugate. Full-length Fn3 clones, represented by cells with a positive phycoerythrin
signal, were selected via FACS. Plasmid DNA was extracted and mutagenized as
described °. Error-prone PCR was performed on the full gene and each of the three loops;
the mutated gene or shuffled combinations of the mutated loops were co-transformed
with linearized plasmid vector to produce intact plasmid via homologous recombination.
Transformed yeast were grown in SD-CAA for further selection. The mutagenized
population was sorted twice on magnetic beads (one wash at 4°, one wash at 22°)
followed by c-myc* FACS and further mutagenesis. After two magnetic bead sorts (one
wash at 22°, two washes at 22°), binding to soluble IgG was assayed by flow cytometry.
Yeast were labeled with 3.3 nM biotinylated IgG followed by 33 nM streptavidin-
phycoerythrin conjugate. Cells with the highest phycoerythrin signal were collected by
FACS and mutated. Remaining selections were performed with 20-500 pM biotinylated
IgG and 67 nM chicken anti-c-myc followed by 150 nM streptavidin-fluorophore and 25
nM bovine anti-chicken phycoerythrin conjugate. Cells with the highest
fluorophore:phycoerythrin ratio were selected by FACS.

DNA Sequencing and Point Mutations

Multiple clones from several populations were sequenced. Plasmid DNA was isolated
using the Zymoprep kit II, cleaned using the Qiagen PCR Purification kit, and
transformed into DH50 or XL1-Blue E. coli. Individual clones were grown,
miniprepped, and sequenced using BigDye chemistry on an Applied Biosystems 3730.

Single amino acid mutations were introduced by standard site-directed mutagenesis using
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the QuikChange Mutagenesis Kit according to the manufacturer's instructions. Clone

construction was verified by DNA sequencing.

Affinity Measurement

The plasmid for the clone of interest was transformed into yeast using the Frozen EZ
Transformation Kit II, and cells were grown and induced as for selection. Cells were
washed in PBSA and resuspended in PBSA containing fluorophore-conjugated IgG over
a range of concentrations. Sample volumes and cell densities were selected to ensure
tenfold excess of IgG relative to displayed Fn3. Samples were incubated at 22° for a
sufficient time to ensure the approach to equilibrium was at least 98% complete. After
incubation, cells were washed and analyzed on a FACS Calibur cytometer (Becton
Dickinson). The relative binding was calculated by subtracting background signal, which
was determined in an unlabeled control, and normalizing to the saturated signal at high
concentrations. The equilibrium dissociation constant, K, was identified as the

concentration corresponding to half-maximal binding.

Stability

The yeast surface display thermal denaturation assay'’ was performed as described’.
Yeast displaying the clone of interest were washed and resuspended in PBSA, incubated
at 22-85° for 30 min., and incubated on ice for 5 min. The cells were incubated in 20 nM
fluorescein-conjugated IgG for 30 min., washed, and analyzed on an Epics XL flow
cytometer. The minimum and maximum fluorescence, the midpoint of thermal
denaturation (7,,), and the enthalpy of unfolding at T, were determined by minimizing
the sum of squared errors between experimental data and theoretical values according to

a two-state unfolding equation.

Specificity

Yeast displaying the clone of interest were incubated with 100 nM bovine IgG-
phycoerythrin (Santa Cruz Biotechnology, Santa Cruz, CA), AlexaFluor488 conjugates
of streptavidin, chicken IgG or mouse IgG (Invitrogen), or fluorescein conjugates of goat

IgG, human IgG, or rabbit IgG (Sigma). Cells were incubated for 30 min., washed with
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PBSA, and analyzed by flow cytometry. To test lysozyme binding, cells were incubated
with 100 nM biotinylated lysozyme for 30 min., washed, and resuspended in 25 nM
AlexaFluor488-conjugated streptavidin. Cells were washed and analyzed by flow

cytometry. Fluorophore signal was compared to both unlabeled and non-displaying cells.

Fn3 Production

The Fn3 gene was digested with Nhel and BamHI and transformed to a pET vector
containing a HHHHHHKGSGK-encoding C-terminus. The six histidines enable metal
affinity purification, and the pentapeptide provides two additional amines for chemical
conjugation. The plasmid was transformed into Rosetta (DE3) E. coli (Novagen), which
was grown in LB medium with 100 mg/L kanamycin and 34 mg/L chloramphenicol at
37°. Two hundred pL of overnight culture was added to 100 mL of LB medium, grown
to an optical density of 0.5 units, and induced with 0.5 mM IPTG overnight. Cells were
pelleted, resuspended in lysis buffer (50 mM sodium phosphate, pH 8.0, 0.5M NaCl, 5%
glycerol, 5 mM CHAPS, 25 mM imidazole, and 1x complete EDTA-free protease
inhibitor cocktail (Roche, Indianapolis, IN)), and exposed to four freeze-thaw cycles.
The soluble fraction was clarified by centrifugation at 15,000g for 10 min. and purified

by metal affinity chromatography on TALON resin.

Affinity Purification

Purified Fn3 (gI2.5.3T88I and r14.5.5K27S/K56S) was biotinylated using EZ-Link Sulfo-
N-hydroxysuccinimide-LC-biotin (Pierce, Rockford, IL) according to the manufacturer’s
instructions. Excess biotin was removed using a Zeba desalting spin column (Pierce).
Biotinylated Fn3 was added to 1 mL of strepavidin-agarose (Pierce) in a column and
washed. Goat or rabbit serum was added to the column and flowthrough was reapplied
once. The column was washed with three 5 mL aliquots of PBS. Protein was eluted with
0.1M glycine, pH 2.5. The original serum, flowthrough, washes, and elution were
separated by SDS-PAGE on 12% BisTris gel (Invitrogen) in the absence of dithiothreitol.
The gel was stained with SimplyBlue SafeStain (Invitrogen) and imaged.
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Detection

Purified Fn3 (gl2.5.3T881 and rI4.5.5K27S/K56S) was labeled with DyLight633 N-
hydroxysuccinimide-ester (Pierce) according to the manufacturer’s instructions.
Unreacted dye was removed using a Zeba desalting spin column. Yeast were induced to
display an irrelevant Fn3 clone with the HA and c-myc epitopes. As in all yeast surface
display, a fraction of this population does not display any Fn3 as a result of plasmid loss.
These cells serve as an internal negative control. One million yeast were incubated with
50 nM anti-HA goat IgG or anti-c-myc rabbit IgG (Genscript, Piscataway, NJ), washed,
and incubated with 50 nM DyLight633-conjugated Fn3. Cells were washed and analyzed
on a FACS Calibur cytometer.
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4. STABILITY AND COMPLEMENTARITY BIAS IMPROVE THE PROTEIN

FUNCTIONALITY LANDSCAPE

Introduction

The design and construction of synthetic combinatorial libraries is critical for the
development of alternative scaffolds for molecular recognition' as well as for high
throughput approaches to antibody engineering such as those required for proteomic
applications.> Design requires the balance of creating sufficient conformational and
chemical diversity to yield high affinity binding to myriad epitopes while providing a
high frequency of functional clones such that the limited searchable sequence space
contains clones with the appropriate phenotype. Continued study of library design and
construction will enable more efficient selection of high affinity binders from a variety of
scaffolds including Fn3. We sought to develop an improved Fn3 library design through
incorporation of two key features: wild-type conservation of residues that are structurally
critical and/or are less likely to contribute to the desired binding interaction and tailored

amino acid diversity biased to functional amino acids.

Despite their location in the BC/DE/FG loop region of Fn3, some residues may be critical
to the conformational stability of the protein fold. As such, diversification of these
positions may produce a library population with reduced average stability.
Destabilization limits the robustness of binders in biotechnology applications such as the
stringent washing steps of purification and detection. Instability can result in degradation
and aggregation of in vivo diagnostics and therapeutics, which reduces potency and can
elicit an immune response. Moreover, destabilization decreases the tolerance to
mutation, which decreases the capacity for evolution.” Also, the potentially resultant
flexibility may diminish the free energy change upon binding because of entropic effects.
Moreover, conservation at structurally critical positions enables diversity to be focused
on positions that are more likely to contribute to the binding interaction yielding a more
efficient search of sequence space. In the current work, we use stability, structural, and

sequence analyses to identify conservation sites that may benefit library design.
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Early library designs commonly used NNB or NNS/NNK randomized codons to
approximate an equal distribution of all amino acids. Yet not all amino acids are
equivalent in their ability to provide conformational and chemical complementarity for
molecular recognition so a tailored distribution may be more effective. Sidhu and
colleagues have investigated this hypothesis and demonstrated the utility of a
tyrosine/serine library as well as the unique efficacy of tyrosine to mediate molecular
recognition in antibody fragments.*® Direct competition of full diversity and
tyrosine/serine diversity libraries in the Fn3 domain was dominated by the full diversity
library for selection of high affinity binders to goat and rabbit immunoglobulin G. Thus,
though tyrosine/serine may provide ample diversity for binding, an expanded repertoire
enables higher complementarity. The expanded repertoire can be effectively utilized with
an efficient library design and/or affinity maturation scheme. A tailored antibody library
with elevated tyrosine, glycine, and serine and low levels of all other amino acids except
cysteine was superior to a tyrosine/serine library.® A similarly biased library was used
with the Fn3 scaffold to yield a 6 nM binder to maltose binding protein’ and a novel
‘affinity clamp’ for peptide recognition.”” These biased distributions were created by
oligonucleotide synthesis using custom trimer phosphoramidite mixtures. The current
work investigates the ability to create a desired distribution via inexpensive skewed
nucleotide mixtures. In particular, the amino acid distribution in human and mouse
CDR-H3 loops is effectively mimicked. We demonstrate that a new library incorporating
selective conservation and tailored diversity is superior to both an unbiased library with
approximately equal amino acid diversity and a tyrosine/serine binary code library. This
library enabled the generation of binders to a multitude of targets with potential utility in

research, biotechnology, and therapy.

Results

Fn3 Stability

We used yeast surface display for efficient stability analysis of Fn3 clones. It has been
demonstrated that the number of displayed single-chain T-cell receptors per yeast cell
correlates to receptor stability.'"' To validate this correlation for Fn3, we created yeast

surface display vectors of binders to vascular endothelial growth factor receptor 2
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spanning a range of stabilities: free energies of unfolding from 3.8 to 7.5 kcal/mol and
midpoints of thermal denaturation of 42 to 84°." Clonal cultures of yeast were grown at
30°, Fn3 expression was induced at 37°, and the amount of displayed Fn3 was quantified
by flow cytometry. The clones exhibit a positive relationship between display and
stability spanning a substantial display range between the least and most stable clones

(Figure 4.1A) thereby validating this technique for stability comparison.

This validated approach was used to explore domain stabilization via single-site wild-
type conservation in the context of a diverse library. To quantify this impact, a series of
libraries were constructed: one library with fully diversified BC, DE, and FG loops and
multiple libraries of the same design except for wild-type conservation at a single
position of interest. The libraries were transformed into a yeast surface display system
and the amount of Fn3 displayed upon induction at 37° was quantified by flow cytometry.
Eleven of fourteen positions studied, as well as a multisite library, exhibit improved
display with wild-type conservation. A26, V27, and T28 have increased display but not

of statistical significance (Figure 4.1B).
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Figure 4.1. Fn3 stability. Yeast clones or libraries were grown to logarithmic
growth phase at 30°. Expression of Aga2p-Fn3 was induced at 37°. Fn3 display
level was quantified by flow cytometry using mouse ac-myc antibody and
amouse antibody-R-phycoerythrin conjugate. (A) The extent of Fn3 display of
VEGF-R2 binders was determined and compared to the previously determined
stability.” (B) Libraries were created with full diversity in the BC, DE, and FG
loops except maintenance of wild-type at the position indicated. The display
level of this singly-constrained library was compared to a non-constrained library.

Solvent Accessible Surface Area

The solvent accessible surface area of each potentially diversified position was calculated
using GetArea" for wild-type Fn3 (solution structure 1ITTG" and crystal structures
IFNA") and an engineered binder (20BG'). Despite their presence in previously
diversified loop regions, the side chains of D23, A24, P25, V29, G52, and S85 are
relatively inaccessible; peripheral residues W22, Y32, A57, T76, and P87 are also buried

(Figure 4.2). Conversely, the amino acids in the middle of each loop are relatively

~
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exposed, supporting the ability of these sites to be diversified while maintaining the

correct fold.

T76 Buried

Exposed

Figure 4.2. Solvent accessibility. The solvent accessible surface area (SASA)
was calculated for each residue using GetArea'® with a 1.4A probe. The SASA
of each side chain in the solution (1TTG™) and crystal (1FNA'®) structures of
wild-type Fn3 and an engineered binder (20BG'®) were normalized by the SASA
of the side chain in a random coiled peptide. The fibronectin domain is
presented using 1TTG with the residues in the loop regions (W22-Y32, P51-A57,
T76-P87) color-coded according to the mean value of the accessibility ratios for
the three cases.

Sequence Analysis

The mutational flexibility of each position was further explored through phylogenetic
sequence analysis. The type III domains of fibronectin in chimpanzee, cow, dog, horse,
human, mouse, opossum, platypus, rat, and rhesus monkey were aligned, and the relative
frequency of each amino acid was determined (Figure 4.3A). The peripheral residues
W22, Y32, P51, A57, and P87 are well conserved; however, T76 is variable. Other sites
exhibiting conservation three-fold above random are A24 (22%), P25 (62%), V29 (25%
as well as 43% isoleucine), G52 (25%), S53 (23%), S55 (27%), G77 (21%), G79 (19%),
and S85 (66%); also note that T56 is 12% conserved with 51% of the homolog serine.
Thus, the BC loop exhibits conservation of its peripheral hydrophobic residues except
Y31. The DE loop, except for the central lysine, is well-conserved. The FG loop has a
trend towards glycine from G77 to G79 and two highly conserved sites near the C-

terminus.
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Figure 4.3. Sequence analysis. Amino acid sequences were aligned. The
amino acid frequency at each position is presented in an intensity scale in each
column. The wild-type human sequence for the tenth type Ill domain is presented
at the top of each column (W22-Y32, P51-A57, T76-P87). The x in the BC loop
corresponds to an amino acid present in other domains that is not present in the
human tenth type Ill domain. (A) Wild-type analysis. The amino acid sequences
for the type Il domains of fibronectin in chimpanzee, cow, dog, horse, human,
mouse, opossum, platypus, rat, and rhesus monkey were analyzed. The outline
around S81-S84 represents rare positions as most type Il domains contain
shorter FG loops. (B) Binder sequence analysis. The amino acid sequences for
binder-engineered Fn3 domains were aligned. The amino acid frequency at
each position was compared to the frequency in the composite naive libraries.

Published sequences of engineered binders were analyzed similarly; though in this
analysis amino acid frequencies must be compared to expected frequencies based on
variable library designs (Figure 4.3B). Wild-type is present at least twice as often in
binders as in the naive library at three positions: P25 (15% in binders versus 5% in
libraries), G52 (26% v. 13%), and G79 (17% v. 5%). In addition, three positions yield
substantial enrichment of homologs: alanine at V29 (20% v. 6%), threonine at S55 (25%

v. 6%), and serine at T56 (28% v. 11%).
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Library Design

The stability, accessibility, and sequence analyses (summarized in Table 4.1) were used
to determine the degree of diversification desired at each position. For example, proline
at position 25 significantly stabilizes the library, is essentially inaccessible to solvent, and
is highly conserved in the type III fibronectin domains of mammals. Thus, the new
library will be heavily biased towards proline at this position. Conversely, the adjacent
alanine at position 26 does not significantly stabilize the library, is highly accessible, and
exhibits essentially no conservation. As a result, this position will be fully diversified in

the new library design.

Along with conservation bias to maintain structural integrity and focus diversity on
positions better suited for molecular recognition, it was desired to bias the diversity to
functional amino acids. Tyrosine has demonstrated unique utility in molecular
recognition.”®  Glycine provides conformational flexibility. Serine and alanine are
valuable as small, neutral side chains. Acidic residues, arginine, and lysine provide
charge although the utility is unclear.” Other side chains may provide ideal
complementarity in less frequent situations. Thus, we propose the ideal diversity
contains high tyrosine, glycine, and serine and/or alanine as well as small levels of all
other amino acids. For the particular amino acid distribution we sought guidance from
natural molecular recognition. The amino acid distribution in CDR-H3 matches the
desired diversity and was used as the library design model (Figure 4.4). Each position
was designed to incorporate the desired level of wild-type conservation and to match the
antibody CDR-H3 repertoire in the non-conserved portion of the distribution. The DE
loop is a slight exception because a very similar design was previously validated as
effective.” In this loop, G52, S53, S55, and T56 are highly conserved with wild-type at
50% frequency and unbiased distribution of all other amino acids. The lack of antibody-
inspired bias in this loop is of limited detriment because of the high conservation of the
wild-type amino acids. Multiple loop lengths, selected based on phylogenetic
occurrence,'® are included in each loop. The resultant library design is summarized in

Table 4.1.
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Table 4.1. Fn3 library design summary. Pos. and WT are the amino acid position
and residue in the human wild-type tenth type Ill domain. Access. is the ratio of
solvent accessible surface area for the residue in the fibronectin domain compared to
the residue in a random coiled peptide. Stability is the relative increase in yeast
surface display level of a library with wild-type conservation at the position of interest.
Native indicates the frequencies of the indicated amino acids in type |l fibronectin
domains of ten species. Binders indicates the enrichment of wild-type (or homolog
as indicated) in engineered binders relative to the naive frequency. Library Design
indicates the intended amino acid distribution in the new library. Ab div. is the
designed amino acid distribution that mimics antibody CDR-H3. * indicates the
location of loop length variability.

Sequences
Pos. WT Access. Stability Native Binders Library Design
, BC Loop -

2 W 1 - 100% W - wild-type

23 D 35 25+ 0% 5% D+ 14%E 1.0x Ab div. (10% D)
24 A 32 26 £ 2% 22%A+12% S 0.4x 8% A + Ab div.
25 P 10 30+ 4% 62% P 2.7x 42% P + Ab div.
26 A 75 16+ 11% 7% A 0.7x Ab div. *

27 Y 57 5+1% 14% V 0.4x Ab div. *

28 T 75 122 1% 12% T 1.6x Ab div. *
29 \Y 3 33+2%  25% V +56% I1+L  0.6x (3.2x A) 25% A|L|S|V
30 R 49 - 6% R 1.1x Ab div.

31 Y 43 - 6%, 62% G - 50% S, 50% Y
32 Y 1 - 75% Y - wild-type

, DE Loop

51 P 79 - 31% P - wild-type

52 G 12 37+4% 25% G 2.0x 49% G

53 S 83 - 23% S+ 14%T 1.0x 50% S

54 K 64 - 6% K 3.6x NNB div. *
55 S 41 - 27% S +26%T 1.6x(4.2xT) 50% S

56 T 48 31+ 11% 12% T+51%S  0.8x (2.6x S) 49% T

57 A 8 - 32% A - wild-type

FG Loop

76 T 8 - 7% T - wild-type

77 G 48 27+ 1% 21% G 0.7x 12% G + Ab div.
78 R 81 18 £ 0% 12% R 1.5x Ab div.

79 G 77 38+ 13% 19% G 2.7x 12% G + Ab div.
80 D 74 - 7% D +48% E 1.9x Ab div. *

81 S 69 - rare 0.7x Ab div. *
82 P 76 - rare 1.5x Ab div. *
83 A 81 - rare 0.6x Ab div. *
84 S 54 52 + 14% rare 0.5x Ab div. *

85 S 14 321 0% 66% S 1.2x 100% S

86 K 88 - 12% K 1.5x Ab div.

87 P 40 - 74% P - wild-type
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Library Construction

Though trimer phosphoramidite library construction enables precise creation of unique
amino acid distributions, this approach is expensive with the inclusion of multiple
specialty codon mixtures. As an inexpensive alternative, standard oligonucleotide
synthesis was employed using custom mixtures of skewed nucleotides at each position.
The optimal set of three nucleotide mixtures was determined for each codon as follows.
All possible sets of nucleotide mixtures with each component at 5% increments were
filtered to select only those that closely match the desired levels of wild-type and tyrosine
and reasonably match glycine, serine, aspartic acid, alanine, and arginine; these amino
acids are the most frequent in antibody CDR-H3 and are functionally diverse. Sample
protein libraries were then produced in silico from the amino acid probability
distributions resulting from the sets of nucleotide mixtures. The library calculated to be
most likely to be produced from the intended distribution (i.e., the antibody repertoire
with the appropriate wild-type bias) was selected as optimal. This process was repeated
for each position in the library. In general, these skewed nucleotide mixtures provide
good matches to the desired amino acid distributions (Figure 4.4). The two exceptions
are decreased levels of glycine and elevated cysteine. Since the latter two positions in a
cysteine codon (TGT or TGC) are shared by glycine (GGN), it is not possible to create
high levels of glycine without also yielding high cysteine unless TNN codons are
depleted, which depletes tyrosine. Thus, a compromise is reached with 6% glycine and
10% cysteine. Though this incorporates a relatively high level of cysteine, the library
design still yields many cysteine-free clones; moreover, interloop disulfide bonds are a

potentially advantageous element.”

Fn3 genes were constructed by overlap extension PCR of partially degenerate
oligonucleotides. ~ Transformation into yeast by electroporation with homologous
recombination yielded 2.5x10° transformants. Sequencing and flow cytometry analysis
indicate 60% of clones encode for full-length Fn3 resulting in 1.5x10° Fn3 clones.
Sequence analysis reveals that the skewed nucleotides accurately match their intended
distribution (Figure 4.4). The library is termed G4, as it is the fourth generation Fn3
library created in our laboratory after the two-loop, single-length BF14 library'®, the
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three-loop, length-diversificd NNB library'®, and the three-loop, DE-conserved

tyrosine/serine library YS’.

50% M M
° | ONNB

OTyr/Ser

OCDR-H3
20% | ®WSkewed Des.
B Skewed Seq.

10% 1

Frequency

0% -

A CDETFGMH I KL MNWPOQRSTVWY Z

Figure 4.4. Amino acid distributions. The frequencies of each amino acid in
multiple distributions are presented. NNB refers to a degenerate codon with 25%
of each nucleotide at the first two positions and 33% of C, T, and G at the third
position. Tyr/Ser refers to an even mix of tyrosine and serine. CDR-H3 refers to
the expressed human and mouse CDR-H3 sequences.”® Skewed Des. refers to
the theoretical distribution attainable using skewed oligonucleotides. Skewed
Seq. refers to the distribution attained experimentally using skewed nucleotides.

Library Comparison

The new G4 library design was compared to a non-conserved, full diversity library
(NNB'®) and a library with wild-type conservation in the DE loop only and
tyrosine/serine diversity (YS’) (Table 4.2). The libraries were pooled for comparison and
tested for their ability to generate binders to seven targets: human A33, mouse A33,
epidermal growth factor receptor (EGFR), Fcy receptors ITA and IIIA (FcyRIIA and
FcyRIITA), mouse immunoglobulin G (mIgG), and human serum albumin (HSA). The
naive library was sorted by magnetic bead selections,” and lead clones were diversified
by error-prone PCR on the full Fn3 gene and shuffling of mutagenized Fn3 loops.
Multiple rounds of selection and diversification were performed to yield binders to each
target. Sequence analysis of each binding population revealed that 19 of 21 binders
originated from the G4 library while two clones were likely of NNB origin and no YS
clones were identified (Table 4.3, Figure 4.5). Given the comparable number of clones in
the naive libraries, this result indicates that G4 is a superior library design to both NNB

and YS for the selection of protein binders.
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Table 4.2. Library design. Loop Diversity indicates the library of codons
included at positions without wild-type bias. Biased Positions indicates positions
within the diversified loops (23-31, 52-56, 77-86) that are biased towards wild-
type. Full-length Fn3s indicates the library size; i.e., the number of yeast
transformants that encode for full-length Fn3 domains.

Library Loop Diversity Biased Positions Full-length
Fn3s
full diversity 8
NNB (NNB codons) none 0.7x10
YS 50% Y, 50% S 52, 53, 55, 56 1.5x10°8
G4 antibody-based 23, 24, 25, 29, 31, 52, 1.5x10°

(18% Y,10% S, ...) 53, 55, 56, 77, 79, 85

Table 4.3. Engineered binder sequences. Name is the name of each clone.
Target is the cognate protein bound by the Fn3 clone. 23 refers to the amino
acid present at position 23, which is aspartic acid (D) in wild-type Fn3; all
positions diversified in the naive library are likewise presented. Framework
refers to amino acid mutations outside of the diversified loops. A dash indicates
no amino acid.

Name Target 23 24 25 26 27 28 - 29 30 31 52 53 54 55 56 77 78 79 BO B1 82 83 84 85 86 Framework Kq [nM]

WT DAPAVT V R Y G S K ST G RGDSPASSK -

E4.2.1 EGFR Y G F s L - A S S R S PWF S NDF S NRY SG - 0.25 1 0.07

E6.2.6 EGFR FDYA-- -V¥VTY GW I s 1 D NS HWPTFRST 1907 0.26+0.13

E6.2.10 EGFR Y LRDPRYVDY WY L PE Y DGYRESTUPL - 0.96 0.1

EM.4.1 EGFR Y GPF Y YV AHS R S PWF S KCYDG - - 8V 0.8540.50

EI2.4.6 EGFR Y HP F Y Y V A HS RS PWF DS NG - - S H - 29103

El3.4.2 EGFR Y GSSY - - ASY R S P WF P S G I - s A T581 9535

EI3.4.3 EGFR LHHRSD - V¥ RS G S RS L WG S Y CC S N E47K 0.2510.05

El4.4.2 EGFR Y FRDPRYVYDY WY L PE G DDQNA G L V45A 14102

1128.2.6 Feylla CTHLH - -WDY AL CPG V G G D - D W  R6G, T35F V72A 850
1888, K98E

Wa626  Feylla DMPF - . - S DS G T DS L S S G S N S Y  A12V,S21IN, T35A 530

hA2.2.1 hA33 Y CPDGGCHS Y Y RS I 8 s F RWP - s F : -

hA2.2.2 hA33 NTVYFSF - LYY S S L HTI G TWP - s Y :

hA3.2.1 hA33 S YSSYNSWDS N S D C I R DGDF Y s Y Y32F

hA3.2.2 hA33 Y YHLRG - LDS R S Y s T V NDY I - S Y 521G Q46K T49A

mA3.2.1 mA33 S §$S L YN S A Y VWDGCTIT P NY S F s L Y32F

mA3.2.2  mA33 ccLFF - S G Y G LV YW DNV G - s N 190V

mA3.2.3  mA33 S FPCV - -8SS8SS G DT T S s TCyY@P s Y -

mA3.24  mA33 S CPIl CPRATS AT - 88 DQGY DD - s A 134V

mA3.2.5  mA33 Q CHY Y Y - AQS S §$ Ks1I Y NWF L DSV 8 I Al2v

Ab3.2.1 hAlb G AP AC - A A Y G S G T s S RYYYTC - S E - -

mi2.2.1 migG C CSDNGC S N S RS CF M DS NG - - P H V72A 41£0.7

R4
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Figure 4.5. Library source probability. For each binding clone sequence, the
probability of origination from each library was calculated based on library
design. The relative preferences for G4 versus NNB (o) or G4 versus YS (x) are
presented for each loop as well as the total domain. Each symbol indicates a
sequenced clone.

Sequence analysis reveals that wild-type bias is approximately maintained or perhaps
slightly reduced in the BC and FG loops of binders while the strong bias at G52, S55, and
T56 is slightly reduced but still highly frequent (Figure 4.6a). It is noteworthy that in
addition to 20% occurrence at G79, glycine is present at 15% at position 80. At position
29, equal amounts of alanine, leucine, serine, and wild-type valine were included in the
naive library; in binders, the smallest available side-chain, alanine, is present at 35%
while the largest side-chain, leucine, occurs with only 10% frequency. Cumulative
analysis of amino acid frequency at positions without wild-type bias indicates
maintenance of the preferentially high levels of tyrosine, serine, glycine, aspartic acid,
and arginine (Figure 4.6b). Conversely, cysteine and histidine, which were included at
higher frequency than intended because of their codon similarity to tyrosine, are present
at reduced levels in binders. Eight of nineteen (42%) G4-based binders are cysteine-free
as compared to 19% in the naive library. Interestingly, only three clones (16%) have a
single cysteine as compared to a naive 33% whereas seven clones (37%) contain two
cysteines (26% in naive library). A single clone has four cysteines. Thus, a strong

selective pressure exists against unpaired cysteines. Of particular interest, six of the

el
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seven two-cysteine clones contain cysteine residues in identical or adjacent loops at
proximal positions suggesting feasible disulfide bonding, which can stabilize the
domain."” Thus, both wild-type bias and tailored diversity were effective in producing an
effective library. Additional engineering campaigns and sequence analysis will improve

the statistical significance of these trends and guide further library improvement.
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Figure 4.6. Binder sequence analysis. The nineteen binders from the G4 library
were aligned and analyzed. (A) The wild-type frequency at each position with
wild-type bias is indicated. (B) The amino acid frequency at positions without
wild-type bias is indicated. Native indicates phylogenetic frequency. Design
indicates the frequency in the G4 library design. Binder indicates the frequency
in sequenced binders. The error bars represent a single standard deviation
calculated as the square root of the counted amino acid occurrences divided by
the total number of sequences.
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Stability Analysis

The impact of wild-type bias and tailored diversity on domain stability was analyzed.
The NNB and G4 libraries were each induced for yeast surface display at elevated
temperature (37°). The G4 library exhibits 43+9% higher average display than the NNB
library (Figure 4.7) indicating higher average stability. The libraries were then sorted by
FACS to identify clones of low stability and high stability. About 50 clones were
sequenced from each resultant population and the amino acid frequencies in low and high
stability clones were compared (Table 4.4). The biased positions in the BC loop were not
critical to stability in this analysis except position 29. As observed in binder sequence
analysis, the small side chain alanine is preferred whereas the larger side chain leucine is
destabilizing. Wild-type amino acids at the four biased positions in the DE loop are
stabilizing, especially S53 and S55. While G77 is perhaps mildly stabilizing, G79 is
present at substantially higher frequency in stable clones. The complete conservation of
S85 in the G4 library is justified by the preferential occurrence of S85 in stable clones
from the NNB library. At positions without wild-type bias, none of the preferred amino

acids are substantially destabilizing thereby validating their inclusion at elevated levels.
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Figure 4.7. Library display. Yeast containing the indicated Fn3 populations
were grown to logarithmic growth phase at 30°. Expression of Aga2p-Fn3 was
induced at 37°. The mean Fn3 display level for each population was quantified
by flow cytometry using mouse ac-myc antibody and amouse antibody-
AlexaFluor488 conjugate. WT is wild-type Fn3. NNB and G4 are the naive
libraries. Low and High indicate the populations sorted for low and high display,
respectively. Display levels are normalized to the wild-type value.
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Table 4.4. Stability analysis. The NNB and G4 libraries were independently
sorted for clones of low stability and high stability. Sequences of about 50 clones
from each sorted population were analyzed. AA indicates the wild-type amino
acid at positions with wild-type bias or amino acids of elevated frequency at
positions without wild-type bias. G4 Design indicates the designed frequency of
the indicated amino acid. NNB and G4 indicate the difference in amino acid
frequency between the high and low stability populations from the indicated

library.

AA

High - Low (Stability)

D23
A24

P25
V29
Y31

G52
S563
S65
156
G77
G79
S85

I O XU U 6O n <

G4 Design NNB G4
Positions with Wild-type Bias
10% D 0% +3%
8% A -4% +1%
42% P 0% +4%
A|LIS|V +10]-19]+18|+5  +29|-11|-27|+12
S|Y - 0%
49% G +7% +10%
51% S +5% +20%
51% S +18% +44%
49% T +10% +8%
12% G +1% +5%
12% G +17% +17%
100% S +18% -
Positions without Wild-type Bias
19% -1% -4%
10% +5% +2%
6% 0% +1%
10% +2% +5%
4% -1% +2%
10% 1% -2%
6% 0% 0%
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Discussion

The current work demonstrates that tailored diversity is superior to nearly fully random
(e.g., NNB) or overly constrained (e.g., YS) diversity. This is evidenced by the dominant
selection of clones from the G4 library as well as the maintenance of the favored amino
acids in binder sequences (Figure 4.6b). Tailored diversity improves the search of
sequence space by increasing the frequency of functional binders. This results both
through improving the likelihood of beneficial contacts, largely by elevation of tyrosine,
and reducing detrimental constraints. The latter element is achieved through reduction of
hydrophobic isoleucine, leucine, methionine, proline, threonine, and valine as well as the
large, positively charged arginine and lysine, in deference to small, neutral serine. Yet a
binary code of tyrosine and serine constrains sequence space such that it often lacks high
affinity binders. Thus, through modest incorporation of other amino acids in the library
and a broad, yet efficient mutagenesis approach, tailored diversity yields a vastly

improved hybrid of the two extremes of NNB and YS.

The inclusion of wild-type bias is also an important element of the G4 library design.
This bias increases the frequency of functional clones both by enabling diversity to be
used at positions with more impact on binding and by reducing the number of non-
functional clones that result from detrimental mutation of a structurally critical residue.
Moreover, the improved stability of G4 clones (Figure 4.7) improves evolvability’
allowing otherwise unstable sequence motifs to be explored. This improved stability is

also beneficial in a variety of applications as outlined in the Introduction.

The methodology and techniques in the current work are directly applicable to any
protein engineering effort. While the designed skewed nucleotide mixtures for particular
sites are unique to Fn3, the antibody mimic mixture should be generally applicable to
solvent-exposed loops in molecular recognition scaffolds. Moreover, the mixture design
algorithm may be reapplied to any design distribution. The identification of positions
most likely to benefit from wild-type bias can be readily applied to other scaffolds
through high throughput stability analysis in the context of protein libraries, demonstrated

here using yeast surface display. When available, sequence and structural data provide
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additional avenues of analysis. The relative efficacy of each of these approaches will be
elucidated as continued analyses expand the sequence data set and evolved library

designs are tested.

Though the thrust of this work entails study of sequence/structure/function relationships
and library design, the panel of binders generated provides useful reagents for a variety of
applications from tumor targeting (EGFR, human A33, and mouse A33) to biotechnology
(HSA and mouse IgG) to immunology (FcyRIla and FcyRIIla). In addition, binders to
tumor vasculature target CD276 were engineered solely from the G4 library (Appendix
O).

Materials and Methods

Stability-Display Relationship

Yeast surface display plasmids were created for six Fn3 domains of previously published
stabilities'%: wild-type, 159, 159(wt DE), 159(Q8L), 159(A56E), and 159(Q8L,A56E).
Genes were constructed by overlap extension PCR of eight oligonucleotides and
transformed into EBY 100 yeast as described.”® Gene construction was verified by DNA
sequencing. Clonal populations were grown at 30° in SD-CAA medium (0.07M sodium
citrate pH 5.3, 6.7 g/L yeast nitrogen base, 5 g/L casamino acids, and 20 g/L glucose) and
induced at 37° in SG-CAA (0.1M sodium phosphate, pH 6.0, 6.7 g/L yeast nitrogen base,
5 g/L. casamino acids, 19 g/L galactose, and 1 g/L glucose). Yeast were labeled with
mouse anti-c-myc antibody (clone 9E10) followed by phycoerythrin-conjugated goat
anti-mouse antibody. Yeast were washed and phycoerythrin fluorescence was analyzed

with an Epics XL flow cytometer (Beckman Coulter, Fullerton, CA).

Library Stability Analysis

A library was constructed in which positions 23-30 (DAPAVTVR), 52-55 (GSKST), and
77-86 (GRGDSPASSK) were diversified using NNB codons. The library was
constructed by overlap extension PCR of eight oligonucleotides and transformed into
EBY 100 yeast. Fourteen similar libraries were constructed with identical design except a

single codon of interest was maintained as wild-type within the otherwise diversified
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regions. Separate libraries were constructed for D23, A24, P25, A26, V27, T28, V29,
G52, T56, G77, R78, G79, S84, and S85; in addition, a library was constructed that
maintained D23, A24, P25, and V29. These libraries, as well as wild-type Fn3, were
grown at 30° and induced at 37° Fn3 expression was analyzed by flow cytometry as
indicated above. The fractional improvement in display was calculated as the mean
phycoerythrin fluorescence of the singly-conserved library minus that of the fully-

diversified library and normalized to the fully-diversified fluorescence.

Solvent-Accessible Surface Area

The relative solvent accessible surface area of positions 22-32, 51-57, and 76-87 were
calculated for wild-type Fn3 (solution structure 1TTG' and crystal structures 1IFNA")
and an engineered binder (20BG'). The area accessible to a 1.4A sphere was
determined for each side chain in each structure and compared to the accessible area in a

G-X-G random coiled peptide using GetArea."

Phylogenetic Sequence Alignment

The following fibronectin sequences were used: chimpanzee (XP_516072), cow
(P07589), dog, (XP_536059), horse (XP_001489154), human (NP_997647), mouse
(NP_034363), opossum (XP_001368449), platypus (XP_001509150), rat (NP_062016),
and rhesus monkey (XP_001083548). The sequences were aligned using ClustalW >

The relative frequency of each amino acid was calculated at each position.

A similar analysis was conducted using engineered binder sequences. Engineered Fn3

79010 12: 16: 18 19: 2327 were aligned; identical loop sequences in related

domain sequences
clones were only counted once to avoid bias. The amino acid frequency at each position
was calculated and compared to the expected amino acid frequency as determined from a

weighted average of theoretical library designs (e.g., NNS, NNB, serine/tyrosine, etc.).
Library Construction

Degenerate oligonucleotides were designed to provide the desired amino acid distribution

at each position. All three-site combinations of skewed nucleotide mixtures within 5%

9 ]



Chapter 4: Tatlored Diversity with Structural Bias

increments were considered (e.g. 20% A, 5% C,35% G, 40% T at the first position, 15%
A, 45% C, 10% G, 30% T at the second position, and 35% A, 25% C, 30% G, 10% T at
the third position). The amino acid probability distribution of each set of nucleotides
mixtures was calculated from the genetic code. The sets were filtered to identify those
with good tyrosine matching and reasonable matching of alanine, aspartic acid, glycine,
arginine, and serine. Specifically, tyrosine was required to occur at 0.5-2x the intended
frequency; alanine, aspartic acid, glycine, arginine, and serine were required to occur at
0.33-3x the intended frequency. The sets that fulfilled these criteria were then used to
produce numerous in silico protein libraries based on their amino acid probability
distribution. For each clone, the probability of occurrence from a library that precisely
matched the desired distribution was calculated. The sum of probabilities for each
sample library was used as a metric of library fitness. The skewed nucleotide designs
were selected based on fitness and the ability to use identical mixtures at multiple sites
(e.g., 45% C, 10% G, 45% T at the wobble position of multiple codons). Nucleotide

designs are included in Table 4.5.

Table 4.5. Codon design. The nucleotide mixture used in synthesis at each
diversified position is indicated.

Non-Conserved A24 P25 V29 Y31

1st  2nd  3rd ist 2nd 3rd Ist 2nd 3rd 1st  2nd 3rd 1st  2nd  3rd
0.15 0.45 0.00 | 0.15 0.45 0.00|0.05 0.20 0.00 | 0.00 0.00 0.00]|0.00 0.50 0.00
0.15 0.15 045|0.15 0.30 045|065 0.65 0.45]0.00 0.50 0.00]0.00 0.50 0.00
0.25 0.25 0.10|0.25 0.15 0.10|0.05 0.05 0.10[0.50 0.00 1.00 ] 0.00 0.00 0.00
0.45 0.15 0.45 045 0.10 045(0.25 0.10 0.45]0.50 0.50 0.00] 1.00 0.00 1.00

- O 0O >»

G52 S53 / S55 K54 T56 G77 /] G79
ist 2nd 3rd 1st 2nd 3rd ist 2nd 3rd ist 2nd  3rd ist  2nd 3rd
0.10 0.10 0.00 | 0.10 0.10 0.00 |0.25 0.25 0.00|0.70 0.10 0.00 | 0.15 0.40 0.00
0.10 0.10 0.33}0.10 0.70 0.33|0.25 0.25 0.33}0.10 0.70 0.33|0.10 0.10 0.45
0.70 0.70 0.33}0.10 0.10 0.33|0.25 0.25 0.33|0.10 0.10 0.33}0.35 035 0.10
0.10 0.10 0.33]0.70 0.10 0.33|0.25 0.25 0.33|0.10 0.10 0.33|0.40 0.15 0.45

- a0 O >

Degenerate oligonucleotides were synthesized with skewed nucleotides at diversified

positions and nucleotides encoding wild-type Fn3 at fully-conserved positions. The

Q02
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library design, summarized in Table 4.1, includes four, three, and four loop lengths in the
BC, DE, and FG loops. Separate oligonucleotides were synthesized to yield each length.
Overlap extension PCR of eight oligonucleotides was performed to construct complete
Fn3 genes. Separate reactions were conducted for each loop length to avoid bias towards
shorter loops. The gene libraries were transformed into yeast by homologous
recombination with linearized yeast surface display vector, which includes the Aga2p
protein fusion, N-terminal HA epitope, and C-terminal c-myc epitope. The fraction of
clones that produce full-length Fn3 was determined by flow cytometry as the fraction
displaying the N-terminal HA tag that also contained the C-terminal c-myc epitope; these

results were corroborated by sequence analysis.

Binder Selections

Human and mouse A33 extracellular domains were both produced with His, epitope tags
in human embryonic kidney cells and purified by metal affinity chromatography. Protein
was biotinylated either on free amines using the sulfo-NHS biotinylation kit or by site-
specific sortase-based conjugation of GGGGG-biotin to an LPETG C-terminal epitope.*
EGFR mutant 404SG* was produced in Saccharomyces cerevisiae yeast, purified by
metal affinity chromatography and anti-EGFR antibody affinity chromatography, and
biotinylated on free amines using the sulfo-NHS biotinylation kit. Biotinylated FcyRITIA
and FcyRIIIA were a kind gift from Jeffrey Ravetch (Rockefeller University).
Biotinylated mIgG was purchased from Rockland Immunochemicals. Human serum
albumin (Sigma) was biotinylated using the sulfo-NHS biotinylation kit. The NNB, YS,

and G4 libraries were pooled for direct competition.

The libraries were sorted for binding to the seven protein targets and affinity matured as
described.” Yeast were grown and induced to display Fn3. Binders to streptavidin-
coated magnetic Dynabeads were removed.”' Biotinylated protein was loaded on
streptavidin-coated magnetic Dynabeads and incubated with the remaining yeast. The
beads were washed with PBSA and the beads with attached cells were grown for further
selection. After two magnetic bead sorts, full-length Fn3 clones were selected by

fluorescence-activated cell sorting using the C-terminal c-myc epitope for identification
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of full-length clones. Plasmid DNA was zymoprepped from the cells and mutagenized
by error-prone PCR of the entire Fn3 gene or the BC, DE, and FG loops. Mutants were
transformed into yeast by electroporation with homologous recombination and requisite
shuffling of the loop mutants. The lead clones and their mutants were pooled for further
cycles of selection and mutagenesis. Once significant binder enrichment was observed
during magnetic bead sorts, fluorescence activated cell sorting was used. Yeast
displaying Fn3 were incubated with biotinylated target protein and anti-c-myc antibody
(clone 9E10 or chicken anti-c-myc, Invitrogen). Cells were washed and incubated with
AlexaFluor488-, phycoerythrin-, or AlexaFluor647-conjugated streptavidin and
fluorophore-conjugated anti-mouse or anti-chicken antibody. Cells were washed and
cells with the highest target to c-myc labeling ratio were selected on a FACS Aria or
MoFlo flow cytometer. Plasmids from binding populations were zymoprepped and

transformed into E. coli; transformants were grown, miniprepped, and sequenced.

Library Source Determination
For each clone, the probabilities that it originated from the NNB, YS, or G4 library were
calculated using the designed nucleotide distributions at each position as well as the

probability of mutation by error-prone PCR.

Library Stability Analysis

The NNB and G4 libraries were independently grown at 30° and induced at 37°. Yeast
were labeled with mouse anti-HA antibody (clone 16B12, Covance) and chicken anti-c-
myc antibody to label the N- and C-terminal epitopes. Cells were washed, incubated with
phycoerythrin-conjugated goat anti-mouse antibody and AlexaFluor488-conjugated goat
anti-chicken antibody, and sorted by flow cytometry. Only cells were comparable signals
for each epitope were considered to avoid selecting epitope mutants. The lowest and
highest displaying cells were collected and grown for an additional induction and
selection. Plasmids were isolated and transformed into E. coli. About 50 clones from
each resultant population (both low and high stability for both NNB and G4) were
miniprepped and sequenced. Sequences were aligned and the amino acid frequencies at

each position were determined.
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5. EPIDERMAL GROWTH FACTOR RECEPTOR DOWNREGULATION WITH

BIVALENT FIBRONECTIN CONSTRUCTS
Introduction
EGFR is a validated cancer target manifested by dysregulation', overexpression,’
autocrine signaling,’ and mutation.*® Yet the FDA-approved ligand-blocking antibodies
cetuximab and panitumumab have only modest efficacy.”” Deficient performance could
result from inability to compete with autocrine ligand, insufficient downregulation of

receptor, or inactivity against mutants such as constitutively active EGFRVIIL.

An alternative mode of therapy is substantial receptor downregulation to reduce or
eliminate the detrimental effects of receptor activation on tumor formation, proliferation,
and migration. A previously demonstrated means of receptor downregulation is
administration of non-competitive pairs of antibodies. Antibodies 528 and 806
downregulate EGFR and synergistically inhibit tumor xenografts.'” Non-competitive
antibody pairs 111 + 565 and 143 + 565 downregulate EGFR whereas the competitors
111 + 143 do not."" Also, non-competitive anti-HER2 antibodies downregulate HER2
and inhibit tumor growth.'"" "> However, these approaches require dosing two molecules,
which complicates regulatory and clinical procedures; moreover, decoupled
pharmacokinetics could reduce synergy. A bispecific molecule could potentially
alleviate these problems though the efficacy is uncertain given the lack of mechanistic
detail in the published literature. Fn3 domains provide a good system for bispecific
constructs because their single-domain architecture enables simple head-to-tail fusion,

which is the natural state of Fn3 domains within complete fibronectin protein.

In the current work, we engineer a panel of small, single-domain EGFR binders to
multiple identified receptor epitopes. Homo- and hetero-bivalent combinations of these
binders, expressed as protein fusions, are tested for the ability to downregulate receptor in
a variety of cell lines. Several molecules effectively reduce EGFR levels up to 80%. The
impact of epitopes, receptor density, bivalent format, and avidity are investigated.
Phosphorylation, both of receptor and downstream molecules, is examined. Inhibition of

proliferation and migration through downregulation is demonstrated.
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Results

Binder Engineering

Multiple high affinity binders to distinct epitopes of EGFR ectodomain were desired.
The NNB, YS, and G4 libraries were pooled and sorted for binding to biotinylated EGFR
ectodomain mutant 404SG."” Two clones dominated the selection. Competition against
existing anti-EGFR antibodies revealed that clone E4.2.2 is competitive with ICR10, a
domain I binder, and clone E4.2.1 is competitive with 528, a domain III binder. To
identify additional binders, intermediate populations were sorted for binding to EGFR
ectodomain in the presence of ICR10 or 528. Five unique clones that bound ICR10-
blocked EGFR were identified;: EI4.4.2, EI3.4.3, EI3.4.2, EI2.4.6, and EI1 4.1. Also, two
additional rounds of sorting with unblocked EGFR yielded an improved mutant of E4.2.2
named E6.2.6 and one additional clone, E6.2.10 (Table 5.1). In addition to binding
soluble EGFR ectodomain produced in yeast, these eight clones all bind EGFR-
expressing human epidermoid carcinoma A431 cells (data not shown). The affinity of
each clone was determined by titration of biotinylated Fn3 binding to A431 (on ice to

prevent internalization); affinities ranged from 250 pM to 30 nM (Table 5.1, Figure 5.1).

Table 5.1. EGFR binders. Kjindicates equilibrium dissociation constant for binding
to A431 cells on ice or yeast at 22°. nb indicates no detectable binding. - indicates
data not collected.

Sequence K,y [nM]

Name Alias BC DE FG fw A431,pH7.4 A431,pH 5 Yeast, pH 7.4
Wild-type WT DAPAVTVRY GSKST GRGDSPASSK - nb nb nb

E6.2.6 A FDYAVTY GWIST DNSHWPFRST 190T 0.26 £ 0.13 0.26+0.14 1.2+04

E4.21 B YGFSLASS RSPWF  SNDFSNRYSG - 30+3 25+0.7 0.25+0.07
EI34.2 - YGSSYASY RSPWF PSGISA T58I 95135 0.80 + 0.28 1.0+0.2
E6.2.10 - YLRDPRYVDY WYLPE YDGYRESTPL - 0.96 £ 0.1 0.88 + 0.64

El4.4.2 c YFRDPRYVDY WYLPE GDDQNAGL V45A 14102 0.64 £ 0.32 4+4
EI3.4.3 D LHHRSDVRS GSRSL WGSYCCSN E47K 0.2510.05 0.081 £ 0.044 25401
Ei2.4.6 E YHPFYYVAHS RSPWF DSNGSH - 29+03 nb 4+4
El.4.1 - YGPFYYVAHS RSPWF SKCYDGSV - 0.8510.50 ~0.15 0.06 £ 0.04

9%
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Figure 5.1. Affinity titrations. A431 cells were incubated with the indicated
concentration of biotinylated E6.2.6 (A) or EI3.4.3 (B), washed, labeled with
streptavidin-R-phycoerythrin, and analyzed by flow cytometry. Relative binding
indicates the mean fluorescence normalized between minimum and maximum
signal.

Competition and Epitope Mapping

Clones A-E , EI3.4.2, and EI1.4.1 bind conformationally-sensitive epitopes as evidenced
by their inability to bind EGFR ectodomain after thermal denaturation of receptor on the
yeast surface (Figure 5.2). Binders were tested for the ability to compete with other
clones as well as antibodies 225, 528, and ICR10 (Figure 5.3). Clone A is competitive
solely with ICR10, a known domain I binder." This result was corroborated by the
ability of clone A to bind the EGFR ectodomain fragment comprising amino acids 1-176
displayed on the yeast surface. Clone D is not competitive with the other Fn3s or
antibodies tested. It is able to bind ectodomain fragments 294-543 and 302-503, thereby
localizing the binding to domain IIT and the beginning of domain IV. Clones B, C, E,
EI3.4.2, and EIl 4.1 compete with each other as well as antibodies 225 and 528, EGF-
competitive domain III binders (except for three untested combinations; see Figure 5.3).

Clones A-E, as well as E6.2.10, compete with EGF for binding to A431 cells.
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Figure 5.2. Conformational sensitivity. EGFR ectodomain mutant 404SG was
displayed on the yeast surface. Cells were incubated at 80° for 30 min. to
denature EGFR. Cells were labeled with biotinylated Fn3 and mouse anti-c-myc
antibody followed by streptavidin-R-phycoerythrin and AlexaFluor488-conjugated
anti-mouse antibody. Fluorescence was quantified by flow cytometry.

A B Cc D E EI34.2 EN.4.1

Figure 5.3. Binding Competition. A431 cells (for 225 and EGF competition)
were incubated on ice with the indicated Fn3 clone or PBSA control.
AlexaFluor488-conjugates of 225 or EGF were added and cells were analyzed by
flow cytometry. For all other competitions, yeast displaying EGFR ectodomain
were incubated Fn3 clone, 528, or ICR10 followed by biotinylated Fn3, which
was detected by streptavidin-R-phycoerythrin and flow cytometry.  Black
indicates competition. White indicates no competition. nd indicates samples that
were not determined.
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Higher resolution epitope mapping was performed by high throughput identification of
EGFR mutations that maintain foldedness but have reduced affinity for the clone of
interest.'”” In agreement with competition and fragment labeling, clone A binds to domain
I as evidenced by its reduced binding to mutants L14H, Q16R, Y45F, and H69(QRY)
(Figure 5.4A). The specific location in domain I provides an explanation for EGF
competition as the four sites identified for clone A binding are all within 4A of EGF in
the EGF/EGFR crystal structure (Figure 54B). Clones B, C, E, and E6.2.10 all bind
domain III on the portion closer to domain II, which is consistent with complementary
Fn3 competition as well as EGF competition. Antibody 225 competition is reasonable
for clones B, C, and E given their proximity to the cetuximab (a 225 chimera) interface
(Figure 5.4C). The lack of E6.2.10 competition with 225 binding is also acceptable given
their disparate, though proximal, epitopes. Clone D binds near the interface of domains
I and IV, which is consistent with its fragment labeling and lack of competition against
225 and clones B, C, and E. The ability of clone D to compete with EGF cannot readily
be explained by direct steric inhibition given their distal binding epitopes. However, a
reasonable hypothesis is that clone D binding inhibits receptor untethering that supports
high affinity ligand binding. Though domains III and IV do not grossly change during
untethering,'® subtle rearrangements at the domain III / domain IV interface exist; for
example, amino acids 430 and 506, which are the sites identified in clone D epitope

mapping, move from 19.7A apart in the tethered structure to 16.7A in the dimer.

Thus, at least three classes of binders have been engineered: clone A binds to domain I;
clones B, C, and E bind domain IIT and are competitive with each other and antibodies
225 and 528 (as well as EIl.4.1 and EI3.4.2); clone D binds to the C-terminal portion of
domain III and the N-terminal portion of domain IV and does not compete with

antibodies 225 and 528 nor clones B, C, E, ElI1 4.1, and EI3.4.2.
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Figure 5.4. Fine epitope mapping. (A) A library of EGFR ectodomain mutants
was sorted for clones that maintained binding to a conformational binder but had
reduced binding to the indicated Fn3 domain. All single amino acid mutants,
excluding proline and glycine mutants, are listed and presented as red spheres in
the ectodomain crystal structure (1NQL). (B) EGF bound to EGFR dimer
(1IVO'). EGF is shown in blue spheres. Clone A epitope shown in red spheres.
(C) Cetuximab (a chimera of 225) bound to EGFR in the tethered conformation
(1YY9'®). Residues within 4A of antibody are shown in red spheres.
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Downregulation by Heterobivalent Constructs

Given the previously reported success of particular pairs of non-competitive
homobivalent antibodies to downregulate EGFR, we sought to investigate the ability to
achieve similar downregulation via a single heterobivalent agent. Fn3 clones were linked
as head-to-tail protein fusions with the native seven amino acid EIDKSPQ as well as a
flexible GSGGGSGGGKGGGGT linker (Figure 5.5A). Thirty constructs comprising all
possible bivalent combinations, in both orientations, as well as monomer for five clones
(identified as A-E under Alias in Table 5.1; bivalents are named N-C where N and C
represent the N-terminal and C-terminal Fn3 clones) were tested. Three different EGFR-
expressing human cell lines were tested: A431 epidermoid carcinoma, HeLa cervical
carcinoma, and HT29 colorectal carcinoma. Cells were cultured, serum starved, and
incubated with 20 nM Fn3 or Fn3-Fn3 for 6-8h. Cells were detached, bound agent was
acid stripped, and surface EGFR was quantified by flow cytometry. Although many
constructs did not modify surface EGFR levels relative to PBSA control, bivalents D-B,
D-C, D-D, D-E, A-D, B-D, C-D, and E-D downregulate, yielding up to 80% reduction in
surface EGFR; D-B, D-C, and D-E have the greatest effect (Figure 5.5B,C). Thus,
particular combinations of non-competitive clones in a heterobivalent construct are
needed to downregulate though the D-D homobivalent does moderately reduce receptor
levels. Moreover, particular orders of combinations are needed; for example A-D

downregulates whereas D-A does not.
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Figure 5.5. EGFR downregulation. (A) Schematic of Fn3-Fn3 heterobivalent
with the wild-type Fn3 structure from PDB ID 1TTG and the flexible linker drawn
approximately to scale in cartoon form. (B) A431, Hela, and HT29 cells were
cultured in 96-well plates, serum starved, and treated with 20 nM of the indicated
Fn3 or Fn3-Fn3 construct for 6-8h. Surface EGFR was quantified by flow
cytometry and is presented on a color scale relative to PBSA-treated control with
black indicating no downregulation and white indicating complete
downregulation. Mean of triplicate samples is used for quantification. (C) Data
from (B) for select constructs with A431 cells. Error bars indicate standard
deviation of triplicate samples.

Multiple elements of downregulation were investigated. To further expand the generality
of downregulation efficacy as well as to examine the impact of receptor density, three
heterobivalents were tested on additional cell lines: U87 glioblastoma, hMEC (human
mammary epithelial cells), and Chinese hamster ovary (CHO) cells transfected with
EGFR-green fluorescent protein fusion. Downregulation was observed in all six cell
lines for D-B, D-C, and D-E (Figure 5.6). Interestingly, downregulation was reduced for
D-C and D-E in the low-expressing cells HT29 and U87. Conversely, EGF
downregulates receptor most robustly in these low-expressing lines while exhibiting

muted receptor reduction in the high-expressing CHO and A431 cells.
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e O HT29 (0.11M)
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Figure 5.6. Downregulation in various cell lines. Cells were cultured in 96-well
plates, serum starved, and treated with 20 nM agent for 8h. Surface EGFR was
quantified by flow cytometry and normalized to PBSA-treated control. Values
and error bars indicate the mean and standard deviation of triplicate samples.
Parenthetical notation in legend indicates the number of EGFR per cell in million (M).

Downregulation kinetics were analyzed for the most robust heterobivalents. D-B and D-
C downregulate EGFR in A431 cells with half-times of 1.1 and 1.4h, respectively (Figure
5.7). Downregulation in HeLa cells is slightly faster at 0.44, 0.59, and 1.3h for D-B, D-
C, and D-E.
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Figure 5.7. Downregulation kinetics. Cells were cultured in 96-well plates,
serum starved, and treated with 20 nM D-B (triangles) or D-C (squares) for the
indicated time. Surface EGFR was quantified by flow cytometry and normalized
to PBSA-treated control. Values and error bars indicate the mean and standard
deviation of triplicate samples.
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Heterobivalent D-C and D-E constructs were created with three different lengths of the
linker between the Fn3 domains; in addition to the native EIDKPSQ glycine-rich linkers
of four, 15, or 27 amino acids were included. These constructs were tested for
downregulation of EGFR in HT29, U87, HeLa, hMEC, CHO, and A431 cells. Although
results vary by cell line and heterobivalent, the long linker is always the least effective

and the shortest linker is often the most effective (Figure 5.8).
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Figure 5.8. Linker length effect. (A) Cells were cultured in 96-well plates, serum
starved, and treated with 20 nM D-C or D-E with the indicated linker length for
8h. Surface EGFR was quantified by flow cytometry and normalized to PBSA-
treated control. Values and error bars indicate the mean and standard deviation
of triplicate samples. (B) The data from (A) is summarized to compare linker
lengths. Surface EGFR values are normalized for each combination (D-C or D-
E) and cell type.
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An alternative format of bispecific was tested in which monovalent Fn3 domains were
biotinylated and combinations of clones were immobilized on AlexaFluor488-conjugated
streptavidin. In all bispecific and trispecific combinations of A, C,D,E, El14.1, and
EI3.4.2, no downregulation is observed in HT29 or U87 cells transfected to overexpress
EGFR (data not shown). Yet most combinations yield a substantial accumulation of
internalized AlexaFluor488 signal suggestive of complex internalization without
downregulation. Thus, bispecific format appears critical for efficacy. Of note,
internalized AlexaFluor488 signal at 37° correlates with surface labeling at 4° (which

restricts internalization) suggestive of passive internalization for all combinations.

Phosphorylation

To investigate the mechanisms of downregulation, an EGFR expression vector was
transfected into human embryonic kidney (HEK) cells, which express low levels of
native EGFR. Though EGF robustly downregulates native HEK EGFR, transfected cells
with approximately 50-fold more EGFR are not effectively downregulated. Conversely,
D-B and D-C heterobivalents are able to downregulate transfected EGFR (Figure 5.9A).
The activity of the transfected EGFR is validated by a strong correlation between the
fraction of cells transfected and the downregulation of native EGF (Figure 5.9B); thus,
the presence of overexpressing transfected cells reduces the EGF-based downregulation
of non-transfected cells possibly through ligand depletion or competition. These results
indicate a divergence between the mechanisms of downregulation by EGF and Fn3-Fn3

heterobivalents.

To further explore the mechanism, eight EGFR mutants with point mutations in their
intracellular domains were tested for their ability to be downregulated. All eight mutants
(T654A, T669A, K721R, Y845F, S1046A/S1047A, Y1068F, Y1148F, Y1173F) exhibit
downregulation on par with wild-type EGFR in the presence of D-B and D-C (Figure
5.9C).



Chapter 5: EGFR Downregulation

1.4 ( )
(A) B) e
1.2
- & T r 0
g 1.0 l I I EI S #_
w 08 1: i i 1 i wEGF W@ I .
s il ke (|| Gig | T
£ 06 11 i i s ; % D-B %5 02 1 @
[ 4 L i i : L w
@ 04| & s | z s “DC &~ $
HIE e | s | |
el | W | § i : =i 2h 0.0 +——
0.0 ; ' ’ = : O7h 0 10 20 30
i * % % Transfected
Native Native Transfected

(o
1.2 1
E .
[m]
S s PBSA
g } BEGF
g 04 | 0Op-B
= ‘ mD-C
@
w LW oW
< a E i § 6 ®© o E
Lo © N < © © <t ~
0 (] N~ ? <t ‘Q = x
=l e S & = >
0
%)

Figure 5.9. Downregulation of HEK transfectants. HEK cells were transfected
with an EGFR expression vector, grown, and treated with 20 nM agent for 2 or
7h. Surface EGFR was quantified by flow cytometry and normalized to PBSA-
treated control. (A) Wild-type EGFR transfection. + and — indicate presence or
absence of transfection vector in the sample well. Native indicates analysis of
cells that were not successfully transfected. Transfected indicates analysis of
cells that were successfully transfected. (B) The surface EGFR level in EGF-
treated samples relative to PBSA-treated samples is plotted for samples of
various transfection efficiencies for the 7h treatment. (C) EGFR mutants were
transfected and cells were treated for 2h prior to analysis. Values and error bars
represent mean and standard deviation of at least quadruplicate samples.

The impact of heterobivalents on EGFR phosphorylation was analyzed at eight sites:
T654, T669, Y845, S1046, Y1068, Y1086, Y1148, and Y1173. Heterobivalent D-C,
PBSA, or EGF was added to A431 cells for 5, 15, 60, or 240 min. and receptor
phosphorylation was quantified by in-cell Western blot. Receptor agonism by D-C is
consistently lower than that by EGF with the lone exception of T669 at early times

(Figure 5.10). In fact, receptor agonism is often non-distinct from background.
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Figure 5.10. EGFR Agonism. A431 cells were cultured in 96-well plates, serum
starved, and treated with 20 nM agent for 5, 15, 60, or 240 min. Cells were fixed,
permeabilized, labeled with rabbit anti-phosho-(S/T/Y) antibody followed by anti-
rabbit-800CW and ToPro3 (to stain DNA), and imaged.

Likewise, standard Western blot analysis of cell lysates reveals that heterobivalents do
not yield significant phosphorylation of extracellular signal-regulated kinase (ERK1/2) at
Y202/Y204 upon 15 minute incubation whereas EGF is activating (Figure 5.11).

This result is corroborated by global phosphorylation analysis of A431 cells upon
addition of heterobivalent for 15 or 60 min. Cells were treated with 20 nM agent and
phosphorylated tyrosine peptides were analyzed by iTRAQ LC-MS/MS. EGF yields
substantially more phosphorylation than heterobivalents or a pair of monovalents (Figure

3:12).
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Figure 5.11. ERK Agonism. A431 cells were cultured in 24-well plates, serum
starved, and treated with 20 nM agent for 15 min. Cell lysates were separated by
SDS-PAGE, blotted to nitrocellulose, and labeled with rabbit anti-

phosphoERK1/2 Y202/Y204 antibody followed by peroxidase-conjugated anti-
rabbit antibody and imaged.
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Figure 5.12. Global phosphorylation analysis. A431 cells were cultured in 12-
well plates, serum starved, and treated with 20 nM agent for 15 or 60 min. Cell
lysates were reduced, alkylated, digested, and labeled with iTRAQ isotopic
labels. Peptides with phosphorylated tyrosines are isolated by polyclonal
antibody affinity chromatography and analyzed by LC-MS/MS. Relative
phosphorylation is quantified by comparison of isotopically related peaks. Top

portion represents fifteen highest responders to EGF treatment. Lower portion
represents fifteen highest responders to heterobivalent treatment.
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Collectively, these data demonstrate that select Fn3-Fn3 heterobivalents substantially
downregulate EGFR in a manner distinct from EGF and without significant receptor

activation.

EGFR Trafficking Model
EGFR trafficking can be examined with a model consisting of four simple mechanisms:

synthesis, endocytosis, degradation, and recycling (Figure 5.13).

\IJ S
surface

T

endosome

Figure 5.13. Simple EGFR trafficking model. Constitutive synthesis produces
surface receptor (S) at rate ks,. Surface receptor is internalized to endosome
(E) at rate kengoS. Endosomal receptor is degraded at rate kgeoE or recycled to
the surface at rate k..E.

The behavior of surface receptor (S) and endosomal receptor (E) are described as follows:

das

=k, —k,.5+k,E 5.1
dt syn erid € [_ ]
dE
Eti = kerrdnS - kdcgE - krc’t'E lSZJ
The steady state solution is identified by equating the time differentials to zero.
E kl’_\'ﬂ [5 3]
. kdeg .

_~

S, = (1 + k—) [5.4]
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Thus, surface receptor can be downregulated via three mechanisms: decreased synthesis,

increased endocytosis or decreased recycling fraction (k,,./k,,).

Reduced synthesis reduces fractional receptor levels proportionally:

Sss,slowsyn _ kendo kdeg - km,slnw [5.5]
Suoris  Kopmoris (1 . kA) Koy aris
kendo kdeg
Enhanced endocytosis reduces fractional receptor levels to the ratio of endocytic rates:
-——ﬂ(l + m)
Sss,fasr — kendo,fast kdeg — kendo,sluw [5 .6]
Sss,slow - ‘kjy,,(l + kf,eg ) kendo,fasl
kendo,slow kdeg

For example, if endocytosis with a half-time of one hour, on par with constitutive
internalization, is sped to ligand-driven rates with a four minute half-time, the surface
receptor level will decrease to 6.7% of original:

S 2 ;
st Ko | IUEIOMIN 1500, 6 7, [5.7]
Sss,slaw k ln(z) /4 min

endo, fast

Reduction of the recycling fraction yields the following downregulation:

k _ .
1 ( kreC) 1+ (kw)
st,recZ _ kendo ! kdeg 2- _ kdeg 2 [5 8]
Sss,recl k ) k ] (kr )
syn 1 + Nrec 1+ __rec
endo | kdeg 1] kdeg 1

Thus, downregulation via recycling inhibition is limited by the original recycling

bl

fraction:

S
ssporec 1 [5 9]

Sss.rec] 1 + !&gg
k 1

The kinetics of downregulation in the absence of recycling are determined by solving

Equation 5.1:
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d ¢ endo

endo deg

k
45 __k S+k E—>S=—2l14 [ﬁ—) gkt [5.10]
orig

The kinetics of downregulation in the absence of recycling, therefore, are solely driven
by endocytosis kinetics; i.e., the half-time for downregulation is equal to the endocytic

half-time.

The experimental results are consistent with a reduced recycling fraction (either through
enhanced degradation or inhibition of recycling). To achieve downregulation to 20% of
original, as observed, the recycling fraction would have to be at least 80% originally (see
Equation 5.9), which is reasonable. Some heterobivalents may still yield some recycling
resulting in reduced downregulation. From a kinetic standpoint, the 0.4-1.4h half-time
for downregulation is consistent with the constitutive internalization rates for EGFR (see

Equation 5.10).

Enhanced endocytosis could also be considered. A five-fold increase in the rate of
endocytosis, which is achievable through agonistic internalization, would yield
downregulation to 20%. The dynamic solution to the model differential equations are
more complex for enhanced endocytosis than eliminated recycling; yet a numerical
solution reveals that a system with an 80% recycling fraction (to be consistent with the
reduced recycling fraction hypothesis numbers) and &, = 11.3 h" and k,, = 2.8 h"
(derived from French and Lauffenburger'”) will yield the experimentally observed
kinetics for basal endocytosis half-times of 0.6-1.5h, again consistent with constitutive

internalization rates for EGFR.

Reduced synthesis can also achieve downregulation to 20% of original levels though the

speed of downregulation is much slower (5.2h in the aforementioned system).

Thus, both reduced recycling fraction and enhanced endocytosis rate are quantitatively
consistent with the experimental downregulation extent and kinetics. A combination of

these mechanisms is also possible.
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Efficacy

The ability of monovalent, homobivalent, and heterobivalent constructs to inhibit
downstream signaling was examined. The downregulating bivalents A-D, D-B, D-C,
and D-E inhibit EGF-induced ERK phosphorylation at tyrosines 202 and/or 204 whereas
non-downregulating B-B homobivalent has no effect (Figure 5.14). The monovalent

EGF competitor clone D is also antagonistic.

1.4
1.2
v 1.0
&
a 08 |
Q
=
T 06
Q
(4
04
0‘2 ' i
PBSA 225 A-D D-B D-C D-E B-B D

Figure 5.14. Inhibition of ERK phosphorylation. A431 cells were cultured in 24-
well plates, serum starved, and treated with 20 nM agent for 6h. Cells were then
treated with 1 nM EGF for 15 min. Cell lysates were separated by SDS-PAGE,
blotted to nitrocellulose, and labeled with rabbit anti-phosphoERK1/2 Y202/Y204
antibody followed by peroxidase-conjugated anti-rabbit antibody and imaged.

Beyond phosphorylation, the effect on cellular output was examined in terms of
proliferation and migration. To test cellular output in a challenging tumor-like
environment, an autocrine model system was used in which hMEC cells are transfected
with a vector for a membrane-bound EGF ligand with an EGF or TGFa cytoplasmic tail
(hMEC+ECT or h(MEC+TCT?). Treatment with downregulating heterobivalent Fn3-Fn3
significantly reduced the number of viable cells at 48h and 96h (Figure 5.15). In
addition, combination treatment of 225 antibody and heterobivalent A-D (A and D are
not 225 competitive) further reduces cell viability. Of note, clones A and D are not
competitive with 225 and thus this combination treatment elicits strong downregulation

(Figure 5.16). Likewise, treatment with downregulating heterobivalent strongly reduces
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cell migration in the autocrine cells as well as parental hMEC cells, and combination

treatment further augments this inhibition (Figure 5.17).
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Figure 5.15. Inhibition of proliferation. hMEC cells with autocrine EGF signaling
were cultured in 96-well plates and treated with 20 nM of the indicated agent(s).
Additional ligand is added after 48h. Viability is quantified using AlamarBlue and
normalized independently for each time point relative to PBSA-treated cells.
Column and error bars represent mean and standard deviation of triplicate
samples. * indicates data from a single sample.
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Figure 5.16. EGFR downregulation with Fn3-Fn3 and 225. A431, Hela, and HT29
cells were cultured, serum starved, and treated with 20 nM 225 and 20 nM of the
indicated Fn3 or Fn3-Fn3 construct for 6-8h. Surface EGFR was quantified by flow
cytometry and is presented on an intensity scale relative to PBSA-treated control

with  black

indicating no downregulation and white

downregulation. The mean of triplicate samples is presented.
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Figure 5.17. Inhibition of migration. Cells were cultured in 96-well plates to a
confluent monolayer. A ‘wound’ was scratched into each monolayer to create a void
of cells. Cells were treated with 20 nM of the indicated agent(s). Migration was
analyzed by microscopy. (A) hMEC cells with autocrine EGF signaling (TCT). (B)
hMEC, ECT, and TCT cells. + indicates addition of 225 antibody. * indicates that
PBSA ‘wound’ was completely healed, thus measurable migration was limited.
Column and error bars represent mean and standard deviation of triplicate samples.

Delivery

The engineered EGFR binders, both in monovalent and bivalent formats, are effective
intracellular delivery agents. Fn3 and Fn3-Fn3 constructs were conjugated to
DyLight633 fluorophore via primary amines and incubated with HT29 cells. DyLight633
readily accumulated intracellularly for EGFR binding clones but not for wild-type Fn3
(Figure 5.18A). Biotinylated Fn3 domains loaded onto streptavidin conjugated to
AlexaFluor488 and 1.4 nm NanoGold spheres were effectively delivered to EGFR-
expressing cells but not EGFR negative cells (Figure 5.18B).
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Figure 5.18. Intracellular delivery. (A) HT29 cells were cultured in 96-well
plates, serum starved, and incubated with 20 nM Fn3-(Fn3)-DyLight633 for the
indicated time. Cells were detached with trypsin/EDTA, acid-stripped, and
washed. DyLight633 signal was quantified by flow cytometry. (B) Cells were
cultured in 96-well plates, serum starved, and incubated in 20 nM biotin-Fn3 ::
streptavidin-NanoGold(1.4 nm)-AlexaFluor488 for 12h. Cells were detached with
trypsin/EDTA, acid-stripped, and washed. Alexa488 signal was quantified by
flow cytometry.

Discussion

The panel of binders should provide useful reagents for a variety of applications. The
small size should provide rapid clearance for in vivo imaging applications and close
proximity of binding site and fluorophore for Forster resonance energy transfer studies.
The engineered domains are cysteine-free with primary amines located distal to the
presumed binding site with two exceptions: EIl.4.1 contains a cysteine and lysine in the
FG loop and clone D contains adjacent cysteines in the FG loop. Thus, the domains are
amenable to thiol and amine chemical conjugation to fluorophores, nanoparticles, drug
payloads and chemically modified surfaces for drug delivery, diagnostic, and

biotechnology applications. The single-domain architecture readily enables protein
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fusion such as the bivalents discussed herein and immunotoxins (Chris Pirie, unpublished
data). The picomolar to low nanomolar binding of these domains is beneficial for most
applications. The breadth of epitopes targeted is useful for biophysical studies and dual

binding such as for receptor clustering or sandwich immunoassays.

The analysis of the combinations of monovalent and homo- and hetero-bivalent
constructs provides a broad data set to assess the stringent criterion for downregulation.
As expected, monovalent binding does not reduce EGFR levels. Homobivalents, aside
from weak downregulation by D-D, also are ineffective. In fact, strong reduction in
EGFR levels is only observed for select heterobivalents of non-competitive clones.
Constructs D-B, D-C, and D-E yield the strongest downregulation while A-D, B-D, C-D,
and E-D exhibit modest efficacy. Non-competitive heterobivalents including clone D are
generally effective except for D-A. Non-competitive heterobivalents including clone A
are less consistent. C-A and A-B are weakly effective against all three cell types, A-C
and A-E are weakly effective against only two cell types, and B-A and E-A are
ineffective. Thus, a combination of non-competitive clones is necessary but not
sufficient for strong downregulation. This criterion is consistent with the purported basis
for downregulation: receptor clustering. Non-competitive heterobivalent constructs can
form receptor clusters because of the ability to bind two heterobivalents to a single
receptor thereby propagating receptor linkages whereas homobivalents or competitive
heterobivalents can only form two-receptor complexes. Meanwhile, the reduced efficacy
of some non-competitive heterobivalents may arise from the inability to simultaneously
bind two receptors given the distance and steric constraints of the epitopes targeted and

the length and composition of the bivalent linker.

This potential mechanism is also in agreement with the reduced downregulation observed
for cells expressing low levels of EGFR as reduced receptor surface density decreases the
likelihood of receptor crosslinking. The origin of improved efficacy with shorter linkers
is unclear. Perhaps increased conformational flexibility of the Fn3-Fn3 construct reduces

the effective local concentration of the unbound Fn3 after single-receptor binding thereby
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decreasing crosslinking. Alternatively, shorter linkers could increase interaction of

clustered receptors though significant agonism is not observed.

The heterobivalents exhibit a response that is grossly different than that elicited by EGF.
This is perhaps most clearly demonstrated by the ability of heterobivalents to
downregulate EGFR overexpressed in HEK cells, whereas EGF does not downregulate.
EGF perhaps fails because of a saturation of the cellular machinery, but regardless the
mechanism of downregulation is clearly different for EGF and Fn3-Fn3. Also, multiple
receptor mutants, including kinase inactive K721R, are downregulated to the same extent
as wild-type receptor. Mutation of neither T669 nor S1046, whose phosphorylation is

21;, 22

implicated in receptor internalization , nor T654, whose phosphorylation either
inhibits ubiquitination or accelerates recycling®, impacts downregulation. In addition,
mutation of Y845, Y1068, Y1148, or Y1173, which are important in the ERK signaling
pathway*?, has no effect. These results are corroborated by phosphorylation analyses.
Of eight key sites studied on EGFR, heterobivalent D-C yielded significantly lower
phosphorylation than that by EGF except at T669. Conversely, no phosphorylation is
observed at T654, S1046, and Y1068. Y845, Y1086, Y1148, and Y1173 exhibit no
agonism at multiple time points and weak phosphorylation at one hour. Moreover,
Western blot analysis demonstrates ERK phosphorylation upon treatment with EGF but
not upon treatment with any of the heterobivalents tested. Global phosphoproteomic
analysis also exhibits substantially more phosphorylation from EGF than D-B, D-C, or a
combination of B and D monomers. Thus, unlike EGF, Fn3-Fn3 constructs achieve

receptor downregulation without significant receptor agonism.

A simple mathematical model of receptor trafficking indicates that downregulation can
be expected to arise from enhanced degradation/recycling ratio, enhanced receptor
internalization, or both. The lack of agonism counters the hypothesis of enhanced
receptor internalization although endocytosis could be accelerated by weak
phosphorylation. Alternatively, the throughput of constitutive internalization could be
enhanced via receptor clustering. Yet experimental data suggest that receptor

internalization is not sped as monovalent clone B and downregulating D-B exhibit
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equivalent intracellular accumulation. Moreover, the kinetics of downregulation (7, =
0.4-1.4h) are comparable to constitutive receptor internalization kinetics. Preliminary
measurements of receptor internalization indicate endocytic half-times of 0.3-0.8h (data
not shown). Thus, although receptor internalization may be sped slightly, it does not
appear to be the dominant source of downregulation. Enhanced degradation could
conceivably result from the presence of receptor clusters that either inhibit recycling or
drive degradation. In fact, AlexaFluor488-conjugated 225 antibody exhibits reduced
recycling in the presence of downregulating heterobivalent A-D as compared to co-

treatment with monomer A or non-downregulating C-B (data not shown).

Downregulation decreases the amount of receptor available for ligand binding, receptor
homo- and hetero-dimerization, and constitutive activation, thereby decreasing the
opportunity for receptor signaling. Downregulation is sufficient to inhibit ERK
phosphorylation, a downstream signaling molecule on a pathway that leads to
proliferation and migration. Downregulating heterobivalents are shown to inhibit
proliferation and migration of a cell line with autocrine signaling, and this inhibitory
activity can be augmented by combination treatment with ligand-competitive antibody
225. Further study can elucidate the relative impacts of receptor downregulation and

ligand competition as well as the in vivo efficacy of the heterobivalent agents.

Materials and Methods

Binder Engineering

EGFR binders were engineered from the NNB, YS, and G4 pooled library comparison as
outlined in Chapter 4. EGFR mutant 404SG®" " was produced in Saccharomyces
cerevisiae yeast, purified by metal affinity chromatography and anti-EGFR antibody
affinity chromatography, and biotinylated on free amines using the sulfo-NHS
biotinylation kit. The Fn3 yeast surface display libraries were pooled, grown in SD-CAA
medium at 30°, 250 rpm and display of Fn3 was induced in SG-CAA medium at 30°, 250
rpm. Binders to streptavidin-coated magnetic Dynabeads were removed. One million
biotinylated EGFR ectodomains were loaded on each of ten million magnetic beads and

incubated with the remaining yeast. Beads were washed once with PBSA at 4° and beads
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with attached cells were grown for further selection. Remaining sorts were conducted
with five million beads coated with one to two million ectodomains. After two sorts,
full-length Fn3 clones were selected by FACS using the C-terminal c-myc epitope.
Plasmid DNA was zymoprepped from the cells and mutagenized by error-prone PCR of
the entire Fn3 gene or the BC, DE, and FG loops. Mutants were transformed into yeast
by electroporation with homologous recombination and requisite shuffling of the loop
mutants. The lead clones and their mutants were pooled for further cycles of selection
and mutagenesis. Three rounds, each consisting of two binding sorts on beads, full-
length clone isolation by FACS, and mutagenesis, were performed. Selection stringency
was increased by additional washing and elevated temperature. In the fourth round, a
single binding sort on magnetic beads was followed by a binding sort by FACS. Cells
were incubated in 10 nM biotinylated ectodomain and mouse anti-c-myc antibody
followed by fluorescein-conjugated anti-biotin antibody and R-phycoerythrin-conjugated
anti-mouse antibody. Cells with the highest fluorescein:R-phycoerythrin ratio were
collected. Three additional rounds of sorting and mutagenesis were performed with
decreasing ectodomain concentrations during selections. Plasmids from binding
populations were zymoprepped and transformed into E. coli; transformants were grown,

miniprepped, and sequenced.

The relative dominance of E4.2.1 and E4.2.2, as well as very similar mutants, initiated a
campaign to identify additional unique clones. Binding populations from rounds two
through five were sorted twice for binding to ectodomain in the presence of either ICR10,
an antibody that competes with E4.2.2, or 528, an antibody that competes with E4.2.1.

Unique clones were identified by sequence analysis.

Fn3 Production

The Fn3 gene was digested with Nhel and BamHI and transformed to a pET vector
containing a HHHHHHKGSGK-encoding C-terminus. The six histidines enable metal
affinity purification, and the pentapeptide provides two additional amines for chemical
conjugation. The plasmid was transformed into Rosetta (DE3) E. coli, which was grown

in LB medium with 100 mg/L kanamycin and 34 mg/L chloramphenicol at 37°. Two
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hundred puL of overnight culture was added to 100 mL of LB medium, grown to an
optical density of 0.2-1.5 units, and induced with 0.5 mM IPTG for 3-24h. Cells were
pelleted, resuspended in lysis buffer (50 mM sodium phosphate, pH 8.0, 0.5M NaCl, 5%
glycerol, 5 mM CHAPS, 25 mM imidazole, and 1x complete EDTA-free protease
inhibitor cocktail), and exposed to four freeze-thaw cycles. The soluble fraction was
clarified by centrifugation at 15,000g for 10 min. and Fn3 was purified by metal affinity
chromatography on TALON resin. Purified Fn3 was buffer exchanged into PBS and

biotinylated with NHS-LC-biotin according to the manufacturer’s instructions.

An Fn3-linker-Fn3 construct was produced by standard molecular cloning techniques.
The resultant vector encodes for Fn3-EIDKPSQ-GSGGGSGGGKGGGGT-Fn3-
EIDKPSQ-ELRS-HHHHHH in which the N-terminal Fn3 is bracketed by Nhel and
BamHI restriction sites and the C-terminal Fn3 is bracketed by Kpnl and SaclI sites. The
reduced linker encodes a GSGT linker. The extended linker is GSGGGSGGGK-
GGGSGGGNGGGSGGGGT. Protein was produced as for Fn3.

Affinity Titration

A431 cells were washed in PBSA and incubated with various concentrations of
biotinylated Fn3 on ice. The number of cells and sample volumes were selected to ensure
excess Fn3 relative to EGFR. For some clones, this criterion necessitates very low cell
density, which makes cell collection by centrifugation procedurally difficult. To obviate
this difficulty, ‘bare’ yeast cells are added to the sample to enable effective cell pelleting
during centrifugation. Cells were incubated on ice for sufficient time to ensure that the
approach to equilibrium was at least 98% complete. Cells were then pelleted, washed
with 1 mL PBSA, and incubated in PBSA with 10 mg/L streptavidin-R-phycoerythrin for
10-30 min. Cells were washed and resuspended with PBSA and analyzed by flow
cytometry. The minimum and maximum fluorescence and the K, value were determined

by minimizing the sum of squared errors assuming a 1:1 binding interaction.
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Epitope Conformational Sensitivity

Yeast were grown and induced to display EGFR ectodomain, incubated at 4° or 80° for 30
min., and chilled on ice for 10 min. Cells were labeled with 40 nM biotinylated Fn3 and
300 nM mouse anti-c-myc antibody followed by streptavidin-R-phycoerythrin and
AlexaFluor488-conjugated anti-mouse antibody. Fluorescence was quantified by flow
cytometry. Binding (R-phycoerythrin) was normalized to full-length display
(AlexaFluor488).

Competition

Yeast displaying EGFR ectodomain or A431 cells were washed and incubated with initial
competitor Fn3 or antibody for 30 min. Alternative competitor Fn3, antibody, or
AlexaFluor488-conjugated EGF was then added and incubated for 30 min. Cells were
washed and secondary reagent was added to detect the alternative competitor:
fluorescein-conjugated anti-His antibody, streptavidin-R-phycoerythrin, R-phycoerythrin-
conjugated anti-mouse antibody, and fluorescein-conjugated anti-rat antibody for Fn3,
biotinylated Fn3, mouse antibodies, and rat ICR10, respectively. Cells were washed and
analyzed by flow cytometry. Samples with and without initial competitor were compared

to determine competition.

EGFR Fragment Labeling

EGFR ectodomain fragments comprising amino acids 1-176, 294-543, and 302-503 were
displayed on the yeast surface.'* Cells were washed and incubated with 30 nM
biotinylated Fn3 and mouse anti-c-myc antibody followed by streptavidin-R-
phycoerythrin and AlexaFluor488-conjugated anti-mouse antibody. Cells were washed

and analyzed by flow cytometry.

Fine Epitope Mapping

A low mutation library of EGFR ectodomain, produced by Ginger Chao as described,"”
was grown and induced. Yeast were labeled with biotinylated Fn3 and mouse anti-c-myc
antibody followed by AlexaFluor647-conjugated streptavidin and AlexaFluor488-

conjugated anti-mouse antibody. Cells were washed and analyzed by flow cytometry.
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Cells displaying full-length ectodomain (AlexaFluor488%) with reduced Fn3 binding
(AlexaFluor647"*) relative to unmutated ectodomain were collected, grown, and
induced. Cells were then sorted twice for mutants of reduced binding with maintenance
of foldedness as determined by binding to antibodies 199.12 or 225, which are
conformationally sensitive." Cells were labeled with biotinylated Fn3 and mouse 199.12
(for clones A, E, and E6.2.10) or mouse 225 (for clone D) anti-EGFR antibody followed
by AlexaFluor647-conjugated streptavidin and R-phycoerythrin-conjugated anti-mouse
antibody. Cells were washed and analyzed by flow cytometry. Cells displaying folded
ectodomain (AlexaFluor488*) with reduced Fn3 binding (AlexaFluor647"*) relative to
unmutated ectodomain were collected, grown, and induced. Initial selections for clone C
mapping yielded multiple glycine mutants and clones with multiple mutations. To
improve the efficiency of folded mutants, analogous sorting was performed using the
non-competitive domain III binder clone D for foldedness verification. Biotinylated
clones C and D were independently complexed to AlexaFluor488- or AlexaFluor647-
conjugated streptavidin and used to label the ectodomain library. Cells that exhibited
binding to clone D but reduced clone C binding relative to wild-type ectodomain were
collected. Selections for epitope mapping clone B yielded multiple mutants without a
consistent location. The full-length ectodomains with reduced clone B binding were

sorted for maintenance of clone D binding with a reduction in clone B binding.

Cell Culture

All cells were grown at 37°, 5% CO, in a humidified atmosphere. A431 cells were
cultured in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal
bovine serum (FBS). CHO cells transfected with a vector to express EGFR-green
fluorescent protein were cultured in DMEM with 10% FBS, 1% sodium pyruvate, 1%
non-essential amino acids, and 0.2 g/L G418. HeLa cells were cultured in Eagle’s
minimal essential medium with 10% FBS. hMEC cells were cultured in supplemented
HuMEC medium. HT29 cells were cultured in McCoy’s medium with 10% FBS. U87
cells were cultured in DMEM with 10% FBS, 1% sodium pyruvate, and 1% non-essential

amino acids. Cells were detached for subculture or assay use with 0.25% trypsin and 1
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mM EDTA. For serum starvation, medium was removed by aspiration, cells were

washed with warm PBS, and fresh serum-free medium was added.

Downregulation Assays

Cells were subcultured into 96-well plates, grown for 2 days, and serum starved for 12-
18h. Cells were treated with 20 nM Fn3-Fn3 or EGF for the indicated time. Medium
was removed by aspiration and cells were washed with PBS, detached with
trypsin/EDTA, and placed on ice for the remainder of the assay. Bound Fn3-Fn3 or
ligand was removed by 5 min. acid strip with 0.2M acetic acid, 0.5M NaCl. Cells were
washed with PBSA and incubated in mouse 225 antibody followed by R-phycoerythrin-
conjugated anti-mouse antibody. Cells were washed and analyzed by flow cytometry.

Mean fluorescence was normalized to PBSA-treated control samples.

HEK Transfectants

An EGFR expression vector built on the pCDNA3 vector was used as wild-type or
modified by site-directed mutagenesis to introduce T654A, T669A, K721R, Y845F,
S1045A/S1046A, Y1068F, Y1148F, or Y1173F mutations. Mutation was verified by
sequence analysis. HEK cells were grown to 1.2-1.5 million cells per mL and diluted to
one million per mL Miniprepped DNA and polyethyleneimine were independently
diluted to 0.05 and 0.1 mg/mL in OptiPro medium and incubated at 22° for 15 min.
Equal volumes of DNA and polyethyleneimine were mixed and incubated at 22° for 15
min. 1.2 mL of cells and 48 uL of DNA/polyethyleneimine mixture were added to a 24-
well plate and incubated at 37°, 5% CO, with shaking for 24h. One hundred uL aliquots
of each transfection were transferred to a 96-well plate and grown for 24h. A

downregulation assay was performed as described.

In-Cell Western Blot

A431 cells were cultured in 96-well plates, serum starved for 12-24h, and treated with 20
nM Fn3-Fn3 or EGF. Cells were fixed for 10 min. by addition of an equal volume of 4%
formaldehyde. Cells were washed and permeabilized with four washes of PBS with 0.1%
Triton X100 and blocked in Odyssey blocking buffer for 2h at 22° or overnight at 4°.
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Cells were incubated in 10 nM rabbit anti-phospho(S/T/Y) for 2h at 22° or overnight at
4°. Four washes in PBS with 0.1% Tween20 were followed by 33 nM 800CW-
conjugated anti-rabbit antibody and 180 nM ToPro3 and four additional washes. Plates
were imaged at 700 nm and 800 nm. Antibody signal (800 nm) was normalized to DNA
(700 nm) for each well.

Western Blot

A431 cells were cultured in 24-well plates and serum starved for 16h. For agonism
assay, cells were treated with 20 nM Fn3-Fn3, antibody, or EGF for 15 min. For
antagonism assay, cells were treated with Fn3, Fn3-Fn3, or antibody for 6h followed by 1
nM EGF for 15 min. Medium was removed by aspiration and cells were washed twice
with cold PBS and lysed for 5 min. in 50 uL of RIPA buffer with protease and
phosphatase inhibitors and EDTA (Pierce). Lysates were clarified by centrifugation at
14,000g for 15 min., separated by SDS-PAGE on a 12% BisTris gel, and blotted to
nitrocellulose. Blots were blocked in 5% nonfat dry milk and labeled with 1:1000 anti-
phosphoERK1/2 Y202/Y204 antibody (Cell Signaling, Danvers, MA) followed by
peroxidase-conjugated anti-rabbit antibody. Blots were incubated in SuperSignal West
Dura substrate and imaged. Blots were than washed extensively, labeled with rabbit anti-
GAPDH antibody followed by peroxidase-conjugated anti-rabbit antibody, incubated
with substrate and imaged. PhosphoERK1/2 Y202/Y204 labeling was normalized by
GAPDH signal.

Quantitative Phosphoproteomics

A431 cells were cultured in 12-well plates, serum starved for 16h, and treated with 20
nM Fn3-Fn3, Fn3 + Fn3, or EGF for 15 or 60 min. Medium was removed by aspiration
and cells were washed with PBS and lysed in 8M urea with 1 mM Na,VO,.
Phosphoproteomic analysis was performed by Jason Neil of the Forest White lab (MIT).
Lysates are digested to form peptides and labeled with iTRAQ reagents.
Phosphotyrosine-containing peptides are isolated by immunoprecipitation with a pool of
polyclonal anti-phosphotyrosine antibodies and phosphopeptides are enriched by

immobilized metal affinity chromatography. Peptides are separated and analyzed by LC-
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MS/MS. Peptides are identified using MASCOT and relative abundance is determined

by comparison of peak intensities.

Proliferation

hMEC cells transfected with a vector for membrane-bound EGF ligand with a TGFa
cytoplasmic tail ((MEC+TCT?’) were obtained from Doug Lauffenburger (MIT). Eight
thousand cells were plated into each well of a 96-well plate and incubated in 100 pL of
medium with 20 nM agent for 48h or 96h. For 96h samples, medium was supplemented
with fresh agent at 48h. Cell viability was quantified using the AlamarBlue assay
(Invitrogen) according the manufacturer’s instructions and normalized to PBSA-treated

control.

Migration

hMEC, hMEC+ECT, or hMEC+TCT cells were cultured in 96-well plates to confluent
monolayers. Wounds were scratched into the monolayer using a pipette tip, and cells
were washed with fresh medium and imaged on a Nikon confocal microscope with
robotic stage. Cells were treated with 20 nM agent in 100 pL of medium, incubated for
24h or 48h, and imaged at identical fields of view. Migration was quantified as the
average reduction in separation across the wound and normalized to PBSA-treated

control.

Delivery

Fn3 and Fn3-Fn3 were fluorophore-labeled on primary amines using DyLight633 NHS-
ester (Pierce) according to the manufacturer’s instructions and extensively desalted.
HT?29 cells were cultured in 96-well plates, serum starved, and incubated with 20 nM
Fn3-(Fn3)-DyLight633 for 0-9h. Cells were detached using trypsin/EDTA, acid stripped
in 0.2M acetic acid, 0.5M NaCl for 5 min. and analyzed by flow cytometry.

Biotinylated Fn3 was incubated with streptavidin-NanoGold(1.4 nM)-AlexaFluor488
(Nanoprobes, Yaphank, NY) at a 3:1 Fn3:streptavidin ratio. A431, HT29, and SW1222

cells were cultured in 96-well plates and treated with 20 nM complex for 12h. Cells were



Chapter 5: EGFR Downregulation

detached using trypsin/EDTA, acid stripped in 0.2M acetic acid, 0.5M NaCl, and

analyzed by flow cytometry.
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6. CLOSING REMARKS
All elements of protein engineering were examined and enhanced to develop a robust

platform for engineering stable, specific, high affinity binders based on the Fn3 scaffold.

Library Design

The functional capacity of the scaffold was expanded through inclusion of three-loop
diversity and length variability within all three loops. Yet this expansive sequence space
requires efficient sampling. Constrained tyrosine/serine diversity is capable of yielding
mid-nanomolar binders but is less effective at generating high affinity binding domains.
Superior library design is achieved through tailored diversity. Each amino acid is
analyzed for its likely functionality: structural stability, binding complementarity, or the
possibility of either. The library then biases the designed amino acid distribution to best
achieve this functionality (e.g., through wild-type conservation for structural stability or
antibody-inspired distribution for binding complementarity). The resultant library,
coupled with effective mutagenesis, robustly and swiftly yields high affinity binders.
This work is directly applicable to essentially any protein engineering effort including
other molecular recognition scaffolds and different functions. Enzyme engineering may
particularly benefit because its general necessity of mid-throughput screening limits the

number of clones that can be analyzed, placing a premium on functional density.

Further improvements to library design could be achieved through refinement of these
approaches. Continued accumulation of isolated clone sequences will identify preferred
loop lengths and preferred amino acid distributions for each function. Moreover, the
relative effectiveness of each technique for discerning stabilizing sites from binding sites
will be elucidated enabling improved tailoring of future libraries. Library size may also
be expanded through advances in yeast transformation or increased electroporation
replicates. These enhancements may speed binder isolation and identify more and

superior binders.
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Clone Selections

Highly avid magnetic bead selection facilitates reagent binder depletion, isolation of low
affinity binders, and sorting of large populations.! This technique complements the
previously demonstrated fine affinity discrimination of mid- to high-affinity binders via
flow cytometry. A strong relationship between stability and the extent of yeast surface
display at elevated temperature enables both stability analysis and the potential for

stability selections. Thus, no substantial shortcomings currently exist in clone isolation.

Mutagenesis

Error-prone PCR modeling improves efficiency both procedurally and in terms of
sequence space search. Recursive mutagenesis of mid-size populations improves the
search breadth, which is beneficial because the ruggedness of the sequence/function
landscape means that the best obtainable clone is often not a mutant of the current best
clone. Aggressive loop sequence mutation and shuffling through homologous
recombination enables substantial sequence changes with reduced loss of function. In
parallel, mild gene mutation allows valuable framework mutations and maintains
effective loop combinations. As a result, a range of sequence modifications is achieved
via a simple protocol. Potential future advances include improved mutagenesis methods
to eliminate nucleotide bias in error-prone PCR and elevation of dinucleotide mutations
to reduce genetic code bias. Inclusion of naive loop sequences in shuffling will broaden

the sequence space search and prevent suboptimal convergence.

Practical Considerations

The G4 library, or a combination of the NNB, YS, and G4 libraries, should be sorted for
binding to antigen immobilized on magnetic beads following depletion of bead binders.
After two sorts to yield a mid-size population, full-length clones should be isolated by c-
myc* FACS and mutated using subtle gene mutagenesis and aggressive loop mutagenesis
and shuffling, including naive loops. A new sub-library of unmutated, gene-mutated, and
loop-mutated clones is created and the selection cycle continues. Selection stringency
can be increased through elevated temperature during sorts, increased washing, and

reduced avidity (via shorter induction of Fn3 display and/or reduced antigen
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immobilization). The selection technique should be switched to FACS once significant
labeling (relative to antigen-free control) is observed. This is generally evident in
magnetic bead sorts by high yield relative to both earlier sorts and bead depletion sorts of
the current population. In apparent contrast to the demonstrated lack of affinity
discrimination at high avidity, sequence analysis of multiple engineering campaigns has
revealed a relative dominance of a single clone after a few rounds of maturation using
beads alone; yet upon switch to FACS selections extensive diversity was revealed. Thus,
apparent clone convergence during bead selections should not induce cessation of

maturation. Maturation should be continued until the desired phenotype is achieved.

Fibronectin Domains

Fn3 domains are good candidates for any mode of molecular recognition and present
unique advantages in several applications. The potential for high throughput binder
isolation from the synthetic library, inexpensive bacterial production, and facile chemical
conjugation make Fn3 a strong candidate for use in proteomics. Engineered domains
demonstrated efficacy when immobilized for affinity purification and fluorophore-

conjugated for flow cytometry.

The absence of disulfide bonds, whose presence limits the utility of antibodies in the
reducing cytoplasm, makes Fn3 domains intriguing for intracellular applications.
Although gene delivery, which is necessary for native production of binders, is still not a
clinical reality, intracellular binders are valuable research tools. Moreover, delivery via
endocytosis remains a viable possibility especially given the efficient internalization

observed for the engineered EGFR binders.

Specific, potent, in vivo targeting is another avenue of interest. The small size of Fn3 is
advantageous for enhanced clearance of background for in vivo imaging and reduced
disturbance of conjugated nanoparticles or other payloads. Amino acid composition
enables facile thiol and amine chemistry for conjugation and single-domain architecture
permits protein fusion. Specifically, binders to CEA, CD276, and EGFR provide tumor-
targeting reagents. Though the CD276 and EGFR binders exhibit picomolar affinities,
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the 2 nM CEA binder may benefit from further affinity maturation for monovalent
applications. The CEA and EGFR binders have already been conjugated to fluorophores
via primary amines and demonstrate effective cell labeling. In the event of an engineered
lysine presenting a primary amine in the binding paratope, mutation may alleviate the
problem as was shown for the rabbit IgG binder rl4.5.5; alternatively, introduction of a
lone cysteine enables thiol conjugation. The in vivo performance of Fn3 domains, both
bare and conjugated, must be explored. The comparison to alternative tumor-targeting

scaffolds, including antibodies and their domains, is of particular interest.
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APPENDIX A. ERROR-PRONE PCR MODELING

Introduction

Many approaches have been suggested for random point mutagenesis of DNA including
error-prone PCR (epPCR), chemical mutagenesis, and use of mutator strains.! The most
effective and widely used approach, epPCR, relies on the inherent errors of DNA
amplification that remain uncorrected by DNA polymerases lacking 3'-5' exonuclease
activity (i.e. non-proofreading enzymes). Early efforts to increase error rate involved the
inclusion of manganese and unbalanced nucleotides.” Increased mutation can be
achieved through additional PCR cycles or use of mutagenic nucleoside analogs.’
Collectively, these approaches allow an extensive array of mutation from nominally low

to as high as 18%.

The aim is for a moderate mutational rate to balance the exponential decline in functional
mutants with increased mutation and the ability to accumulate mutations throughout
evolution.* Yet some propose aggressive mutation, citing a limit to the functional
decline’ and the intention to reach highly mutated sequence space for vastly improved
function.® However, these claims are weakly substantiated (e.g., a single data point is
used to support the limitation in exponential function decline with increased mutation)
and apply to ‘single-pass’ libraries as opposed to evolution. It is likely important to
identify double, and perhaps triple, mutants that provide cooperative functionality but the
need for many mutations to be identified simultaneously is unproven. Moreover, the
probability of identifying several beneficial mutations simultaneously in a single clone is
far lower than the probability of accumulating single and double mutations to evolve the
multi-mutant clone. Thus, epPCR will be modeled to identify reaction conditions that
yield approximately one to four mutations per Fn3 gene (i.e., 1-5% mutation rate for the

101 amino acids).

A second concern with epPCR is that the aforementioned methods have significant
mutational bias as unbalanced nucleotides with manganese strongly favor AT—GC,
GC—AT, and AT—TA and the nucleoside analogs 8-oxo-dGTP and dPTP strongly favor
AT—GC, GC—AT, and AT—CG. Such DNA bias extends to amino acid bias thereby
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limiting protein diversity by oversampling biased amino acid mutations and
undersampling unfavored mutations. The epPCR model will account for the effect of

mutational bias under different conditions.

Model Construction

Much of the epPCR model structure is taken from work by Moore and Maranas.” The
required inputs are (1) the six nucleotide mutation rates (e.g. AT—CG). The necessary
rates pertain to the mutational frequencies per doubling per nucleotide; however, these rates
can be calculated from post-epPCR sequencing data; (2) the number of effective PCR
doublings; and (3) the basis for the original sequence either as an explicit sequence or a
probability distribution. Note that the mutational rates are considered constant and the
imperfect doubling of epPCR is approximated as a number of definite doublings. The
model determines a particular initial sequence in accordance with the input basis and
generates the resultant mutant amino acid sequences. These sequences are characterized by

the number of mutations from the input sequence and analyzed for uniqueness.

Sequence Data Analysis

The probability of a nucleotide being mutated after » doublings is the complement of the
probability that it is not mutated, which is the sum of the probability that the nucleotide
was never mutated and the probability that it was mutated more than once, resulting in
the orignal nucleotide (reversion). For the low frequency mutations of epPCR, the
reversion frequency is exceedingly low (<1% of non-mutation term for n<25 doublings

and m=0.1% mutation) and is neglected.

p(nt is mutated after n doublings)= 1 - p(nt is not mutated after n doublings)
=1 - [p(nt is not mutated in any doubling) + p(nt reverts)]
= 1 - p(nt is not mutateed in any doubling)
=~ 1 - [p(nt is not mutated in one doubling)]
=1-[1-m] [A.1]

# doublings

The probability of observing i mutations in a strand of L nucleotides is the product of i
mutational probabilities, L-i non-mutational probabilities, and the number of unique

combinations of i mutations (denotes as L | i).

p(i mutations) = (L | i) [p(nt mutation in n doublings)]' [1 - p(nt mutation in n doublings)]"’
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|0 - (-m)T' {1 -1 - (1-m-
| ) [(1-m)" - 1] (1-m)™ [A.2]

(L
(L

The expected number of mutations in a strand of L nucleotides is the sum of the products

of the number of mutations and its probability of occurrence.

E(mut) = Ez (i mur) = 2 le[l m)" -1]i(1-m)”L [A3]

i=0

Not all strands in a PCR mixture are doubled the maximum number of times.
Specifically, the number of strands with » doublings in N total doublings (denoted Z, ) is

double the number of combinations of n in N.

Z,y =2({Nln) [A4]

The frequency of mutations in a PCR product is the sum of the total mutations divided by
the number of nucleotides, the latter of which is the product of the number of strands

(2" and the length, L.

N L .
Merat =, 2~ o EZ E mut.w/n doublmgs L 2~+1 E{ N n ’n'2 1 1 [ _ )—" _1] (l—m)”L}
0 -1
Nl nL L
LY E{ vnvE (i~ 1) [AS]

1 i=1

Interestingly, despite the apparent non-linearity of the above equation relating m,.,,; and
m, the calculated values are nearly perfectly linear (Figure A.1). Thus, though the values
of m can be determined precisely for values of m,,,., by solving the implicit equation
above, a linear approximation yields results within 1% for common epPCR conditions.

Specifically,

m=m / (0.495N + 0.0383) [A.6]

overall

Thus, m values can easily be calculated from experimental error-prone PCR data.
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Figure A.1. Estimation of per doubling nucleotide mutation frequency from
overall nucleotide mutation frequency. (A) The overall mutation frequency (per
nucleotide) is plotted versus the per doubling mutation frequency for ten
doublings. (B) The slope of the best fit line from (A) versus the number of
nucleotide doublings. The best fit line is Slope = 0.495doublings + 0.038. (C)
The percentage error for modeling the per doubling mutation rate using the linear
relationships demonstrated in (A) and (B).

Mutation Prediction

First, construct a matrix of nucleotide-nucleotide amplification frequencies, M, from

post-epPCR sequencing data.

Myop Mpc My Mpor
m m m m
cea Mcac Mg Meor
M= [A.7]

Mg.p Mgc Mg Mg

Myoa Mroc My Mror

This per doubling mutation rate matrix can be converted to a mutation rate matrix for n

doublings, C".

0 n=0
Cl =M, n=1 [A.8]
YMC n=2
k=ACGT
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Not all strands in a PCR mixture are doubled the maximum number of times.
Specifically, the number of strands with n doublings in N total doublings (denoted Z, ) is

double the number of combinations of n in N.
N
Z,y = 2( ) [A9]

Considering this doubling distribution and the mutation matrix C", a total PCR mutation
matrix (denoted P) can be calculated indicating the probability of nucleotide mutation

after N PCR cycles.
N

( )C;’ [A.10]
n

The final required input is the basis for the DNA used in the epPCR. Any nucleotide
distribution (i.e., nucleotide frequency at each position) may be input including defined
sequences, libraries of any construction (e.g., triphosphoramidite codons, NNN, NNK,

etc), or combinations of the two.

A specific DNA sequence is then generated in accordance with the input distribution.
The total PCR mutation frequency matrix, PY, is used to determine the occurrence
probability of each codon (using nucleotide mutation frequencies) at each position. The
genetic code converts this codon probability into an amino acid probability. The
appropriate number of PCR products (2") are then generated in accordance with the
amino acid distribution. The generated sequences are analyzed to determine the number
of unique sequences and their number of mutations. This data is stored for output. The
specific sequence modeling (generation of initial sequence, determination of codon and
amino acid probability at each position, and generation of sequences) is repeated multiple

times because of the stochastic nature of the model.
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Model A.1. epPCR_Model.m

function [finaldata] = epPCR_Model
clear all;
close all;
tic;
% AR R AR AR TR AR h AR AR RRIAA A AT AN A A A AN d i hdede A bbb dhhddhdhhhhdds
Input variables
% KRR AR AT AR T AN AR R AR AR AT AR R h AR AR AN AT AR A AR A b A defe ek ddededdedehedheddhdddhdddd
% Insert parent segeunce
start_seq =
'GTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTGGGATGCTCCTGCTGTCACAGTGAGATATTACAGGAT
CACTTACGGAGAAACAGGAGGAAATAGCCCTGTCCAGGAGTTCACTGTGCCTGGGAGCAAGTCTACAGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTA
TACCATCACTGTGTATGCTGTCACTGGCCGTGGAGACAGCCCCGCAAGCAGCAAGCCAATTTCCATTAATTACCGAACAGAAATTGACAAACCATCCCAG ;

% Identify reaction conditions .
% Matrices may be used for pooled reactions.
% For single reactions, use 1x1 arrays.

% Input mutation matrix identifier (see Mchoose below for indication)
Mmat_index = [2 2 2 20 20 20];

% Input number of cycles

CcycleList = [10 15 20 5 10 15];

% Input number of sequences to enumerate

seq_max = 1000;

% Input number of trials

n_trials = 50;

% - = = = = = = = = = = - - - odds and Ends - - - - = = = - - - - - -
% calculate number of bases

bases = length(start_seq);

% calculate number of amino acids

sites = bases/3;

% Prepare n_seq_List

n_seq_List = seq_max*ones(length(CycleList),1);

% Initialize finaldata matrix

finaldata = zeros(sites+2,length(CycleList));

%= === == - === Loop through conditions - - - - - - - - - -
for icondition = 1:length(CycleList)

disp(['Testing condition ', num2str(icondition)]);

% Set conditions

Mchoose = Mmat_index(iCondition);
n = CycleList(iCondition);

n_seq = n_seq_List(iCondition);

% Calculate P matrix using M and C
P = Calc_Matrix(Mchoose,n);

conditionData = zeros(sites+2,1); .
% = = == == === === Loop through trials - - - - - - - - -
for iTrials = 1l:n_trials

% Calculate initial codon sequence and AA sequence
[p_codonl, initial_seq] = calc_Initial_Seq(sites, start_seq);

% Calculate final amino acid probability distribution (via codon PD)
p_aa_cumulative = Calc_AA_PD(sites, P, p_codonl);

% Create amino acid sequences and analyze uniqueness . L
Trialpata = CreateAndAnalyze(n_seq, seq_max, sites, p_aa_cumulative, initial_seq);
ConditionData = ConditionData + TrialData;

end;
%

% Average over trials
ConditionData = ConditionData ./ n_trials;
finaldata(:,iCondition) = ConditionData;

end;
%

% Plot data (seq_cap truncates presented data)
seq_cap = 13;
if Tength(finaldata) < (seg_cap+2)
4 seq_cap = length(finaldata) - 2;
end;

mutlist = linspace(0,seq_cap-1l, seq_cap);

ymax = 1.15*max(max(f1na1data(2:seq_cap+1,:)));
plot(mutlist,finaldata(2:seq_cap+1l,:));
xlabel('Mutations', 'FontSize',18);
ylabel('unique Clones’, 'FontSize',18);

axis([0 seq_cap-1 0 ymax1);

Mmat_index;

LegendForm(:,1)
CycleList;

LegendForm(:,2)
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Tegend(num2str(LegendForm)) ;
toc;

return;

Kk hh ek ket ik hk AR Rk kR Rk hhhhhdhhhhfehhhhdhdehhhdhhhdehdhdhhdhhhdhidhk
AR R R AR AR A AR AR AR RARA AR R AR A AR A S h ke h ke hdhhhhdrddddhrdrddhdiedin

Subfunction Calc_Initial_Seq

set initial codon and amino acid sequences
R Y L R L R R R R R E LT TR LT B T R L R s L L e

%
%
%
%
%
%
% ~0.005 seconds

function [p_codonl, initial_seq] = Calc_Initial_seq(sites,start_seq)

% dedekthh R AR AR AR AR AR AR AR AR bk bkl ek hhhhhhhkhhhhhhhhdrdhdhdhhhhdids

% Set genetic code and triphosphoramidite codons
% Kl khhdh kR dd ke h e dfede R A AR TR A I AR AR AT A A h ke hdhhdhdededededheddhhdhddhdhdhdhs
AA= [lKl INI IKI INI lTl ITI lTl ITI IRI lsl IRI ISI III lIl IMI III
IQI IHI lQl lHl IPI IPI IPI IPI IRI IRI lRl 'Rl ILI lLl lLl 'L'-.:..
IEI IDI IEI IDI IAI IAI IAl IAI IGI IGI IGI IGI lVI IVI 'Vl lvl
lz| lYl lzl IYI ISI lsl ISI lsl lzl lcl lwl lc' ILI IFI ILI IFI'..
TriP = [1 2 8 14 15 19 20 23 28 31 33 34 40 44 48 50 56 58 59 62];
p_codonl = zeros(64,sites);

initial_seq = zeros(l,sites);
for site_i = 1l:sites

if start_seq(3*site_i-2:3*site_i) == "tri’
p_codonl(TrirP(ceil(20*rand(1))),site_i) = 1;
elseif start_seq(3*site_i-2:3*site_1) == 'xxx'
p_codonl(ceil(64*rand(1)),site_i) = 1;
else
for j = 1:3 .
if start_seq(3*site_i-3+j) == 'A’
x(3) = 1; L .
e1se1€.gtart_seq(3*51te_1—3+3) = 'C'
X(}) = &5
e1sei€‘start_seq(3*site_i-3+j) = 'G'
x(J) = 35
e1seif‘start_seq(3*site_i—3+j) == 'T'
x(3) = 4;
else
disp('Invalid Sequence');
end;
end; .
4 p_codon1(16*(x(1)-1)+4*(x(2)-1)+x(3),site_i) = 1;
end;
4 initial_seq(l,site_i) = AA(find(p_codonl(:,site_i)));
end;
return;
%
%

% Py L R Rl R R R IR e T TR R L L L e R S A A
AR R AR KA IR T IARA IR AR AR ARE A DR AL AT A AN AR h e hhhdehdhhhhhhhhhkhkhdhdhhhras

Subfunction calc_Matrix

calculates P matrix (via M and C)

AR R AR R AT AR R AT A AR AT AR R AR h A bbbk h ke dehd ke dhhhrhhhhhkidhhhrs

Set mutation matrix
Rows 1-4 represent mutations FROM A, C, G, T
columns 1-4 represent mutations TO A, C, G, T
% Fedhhhhhd kR AR AR TR AR AR A A AN bk dehhhhhkdrdedhhhdhdhhhhdehhdhdhdhhbhhhdhhidd
% ~0.0033 seconds (mutation, C, P matrices)
function P = calc_Matrix(Mchoose,n)

3NN R R R R

switch Mchoose
case 0 % 0 um analogs

M = [0.999907 0 0.000093 0; 0 0.999907 0 0.000093; 0.000093 0 0.999907 ...
0; 0 0.000093 0 0.999907];
case 2 % 2 uM analogs

M = [0.997395 0 0.002512°0.000093; 0 0.999535 0 0.000465; 0.000465 0 ...
0.999535 0; 0.000093 0.002512 0 0.997395];
case 3 % 2 uM analogs + excess dTTP

M = [0.994179 0 0.004656 0.001165; 0.000107 0.996748 0 0.003145;
0.003145 0 0.996748 0.000107; 0.001165 0.004656 0 0.994179];
case 20 % 20 uMm analogs

M = [0.989858 0.000186 0.009956 0; 0 0.997395 0 0.002605; 0.002605 0 ...
0.997395 0; 0 0.009956 0.000186 0.989858];
case 21 % 20 uM analogs + excess dTTP

M = [0.986642 0.000186 0.012100 0.001072; 0.000107 0.994608 0 0.005285;
0.005285 0 0.994608 0.000107; 0.001072 0.012100 0.000186 0.986642];
case 200 % 200 uM analogs

M = [0.986415 0.005490 0.008095 0; 0 0.997953 0 0.002047; 0.002047 0 ...
0.997953 0; 0 0.008095 0.005490 0.986415];
case 201 % 200 uM analogs + excess dTTP

M = [0.983199 0.005490 0.010239 0.001072; 0.000107 0.995166 0 0.004727;
0.004727 0 0.995166 0.000107; 0.001072 0.010239 0.005490 0.983199];
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otherwise
disp('Invalid entry. Using 0 um.");
= [0.999907 0 0.000093 0; 0 0.993907 0 0.000093; 0.000093 0 0.999907 ...
0; 0 0.000093 0 0.999907];
;nd;

% defhdkhkh Rk h Rk ke hhhhhhhhhehhdehhdhhh ki hhhhhhhhhh Rk hhhhdhdddhddhkiehhhn

Calculate C matrix
Rows 4*n+l to 4*n+4 represent mutations FROM A,C,G,T
for a strand that has doubled n times

columns 1-4 represent mutations TO A, C, G, T
*******************************************k***************************

RRRVRRK

C = zeros(4*n+4,4);
for i = 1:4
c(@i,i) = 1;
end;
for i = 1: 4
for j =
C(1+4 J) M@ ,3)5
end;
end;
for n_ct = 2:n
for 1 1:4
for j=1:4
C_val =
for k =
v

0;
1:4
c_val =

c_val + M(k,j)*C(4*(n_ct-1)+i,k);

end;
C(4*n_ct+i,j) = C_val;
end;
end;
end;
%

% P T T T R R I TN AL PR T R R R R R R R AR R S R

% calculate P matrix
% Rows 1-4 represent mutations from A, C, G, T

columns 1-4 represent mutations to A C G T
% ***'k****************************'ff*************************'k************

P_mat_sum = zeros(4,4);
for n_ct = O:n
n_choose = (factor1a1(n))/((factor1a1(n ct))*..
(factor1a1(n n_ct
P_mat_sum = P_mat_sum + n_ choose*c(4*n ct+l:4*n_ct+4,1:4);

nd;
P = (1/(2An))*P_mat_sum;

return;

H R R R R e R R R AR AR R AN AR AN AR AR A T AR A A XA AR AT A AR R Aok hde bk hdehdedefhdd
PR R AR AR AT DA AR A RA TR AR R DT RN AT AN h ke dhhhhdhedehhhdhkhdhhddkhhhhdhhhhhhd

Subfunction Calc_AA_PD

calculate amino acid probability distribution

KrhAhhhAA AR Ak hddhdhdehhhhhhhhhhd i hhhd kA rarhrdhhrhdhrrhrdhhhhdhdehdhhd

calculate final codon probability distribution
AR AR E AR TR AR AR A AR A AL RN A AL DD AR A AR A A A A b A ddhhdhdrhh b hddhhhhhdhdhhhshd

~0.063 seconds

function p_aa_cumulative = Calc_AA_pPD(sites, P, p_codonl)

RNV R RNV NVEVRR  RR

p_codon2 = zeros(64,sites);
for s = 1:sites % calculate codon probability at each site
for c2 = 1:64 % calculate probability for each codon
a = 1+floor((c2-1)/16);
1+floor((c2-16*(a- 1) 1/4);

b -
c=c2 - 16*(a l) 4*(b ),
for c1 = 1:64
x = 1+floor((cl-1)/16);
y = 1+floor((cl-16*(x- 1) 1)/4),
= cl - 16*(x-1)-4*(y-1)
p codon2(c2,s) = p_ codonZ(cZ s) + .
p_codonl(cl s)*P(x, a)*P(y b)*P(z Q)
end;
end;
end;
%
% LY 2 R R T TR TR S MR L SR R T
% calculate final amino acid probability distribution
% [ R R R R R R R 2222232 E LSS L L LT E LS L L L L L3 2L 50 20k
% ~0.0033 seconds
% Set amino acids
AA= ['K' INI lKl 'Nl 'Tl lTl 'Tl ITI IR’ ISI IRI lsl lIl III IMI 'II...

IQI H' 'Q' TH' P! 'P' 'p' 'p' TRY TR' 'R 'R’ L' L' LY "L'...
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IEI lDl IEI 'DI lAl lAl IAI IA| IGI IGl IGi lGl lv' IVI lvl lvl
lzl IYI IZI IYI ISI Isl lsl lsl lzl lc' le lcl ILI lFl lLl lFlj:.
ac.ids - [IAI Icl IDI ‘E' IFI IGI IHI III lKl lLl 'MI IN' 'PI IQI 'R':..
lsl ITI lvl lwl IYI lzl];
p_aa2 = zeros(21,sites);
for s = 1l:sites % Calculate amino acid probability at each site
for aa2 = 1:21 % calculate probability for each amino acid (+ stop)

for c = 1:64

if AA(c) == acids(aa2)
d p_aa2(aa2,s) = p_aa2(aa2,s) + p_codon2(c,s);
end;
end;

nd;
q g_aaZ(:,s) = (1/sum(p_aa2(:,s)))*p_aa2(:,s);
end;

% Create cumulative amino acid probability
p_aa_cumulative = p_aa2;
for i_cumulative = 2:21

4 p_aa_cumulative(i_cumulative,:) = sum(p_aa2(1l:i_cumulative,:));
end;
%

return;
o

Ktk Rtk AR AR AR AR AR I A A Ak ek fehhdhhhkhhhhhhhhhrhhdhdhhddhhdkhddehdddadhdhdd
dhdddeh kR bk R hhhhh R hhhhhhkhhhhhhhhhfehhkhhhddedhdkhhhhdhdvhhdhhhhhhdhh®

Subfunction CreateAndAnaiyze

Create n_seq amino acid sequences

R ARWVRRR ¥R

% dededeh R AR AR A A AR ARk feh e hdehdhddehddhdhhhhhhdhhhrhhhhdhhhhhhhhhhdddhhdid
function Trialpata = CreateAndAnalyze(n_seq, seq_max, sites, p_aa_cumulative, initial_seq)

% Prepare vector for final data
TrialData = zeros(sites+2,1);

% Set amino acids
ac.ids = [lAI lcl ID| IEI lFl IGI lHl III IKI lL' IMI lNl IPI 'Q' 'R'...
lsl ITI IV' lwl 'Yl lZ'].
H
% kR kAR kR A AR AR AR N AR AR Ak kA bk h kb dkhhhd kR dhhhhhddhdhhdddd

Create AA sequences
% A AR R R R A AT AR AR AR A AR R A AT AT A AR A A DA hhde Akl dshedt
clear seq_i; .
seq_list = char(zeros(n_seq,sites));

% ~0.3 seconds (find takes >90% of time)
for ; = l:n_seq % Loop to create multiple sequences
or site_i = l:sites % Loop to create an amino acid at each site
val = rand(1);

i = find(p_aa_cumulative(:,site_i) > val,1);

if i == 21
for nz = l:sites
seq_list(j,nz) = 'z';
end;
Trialpata(sites+2,1) = Trialbpata(sites+2,1) + 1;
4 break;
end;

seql1ist(j,site_i) = acids(i);
end;
end;

% Fi1l in random sequences if less than maximum number enumerated
Tength_i = size(seq_list,1);
if Tength_i < seq_max

disp("Maximum number of sequences not enumerated');

for short_i = 1:(seq_max - length_i)
d seq_list(length_i+short_i,:) = seq_list(ceil(length_i*rand(1)),:);
end;
end;

% Flehdedkhddhtdhhhhh ik hkde ek kR kR hh kA h R AR AR AR R xR hhhhhhhhkddkdhhdsd

% Analyze PCR sequences for uniqueness and truncations
% E2 212 R R AR R L B R T E L T LT P R T SRR 2 AL L R

% ~0.005 seconds

unique_seq = unique(seqg_list,"'rows');

[r,c] = size(unique_seq);
for 1 = 1ir
n_mut = sum(initial_seq(l,:) ~= unique_seq

end; |
num_unique = r; .
Trialpata(l,1) = Trialpata(l,1) + num_unique;

return;

G,));
Trialpata(2+n_mut,1) = Trialpata(2+n_mut,1) + 1
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Results and Discussion

Mutation Experiment

Wild-type Fn3 was mutated by 15 cycles of error-prone PCR with 0, 2, 20, or 200 pM
nucleotide analogs dPTP and 8-oxo-dGTP. Duplicate reactions were performed at
each condition and four sequences from each reaction were analyzed to determine the
overall mutation rates of each type (e.g. AT—CG). Equation A.6 was used to
calculate the values for the M matrix (Table A.1).

Table A.1. Error-prone PCR data. moe indicates the mutational frequency for
2880 nucleotides at each condition (labeled by nucleotide analog concentration).
m indicates the per-doubling nucleotide mutagenesis rate calculated from the
Moveran data using Equation A.6.

0 pM 2 uM 20 uM 200 uM
Moveran
AT->TA 0.0000 0.0003 0.0000 0.0000
AT—-CG 0.0000 0.0000 0.0007 0.0205
AT—G:C | 0.0003 0.0094 0.0372 0.0302
C:G—->TA | 0.0003 0.0017 0.0097 0.0076
C.G—> G:C| 0.0000 0.0000 0.0000 0.0000
C:G-—- AT | 0.0000 0.0000 0.0000 0.0000
m

AA 0.99991 0.99739 0.98986  0.98642

AC 0.00000 0.00000 0.00019  0.00549
AG 0.00009  0.00251 0.00996  0.00810

AT 0.00000  0.00009 0.00000  0.00000

CA 0.00000  0.00000 0.00000  0.00000

cC 0.99991 0.99953 0.99739  0.99795

CG 0.00000 0.00000 0.00000  0.00000

CT 0.00009  0.00047  0.00261 0.00205

GA 0.00009  0.00047  0.00261 0.00205
GC 0.00000  0.00000 0.00000  0.00000
GG 0.99991 0.99953 0.99739  0.99795
GT 0.00000  0.00000 0.00000  0.00000

TA 0.00000 0.00009 0.00000  0.00000

TC 0.00009  0.00251 0.00996  0.00810

TG 0.00000 0.00000 0.00019  0.00549

T 0.99991 0.99739 0.98986  0.98642

Mutation Model

Historically, epPCR in the Wittrup lab was performed with six conditions: 2 uM analogs
for 10 and 20 cycles, 20 uM analogs for 10 and 20 cycles, and 200 uM analogs for 5 and
10 cycles.! The epPCR model was executed for an Fn3 library with amino acids 23-30
(DAPAVTVR), 52-56 (GSKST), and 77-86 (GRGDSPASSK) randomized. Fifty trials
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were computed with 1000 enumerated sequences. This is consistent with directed
evolution in which 10,000 lead clones are diversified to create a ten-million member
library. In addition, the code was slightly modified to enable collective analysis of
sequences pooled from all six conditions. As expected, diverse mutation distributions are

achieved depending on the reaction conditions (Figure A.2).

300
A
250 ( )
—Six
” 200 —2 uM (10x)
2 150 ——2 pM (20x)
3 20 uM (10x)
S 100 ~—20 pM (20x)
.g =200 pM (5x)
2 50 =200 pM (10x)
=[2 uM (15x)]
0 v .
0 2 4 6 8 10 12 14 16 18 20
# Mutations
300
250 (B)
—Six
o 200 —2 uM (10x)
= —2 UM (20x)
g "0 20 UM (10x)
S 100 —20 pM (20x)
.g —200 uM (5x)
2 50 —200 pM (10x)
==[20 uM (15x)]
0 R ==
0 2 4 6 8 10
# Mutations

Figure A.2. Error-prone PCR model results. Error-prone PCR of an Fn3 library
(complete gene (A) or loops alone (B)) was modeled for the six previously used
reaction conditions (identified by analog concentration and PCR cycles) as well
as a pooled collection of all six conditions. In addition, either a 2 uM, 15-cycle
reaction or 20 uM, 15-cycle reaction is tested. The number of unique clones from
1000 sequences is presented.

The resultant mutational distribution from pooling all six reactions includes more high-
mutation clones than desired at the expense of mutants with one to five mutations. Thus,

for both creation of more desirable mutants as well as improved procedural efficiency, a
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single preferred reaction condition was identified: 2 uM analogs for 15 cycles. Likewise,
the model identified 20 uM analogs for 15 cycles as an effective condition for mutation
of the Fn3 loop positions, which entails 23 amino acids at wild-type length. As a result
of epPCR modeling, a single reaction can be performed that yield improved mutational
distributions relative to the six reaction conditions previously used. The matching cycle
numbers enable parallel 15-cycle reactions to be performed for both gene and loop

mutagenesis.

This epPCR model was similarly employed to identify an ideal reaction condition for
mutagenic libraries of single-chain antibody fragments, interleukin-2, Fc receptor,

horseradish peroxidase, and binding peptides.
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Appendix B: CEA Binders

APPENDIX B. ENGINEERING CEA BINDERS FOR TUMOR TARGETING
Introduction

Carcinoembryonic antigen (CEA) is a 180 kDa glycoprotein in the immunoglobulin
superfamily with approximately 50% carbohydrate content.' It is expressed in numerous
normal tissues, primarily epithelial, with consistently apical localization. However,
absence of this polarization as well as occassional upregulation in tumor cells
significantly elevates the exposure of CEA to blood and lymphatic vessels rendering
CEA as an effective tumor marker. Anti-CEA antibodies have been developed for
research and laboratory diagnostics, including an FDA-approved Fab for colorectal
cancer imaging.’> Yet, the reduced size, simple structure, and potentially improved
stability of an Fn3 domain could prove beneficial. Moreover, the Fn3 domain could be

used for tumor targeting for therapeutic applications.

As outlined in the Introduction to Chapter 3, reduced diversity genetic does present an
intriguing possibility for improved library design. In particular, serine/tyrosine diversity
has been effectively used in antibody libraries.” This approach enables a substantially
more thorough search of theoretical sequence space; yet it achieves this through a
selective reduction in sequence space which almost certainly will eliminate many
effective clones. The tradeoff of improved efficiency with reduced breadth can be

explored through attempts to generate binders from a serine/tyrosine library.

Full diversity and serine/tyrosine diversity libraries are used to engineer binders to CEA.
Both libraries yield nanomolar binders thereby demonstrating the success of both designs

and generating useful reagents for tumor targeting.

Results and Discussion

Binder Engineering

The NNB and YS yeast surface display Fn3 libraries were independently used to engineer
binders to CEA. Four rounds of selection with biotinylated CEA-coated streptavidin
magnetic beads and recursive dual mutagenesis yielded binders from both libraries.

Sequence analysis revealed that a single clone, NNB C3.2.1 and YS C3.2.3 (Table B.1),
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Appendix B: CEA Binders

dominated each binding population. The serine/tyrosine population was allowed to
continue affinity maturation via FACS to investigate the ability to diverge from this
constrained code. Sequence analysis throughout affinity maturation revealed multiple
point mutations in the BC and FG loops though no strong divergence was observed.
After four additional rounds, a dominant clone was identified with three point mutations
in the BC loop, an E9G framework mutation, and a framework insert in which VP at

positions 4 and 5 were replaced by GTLS.

Table B.1 CEA binder sequences. Amino acid sequences
of wild-type Fn3 and CEA binders.

Clone BC DE FG fw
Wild-type DAPAVTVRY GSKST GRGDSPASSK -

Initial Top Clones

NNB C3.2.1  RHVREHY PRLGR LGPHV 134V, E47G, S60G
YSC3.2.3 YYSYSYYYSY  RYRAF SSSSYSY V4A
YS Affinity Maturation
YSC6.51 YYSYSHHYSS  RYRAF SSSSYSY VP(4,5)GTLS
YSC6.52 YYSYSYHYSS  RYRAF SSSSYSY V1A, V4A, D7S, E9G
YSC7.43 YYSYSHHYSS  RYRAF SSSSYSY VP(4,5)GTLS, E9G
Targeted Maturation
Basis YYSYSYHYSS  RYRAF SSSSYSY
Sh0.3.1  YYPYKYHYHS  RYRAF ANTNYGY -
Sh0.3.2  YYPYHYYYSS  RYRAF ARTPHDY -
Sh0.3.3  YYPYHYGYSS  RYRAF TRTPYDY -
Sh0.34  YYPYHYGYSS  RYRAF RHSPYSY -
Sh0.3.5  YYPYHYGYSS  RYRAF ATSPYSY -
Sh0.3.6  YYPYHYHYNS  RYRAF ARTDHDY -

The impacts of framework mutations in clone YS C7.4.3 were tested by reverting each
mutation to wild-type both individually and collectively. Yeast were induced to display
the clones at elevated temperatures and labeled for binding to biotinylated CEA.
Reversion of each mutation to wild-type mildly stabilized Fn3 as indicated by increased
display (Figure B.1). The GIE reversion decreases binding to 46+7% of YS C74.3
whereas the GTLS(4,5)VP reversion nearly eliminates detectable binding. Thus, in the
context of yeast surface display of YS C7.4.3, the insert mutation is critical. Conversely,

when produced solubly the framework mutations are not important as YS C7.4.3 and YS
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C7.4.3 GTLS(4,5)VP, G9E have equivalent affinities of 1.8 + 0.4 nM and 2.1 + 0.6 nM,

respectively (Figure B.2).

Relative Binding
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Figure B.1 YS C7.4.3 framework mutations. Yeast were induced at 37° to
display YS C7.4.3 and framework reversions. Cells were labeled with mouse
anti-c-myc antibody and biotinylated CEA followed by AlexaFluor488-conjugated
anti-mouse antibody and streptavidin-R-phycoerythrin and analyzed by flow

cytometry.
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Figure B.2 Affinity titrations. YS C7.4.3 (A) and YSC7.4.3 GTLS(4,5)VP, GOE
(B) were produced in E. coli, purified, and biotinylated. LS174T cells were
labeled with the indicated concentration of Fn3, and binding was detected by
streptavidin-R-phycoerythrin and flow cytometry.

Synthetic Affinity Maturation

During error-prone PCR affinity maturation, a synthetic affinity maturation scheme was

developed in which loops could be independently or collectively matured with a broader

search of sequence space. Separate libraries were created for the BC, DE, and FG loops

in which each position was diversified to multiple amino acids based on the current top
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clones YS C6.5.1 and YSC6.5.2. Diversification was initiated at the oligonucleotide
synthesis level so more amino acids were achievable than by error-prone PCR; moreover,
designed randomization was included in parallel at each position so clones with multiple
mutations from the parent sequence were readily achievable, unlike rare “poly-mutants”
by error-prone PCR. For the BC library, each position was diversified to six other amino
acids. Serines were randomized to D, G, H, N, R, or S; histidines and tyrosines were
randomized to C, D, G, H, R, or Y. Two exceptions were S25, which was randomized to
P or S because of the structural importance of P25 in wild-type Fn3, and Y29, which was
randomized to C, D, F, G, V, or Y because of the structural importance of V29 in wild-
type Fn3. The theoretical library size is three million clones. The DE loop was fully
randomized to all twenty amino acids at each position, which is a library size of three
million clones. In the FG loop, the serines were randomized to A, D, G,H, N, P,R, S, or
T and tyrosines were randomized to C, D, F, G, H, L, R, V, or Y, which is a theoretical
library of five million clones. Library design is summarized in Table B.2. Three libraries
were constructed with a single diversified loop while maintaining the parental binder
sequence in the other loops. The libraries were sorted to eliminate non-binders and the
successful loops were shuffled to create a library with three diversified loops. This

library was sorted thrice and six clones were sequenced.

Table B.2 Synthetic library design. The designed amino acids at each position
are indicated. WT indicates the wild-type amino acid. Basis indicates the
consensus amino acid in binder sequences. 20 indicates all twenty amino acids.

BC Loo, DE Loop FG Loop
G S K s T
R Y R A F
20 20 20 20 20

wr
Basis

<RAXIQUTNOXO
<ABIOOTO<>
»n oo
<ATIOHOUOK>
nwWoZIOon

<P I 6 Oon0<
<BILHONT
<<OMUN<X<
noxZ2IT00ono
nozZ2IToown<
VI OVZ2IOTPFVLO
“-nwIXOVZIOUPUuR
TN TOVZINOPOVLO
NPT OVZ2ITOT P00
<< PIrrIGTMOOK®N
NP TV2IQOPHLN
<X<A-rIOTMOUO<X

In the BC loop, the five tyrosines were maintained in all 30 instances. Conversely,
serines and histidines were mutated in 18 of 30 instances including all six S25P
mutations. The DE loop was fully conserved as parental sequence suggesting that this
loop is optimized for affinity, stability, or both. The FG loop is diverse though again

tyrosines are well-conserved (10 of 12) whereas serines are not (4 of 30). This result is
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consistent with the dominant role for tyrosine in molecular recognition with serine

playing a largely neutral role.’

The VP(4,5)GTLS and E9G framework mutations were added to clone Sh0.3.3, which
had the closest match to consensus; yet this clone exhibited slightly weaker binding than
YS C7.4.3 (data not shown). Thus, the conserved tyrosines and DE loop seemingly

dominate binding while the modified serines have limited effect.

Conclusions

Both the NNB and YS libraries were effective in generation of CEA binders including a
clone with 2.1 + 0.6 nM affinity, which can be pursued for utility in tumor targeting. Yet,
while the YS library was effective in generating a nanomolar binder, affinity maturation
was largely ineffective as the tyrosine residues appéar critical and the serine residues are

relatively tolerant of mutation without affecting affinity.

Materials and Methods

Binder Engineering

CEA, purified from colon carcinoma and liver metastases, was purchased from Fitzgerald
(Concord, MA). Antigen was biotinylated with NHS-LC-biotin and desalted. The NNB
and YS yeast surface display Fn3 libraries were independently grown and induced to
display Fn3. Binders to streptavidin-coated magnetic Dynabeads were removed.
Streptavidin-coated magnetic Dynabeads were incubated with biotinylated CEA, washed,
and incubated with the remaining yeast. The beads were washed with PBSA and the
beads with attached cells were grown for further selection. After two magnetic bead
sorts, full-length Fn3 clones were selected by fluorescence-activated cell sorting using the
C-terminal c-myc epitope for identification of full-length clones. Plasmid DNA was
zymoprepped from the cells and mutagenized by error-prone PCR of the entire Fn3 gene
or the BC, DE, and FG loops. Mutants were transformed into yeast by electroporation
with homologous recombination and requisite shuffling of the loop mutants. The lead
clones and their mutants were pooled for further cycles of selection and mutagenesis.

Four rounds of engineering were performed. Plasmids from binding populations were

150



Appendix Br CEA Binders

zymoprepped and transformed into E. coli; transformants were grown, miniprepped, and

sequenced.

Engineering of binders from the YS population was continued using FACS selections.
Yeast displaying Fn3 were incubated with mouse anti-c-myc antibody and biotinylated
CEA followed by fluorophore-conjugated anti-mouse antibody and either fluorophore-
conjugated streptavidin or fluorescein-conjugated anti-biotin antibody (to avoid
enrichment of streptavidin binders). Clones with the highest CEA binding to c-myc

display ratio were collected by flow cytometry.

Mutational Analysis

Wild-type reversion mutants were created by site-directed mutagenesis. Mutants were
verified by DNA sequencing. Yeast were transformed with the plasmid clone of interest,
grown, and induced at 37°, 250 rpm. Yeast were labeled with mouse anti-c-myc antibody
and either 0.5 or 2.5 nM biotinylated CEA followed by AlexaFluor488-conjugated anti-
mouse antibody and streptavidin-R-phycoerythrin. The mean fluorescence of the

displaying population was quantified by flow cytometry.

The Fn3 gene for YS C7.4.3 and YS C7.4.3 GTLS(4,5)VP, GOE were subcloned into the
pET expression vector with a HHHHHHKGSGK C-terminus. Rosetta(DE3) E. coli were
transformed with plasmid, grown in LB medium, and induced with 0.5 mM IPTG. Cells
were lysed by four freeze/thaw cycles and Fn3 was purified from the soluble fraction by
metal affinity chromatography with TALON resin. Fn3 was biotinylated with NHS-LC-

biotin and desalted.

LS174T cells were cultured in modified Eagle’s medium with 10% FBS. Cells were
detached with trypsin/EDTA and washed with PBSA. Cells were incubated with various
concentrations of biotinylated Fn3 in PBSA followed by streptavidin-R-phycoerythrin
and the mean fluorescence was quantified by flow cytometry. The equilibrium
dissociation constant was determined by a least squares analysis assuming a 1:1 binding

model.
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Synthetic Affinity Maturation

Oligonucleotides were designed to produce the library design in Table B.2. Libraries of
Fn3 genes containing two parental loops (BC: YYSYSYYYSS; DE: RYRAF; FG:

SSSSYSY) and one diverisified loop were created by PCR from the parental sequence

using degenerate oligonucleotide primers that overlap the entire diversified loop. Yeast

surface display libraries were produced by electroporation of EBY100 yeast with Fn3

gene libraries and linearized pCT-Fn3 vector.
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APPENDIX C. ENGINEERING CD276 BINDERS FOR TARGETING TUMOR

VASCULATURE

Introduction

CD276, also known as B7-H3, is a type I membrane protein of the B7 family with a
variety of immunological functions.! Expression profile analysis identified CD276 as the
tumor endothelial marker with the highest differential expression between pathological
and physiological angiogenesis.” This result was extended to reveal strong differential
staining of tumor vasculature relative to normal vessels as well as moderate levels of
tumor cell staining. A study of renal cell carcinoma patients revealed CD276 expression
on tumor cells in 17% of patients and on tumor vasculature in 95% of patients.” Tumor
cell or distributed tumor vasculature expression was related to increased risk of death.
Also, CD276 is overexpressed in multiple non-small-cell lung cancer cell lines and, in
one study, 37% of tumors expressed CD276 and this expression correlated with lymph
node metastasis. Thus, though bioligical understanding of this protein is still nascent, it
is a potential target for delivery of therapeutic or diagnostic payloads to tumor
vasculature. To enable further study of this protein, both for cell biology and as a tumor
vascular target, we engineered a panel of Fn3 domains that bind mouse CD276

ectodomain with picomolar affinity.

Results and Discussion

Binder Engineering

The G4 yeast surface display Fn3 library was sorted for binders to mouse CD276
ectodomain. Two rounds of selection with antigen-coated magnetic beads and recursive
dual mutagenesis yielded clones capable of binding soluble antigen at mid-nanomolar
concentrations (data not shown). Five rounds of FACS selection and mutagenesis
yielded binding at picomolar concentrations. Clones from each round of engineering
were identified by DNA sequencing (Table C.1). It is noteworthy that a single clone
dominates the population enriched by magnetic bead sorting but transition to FACS
selections with soluble antigen identifies additional diversity. While a common DE loop
motif is dominant from 2.2 onward, diverse BC and FG loop sequences are observed

culminating in four unique clones from eight sequences in the final population.

{53



Appendix C: CD276 Binders

Table C.1. CD276 binder sequences. Clones from the c-myc” population from
each round of engineering were sequenced.
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Clone Analysis

The equilibrium dissociation constant at 22° was determined by titration of soluble
biotinylated CD276 for binding to yeast surface displayed CD6.3.1, CD6.3.2, and
CD6.3.8. All three clones have picomolar affinity including 1.6 + 0.9 pM for CD6.3.8
(Figure C.1, Table C.2).

Table C.2. Top CD276 binders. Sequences and affinities of clones from round
SiX.

Clone BC DE FG fw K, [PM]

CD6.3.1 FGYYGARF GRFSSYT DNVGSY S89P 54 + 38
CD6.3.2 SYPCLFQVHY GGFSGYT DYSFHHDCSS E104K 1714

CD6.3.8 SYPCLFRVHY GGFSGYT GYYFRHDCSS S17G, N91K 1.6+09
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Figure C.1. Affinity titrations. Yeast displaying CD6.3.1 (A), CD6.3.2 (B), and
CD6.3.8 (C) were incubated with the indicated concentration of biotinylated
CD276 at 22° until near equilibrium. Cells were washed and binding was
detected with strepavidin-R-phycoerythrin and flow cytometry.

Interestingly, related clones CD6.3.2 and CD6.3.8 contain two cysteine residues that,
when modeled in the wild-type Fn3 structure, are in reasonable proximity to form a
disulfide bond. In addition, these clones contain proline at position 25, valine at position
29, glycine at position 52, and threonine at position 56, all of which were designed at
high frequency in the G4 library for structural bias. Also, the binding loops are devoid of
lysine residues enabling chemical conjugation via primary amines, which are present at
the N-terminus, K56, and a multi-lysine C-terminal tail, if desired. The engineered high
affinity binders should be useful reagents to study CD276 biology and for the

development of tumor vasculature targeting agents.

Materials and Methods
Antigen Preparation
Mouse CD276 ectodomain (amino acids 29-244) was purchased from R&D Systems

(Minneapolis, MN). It was produced in a mouse myeloma cell line with a human CD33

155



Appendix C: CD276 Binders

signal peptide and a C-terminal His,, epitope for purification. Protein was resuspended in
PBS and biotinylated with NHS-LC-biotin to yield an average of 0.6 biotin molecules per
CD276.

Binder Engineering

The G4 yeast surface display Fn3 library was grown and induced to display Fn3. Binders
to streptavidin-coated magnetic Dynabeads were removed. Four million streptavidin-
coated magnetic Dynabeads were incubated with biotinylated CD276 with one million
proteins per bead, washed, and incubated with the remaining yeast. The beads were
washed twice with PBSA and the beads with attached cells were grown for further
selection. After two magnetic bead sorts, full-length Fn3 clones were selected by
fluorescence-activated cell sorting using the C-terminal c-myc epitope for identification
of full-length clones. Plasmid DNA was zymoprepped from the cells and mutagenized
by error-prone PCR of the entire Fn3 gene or the BC, DE, and FG loops. Mutants were
transformed into yeast by electroporation with homologous recombination and requisite
shuffling of the loop mutants. The lead clones and their mutants were pooled for further

cycles of selection and mutagenesis.

After two rounds of selection and mutagenesis using magnetic beads, FACS selections
were performed. Yeast displaying Fn3 were incubated with mouse anti-c-myc antibody
and biotinylated CD276 followed by fluorophore-conjugated anti-mouse antibody and
either fluorophore-conjugated streptavidin or fluorescein-conjugated anti-biotin antibody
(to avoid enrichment of streptavidin binders). Clones with the highest CD276 binding to
c-myc display ratio were collected by flow cytometry. Plasmids from binding
populations were zymoprepped and transformed into E. coli; transformants were grown,

miniprepped, and sequenced.
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APPENDIX D. DNA AND PROTEIN SEQUENCES

pCT-Fn3wt
This construct is used for yeast surface display of Fn3.

Size: 6569 bp
Selectable marker: ampicillin

Aga2--Spacer--Factorxa--HA--Linker--NheI--10Fn3--BamHI--
Myc--2Stop--xXhoI--Terminator....

ACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGT TTCTTAGGACGGATCGCTTGCCTGTAACTTACACGCGCCTCGTATCTTTTAATGATGGAATAATTTGGGAATTTACTCTGTGTTTA
TTTATTTTTATGTTTTGTATTTGGATT TTAGAAAGTAAATAAAGAAGGTAGAAGAGT TACGGAATGAAGAAAAAAAAATAAACAAAGGTTTAAAAAAT TTCAACAAAAAGCGTACTTTACATATATATTTATTAGACAAGAAA
AGCAGATTAAATAGATATACATTCGATTAACGATAAGTAAAATGTAAAATCACAGGATTTTCGTGTGTGGTCTTCTACACAGACAAGATGAAACAATTCGGCATTAATACCTGAGAGCAGGAAGAGCAAGATAAAAGGTAGTA
TTTGTTGGCGATCCCCCTAGAGTCTTTTACATCTTCGGAAAACAAAAACTATTTTTTCTTTAATTTCT T TTTTTACTTTCTATT TTTAATTTATATATTTATATTAAAAAAT TTAAATTATAATTATTTTTATAGCACGTGAT
GAAAAGGACCCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTAT
GAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATC
TCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACT TTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCT
CAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAA
GGAGCTAACCGCTTTTTTTCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTAT
TAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGT TGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGG
TCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGCAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA
ACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATT TAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAG
ACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACT
GGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGLTGCTGCCAGTGGCGATAAGTC
GTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCATTGAGAAA
GCGCCACGCT TCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGGAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAG
CGTCGATTTTTGTGATGCTCGTCAGGGGGGCCGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCG
TATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATT CATTAATGCAGCTGGC
ACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGT TACCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCCTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCAC
ACAGGAAACAGCTATGACCATGATTACGCCAAGCTCGGAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCCGACAGGTTATCAGCAACAACACAGTCATATCCATTCTCAATTAGCTCTACCACAGTGTGTGAACCAA
TGTATCCAGCACCACCTGTAACCAAAACAATTTTAGAAGTACTTTCACTTTGTAACTGAGCTGTCATTTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCA
TTACCACCATATACATATCCATATACATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATA
TTGAAGTACGGATTAGAAGCCGCCGAGCGGGTGACAGCCCTCCGAAGGAAGACTCTCCTCCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTAC
AATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATGAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATT TCTGGGGTAATTAATCAGC

GAAGCGATGATTTTTGATCTATTAACAGATATATAAATGCAAAAACTGCATAACCACTTTAACTAATACTTTCAACATT
TTCGGTTTGTATTACTTCTTATTCAAATGTAATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGT
CAAGGAGAAAAAACTATAGAATTCTACTTCATACATTTTCAATTAAGATGCAGTTACTTCGCTGTTTTTCAATATTTTC
TGTTATTGCTTCAGT TTTAGCACAGGAACTGACAACTATATGCGAGCAAATCCCCTCACCAACTTTAGAATCGACGCCG
TACTCTTTGTCAACGACTACTATTTTGGCCAACGGGAAGGCAATGCAAGGAGTTTTTGAATATTACAAATCAGTAACGT
TTGTCAGTAATTGCGGTTCTCACCCCTCAACAACTAGCAAAGGCAGCCCCATAAACACACAGTATGTTTTTAAGGACAA
TAGCTCGACGATTGAAGGTAGATACCCATACGACGTTCCAGACTACGCTCTGCAGGCTAGTGGTGGTGGTGGTTCTGGT
GGTGGTGGTTCTGGTGGTGGTGGTTCTGCTAGCGTTTCTGATGT TCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCA
CCAGCCTACTGATCAGCTGGGATGCTCCTGCTGTCACAGTGAGATATTACAGGATCACT TACGGAGAAACAGGAGGAAA
TAGCCCTGTCCAGGAGTTCACTGTGCCTGGGAGCAAGTCTACAGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTAT
ACCATCACTGTGTATGCTGTCACTGGCCGTGGAGACAGCCCCGCAAGCAGCAAGCCAATTTCCATTAATTACCGAACAG
AAATTGACAAACCATCCCAGGGATCCGAACAAAAGCTTATTTCTGAAGAGGACTTGTAATAGCTCGAGATCTGATAACA
ACAGTGTAGATGTAACAAAATCGACTTTGTTCCCACTGTACTTTTAGCTCGTACAAAATACAATATACTTTTCATTTCT
CCGTAAACAACATGTTTTCCCATGTAATATCCTTTTCTATTTTTCGTTCCGTTACCAACTTTACACATACTTTATATAGC

TATTCACTTCTATACACTAAAAAACTAAGACAAT AATTTTGCTGCCTGCCATATTTCAATTTGTTATAAATTCCTATAATTTATCCTATTAGTAGCTAAAAAAAGAT GAATGTGAATCGAATCCTAAGAGAATTGAGCTC
CAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCCTTCGCCAGCTGGCGTAATAGCGAAGAGGCCC
GCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGT TACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGETCCT
TTCGCTTTCTTCCCTTCCT TTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAG
TGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTT
CGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCAGGCAAGTGCACAAAC
AATACTTAAATAAATACTACTCAGTAATAACCTATTTCTTAGCATTTTTGACGAAATTTGCTATTTTGTTAGAGTCTTTTACACCATTTGTCTCCACACCTCCGCTTACATCAACACCAATAACGCCATTTAATCTAAGCGCA
TCACCAACATTTTCTGGCGTCAGTCCACCAGCTAACATAAAATGTAAGCTTTCGGGGCTCTCTTGCCTTCCAACCCAGTCAGAAATCGAGT TCCAATCCAAAAGTTCACCTGTCCCACCTGCTTCTGAATCAAACAAGGGAAT
AAACGAATGAGGTTTCTGTGAAGCTGCACTGAGTAGTATGTTGCAGTCTTTTGGAAATACGAGTCTTTTAATAACTGGCAAACCGAGGAACTCTTGGTATTCTTGCCACGACTCATCTCCATGCAGTTGGACGATATCAATGC
CGTAATCATTGACCAGAGCCAAAACATCCTCCTTAGGTTGATTACGAAACACGCCAACCAAGTATTTCGGAGTGCCTGAACTATT TTTATATGCTTTTACAAGACTTGAAATTTTCCTTGCAATAACCGGGTCAATTGTTCTC
TTTCTATTGGGCACACATATAATACCCAGCAAGTCAGCATCGGAATCTAGAGCACATTCTGCGGCCTCTGTGCTCTGCAAGCCGCAAACTTTCACCAATGGACCAGAACTACCTGTGAAATTAATAACAGACATACTCCAAGC
TGCCTTTGTGTGCTTAATCACGTATACTCACGTGC TCAATAGTCACCAATGCCCTCCCTCTTGGCCCTCTCCTTTTCTTTTTTCGACCGAATTAATTCTTAATCGGCAAAAAAAGAAAAGCTCCGGATCAAGATTGTACGTAA
GGTGACAAGCTATTTTTCAATAAAGAATATCTTCCACTACTGCCATCTGGCGTCATAACTGCAAAGTACACATATATTACGATGCTGTCTATTAAATGCTTCCTATATTATATATATAGTAATGTCGTTTATGGTGCACTCTC
AGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAG
GTTTTCACCGTCATCACCGAAACGCGCGA

Translation from Aga2p onward:
Aga2p - KDNSST - Xa — HA - (G,S); — AS - Fn3;,,; — GS - c-myc

MQLLRCFSIFSVIASVLAQELTTICEQIPSPTLESTPYSLSTTTILANGKAMQGVFEYY
KSVTFVSNCGSHPSTTSKGSPINTQYVFKDNSSTIEGRYPYDVPDYALQASGGGGSGGG
GSGGGGSASVSDVPRDLEVVAATPTSLLISWDAPAVTVRYYRITYGETGGNSPVQEFTV
PGSKSTATISGLKPGVDYTITVYAVTGRGDSPASSKPISINYRTEIDKPSQGSEQKLIS
EEDLZZ
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pCT-Fn3-Gene

This construct is used for homologous recombination with mutagenized Fn3 genes. The
linker-Fn3 portion of pCT-Fn3wt is replaced by PstI-Ndel-BamHI to enable triple
digestion to produce linearized vector.

Size: 6227 bp
Selectable marker: ampicillin

Aga2--Spacer--FactorXa--HA--PstI--spacer--NdeI--spacer--
BamHI--Myc--2Stop--XhoI--Terminator....

ACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGT TTCTTAGGACGGATCGCTTGCCTGTAACTTACACGCGCCTCGTATCTTTTAATGATGGAATAATTTGGGAATTTACTCTGTGTTTA
TTTATTTTTATGTTTTGTATTTGGATTTTAGAAAGTAAATAAAGAAGGTAGAAGAGT TACGGAATGAAGAAAAAAAAATAAACAAAGGTTTAAAAAATTTCAACAAAAAGCGTACTTTACATATATATTTATTAGACAAGAAA
AGCAGATTAAATAGATATACATTCGATTAACGATAAGTAAAATGTAAAATCACAGGATTTTCGTGTGTGGTCTTCTACACAGACAAGATGAAACAAT TCGGCATTAATACCTGAGAGCAGGAAGAGCAAGATAAAAGGTAGTA
TTTGTTGGCGATCCCCCTAGAGTCTTTTACATCTTCGGAAAACAAAAACTATTTTTTCTTTAATTTCTTTTTTTACTTTCT, ATTTTTAATTTATATATTTATATTAAAAAAT TTAAATTATAATTATTTTTATAGCACGTGAT
GAAAAGGACCCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATT GAAAAAGGAAGAGTAT
GAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGEGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATC
TCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCT
CAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAA
GGAGCTAACCGCTTTTTTTCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTAT
TAACTGGCGAACTACI’TACTCTAGCFI'CCCGGLAACMTTMTAGACTGGATGGAGGCGGATMAGI‘I’GCAEGACCAC‘I"I'CI"GCGCTCGGCCC'I'I'CCGGCTGGCTG(TH'I‘ATTGCTGATAAATCTGGAGCCGGTGAGCGTGGG
TCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATC TACACGACGGGCAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA
ACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAG
ACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACT
GGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTC
GTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCATTGAGAAA
GCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGGAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAG
CGTCGATTTTTGTGATGCTCGTCAGGGGGGCCGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCG
TATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATT CATTAATGCAGCTGGC
ACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTACCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCCTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCAC
ACAGGAAACAGCTATGACCATGATTACGCCAAGCTCGGAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCCGACAGGTTATCAGCAACAACACAGTCATATCCATTCTCAATTAGCTCTACCACAGTGTGTGAACCAA
TGTATCCAGCACCACCTGTMECAAMWTT"I'I’AGAAGTACﬂTCAC'I'l'I'GTAACTGAGCTGTCA?'I'I'ATATTGMTn'I'CMAAA'ITC'I'I'AC'I"I'TTTTTTTGGATGGACGCMAGMGI’TTMTAATCATA‘ITACATGGCA
TTACCACCATATACATATCCATATACATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAAC TTTCAGTAATACGCTTAACTGCTCATTGCTATA
TTGAAGTACGGATTAGAAGCCGCCGAGCGGGTGACAGCCCTCCGAAGGAAGACTCTCCTCCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTAC
AATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATGAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATT TCTGGGGTAATTAATCAGC

GAAGCGATGATTTTTGATCTATTAACAGATATATAAATGCAAAAACTGCATAACCACTTTAACTAATACTTTCAACATT
TTCGGTTTGTATTACTTCTTATTCAAATGTAATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGT
CAAGGAGAAAAAACTATAGAATTCTACTTCATACATTTTCAATTAAGATGCAGTTACTTCGCTGTTTTTCAATATTTTC
TGTTATTGCTTCAGTTTTAGCACAGGAACTGACAACTATATGCGAGCAAATCCCCTCACCAACTTTAGAATCGACGCCG
TACTCTTTGTCAACGACTACTATTTTGGCCAACGGGAAGGCAATGCAAGGAGTTTTTGAATATTACAAATCAGTAACGT
TTGTCAGTAATTGCGGTTCTCACCCCTCAACAACTAGCAAAGGCAGCCCCATAAACACACAGTATGTTTTTAAGGACAA
TAGCTCGACGATTGAAGGTAGATACCCATACGACGTTCCAGACTACGCTCTGCAGCAGTCGCATATGACTGAGGGATCC
GAACAAAAGCTTATTTCTGAAGAGGACTTGTAATAGCTCGAGATCTGATAACAACAGTGTAGATGTAACAAAATCGACT
TTGTTCCCACTGTACTTTTAGCTCGTACAAAATACAATATACTTTTCATTTCTCCGTAAACAACATGTTTTCCCATGTA
ATATCCTTTTCTATTTTTCGTTCCGTTACCAACTTTACACATACTTTATATAGCTATTCACTTCTATACACTAAAAAAG:

AAGACAATTTTAATTTTGCTGCCTGCCATATTTCAATTTGTTATAAATTCCTATAATTTATCCTATTAGTAGCTAAAAAAAGATGAATGT! GAATCGAATCCTAAGAGAATTGAGCTCCAATTCGCCCTATAGTGAGTCGTATT
ACAA'I'TCACTGGCCGTCGT'I'I'I'ACMCGTCGTGACTGGGAMACCCTGGCGTTACCCMCTTMTCGCCTTGCAGCACATCCCCCETTCGCCAGCTGGCGTMTAGCGMGAGGCCCGCACCGATCGCCC‘H’CCCMCAG‘I’TG
CGCAGCCTGAATGGCGAATGGCGCGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGL
U\CGTTCGCCGGC1'|'|'CCCCGTCAAGCTCTAAATC.GGGGGCTCCCT'I"FAGGGTTCCGATH'ﬁGTGCTl'I'ACGGCACCTEGACCCCAAAAAAmGATTAGGGTGATGGWCACGFAGTGGGCEATCGCCCTGATAGACGG‘”T
TTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTG
ATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCAGGCAAGTGCACAAACAATACTTAAATAAATACTACTCAGTA
ATAACCTATTTCTTAGCATTTTTGACGAAATTTGCTATTTTGTTAGAGTCTTTTACACCATTTGTCTCCACACCTCCGCTTACATCAACACCAATAACGCCATTTAATCTAAGCGCATCACCAACATTTTCTGGCGTCAGTCC
ACCAGCTAACATAAAATGTAAGCTTTCGGGGCTCTCTTGCCTTCCAACCCAGTCAGAAATCGAGT TCCAATCCAAAAGT TCACCTGTCCCACCTGCTTCTGAATCAAACAAGGGAATAAACGAATGAGGTTTCTGTGAAGCTG
CACTGAGTAGTATGTTGCAGTCTTTTGGAAATACGAGTCTTTTAATAACTGGCAAACCGAGGAACTCTTGGTATTCTTGCCACGACTCATCTCCATGCAGTTGGACGATATCAATGCCGTAATCATTGACCAGAGCCAAAACA
TCCTCmAGGrrGAWACGMACﬂCGCCAACCMGTATWCGGﬂGI'GCCTGMCTATl'I'rl'ATATGCT'fTTACAAGAC‘I’I’GMATTI'I’(CTTGCAATMCCGGGTCAA‘I'TGTTCTCTI'TCTAWGGGCACACATATMTACC
CAGCAAGTCAGCATCGGAATCTAGAGCACATTCTGCGGCCTCTGTGCTCTGCAAGCCGCAAACTTTCACCAATGGACCAGAACTACCTGTGAAATTAATAACAGACATACTCCAAGCTGCCTTTGTGTGCTTAATCACGTATA
CTCACGTGCTCAATAGTCACCAATGCCCTCCCTCTTGGCCCTCTCCTTTTCTTTTTTCGACCGAATTAATTCTTAATCGG CAAAAAAAGAAAAGCTCCGGATCAAGATTGTACGTAAGGTGACAAGCTATTTTTCAATAAAGA
ATATCTTCCACTACTGCCATCTGGCGTCATAACTGCAAAGTACACATATATTACGATGCTGTCTATTAAATGCTTCCTATATTATATATATAGTAATGTCGT TTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATA
(TFTMGECAGCCCCGACACCCGCCAACACCCECTGAEGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGC1'I'ACAGACAAGCT(:_TGACCGT(TC(GGGAGCTGCATGTGTCAGAGGH'ITCACCGTCATCACCGAMCGCG
CGA
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Appendix D: Sequences

pCT-Fn3-Loop

This construct is used for homologous recombination with mutagenized Fn3 loops. A
fragment of the Fn3 gene from the BC loop through the FG loop is replaced by
Ncol/Smal/Ndel to enable triple digestion to produce linearized vector.

Size: 6407 bp
Selectable marker: ampicillin

Aga2--Spacer--FactorXa--HA--Linker--NheI--Fn3; ,,--NCOI--
S acer-—Sm@I—-spacer——NdeI——FnBMJNf—BamHI——Myc——ZStop——
XhoI--Terminator....

ﬂCGAAAGGGCCTCGTGATACGCCTATT'I'I’TATAGG'I'I'MT(\'I'CATGATAATAATGGTITC'I'TAGGACGGATCGCl'rGCCTGTMCTTACACGCGCCTCGTATC‘I'I'TTMTGATGGMTMTWGGGAATI’TACTCTGTGTH’A
TTTATTTTTATGTTTTGTATTTGGATT TTAGAAAGTAAATAAAGAAGGTAGAAGAGTTACGGAATGAAGAAAAAAAAATAAACAAAGGT TTAAAAAATTTCAACAAAAAGCGTACTTTACATATATATTTATTAGACAAGAAA
AGCAGATTAAATAGATATACATTCGATTAACGATAAGTAAAATGTAAAATCACAGGATTTTCGTGTGTGGTCTTCTACACAGACAAGATGAAACAATTCGGCATTAATACCTGAGAGCAGGAAGAGCAAGATAAAAGGTAGTA
TTTGTTGGCGATCCCCCTAGAGTCTTTTACATCTTCGGAAAACAAAAACTATTTTTTCTTTAATTTCTTTTTTTACTTTCTATTTTTAATTTATATATT TATATTAAAARAT TTAAATTATAATTATTTTTATAGCACGTGAT
GAAAAGGACCCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATT GAAAAAGGAAGAGTAT
GAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATC
TCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCT
CAGAATGACTTGGTTGAGTACTCACCAGTCACAGAARAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACT GCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAA
GGAGCTAACCGCTTTTTTTCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTAT
TAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGT GGG
TCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATC TACACGACGGGCAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA
ACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAG
ACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACT
GGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTC
GTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGT GCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCATTGAGAAA
GCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGGAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAG
CGTCGATTTTTGTGATGCTCGTCAGGGGGGCCGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCG
TATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGC
ACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGT TACCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCCTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCAC
ACAGGAAACAGCTATGACCATGATTACGCCAAGCTCGGAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCCGACAGGTTATCAGCAACAACACAGTCATATCCATTCTCAATTAGCTCTACCACAGTGTGTGAACCAA
TGTATCCAGCACCACCTGTAACCAAAACAATTTTAGAAGTACTTTCACTTTGTAACTGAGCT GTCATTTATATTGAATTTTCAAAAATTCTTACTTTTTTTT TGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCA
TTACCACCATATACATATCCATATACATA‘I'CCATATCFAATC‘I“TACTTﬂTATGTTG!'GGAMTGTAMGAGCCCCA'ITATCTTAGCCTMAMAACCTTCT(TTTGGMCTl'l'CAG?MTACGCTTAACTGCTCATTGCTATA
TTGAAGTACGGATTAGAAGCCGCCGAGCGGGTGACAGCCCTCCGAAGGAAGACTCTCCTCCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTAC
AATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATGAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATT TCTGGGGTAATTAATCAGC

GAAGCGATGATTTTTGATCTATTAACAGATATATAAATGCAAAAACTGCATAACCACTTTAACTAATACTTTCAACATT
TTCGGTTTGTATTACTTCTTATTCAAATGTAATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGT
CAAGGAGAAAAAACTATAGAATTCTACTTCATACATTTTCAATTAAGATGCAGTTACTTCGCTGTTTTTCAATATTTTC
TGTTATTGCTTCAGTTTTAGCACAGGAACTGACAACTATATGCGAGCAAATCCCCTCACCAACTTTAGAATCGACGCCG
TACTCTTTGTCAACGACTACTATTTTGGCCAACGGGAAGGCAATGCAAGGAGT TTTTGAATATTACAAATCAGTAACGT
TTGTCAGTAATTGCGGTTCTCACCCCTCAACAACTAGCAAAGGCAGCCCCATAAACACACAGTATGTTTTTAAGGACAA
TAGCTCGACGATTGAAGGTAGATACCCATACGACGTTCCAGACTACGCTCTGCAGGCTAGTGGTGGTGGTGGTTCTGGT
GGTGGTGGTTCTGGTGGTGGTGGTTCTGCTAGCGTTTCTGATGT TCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCA
CCAGCCTACTGATCAGCTGGCCATGGATCTGCCCCGGGATGTACCATATGCCAATTTCCATTAATTACCGAACAGAAAT
TGACAAACCATCCCAGGGATCCGAACAAAAGCTTATTTCTGAAGAGGACTTGTAATAGCTCGAGATCTGATAACAACAG
TGTAGATGTAACAAAATCGACTTTGTTCCCACTGTACTTTTAGCTCGTACAAAATACAATATACTTTTCATTTCTCCGT
AAACAACATGTTTTCCCATGTAATATCCTTTTCTATTTTTCGTTCCGTTACCAACTTTACACATACTTTATATAGCTATY

CACTTCTATACACTAAAAAACTAAGACAATTTTAATTTTGCTGCCTGCCATATTTCAATTTGTTATAAATTCCTATAATTTATCCT) ATTAGTAGCTAAAAAAAGATGAATGTGAATCGAATCCTAAGAGAATTGAGCTCCAAT
TCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCCTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCAC
CGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCG
CTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACC TCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGG
CCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGC
CTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCAGGCAAGTGCACAAACAATA
CTTAAATAAATACTACTCAGTAATAACCTATTTCTTAGCATTTTTGACGAAATTTGCTATTTTGTTAGAGTCTTTTACACCATTTGTCTCCACACCTCCGCTTACATCAACACCAATAACGCCATTTAATCTAAGCGCATCAC
CAACATTTTCTGGCGTCAGTCCACCAGCTAACATAAAATGTAAGCTTTCGGGGCTCTCTTGCCTTCCAACCCAGTCAGAAATCGAGTTCCAATCCAAAAGTTCACCTGTCCCACCTGCTTCTGAATCAAACAAGGGAATAAAC
GAATGAGGTTTCTGTGAAGCTGCACTGAGTAGTATGTTGCAGTCTTTTGGAAATACGAGTCTTTTAATAACTGGCAAACCGAGGAACTCTTGGTATTCTTGCCACGACTCATCTCCATGCAGTTGGACGATATCAATGCCGTA
ATCATTGACCAGAGCCAAAACATCCTCCTTAGGTTGATTACGAAACACGCCAACCAAGTATTTCGGAGTGCCTGAACTATTTTTATATGCTTTTACAAGACTTGAAATTTTCCTTGCAATAACCGGGTCAATTGTTCTCTTTC
TATTGGGCACACATATAATACCCAGCAAGTCAGCATCGGAATCTAGAGCACATTCTGCGGCCTCTGTGCTCTGCAAGCCGCAAACTTTCACCAATGGACCAGAACTACCTGTGAAATTAATAACAGACATACTCCAAGCTGCC
TTTGTGTGCTTAATCACGTATACTCACGTGCTCAATAGTCACCAATGCC CTCCCTCTTGGCCCTCTCCTTTTCTTTTTTCGACCGAATTAATTCTTAATCGGCAAAAAAAGAAAAGCTCCGGATCAAGATTGTACGTAAGGTG
ACAAGCTATTTTTCAATAAAGAATATCTTCCACTACTGCCATCTGGCGTCATAACT! GCAAAGTACACATATATTACGATGCTGTCTATTAAATGCTTCCTATATTATATATATAGTAATGTCGTTTATGGTGCACTCTCAGTA
CAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGLTG CATGTGTCAGAGGTTT
TCACCGTCATCACCGAAACGCGCGA
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Appendix D: Sequences

pETh-Fn3wt
This construct is used for bacterial expression of Fn3 with a C-terminal His, tag.

Size: 5558 bp
Selectable marker: kanamycin

... == rbs -- TATA -- NdeI -- NheI -- Fn3 1-101 -- BamHI -
- His6 -- Stop -- TTAACTAAACGA -- GATC....

TGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGT TACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTT
CCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGT
TCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGT TCCAAACTGGAACAACACTCAACCCTATCTCGGTCTA
TTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGAT TTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATT TCAGGTGGCA
CTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTA CTAAATACATTCAAATATGTATCCGCTCATGAATTAAT TCTTAGAAAAACTCATCGAGCATCAAATGAAACTGCAA
TTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTC
CGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGT TATCAAGT GAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATT
TCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTT
AAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGG
GGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCT TGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTG
GCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAA
ATCAGCATCCATGTTGGAAT TTAATCGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGACC
AAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACC
ACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAG
GCCACCACT TCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCT TACCGGGTTGGACTCAAGACGATAG
TTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGC TTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCAC
GCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCT TCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTC
GCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCAC
ATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGC
GGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGT TAAGCCAGTATACACT
CCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTC
CGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGATTCACAGATGTCTGCCTGTTCATCCGCGT
CCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGGGGGATTTCTGTTC
ATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCACGATACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGT TGTGAGGGTAAACAACTGGCGGTATGGATGCGGCG
GGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATAATGGTGCAGGGCG
CTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCGGTGAT
TCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCACGATCATGCGCACCCGTGGGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAA
ACGTTTGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGAT TCCGAATACCGCAAGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGA
CCCAGAGCGCTGCCGGCACCTGTCCTACGAGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAGT CATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTC
AAGGGCATCGGTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGG
CCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAG
CGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCAAC
GCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGG
ACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACT TAATGGGCCCGCTAAC
AGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGC
CGGAACATTAGTGCAGGCAGCT TCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGT TAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTT
CGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACG
CCAATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCG CGCAGAAACGTGGCTGGCCTG
GTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGT TACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCA
TACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCCCAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGC
AAGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCAT

CGGTGATGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAG
GATCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAA
TAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCT
GCGACCCCCACCAGCCTACTGATCAGCTGGGATGCTCCTGCTGTCACAGTGAGATATTACAGGATCACTTACGGAGAAA
CAGGAGGAAATAGCCCTGTCCAGGAGTTCACTGTGCCTGGGAGCAAGTCTACAGCTACCATCAGCGGCCTTAAACCTGG
AGTTGATTATACCATCACTGTGTATGCTGTCACTGGCCGTGGAGACAGCCCCGCAAGCAGCAAGCCAATTTCCATTAAT
TACCGAACAGAAATTGACAAACCATCCCAGGGATCCCACCATCACCATCATCACTGATTAACTAAACGAGATCCGGCTG
CTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAA
ACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT

Translation from ATG in Ndel site onward:
M - AS - Fn3,,; - GS - HHHHHH

MASVSDVPRDLEVVAATPTSLLISWDAPAVTVRYYRITYGETGGNSPVQEFTVPGSKST
ATISGLKPGVDYTITVYAVTGRGDSPASSKPISINYRTEIDKPSQGSHHHHHHZ
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Appendix D: Sequences

pEThK-Fn3wt
This construct is used for bacterial expression of Fn3 with a C-terminal His;-KGSGK tag
which provides two additional primary amines for chemical conjugation.

Size: 5573 bp
Selectable marker: kanamycin

... -- rbs -- TATA -- NdeI -- NheI -- Fn3 1-101 -- BamHI -- His6 -- KGSGK -- Stop --
TTAACTAAACGA -- GATC....

TGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGT TACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTT
CCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCT TTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGT
TCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGT TGGAGTCCACGTTCTTTAATAGTGGACTCT TGT TCCAAACTGGAACAACACTCAACCCTATCTCGGTCTA
TTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGT T TACAATT TCAGGTGGCA
CTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTA CTAAATACATTCAAATATGTATCCGCTCATGAATTAATTCTTAGAAAAACTCATCGAGCATCAAATGAAACTGCAA
TTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTC
CGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATT
TCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGAT TGCGCCTGAGCGAGACGAAATACGCGATCGCTGTT
AAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATA CACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGG
GGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTG
GCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAA
ATCAGCATCCATGTTGGAATTTAATCGCGGCCTAGAGCAAGACGT TTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTT TTATTGTTCATGACC
AAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGAT CTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACC
ACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAG
GCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGT TACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGT TGGACTCAAGACGATAG
TTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGT TCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCAC
GCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTC
GCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCAC
ATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGC
GGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGT TAAGCCAGTATACACT
CCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTC
CGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGATTCACAGATGTCTGCCTGTTCATCCGCGT
CCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGG CCTGTTTGGTCACTGATGCCTCCGTGTAAGGGGGATTTCTGTTC
ATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCACGATACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGT TGTGAGGGTAAACAACTGGCGGTATGGATGCGGCG
GGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATAATGGTGCAGGGLG
CTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGT CGCTTCACGTTCGCTCGCGTATCGGTGAT
TCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCACGATCATGCGCACCCGTGGGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAA
ACGTTTGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCAAGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGA
CCCAGAGCGCTGCCGGCACCTGTCCTACGAGT TGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAG TCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTC
AAGGGCATCGGTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGG
CCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGT TGCAGCAAG
CGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGT TAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCAAC
GCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGT TGAAAACCGG
ACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAAC
AGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGC
CGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTT
CGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGATT TAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACG
CCAATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTG
GTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCA
TACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCCCAGTAGTAGGT TGAGGCCGTTGAGCACCGCCGLCGT
AAGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGT GGCGAGCCCGATCTTCCCCAT

CGGTGATGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAG
GATCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAA
TAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCT
GCGACCCCCACCAGCCTACTGATCAGCTGGGATGCTCCTGCTGTCACAGTGAGATATTACAGGATCACTTACGGAGAAA
CAGGAGGAAATAGCCCTGTCCAGGAGTTCACTGTGCCTGGGAGCAAGTCTACAGCTACCATCAGCGGCCTTAAACCTGG
AGTTGATTATACCATCACTGTGTATGCTGTCACTGGCCGTGGAGACAGCCCCGCAAGCAGCAAGCCAATTTCCATTAAT
TACCGAACAGAAATTGACAAACCATCCCAGGGATCCCACCATCACCATCATCACAAGGGTTCTGGCAAATGATTAACTA
AACGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACC
CCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT

Translation from ATG in Ndel site onward:
M - AS - Fn3;p; - GS - HHHHHH - KGSGK

MASVSDVPRDLEVVAATPTSLLISWDAPAVTVRYYRITYGETGGNSPVQEFTVPGSKST
ATISGLKPGVDYTITVYAVTGRGDSPASSKPISINYRTEIDKPSQGSHHHHHHKGSGKZ
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Appendix D: Sequences

pETh-Fn3-Fn3

This construct is used for bacterial expression of Fn3-Fn3 bivalent with a C-terminal His,
tag.

.... - rbs - TATA - NdeI - NheI - Fn3,,, - BamHI - 1linker -

KpnI - Fn3,,, - SacI - spacer - His6 - Stop - TTAACTAAACGA -
- GATC....

TGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGT TACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTT
CCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCT CTAAATCGGGGGCTCCCTTTAGGGT TCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGT
TCACGTAGTGGGCCATCGCCCTGATAGACGG CGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTA
TTCTTTTGATTTATAAGGGA TGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGT T TACAATTTCAGGTGGCA
CTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAATTAATTCTTAGAAAAACTCATCGAGCATCAAATGAAACTGCAA
TTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACT CACCGAGGCAGT TCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTC
CGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGT TATCAAGTGAGAAAT CACCATGAGTGACGACTGAAT CCGGTGAGAATGGCAAAAGTTTATGCATT
TCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTT
AAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGG
GGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGT TTAGTCTGACCATCTCATCTGTAACATCATTG
GCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACAT TATCGCGAGCCCATTTATACCCATATAA
ATCAGCATCCATGTTGGAATTTAATCGCGGCCTAGAGCAAGACGTTTCCCGT TGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGACC
AAAATCCCTTAACGTGAG CGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACC
ACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAG
GCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGT TACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAG
TTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGT TCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCAC
GCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTC
GCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCAC
ATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGT CAGTGAGCGAGGAAGC
GGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACT
CCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTC
CGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGATTCACAGATGTCTGCCTGTTCATCCGCGT
CCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGGGGGATTTCTGTTC
ATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCACGATACGGGT TACTGATGATGAACATGCCCGGTTACTGGAACGT TGTGAGGGTAAACAACTGGCGGTATGGATGCGGCG
GGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATAATGGTGCAGGGCG
CTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGT TTTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCGGTGAT
TCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCACGATCATGCGCACCCGTGGGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAA
ACGTTTGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCAAGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGA
CCCAGAGCGCTGCCGGCACCTGTCCTACGAGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAGT CATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTC
AAGGGCATCGGTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGT TGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGG
CCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCT TCACCGCCTGGCCCTGAGAGAGT TGCAGCAAG
CGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCAAC
GCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGT TGAAAACCGG
ACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAAC
AGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGC
CGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTT
CGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGT TGATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACG
CCAATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTG
GTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCA
TACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCCCAGTAGTAGGT TGAGGCCGTTGAGCACCGCCGCCGL
AAGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGT GGCGAGCCCGATCTTCCCCAT

CGGTGATGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAG
GATCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAA
TAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCT
GCGACCCCCACCAGCCTACTGATCAGCTGGCTTCACCATCGCTCTGACGTGCGCTCTTACAGGATCACTTACGGAGAAA
CAGGAGGAAATAGCCCTGTCCAGAAGTTCACTGTGCCTGGGTCGCGCTCCCTGGCTACCATCAGCGGCCTTAAACCTGG
AGTTGATTATACCATCACTGTGTATGCTGTCACTTGGGGGTCTTACTGTTGCTCTAATCCAATTTCCATTAATTACCGA
ACAGAAATTGACAAACCATCCCAGGGATCCGGAGGCGGTTCAGGCGGAGGTAAAGGTGGCGGAGGTACCGTTTCTGATG
TTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTGGTATCATCCTTTCTATTATGTCGC
GCATTCTTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCCAGGAGTTCACTGTGCCTCGTTCGCCCTGG
TTTGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTATACCATCACTGTGTATGCTGTCACTGATAGTAACGGTTCTC
ATCCAATTTCCATTAATTACCGAACAGAAATTGACAAACCATCCCAGGAGCTCAGATCCCACCATCACCATCATCACTG
ATTAACTAAACGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTA
GCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT

Translation from ATG in Ndel site onward:
M - AS - Fn3,,; - linker - Fn3,,; — ELRS - HHHHHH

MASVSDVPRDLEVVAATPTSLLISWLHHRSDVRSYRITYGETGGNSPVQKFTVPGSRSL
ATISGLKPGVDYTITVYAVTWGSYCCSNPISINYRTEIDKPSQGSGGGSGGGKGGGGTV
SDVPRDLEVVAATPTSLLISWYHPFYYVAHSYRITYGETGGNSPVQEFTVPRSPWFATI
SGLKPGVDYTITVYAVTDSNGSHPISINYRTEIDKPSQELRSHHHHHH*
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Appendix D: Sequences

pCT-EGFR(404SG)
This construct is used for yeast surface display of EGFR ectodomain mutant 404SG.

Size: 8129 bp
Selectable marker: ampicillin

Aga2--Spacer--FactorXa--HA--Linker--NheI--4045G--BamHI--
Myc--Stop2--xXhoI--Terminator....

ACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGGACGGATCGCTTGCCTGTAACTTACACGCGCCTCGTATCTTTTAATGATGGAATAATTTGGGAATTTACTCTGTGTTTA
TTTATTTTTATGTTTTGTATTTGGATTTTAGAAAGTAAATAAAGAAGGTAGAAGAGTTACGGAATGAAGAAAAAAAAATAAACAAAG! AAAAAATTT GCGTACTTTACATATATATTTATTAGACAAGAAA
AGCAGATTAAATAGATATACATTCGATTAACGATAAGTAAAATGTAAAATCACAGGATTTTCGTGTGTGGTCTTCTACACAGACAAGATGAAACAATTCGGCATTAATACCTGAGAGCAGGAAGAGCAAGATAAAAGGTAGTA
TTTGTTGGCGATCCCCCTAGAGTCTTTTACATCTTCGGAAAACAAAAACTATTTTTTCTTTAATTTCTTTTTTTACTTTCTATTTTTAATTTATATATTTATATTAAAAAATTTAAATTATAATTATTTTTATAGCACGTGAT
GAAAAGGACCCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTAT
GAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGT TACATCGAACTGGATC
TCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCT
GAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAA
GGAGCTAACCGCTTTTTTTCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTAT
TAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGG
TCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGCAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA
ACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACT TCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAG
ACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACT
GGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTC
GTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCATTGAGAAA
GCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGG TATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGGAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAG
CGTCGATTTTTGTGATGCTCGTCAGGGGGGCCGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCG
TATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGC
ACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTACCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCCTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCAC
ACAGGAAACAGCTATGACCATGATTACGCCAAGCTCGGAATTAACCCTCACTAAAGGGAACAAAAGCTGGGTACCCGACAGGTTATCAGCAACAACACAGTCATATCCATTCTCAATTAGCTCTACCACAGTGTGTGAACCAA
TGTATCCAGCACCACCTGTAACCAAAACAATTTTAGAAGTACT T TCACTTTGTAACTGAGCTGTCATTTATATTGAATTTTCAAAAATTCTTACTTTTTTTT TGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCA
TTACCACCATATACATATCCATATACATATCCATATCTAATCTTACTTATATGT TGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATA
TTGAAGTACGGATTAGAAGCCGCCGAGCGGGTGACAGCCCTCCGAAGGAAGACTCTCCTCCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTAC
AATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATGAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGC

GAAGCGATGATTTTTGATCTATTAACAGATATATAAATGCAAAAACTGCATAACCACTTTAACTAATACTTTCAACATTTTCGGTTTGTATTACTTCTTATT
CAAATGTAATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAGAATTCTACTTCATACATTTTCAATTAA
GATGCAGTTACTTCGCTGTTTTTCAATATTTTCTGTTATTGCTTCAGTTTTAGCACAGGAACTGACAACTATATGCGAGCAAATCCCCTCACCAACTTTAGA
ATCGACGCCGTACTCTTTGTCAACGACTACTATTTTGGCCAACGGGAAGGCAATGCAAGGAGTTTTTGAATATTACAAATCAGTAACGTTTGTCAGTAATTG
CGGTTCTCACCCCTCAACAACTAGCAAAGGCAGCCCCATAAACACACAGTATGTTTTTAAGGACAATAGCTCGACGAT TGAAGGTAGATACCCATACGACGT
TCCAGACTACGCTCTGCAGGCTAGTGGTGGTGGTGGTTCTGGTGGTGGTGGTTCTGGTGGTGGTGGTTCTGCTAGCCTGGAGGAAAAGAAAGT TTGCCAAGG
CACGAGTAACAAGCTCACGCAGTTGGGCACTTTTGAAGATCATTTTCTCAGCCTCCAGAGGATGT TCAATAACTGTGAGGTGGTCCTTGGGAATTTGGAAAT
TACCTATGTGCAGAGGAATTATGATCTTTCCTTCT TAAAGACCATCCAGGAGGTGACTGGTTATGTCCTCATTGCCCACAACACAGTGGAGCGAATTCCTTT
GGAAAACCTGCAGATCATCAGAGGAAATATGTACTACGAAAATTCCTATGCCTTAGCAGTCTTATCTAACTATGATGCAAATAAAACCGGACTGAAGGAGCT
GCCCATGAGAAATTTACAGGAAATCCTGCATGGCGCCGTGCGGTTCAGCAACAACCCTGCCCTGTGCAACGTGGAGAGCATCCAGTGGCGGGACATAGTCAG
CAGTGACTTTCTCAGCAACATGTCGATGGACTTCCAGAACCACCTGGGCAGCTGCCAAAAGTGTGATCCAAGCTGTCCCAATGGGAGCTGCTGGGGTGCAGG
AGAGGAGAACTGCCAGAAACTGACCAAAATCATCTGTGCCCAGCAGTGCTCCGGGCGCTGCCGTGGCAAGTCCCCCAGTGACTGCTGCCACAACCAGTGTGC
TGCAGGCTGCACAGGCCCCCGGGAGAGCGACTGCCTGGTCTGCCGCAAATTCCGAGACGAAGCCACGTGCAAGGACACCTGCCCCCCACTCATGCTCTACAA
CCCCACCACGTACCAGATGGATGTGAACCCCGAGGGCAAATACAGCTTTGGTGCCACCTGCGTGAAGAAGTGTCCCCGTAATTATGTGGTGACAGATCACGG
CTCGTGCGTCCGAGCCTGTGGGGCCGACAGCTATGAGATGGAGGAAGACGGCGTCCGCAAGTGTAAGAAGTGCGAAGGGCCTTGCCGCAAAGTGTGTAACGG
AATAGGTATTGGTGAATTTAAAGACTCACTCTCCATAAATGCTACGAATATTAAACACT TCAAAAACTGCACCTCCATCAGTGGCGATCTCCACATCCTGCC
GGTGGCATTTAGGGGTGACTCCTTCACACATACTCCTCCTCTGGACCCACAGGAACTGGATAT TCTGAAAACCGTAAAGGAAATCACAGGGTCTTTGCTGAT
TCAGGCTTGGCCTGAAAACAGGACGGACCTCCATGCCTTTGAGAACCTAGAAATCATACGCGGCAGGACCAAGCAACATGGTCAGTTTTCTCTTGCAGTCGT
CGGCCTGAACATAACATCCTTGGGATTACGCTCCCTCAAGGAGATAAGTGATGGAGATGTGATAATTTCAGGAAACAAAAATTTGTGCTATGCAAATACAAT
AAACTGGAAAAAACTGTTTGGGACCTCCGGTCAGAAAACCAAAATTATAAGCAACAGAGGTGAAAACAGCTGCAAGGCCACAGGCCAGGTCTGCCATGCCTT
GTGCTCCCCCGAGGGCTGCTGGGGCCCGGAGCCCAGGGACTGCGTCTCTTGCCGGAATGTCAGCCGAGGCAGGGAATGCGTGGACAAGTGCAACCTTCTGGA
GGGTGAGCCAAGGGAGT TTGTGGAGAACTCTGAGTGCATACAGTGCCACCCAGAGTGCCTGCCTCAGGCCATGAACATCACCTGCACAGGACGGGGACCAGA
CAACTGTATCCAGTGTGCCCACTACATTGACGGCCCCCACTGCGTCAAGACCTGCCCGGCAGGAGT CATGGGAGAAAACAACACCCTGGTCTGGAAGTACGC
AGACGCCGGCCATGTGTGCCACCTGTGCCATCCAAACTGCACCTACGGATGCACTGGGCCAGGTCTTGAAGGCTGTCCAACGAATGGGCCTAAGATCCCGTC
CGGATCCGAACAAAAGCTTATT TCTGAAGAGGACT TGTAATAGCTCGAGATCTGATAACAACAGTGTAGATGTAACAAAATCGACTTTGTTCCCACTGTACT

TTTAGCTCGTACAAAATACAATATACTTTTCATTTCTCCGTAAACAACATGT TTTCCCATGTAATATCCTTTTCTATTTTTCGTTCCGTTACCAACTTTACACATACTTTATATAGCTAT
TCACTTCTATACACTAAAAAACTAAGACAATTTTAATTTTGCTGCCTGCCATATTTCAATTTGTTATAAATTCCTATAATTTATCCTATTAGTAGCTAAAAAAAGATGAAT GTGAATCGAATCCTAAGAGAATTGAGCTCCAA
TTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCCTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCA
CCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGLTCCTTTC
GCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTT TACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGG
GCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATT TATAAGGGATTTTGCCGATTTCGG
CCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATT TAACGCGAATTTTAACAAAATATTAACGTTTACAATTTCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCAGGCAAGTGCACAAACAAT
ACTTAAATAAATACTACTCAGTAATAACCTATTTCTTAGCATTTTTGACGAAATTTGCTATTTTGTTAGAGTCTTTTACACCATTTGTCTCCACACCTCCGCTTACATCAACACCAATAACGCCATT TAATCTAAGCGCATCA
CCAAIZAT'I'TTCTGGCG‘l'CﬂﬁTCCACCAGCTAACATMAATGTMGCTI'I'CGGGGL_rCTC'I'|'I.'-'CCl"l'(CMCCC‘WGAMTCGAGTTCCMTCCAAMGFTCACCTGTCCCACCTGCTTCTGMTCMAWGGGMTMA
CGAATGAGGTTTCTGTGAAGCTGCACTGAGTAGTATGTTGCAGTCTTTTGGAAATACGAGTCTTTTAATAACTGGCAAACCGAGGAACTCTTGGTATTCTTGCCACGACTCATCTCCATGCAGTTGGACGATATCAATGCCGT
AATCATTGACCAGAGCCAAAACATCCTCCTTAGGTTGATTACGAAACACGCCAACCAAGTATTTCGGAGTGCCTGAACTATTTTTATATGCTTT TACAAGACTTGAAATTTTCCTTGCAATAACCGGGTCAATTGTTCTCTTT
CTATTGGGCACACATATAATACCCAGCAAGTCAGCATCGGAATCTAGAGCACATTCTGCGGCCTCTGTGCTCTGCAAGCCGCAAACTTTCACCAATGGACCAGAACTACCTGTGAAATTAATAACAGACATACTCCAAGCTGC
CTTTGTGTGCTTAATCACGTATACTCACGTGCTCAATAGTCACCAATGCCCTCCCTCTTGGCCCTCTCCTTTTCTTTTT TCGACCGAATTAATTCTTAATCGGCAAAAAAAGAAAAGCT CCGGATCAAGATTGTACGTAAGGT
GACAAGCTATTTTTCAATAAAGAATATCTTCCACTACTGCCATCTGGCGTCATAACT GCAAAGTACACATATATTACGATGCTGTCTATTAAATGCTTCCTATATTATATATATAGTAATGTCGTTTATGGTGCACTCTCAGT
ACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGETGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTT
TTCACCGTCATCACCGAAACGCGCGA

Translation from Aga2p onward:
Aga2p - KDNSST - Xa - HA - (G,S); — AS - 4045G - GS - c-myc

MQLLRCFSIFSVIASVLAQELTTICEQIPSPTLESTPYSLSTTTILANGKAMQGVFEYYKSVTFVSNCGSHPSTTSKGS
PINTQYVFKDNSSTIEGRYPYDVPDYALQASGGGGSGGGGSGGGGSASLEEKKVCQGTSNKLTQLGTFEDHFLSLQRMF
NNCEVVLGNLEITYVQRNYDLSFLKTIQEVTGYVLIAHNTVERIPLENLQIIRGNMYYENSYALAVLSNYDANKTGLKE
LPMRNLQEILHGAVRFSNNPALCNVESIQWRDIVSSDFLSNMSMDFQNHLGSCQKCDPSCPNGSCWGAGEENCQKLTKI
ICAQQCSGRCRGKSPSDCCHNQCAAGCTGPRESDCLVCRKFRDEATCKDTCPPLMLYNPTTYQMDVNPEGKYSFGATCV
KKCPRNYVVTDHGSCVRACGADSYEMEEDGVRKCKKCEGPCRKVCNGIGIGEFKDSLSINATNIKHFKNCTSISGDLHI
LPVAFRGDSFTHTPPLDPQELDILKTVKEITGSLLIQAWPENRTDLHAFENLEIIRGRTKQHGQFSLAVVGLNITSLGL
RSLKEISDGDVIISGNKNLCYANTINWKKLFGTSGQKTKIISNRGENSCKATGQVCHALCSPEGCWGPEPRDCVSCRNV
SRGRECVDKCNLLEGEPREFVENSECTIQCHPECLPQAMNITCTGRGPDNCIQCAHYIDGPHCVKTCPAGVMGENNTLVW
KYADAGHVCHLCHPNCTYGCTGPGLEGCPTNGPKIPSGSEQKLISEEDLZZ
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Engineered Binders

These constructs are Fn3 domains engineered for binding to the indicated target.
Sequence data is provided from Nhel to BamHI in both nucleotide and amino acid
formats.

Lysozyme

L0.7.1 (~~10 pm)
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GCGCGACTGCCCCTGGGCTACCTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCCAGG
AGTTCACTGTGCCTTGGACCCCCGTTTGTTTTGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTATACC
ATCACTGTGTATGCTGTCACTTCTAGTCAGCGGGGCTGCATGCCAATTTCCATTAATTACCGAACAGAAAT
TGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWRDCPWATYYRITYGETGGNSPVQEFTVPWTPVCFATISGLKPGVDYT
ITVYAVTSSQRGCMPISINYRTEIDKPSQGS

L1.5.1 (~1 pm)
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GAGTTTGGACAACCAGGCCAATTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCCAGG
AGTTCACTGTGCCTGGTCAGTCGGACGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTATACCATCACT
GTGTATGCTGTCACTCGGTGTGAGCCGTCCCGCAATTCGGCCGTTCCAATTTCCATTAATTACCGAACAGA
AATTGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWSLDNQANYYRITYGETGGNSPVQEFTVPGQSDATISGLKPGVDYTIT
VYAVTRCEPSRNSAVPISINYRTEIDKPSQGS

L3.3.1 (7.6 = 1.1 nMm)
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GAGTTTGGACAACCAGGCCAATTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCTCTGTCCAGG
AGTTCACTATGCCTGGGGTTACCAATGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTATACCATCACT
GTGTATGCTGTCACTCGCGTGGGGCGGATGCTTGACACGCCGGGCCCAATTTCCATTAATTACCGAACAGA
AATTGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWSLDNQANYYRITYGETGGNSSVQEFTMPGVTNATISGLKPGVDYTIT
VYAVTRVGRMLDTPGPISINYRTEIDKPSQGS

L5.3.4 (360 pm)
GCTAGCGTTTCTGATGTCCCGAGGGGCCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GAGTTTGGACAACCAGGCCAAGTATTACAGGATCACTTACGGGGAAACAGGGGGAAATAGCCTTGTCCAGG
AGTTCACTATGCCTGGGGTTACCAATGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTATACCATCACT
GTGTATGCTGTCACTCGCGTGGGGCGGATGCTTGACACGCCGGGCCCAATTTCCACTAATTACCGAACAGA
GATTGACAAACCATCCCAGGGATCC

ASVSDVPRGLEVVAATPTSLLISWSLDNQAKYYRITYGETGGNSLVQEFTMPGVTNATISGLKPGVDYTIT
VYAVTRVGRMLDTPGPISTNYRTEIDKPSQGS

L5.6.2 (16 = 6 pM)
GCTAGCGCTCCTGATGTTCCGAGGGACCTGGAAGTTGTCGCTGCGGCCCCCACCAGCCTACTGATCAGCTG
GCGCGACTGCCCCTGGGCTATCTATTACGGGATCACTTACGGAGAAACAGGAGGAAATAGCCTTGTCCAGG
AGTTCACTATGCCCGGGGTTACCAATGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTATACCATCACT
GTGTATGCTGTCACTCGCGTGGGGCGGATGTCTTGCACGTCGGGCCCAATTTCCATTAATTACCGAACAGA
AATTGACAAACCATCCCAGGGATCC

ASAPDVPRDLEVVAAAPTSLLISWRDCPWAIYYGITYGETGGNSLVQEFTMPGVTNATISGLKPGVDYTIT
VYAVTRVGRMSCTSGPISINYRTEIDKPSQGS

L6.5.1 (6.6 = 1.3 p™)

GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCTCCACCAGCCTACTGATCAGCTG
GCGCGGCTGCCCCTGGGCTATCTATTACGGGATCACTTACGGAGAAACAGGAGGGAGTAGCCTTGTCCAGG
AGTTCACTATGCCTGGGGTTACCAATGCTACCATCAGCGGCCTTGAACCTGGAGTTGATTATACCATCACT
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GTGTACGCTGTCACTCGCGTGGGGCGGATGCTTTGCACGCCGGGCCCAATTTCCATTAATTACCGAACAGA
AATTGACAGACCATCCCAGGGATCC

ASVSDVPRDLEVVAATSTSLLISWRGCPWAIYYGITYGETGGSSLVQEFTMPGVTNATISGLEPGVDYTIT
VYAVTRVGRMLCTPGPISINYRTEIDRPSQGS

L7.5.1 (2.6 = 0.6 pm)
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCTCCACCAGCCTACTGATCAGTTG
GCGCGGCTACCCCTGGGCTACCTATTATGGGATCATTTACGGAGAAACGGGAGGAAATAGCCTTGTCCAGG
AGTTCACTATGCCTGGGGTTACCAATGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTATACCATCACT
GTGTATGCTGTCACTCGCGTGGGGCGGACGTTTGACACGCCGGGCCCAATCTCCATTAATTACCGAACAGA
AATTGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATSTSLLISWRGYPWATYYGIIYGETGGNSLVQEFTMPGVTNATISGLKPGVDYTIT
VYAVTRVGRTFDTPGPISINYRTEIDKPSQGS

L8.5.2 (2.9 = 1.4 pM)
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCTCCACCAGCCTACTGATCAGCTG
GCGCGGCTGCCCCTGGGCTATCTATTACGGGGTCACTTACGGAGAAACAGGAGGGAGTAGCCTTGCCCAGG
AGTTCACTATGCCTGGGGTTACCAATGCTACCATCAGCGGCCTTGAACCTGGAGTTGATTATACCATCACT
GTGTACGCTGTCACTCGCGTGGGGCGGATGCTTTGCGCGCCGGGCCCAATTTCCATTAATTACCGAACAGA
AATTGACAGACCATCCCAGGGATCC

ASVSDVPRDLEVVAATSTSLLISWRGCPWAIYYGVTYGETGGSSLAQEFTMPGVTNATISGLEPGVDYTIT
VYAVTRVGRMLCAPGPISINYRTEIDRPSQGS

L8.5.7 (2.8 = 0.5 pM)
GCTAGCGTTTCTGGTGTTCCGAGGGACCTGGAAGTCGTTGCGGCGACCCCCACCAGCATACTGATCAGCTG
GCGCGACCGTCCCTGGGCTATCTATTACGGGATCACTTACGGAGAAACAGGAGGGAGTAGCCTTGTCCAGG
AGTTCACTATGCCTGGGGTTACCAATGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTATACCATCACT
GTGCATGCTGTCACTAGGCTGTCCATTGTGCCATACGCCCCAATTTCCATTACTTACCGAACAGAAATTGA
CAAGCCACCCCAGGGATCC

ASVSGVPRDLEVVAATPTSILISWRDRPWAIYYGITYGETGGSSLVQEFTMPGVTNATISGLKPGVDYTIT
VHAVTRLSIVPYAPISITYRTEIDKPPQGS

cons0.4.1 (1.1 = 0.6 pM)
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGTTG
GCGCGAGGACCCCTGGGCTAAGTATTATGGGATCATTTACGGAGAAACGGGAGGAAATAGCCTTGTCCAGG
AGTTCACTATGCCTGGGGTTACCAATGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTATACCATCACT
GTGTATGCTGTCACTAGAGTAGGTTGGGCGTCTTATACACTAGGCCCAATCTCCATTAATTACCGAACAGA
AATTGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWREDPWAKYYGIIYGETGGNSLVQEFTMPGVTNATISGLKPGVDYTIT
VYAVTRVGWASYTLGPISINYRTEIDKPSQGS

Goat IgG

gI2.5.3788I (1.2 = 0.4 nm)
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GACCCGTGCTTATTTTGCTCCGTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCCAGG
AGTTCACTGTGTCTGGTTCGCTTTCCAGCGCTATCATCAGCGGCCTTAAACCTGGAGTTGATTATACCATC
ACTGTGTATGCTGTCACTTCCTACGGCCTCGTTATCACCGATCCAATTTCCATTAATTACCGAACAGAAAT
TGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWTRAYFAPYYRITYGETGGNSPVQEFTVSGSLSSAIISGLKPGVDYTI
TVYAVTSYGLVITDPISINYRTEIDKPSQGS

9I2.5.2 (32 = 21 nm)

GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GGCCTTGCCGCGGTCGGAGTATTACAGGATCACTTACGGAGAAACAGGGGGAAATAGCCCTGTCCAGGAGT
TCACTGTGCCTAATTGGACGTCTGCTATCATCAGCGGCCTTAAGCCTGGAGTTGATTATACCATCACTGTG
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TATGCTGTCACTTCTCCTGGGTTGGTTCTGGGGGCGCCAATTTCCATTAATTACCGAACAGAAATTGACAA
ACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWALPRSEYYRITYGETGGNSPVQEFTVPNWTSAIISGLKPGVDYTITV
YAVTSPGLVLGAPISINYRTEIDKPSQGS

gI2.5.4 (35 = 16 n™m)
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GAAGATGCGTGCTGCTCGTTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCCAGGAGT
TCACTGTGCNNAATTGGACGTCTGCTATCATCAGCGGCCTTAAACCTGGAGTTGATTATACCATCACTGTG
TATGCTGTCACTTCTCCTGGGTTGATTCTGGGGGCGCCAATTTCCATTAATTACCGAACAGGAATTGACAA
ACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWKMRAARYYRITYGETGGNSPVQEFTV?NWTSAIISGLKPGVDYTITV
YAVTSPGLILGAPISINYRTGIDKPSQGS

Rabbit IgG
r1i4.5.5 (51 = 4 pm)

GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GGCGACTACCGGGAAGGCTCCCCTTTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCC
AGGAGTTCACTGTGCCTGCTACGTGGGTCAAGGCTACCATCCGCGGCCTTAAACCTGGAGTTGATTATACC
ATCACTGTGTATGCTGTCACTCATTATGACGATACCCTGTCTCCAATTTCCATTAATTACCGAACAGAAAT
TGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWATTGKAPLYYRITYGETGGNSPVQEFTVPATWVKATIRGLKPGVDYT
ITVYAVTHYDDTLSPISINYRTEIDKPSQGS

rr4.3.1 (117 + 6 pm)
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GGCGACTACCGGGAAGACTCCCCTTTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCC
AGGAGTTCACTGTGCCTCGTTCTGCCGAGATGGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTATACC
ATCACTGTGTATGCTGTCACTCACTATGACGATACCCTGTCTCCAATTTCCATTAATTACCGAACAGAAAT
TGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWATTGKTPLYYRITYGETGGNSPVQEFTVPRSAEMATISGLKPGVDYT
ITVYAVTHYDDTLSPISINYRTEIDKPSQGS

r14.3.4 (300 = 120 pm)
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GGTTAATGGGGACTCTTGTCTTTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCCAGG
AGTTCACTGTGTCTGGTTCTGCTCATGTTGCTACCATCAGGCGCCTTAAACCTGGAGTTGATTATACCATC
ACTGTGTATACTGTCACTGGGTACGGTGGAAAGAGGGTGCAGCCAATTTCCATTAATTACCGAACAGAAAT
TGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWVNGDSCLYYRITYGETGGNSPVQEFTVSGSAHVATIRRLKPGVDYTI
TVYTVTGYGGKRVQPISINYRTEIDKPSQGS

ri3.6.4 (0.63 = 0.07 nm)
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GGTTCGTCCCTCGTACAGTCGGTTGTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCC
AGGAGTTCACTGTGTCTCGTTCGGCTCGCTCGGCTACCATCCGCGGCCTTAAACCTGGAGTTGATTATACC
ATCACTGTGTATGCTGTCACTGGGTACGGTGGGGAGAGGGTGCAGCCAATTTCCATTAATTACCGAACAGA
AATTGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWVRPSYSRLYYRITYGETGGNSPVQEFTVSRSARSATIRGLKPGVDYT
ITVYAVTGYGGERVQPISINYRTEIDKPSQGS

rr4.3.3 (1.08 = 0.38 nm)
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GGCTCGTGCTTCGAATCCCTGTCTCTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCC
AGGAGTTCACTGTGCCTGCTACGTGGGTCAAGGCTACCATCCGCGGCCTTAAACCTGGAGTTGATTATACC
ATCACTGTGTATGCTGTCACTGGGTACGGTGGGAAGAGGGTGCAGCCAATTTCCATTAATTACCGAACAGA
GATTGACAAACCATCCCAGGGATCC

167



Appendix D: Scquences

ASVSDVPRDLEVVAATPTSLLISWARASNPCLYYRITYGETGGNSPVQEFTVPATWVKATIRGLKPGVDYT
ITVYAVTGYGGKRVQPISINYRTEIDKPSQGS

CEA

C7.4.3 (1.8 = 0.4 nm)
GCTAGCGTTTCTGATGGTACTTTAAGCCGGGACCTGGGAGTTGTTGCTGCAACCCCCACCAGCCTACTGAT
CAGCTGGTATTACTCTTATTCTCATCACTACTCTTCTTACAGGATCACTTACGGAGAAACAGGAGGAAATA
GCCCTGTCCAGGAGTTCACTGTGCCTAGGTATCGGGCCTTTGCTACCATCAGCGGCCTTAAACCTGGAGTT
GATTATACCATCACTGTGTATGCTGTCACTTCTTCTTCCTCTTACTCCTATCCAATTTCCATTAATTACCG
AACAGAAATTGACAAACCATCCCAGGGATCC

ASVSDGTLSRDLGVVAATPTSLLISWYYSYSHHYSSYRITYGETGGNSPVQEFTVPRYRAFATISGLKPGV
DYTITVYAVTSSSSYSYPISINYRTEIDKPSQGS

NNB C3.2.1 (~39 nm)
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GAGGCATGTGCGGGAGCATTATTACAGGGTCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCCAGGGGT
TCACTGTGCCTCCGCGCCTTGGTCGTGCTACCATCGGCGGCCTTAAACCTGGAGTTGATTATACCATCACT
GTGTATGCTGTCACTTTGGGTCCCCATGTGCCAATTTCCATTAATTACCGAACAGAAATTGACAAACCATC
CCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWRHVREHYYRVTYGETGGNSPVQGFTVPPRLGRATIGGLKPGVDYTIT
VYAVTLGPHVPISINYRTEIDKPSQGS

Mouse IgG

mI3.2.1 (4.1 = 0.7 n™m)
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GTGTTGCTCCGATAACTGTTCAAATTCTTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCC
AGGAGTTCACTGTGCCTCGCTCGTGCTTCATGGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTATACC
ATCACTGCGTATGCTGTCACTGATAGTAACGGTCCTCATCCAATTTCCATTAATTACCGAACAGAAATTGA
CAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWCCSDNCSNSYRITYGETGGNSPVQEFTVPRSCFMATISGLKPGVDYT
ITAYAVTDSNGPHPISINYRTEIDKPSQGS

Albumin

A1b3.2.1
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGTTG
GCGCGGCTACCCCTGGGCTACCTATTATGGGATCACTTACGGAGAAACAGGAGGAAATAGCCTTGTCCAGG
AGTTCACTATGCCTGGGGTTACCAATGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTATACCATCACT
GTGTATGCTGTCACTCGCGTGGGGCGGACGTTTGACACGCCGGGCCCAATCTCCATTAATTACCGAACAGA
AATTGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWRGYPWATYYGITYGETGGNSLVQEFTMPGVTNATISGLKPGVDYTIT
VYAVTRVGRTFDTPGPISINYRTEIDKPSQGS

EGFR

E6.2.6 (260 = 130 pM) [6.2.6, Clone A]
GCTAGCGTTTCCGATGTTCCGAGGGACCTGGAGGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GTTCGACTACGCTGTGACTTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCCAGGAGT
TCACTGTGCCTGGTTGGATCTCCACTGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTATACCATCACT
GTGTATGCTGTCACTGACAACTCTCGTTGGCCTTTTCGCTCTACTCCAATTTCCACTAATTACCGAACAGA
AATTGACAAACCACCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWFDYAVTYYRITYGETGGNSPVQEFTVPGWISTATISGLKPGVDYTIT
VYAVTDNSRWPFRSTPISTNYRTEIDKPPQGS

E4.2.1 (250 = 70 pm) [B2, Clone B]
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GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GTACGGTTTTTCGCTTGCGAGCTCTTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCCAGG
AGTTCACTGTGCCTCGTTCGCCCTGGTTTGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTATACCATC
ACTGTGTATGCTGTCACTTCTAACGACTTTTCTAATCGTTACTCTGGTCCAATTTCCATTAATTACCGAAC
AGAAATTGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWYGFSLASSYRITYGETGGNSPVQEFTVPRSPWFATISGLKPGVDYTI
TVYAVTSNDFSNRYSGPISINYRTEIDKPSQGS

EI4.4.2 (1.4 = 0.2 nM) [u2, Clone C]
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GTATTTTCGCGACCCCCGGTACGTGGACTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTG
CCCAGGAGTTCACTGTGCCTTGGTACCTTCCTGAGGCTACCATCAGCGGCCTTAAACCCGGAGTTGATTAT
ACCATCACTGTGTATGCTGTCACTGGGGACGATCAGAATGCTGGGCTTCCAATTTCCATTAATTACCGAAC
AGAAATTGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWYFRDPRYVDYYRITYGETGGNSPAQEFTVPWYLPEATISGLKPGVDY
TITVYAVTGDDQNAGLPISINYRTEIDKPSQGS

EI3.4.3 (250 = 50 pM) [u3, Clone D]
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GCTTCACCATCGCTCTGACGTGCGCTCTTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCC
AGAAGTTCACTGTGCCTGGGTCGCGCTCCCTGGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTATACC
ATCACTGTGTATGCTGTCACTTGGGGGTCTTACTGTTGCTCTAATCCAATTTCCATTAATTACCGAACAGA
AATTGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWLHHRSDVRSYRITYGETGGNSPVQKFTVPGSRSLATISGLKPGVDYT
ITVYAVTWGSYCCSNPISINYRTEIDKPSQGS

EI2.4.6 (2.9 = 0.3 nM) [u4, Clone E]

GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GTACCTTCGTGACCCCCGGTACGTGGACTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTG
TCCAGGAGTTCACTGTGCCTTGGTACCTTCCTGAGGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTAT
ACCATCACTGTGTATGCTGTCACTTACGATGGCTACCGCGAGAGTACCCCTCTCCCAATTTCCATTAATTA
CCGAACAGAAATTGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWYLRDPRYVDYYRITYGETGGNSPVQEFTVPWYLPEATISGLKPGVDY
TITVYAVTYDGYRESTPLPISINYRTEIDKPSQGS

EI3.4.2 (9.5 + 3.5 nM) [FG5]
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GTATGGTTCCAGTTACGCGTCCTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCCAGG
AGTTCACTGTGCCTCGTTCGCCCTGGTTTGCTATCATCAGCGGCCTGAAACCTGGAGTTGATTATACCATC
ACTGTGTATGCTGTCACTCCTAGTGGGATCTCTGCTCCAATTTCCATTAATTACCGAACAGAAATTGACAA
ACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWYGSSYASYYRITYGETGGNSPVQEFTVPRSPWFAIISGLKPGVDYTI
TVYAVTPSGISAPISINYRTEIDKPSQGS

EIl.4.1 (0.85 = 0.50 nM) [U5]
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GTATCATCCTTTCTATTATGTCGCGCATTCTTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTG
TCCAGGAGTTCACTGTGCCTCGTTCGCCCTGGTTTGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTAT
ACCATCACTGTGTATGCTGTCACTAGTAAGTGCTATGATGGTTCTGTCCCAATTTCCATTAATTACCGAAC
AGAAATTGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWYHPFYYVAHSYRITYGETGGNSPVQEFTVPRSPWFATISGLKPGVDY
TITVYAVTSKCYDGSVPISINYRTEIDKPSQGS

CD276
CD6.3.1 (54 = 38 pM)
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GCTAGCGTTTCTGATGTCCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GTTCGGCTATTACGGCGCGCGCTTTTACAGGATCACTTACGGGGAAACAGGAGGAAATAGCCCTGTCCAGG
AGTTCACTGTGCCTGGGCGCTTTTCCAGCTACACCGCCACCATCAGCGGCCTTAAACCTGGAGTTGATTAT
ACCATCACTGTGTATGCTGTCACTGATAATGTTGGGTCTTATCCAATTCCCATTAATTACCGAACAGAAAT
TGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWFGYYGARFYRITYGETGGNSPVQEFTVPGRFSSYTATISGLKPGVDY
TITVYAVTDNVGSYPIPINYRTEIDKPSQGS

CD6.3.2 (17 + 14 pm)
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GTCTTATCCCTGTCTTTTTCAGGTGCACTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTG
TCCAGGAGTTCACTGTGCCTGGGGGCTTTTCCGGCTACACCGCTACCATCAGCGGCCTTAAACCTGGAGTT
GATTATACCATCACTGTGTATGCTGTCACTGATTACTCTTTCCATCACGATTGCTCTTCTCCAATTTCCAT
TAATTACCGAACAGAAATTGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWSYPCLFQVHYYRITYGETGGNSPVQEFTVPGGFSGYTATISGLKPGV
DYTITVYAVTDYSFHHDCSSPISINYRTEIDKPSQGS

CD6.3.6
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTG
GTACTATCCTGACTACACGTTGTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTGTCCAGG
AGTTCACTGTGCCTGGGCGCTTTCCCGGCTACACCGCTACCATCAGCGGCCTTAAACCTGGAGTTGATTAT
ACCATCACTGTGTATGCTGTCACTGGTTACCGTGTCTACGACCGCTACTCTCATCCAATTTCCATTAATTA
CCGAACAGAAATTGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTSLLISWYYPDYTLYYRITYGETGGNSPVQEFTVPGRFPGYTATISGLKPGVDY
TITVYAVTGYRVYDRYSHPISINYRTEIDKPSQGS

€D6.3.8 (1.6 = 0.9 pm)
GCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCGGCCTACTGATCAGCTG
GTCTTATCCCTGTCTTTTTCGGGTGCACTATTACAGGATCACTTACGGAGAAACAGGAGGAAATAGCCCTG
TCCAGGAGTTCACTGTGCCTGGGGGCTTTTCCGGCTACACCGCTACCATCAGCGGCCTTAAACCTGGAGTT
GATTATACCATCACTGTGTATGCTGTCACTGGTTACTATTTCCGTCACGATTGCTCTTCGCCAATTTCCAT
TAAGTACCGAACAGAAATTGACAAACCATCCCAGGGATCC

ASVSDVPRDLEVVAATPTGLLISWSYPCLFRVHYYRITYGETGGNSPVQEFTVPGGFSGYTATISGLKPGV
DYTITVYAVTGYYFRHDCSSPISIKYRTEIDKPSQGS



Append

Oligonucleotides

: Sequences

Name sequence use sites
a1 GACTGAGCTAGCGTTTCTGATGTTCCGAGGGACCTGGAAGTTGTTGCTGC wNB Tibrary - framework -5 to 38
a2 CCAGCTGATCAGTAGGC TGGT GGGGGT CGCAGTAACAACT TCCAGGTC NNB library - framework 19 to 66

b3nm2 CACCAGCCTACTGATCAGCTGGNNBNNBNNBNNBNNENNBTATTACAGGATCACTTACGGAG wNB library - BC loop 45 to 112

b3nm1 CACCAGCCTACTGATCAGCT TATTACAGGATCACTTACGGAG NNB Vibrary - BC loop 45 to 112
b3n0 CACCAGCCTACTGATCAGCT TATTACAGGATCACTTACGGAG WNB library - BC loop 45 to 112

b3npl CACCAGCCTACTGATCAGC TATTACAGGATCACTTACGGAG NN8 library - BC loop 45 to 112
ban CACAGTGAACTCCTGGACAGGGCTATTTCCTCCTGTTTCTCCGTAAGTGATCCTGTAATA NNB library - framework 91 to 150

<Snml CCCTGTCCAGGAGTTCACTGTGCCTNNBNNBNNBNNBGC TACCAT CAGCGGCCTTAAACCTG NNB library - DE Joop 129 to 193

€sno CCCTGTCCAGGAGTTCACTGTGCCTNNBNNBNNENNBNNBGCTACCATCAGCGGCCTTAAACCTG NNB Tibrary - DE loop 129 to 193

<5npl CCCTGTCCAGGAGTTCACTGTGCCTNNBNNBNNBNNENNBNNBGC TACCATCAGCGGCCTTAAACCTG NNB Tibrary - DE loop 129 to 193

<5np2 CCCTGTCCAGGAGTTCACTGTGCCT TACCATCAGCGGCCTTAAACCTG NNB Tibrary - DE loop 129 to 193
6t GTGACAGCATACACAGTGATGGTATAATCAACTCCA NNB Vibrary -framework 174 to 227

d7om5 CCATCACTGTGTATGCTGTCACTNNBNNBNNEBNNBNNBCCAATTTCCATTAATTACCGAA NNB library - FG loop 206 to 280

d7nmd CCATCACTGTGTATGCTGTCAC CAATTTCCATTAATTACCGAA NNB library - FG loop 206 to 280

d7nm2 CCATCACTGTGTATGCTGTCACTNNBNNBNNBNNBNNBNNBNNBNNBC CAATTTCCATTAATTACCGAA NNB Tibrary - FG Toop 206 ta 280
d7n0 CCATCACTGTGTATGCTGTCAC CAATTTCCATTAATTACCGAA NNB library - FG Toop 206 to 280
d8n GGATCCCTGGGATGGTTTGTCAATTTCTGTTCGGTAATTAATGGARATTGG NNB library -framework 259 to 309
28 GACTGAGCTAGCGTTTCTGATG NNB Tibrary - amplify -
p8 CGTCATGGATCCCTGGGATG NNB Tibrary - amplify -
alvs GGTTCTGCTAGCGTTTCTGATGTTCCGAGGGACC TGGAAGTTGTTGCTGC vs library - framework -5 to 38

bivsa CCAGCCTACTGATCAGCTGGTMY TMYTHYTHY THY TMYTATTACAGGATCACTTACGGAG vs library - BC laop 47 to 112

bivsb CCAGCCTACTGATCAGCTGGTMY THY THY TMYTHY TMY TMY TATTACAGGATCACT TACGGAG ¥s library - BC loop 47 to 112

bivsc CCAGCCTACTGATCAGCTGGTMYTMYTUYTMYTHY TMY TMYTMYTATTACAGGATCACTTACGGAG ¥s library - 8C loop 47 to 112

b3ysd CCAGCCTACTGATCAGCTGGTUY TMY TMY TMY TMY TMY THY THY TMY TAT TACAGGATCACTTACGGAG ¥s library - BC loop 47 to 112

cSvsa CTGTCCAGGAGTTCACTGTGCCTGBEC B (BacBGCTACCATCAGCGGCCTTARAC ¥s Tibrary - DE Toop 131 to 190

c5vsh CTGTCCAGGAGTTCACTGTGCCTQQBLCBNNBE CBACBGCTACCATCAGCGGCCTTAAAC v$ Yibrary - DE loop 131 to 190

€5vsc CTGTCCAGGAGTTCACTGTGCCTGYBTCBNNBNNBNNE tCBACBGCTACCATCAGCGGCCTTAAAC ¥s Vibrary - DE loop 131 to 190
c6YS GTGACAGCATACACAGTGATGGTATAATCAACTCCAGGT TTAAGGCCGCTGATGGTAGC vs library - framework 169 to 227

d7vsa CATCACTGTGTATGCTGTCACTTMYTMY TMYTMY THY TMYCCAATTTCCAGAAATTGACAAAC ¥s library - £G loop 207 to 281

d7vsb CATCACTGTGTATGCTGTCACTTMY TMYTMYTMY TMYTMYTMY CCAATTTCCAGAAATTGACAAAC vs library - FG loop 207 to 281

d7vsc CATCACTGTGTATGCTGTCACTTMYTMYTMYTMY TMYTMY TMY TMYCCAATTTCCAGAAATTGACAAAC ¥s library - FG loop 207 to 281

d7vsd CATCACTGTGTATGCTGTCACTTMYTMYTMYTMY TMY TMYTMY TMYTMY TMYCCAATTTCCAGAAATTGACARAC ¥s library - F6 loop 207 to 281
plvs GGTTCTGCTAGCGTTTCTGATGTTCCGAGG ¥s Tibrary - amplify -
pBYS TTGTTCGGATCCCTGGGATGETTTGTCAATTTC ¥s library - amplify -

b3z 459 (45152515 (0045 1045IKYG(LS152545) (43152515) (00451045 ) THTTACAGGATCACTTACGGAGARAC G4 library - BC loop 47 to 116

b SOASTTTGACCTET sl ne ES ARIIDUIIS et vrary - nc Toon 47 t0 1

CCAGCCTACTGATCAGCTGG(15152545) (45152515) (00451045) (15152545) (45301510) (00451045) (05650525)(20650510) (00451045) (151525
bica0 45)(43152515)(00451045)(15152545)(45152515)(00451045)(15152545)(4‘152515)(00‘51043)KVG(15152§457(45152515)(00451045)Y G4 library - BC loop 47 to 116
MTTACAGGATCACTTACGGAGAAAC
CCAGCCTACTGATCAGCTGG(15152545) (45152515) (00451045) (15152545) (45301510) (00451045) (05650525)(20650510) (00451045) (151525
bicdpl 45)(45152515) (00451045 (15152545) (45152515) (00451045) (15152545) (45152515) (00451045) (15152545) (45152515 (00451045)KYG( G4 library - BC loop 47 to 116
15152545) (45152515 (00451045 TMT TACAGGATCACT TALGGAGAAAC
b4ca GCACAGTGAACTCCTGGACAGGGCTATTTCCTCCTGTTTCTCCGTAAGTGATCCTG G4 hbrary - tramework 96 to 151
dom ST IO GOl st (1o 1o3s10) 0 D SISO OIS OIS e ibrary - 15 1oop 207 10 20
DM R 0t iy e 207
CATCACTGTGTATGCTGTCACT(15103540) (40103515) (00451045) (15152545 (45152515) (00451045) (15103540 (40103515) (00451045) (1515

d764m2 2545)(45152515)(00451045)(15]52545)(45152515)(00451045)(15152545)(45151515)(0045104S)Y(T(15151545)(45152515)(00451045 G4 library - FG loop 207 to 281
)CCAATTTCCATTAATTACCGAA
CAT (ACTGYGUUGCYGI(_A(T(15103540)(40103515)(00451045)(15152545)(45151515)(00451045)(15103540)(*‘0103515)(00451045)(1515

97640 2545) (45152515 (D0451045) (15152545) (45152515) (0045104 5) (15152545 (45152515) (00451045) (15152545) (45152515) (004510453 (1 64 library - FG loop 207 to 281
5152545) (451525153 (00451045) TCT(15152545) (45152515) (00451045} CCAATTTCCATTAATTACCGAAC

w5 CGACGATTGAAGGTAGATACCCATACGACGTTCCAGACTACGCTCTGCAG gene mutagenesis -

w3 ATCTCGAGCTATTACAAGTCCTCTTCAGAAATAAGCTTTTGTTCGGATCC gene mutagenesis -

BCS GATGTTCCGAGGGACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGCTGG 8C loop mutagenesis -

8C3 TGAACTCCTGGACAGGGCTATTTCCTCCTGTTTCTCCGTAAGTGATCCTGTAATA BC Joop mutagenesis -

DES CAGGATCACTTACGGAGAAMCAGGAGGAAATAGCCCTGTCCAGGAGTTCACTGTG DE loop mutagenesis -
0£3 GCATACACAGTGATGGTATAATCAACTCCAGGTTTAAGGCCGCTGATGGTAG 0E loop mutagenesis -
£G5S ACCATCAGCGGCCTTAAACCTGGAGTTGATTATACCATCACTGTGTATGCTGTC FG loop mutagenesis -

FG3 TCGAGCTATTACAAGTCCTCTTCAGAAATAAGCT T TTGTTCGGATCCC TGGGATGGTTTGTCAATTTCTGTTCGGTAATTAATGGARATTGG FG loop mutagenesis -
Geneamp5 CGACGATTGAAGGTAGATACCCATACG gene amplification -
Geneamp3 ATCTCGAGCTATTACAAGTCCTCTTC gene amplification -
BCamp5 GATGTTCCGAGGGACLTGGAAGT TG B8C loop amplification -
BCamp3 TGAACTCCTGGACAGGGCTATTTCC BC laop amplification -
DEamp5 CAGGATCACTTACGGAGAAACAGGAGG DE loop amplification -
DEamp3 GCATACACAGTGATGGTATAATCAAC DE loop amplification -

FGamp5 ACCATCAGCGGCCTTAAACCTGGAG FG loop amplification -

FGamp3 TCGAGCTATTACAAGTCCTCTTCAG FG loop amplification

G4bc3 tgaactcc tatttcctcctgtt tgta 8C loop amplification avoid ¥31

G4de5 't agccctgtccaggagttcactgtgect OE loop amplification include P51

G4fgs accatcageggecttaaacctggagttgatt. tgtcact FG loop amplifcation include 176
b4DE AGGCATAGTGAACTCCTGGAC L7.5.1 s15p DE library -

<SDEa GTCCAGGAGTTCACTATGCCTNNBNNBNNBNNBGC TACCATCAGCGGCCTTAAR L7.5.1 s15p DE library -

<SDED GTCCAGGAGTTCACTATGCCTNNBNNBNNBNNBNNBGC TACCATCAGCGGCCTTAAA L7.5.1 S15P DE library B

<SDEC GTCCAGGAGTTCACTATGCCTNNBNNBNNENNBNNBNNBGCTACCATCAGCGGCCTTAAA L7.5.1 s15P DE library -

c5oed GTCCAGGAGTTCACTATGCCT TACCATCAGCGGCCTTAAA L7.5.1 S15P DE Tibrary -

ConsBC GCCTACTGATCAGTTGGCGCNNBNNBCCCTGGGCTNNBTATTATGGGATCATTTACGGAG L7.5.1 515p Cons library -

ConsFG GGTAATTAATGGAGATTGGGCCVNNYNNYNNYNNVNNC CGCCCCACGCGAGTGACAGLA L7.5.1 S15p Cons library -

ConsensusBC  GCCTACTGATCAGTTGGAGAGRTYRTCCTTGGGCTAYCTATTATGGGATCATTTACGGAG L7.5.1 515p Cons library -
CONsensusFG  GGTAATTAATGGAGATTGGACYTRRTGYAYMARRCRYCCRACCTACTCTAGTGACAGCA L7.5.1 §15P Cons library -
consS ACCTGGAAGTTGTTGCTGCGACCCCCACCAGCCTACTGATCAGTTGGLGC 17.5.1 S15P Cons library -

Cons3 CCCTGGGATGGTTTGTCAATTTCTGTTCGGTAATTAATGGAGATTGGGLC 17.5.1 S15P Cons library -

beccea CACCAGCCTACTGATCAGCTGGBRTBRCYCTBRC! KDTVRCTCTTACAGGATCACTTACGGAG cea affinity maturation 45 to 112

fgcea TTCGGTAATT, TT AGCATACACAGTGATG cea affinity maturation 207 to 280

atermmid ATGTGTAAAGTTGGTAACGGAACG oCT sequencing primer -
peTfor AAATTAATACGACTCACTATAGGG DET sequencing primer -
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Appendix E: Protocols

APPENDIXE. PROTOCOLS

Library Construction (demonstrated using G4 oligos)

Prepare Oligonucleotides

1. Add appropriate amount of 0.1x elution buffer to oligo to yield 100 uM solution.
2. Add 180 uL of 0.1x elution buffer to empty vials.

3. Add 20 uL of 100 uM oligo to yield 10 uM oligo.

Create Fn3 Library Fragments 1-4 and 5-8
1. Create a PCR mix:
61.2ul  10x KOD buffer
61.2ul. 2 mM dNTPs
24.5ul 25 mM MgSO.,
12.24 uL. KOD polymerase
153wl ddH,O
244 .8 uL betaine (2.5M)
18.36 uL DMSO
2. Make twelve 47 uL aliquots.
3. Add 1.0 uL of oligo ! and 2.0 uL of oligo 2.
(1 ul)(10 pmol/uL)(6x1 0" molec. / pmol) = 6x1 0"? molecules

Tube Oligo 1 Oligo 2
1-2 a2 al
3b-4 (a-d) b3G4b b4G4
5d-6 (a-c) c6YS c5YSd
71-8 (a-d) d7G4f d8n

4. Thermocycle
95° 2 min.
94° 30s |
58° 30s | 10 cycles
68° I min, |
68° 10 min.
4° hold

5. Combine 12 uL of products in vials.
6x10" molecules x 12/50 = 1.44x10" molecules

Tube Tube 1 Tube 2
1-4b (a-d) 1-2 3b-4 4 combinations
5-8df (a-c,a-d) 5d-6 771-8 12 combinations

6. Run the same thermocycle.

Create Fn3 G4 Library Genes
At this point, small differences in DE loop length should not present significant differences in amplification
efficiency or secondary structure of the 5-8 fragment.
1. Save 10 uL of PCR products for gel analysis or later library creation.
2. Add 135 uL of ddH,O to remaining 15 uL
1.44x10" x (15/25) / 150 uL = ~5x10° molecules / uL
3. Create a PCR mix.
40.4 uL 10x KOD buffer
40.8 uL 2 mM dNTPs
16.2ul 25 mM MgSO,4
8.1uL KOD polymerase
36.4ul ddH,O
162 ul. betaine (2.5M)
12.1 uL. DMSO
4. Make eight 39 uL aliquots.
5. Add 1 uL of primer and 10 uL of template.
(1 uL)(10 pmoi/ul)(6x1 0" molec. / pmol) = 6x1 0'? molecules (from ~5x10'® molecules)
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Tube Primer Template
ampl-4b plYS 1-4b 4 reactions (b = a-d)
ampS-8f p8YS 5-8df 4 reactions (f= a-d)

DE loop: a 1.2uL,b6.9uL,c1.9uL

6. Run the same thermocycle but with 15 cycles.
7. Combine 12 uL of product.

(6x10" molecules)(12 / 50) = 1.44x10" molecules

Tube Tube 1 Tube 2

YSgenebf ampl-4b ampS-8f
8. Run the same thermocycle (10 cycles).

{1.5x10'? molecules)(run 12.5 uL / 25 uL total)(326 bp)(618 g/mol / bp)(mol / 6x10% molec.) = 0.25 ug
9. Add 12.5 uL of product to 1.4 uL of 10x stop buffer.
10. Run DNA on 1.5% agarose gel.
11. Extract ~330 bp fragment (16 samples).

(1.5x10"2 molecules)(run 12.5 uL / 25 uL)(50% yield) / 40 uL = 9.4x10° molecules/uL
12. Create a PCR mix.

81.6 uL 10x KOD buffer
81.6 uL 2 mM dNTPs
32.6ul 25 mM MgSO,
16.32 uL KOD polymerase
40.8 uL plYS

40.8 uL p8YS

326 uL betaine (2.5M)
24.48 uL DMSO

(2.75 uL)(10 pmol / uL)(330 bp)(618 pg/pmol / bp)(1 ug/ 10° pg) = 5.6 ug

13. Make 16x40 uL aliquots.

14. Add 10 uL of gel extracted gene (9.4x10" molecules).
15. Run the same thermocycle but with 35 cycles.

16. Concentrate with PelletPaint.

Transformation
1. Transform into EBY 100 using electroporation and homologous recombination with pCT-Fn3-Loop.
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Figure E.1 Library construction schematic.
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Magnetic Bead Sort - Initial
The naive library will be depleted of streptavidin:bead binders and enriched for antigen binders.
The diversity of the G4 library is 25x107. Thus, 375x10’ cells (15x) will be sorted.

Protein Display
1. Grow and induce G4 library to display Fn3.
2. Use immediately or store yeast at 4°.
Yeast displaying Fn3 can be used for several weeks if stored at 4°.

Bead Preparation
1. Combine 100 uL of PBSA + 6.7-33 pmoles of biotin-antigen + 10 uL of beads.
Make two batches for initial sort.
(10 uL beads)(4x10° beads/uL)(1x10° Ag/bead)(pmol / 6x1 0" Ag) = 6.7 pmoles
6.7 pmoles will yield 1M Ag per bead, which is sufficient for enrichment. If antigen is readily
available, 33 pmoles of antigen should be added.
2. Incubate at 4° for >1h.
3. Wash beads: add 1 mL PBSA to beads; place on magnet for 2-5 min.; remove ‘supernatant’.
Repeat.

Cell Selection

Measure cell density (OD = 1 corresponds to 1x10’ cells/mL).

Pellet and wash 375x10’ cells. Make two aliquots.

Combine cells with 10 uL of bare beads in each tube.

Incubate cells + beads at 4° for >2h.

Place cells + beads on magnet and collect unbound cells. * See note below.
. Combine cells with 10 uL of new bare beads in each tube.

. Incubate cells + beads at 4° for >2h.

. Place cells + beads on magnet and collect unbound cells. * See note below.
. Transfer unbound cells to tubes with washed Ag:beads.

10. Incubate cells + beads at 4° for >2h.

11. Place cells + beads on magnet and remove unbound cells.

12. Wash once with PBSA.

13. Place cells + beads on magnet and remove unbound cells.

14. Resuspend cells + beads in 5 mL SD-CAA.

15. Add 5 uL of cells to 995 uL PBSA (200x dilution).

16. Add 10 uL of dilution to 190 uL PBSA (4,000x dilution).

17. Plate 20 uL of each dilution on SD-CAA plates.

0PN R W

* Also wash, grow, and plate negative selection beads (as in steps 12-17) for comparison.
(1 col/20 uL)(200x dilution)(5x10’ uL in test tube) = 5x1 0 cells collected per colony
(1 col/20 uL)(40,00x dilution)(5x10° uL in test tube) = 1x1 0° cells collected per colony

Cell Growth

Incubate cells at 30°, 250 rpm for >16h.

Remove beads using magnet.

Pellet >20x diversity of cells.

Resuspend in SG-CAA.

Incubate at 30°, 250 rpm for 8-24h to induce protein expression.

N
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Magnetic Bead Sort — Moderate cell number
The current population will be depleted of streptavidin:bead binders and enriched for antigen
binders. At least 20x the population diversity should be sorted.

Protein Display
1. Grow and induce yeast population to display Fn3.
2. Use immediately or store yeast at 4°.

Bead Preparation

1. Combine 100 uL of PBSA + 6.7-33 pmoles of biotin-antigen + 10 uL of beads.
(10 uL beads)(4x10° beads/uL)(1x10° Ag/bead)(pmol / 6x10"" Ag) = 6.7 pmoles
6.7 pmoles will yield IM Ag per bead, which is sufficient for enrichment. If antigen is
readily available, 33 pmoles of antigen should be added.

2. Incubate at 4° for >1h.

3. Wash beads: add 1 mL PBSA to beads; place on magnet for 2-5 min.; remove ‘supernatant’.

Repeat.

Cell Selection

Measure cell density (OD = 1 corresponds to 1x107 cells/mL).

Pellet and wash at least 20x library diversity.

Combine cells with 10 uL of bare beads.

Incubate cells + beads at 4° for >2h.

Place cells + beads on magnet and collect unbound cells. * See note below.
Combine cells with 10 uL of new bare beads.

Incubate cells + beads at 4° for >2h.

Place cells + beads on magnet and collect unbound cells. * See note below.
Transfer unbound cells to tubes with washed Ag:beads.

10. Incubate cells + beads at 4° for >2h.

11. Place cells + beads on magnet and remove unbound cells.

12. Wash once with PBSA.

13. Place cells + beads on magnet and remove unbound cells.

14. Resuspend cells + beads in 5 mL SD-CAA.

15. Add 5 uL of cells to 995 uLL PBSA (200x dilution).

16. Add 10 uL of dilution to 190 uL. PBSA (4,000x dilution).

17. Plate 20 uL of each dilution on SD-CAA plates.

VXN WD~

* Also wash, grow, and plate negative selection beads (as in steps 12-17) for comparison.
(1 col/20 uL)(200x dilution)(5x10° uL in test tube) = 5x10° cells collected per colony
(1 col/20 uL)(40,00x dilution)(5x10° uL in test tube) = I1x10° cells collected per colony

Cell Growth

Incubate cells at 30°, 250 rpm for >16h.

Remove and save beads.

Pellet >20x diversity of cells.

Resuspend in SG-CAA.

Incubate at 30°, 250 rpm for 8-24h to induce protein expression.

LII-D-.U)[\)»—A
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C-myc” FACSort

The population will be sorted for full-length Fn3 clones by selecting clones that contain the c-myc
epitope (which would be lost in a truncation or frameshift mutant). The N-terminal epitope HA
will also be analyzed to differentitate between plasmid loss and truncation/frameshift.

Pellet at least 20x library diversity. Wash with 1 mL PBSA.
Resuspend in 50 uL PBSA + 0.25 uL 16B12 (mouseaHA) + 0.5 uL. Chac-myc.
Incubate at 22° for >20 min.
Wash with 1 mL PBSA.
Resuspend in 50 uL PBSA + 0.5 uL GaCh-A488 + 0.5 uL GaM-APC.
Note that other fluorophore combinations may be used.
. Incubate at 4° for >15 min.
. Wash with 1 mL PBSA.
. Analyze and sort on MoFlo or FACSAria. Collect A488*/APC" cells (full-length clones).
. Grow collected cells in ~5 mL SD-CAA.

kW

NolieBEN o)

Zymoprep (Kit II)
Recover plasmids from yeast cells.

Measure cell density.
Add 10x10’ cells to a microcentrifuge tube.
Centrifuge at 300g for 1 min. Remove supernatant.
Add 200 uL Solution 1 to pellet.
Add 3 uL Zymolyase (take care to use enzyme and not storage buffer).
Resuspend by vortexing mildly or pipetting.
Incubate at 37° for 15-60 min.
15 minutes will suffice for cells in logarithmic growth. Use >30 min. for cells in
stationary phase
8. Add 200 uL Solution 2. Mix gently.
9. Add 400 uL Solution 3. Mix gently.
10. Centrifuge at 12krpm for 8 min.
11. Centrifuge supernatant (in new tube) at 12 krpm for 2 min.
12. Transfer supernatant to Epoch or Qiagen column (not Zymo column).
13. Centrifuge column at 12 krpm for 60s. Discard flowthrough.
14. Add 550 uL of Qiagen buffer PE or Epoch WS. Centrifuge column at 12 krpm for 60s.
Discard flowthrough.
15. Centrifuge column at 12 krpm for 60s. Discard flowthrough.
16. Place column in new vial. Add 50 uL elution buffer and let sit for 60s.
17. Centrifuge at 12 krpm for 60s.
Exp. yield: ~5 plcellx10° cells = 5x10° p/40 uL=1.25x10 p/uL. Use 8 uL in each epPCR

N wN -
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Error-prone PCR

Appendix F: Protocols

The plasmids for the selected clones will be used as templates for error-prone PCR with
nucleotide analogs. Two mutagenesis approaches will be used: mutation of the entire GENE and

individual mutation of each LOOP.

1. Prepare PCR mix:
‘Gene’ Reaction (1)
SuL  10x ThermoPol buffer
2.5ul 5'primer, 10 uM
2.5ul. 3'primer, 10 uM
1uL. dNTPs, 10 mM each
8uL  zymoprepped DNA,
10 uL  8-0x0-dGTP + dPTP, 20 uM
20.5 ddH,O
0.5uL Taq DNA polymerase

‘Loop’ Reactions (3 total)
5ul.  10x ThermoPol buffer
2.5ul. 5'primer, 10 uM
2.5uL 3'primer, 10 uM

1uL.  dNTPs, 10 mM each
8uL  zymoprepped DNA,

1x ThermoPol buffer

0.5 uM 5' primer

0.5 uM 3' primer

200 uM each dANTP

10® plasmids

2 uM each 8-0x0-dGTP, dPTP

2.5 units

1x ThermoPol buffer
0.5 uM 5' primer

0.5 uM 3' primer
200 uM each dNTP
10® plasmids

10uL. 8-0x0-dGTP + dPTP, 200 uM 20 uM each 8-oxo-dGTP, dPTP

20.5 ddH,O

0.5ul Tag DNA polymerase

Sample S' Primer 3' Primer
gene W5 W3

BC loop BC5new G4bc3
DE loop G4de5 Lde3

FG loop Gafg5 FG3new

2. Thermally cycle:
94° for 3 min.
94° for 45s, 60° for 30s, 72° for 90s.
72° for 10 min.

1 step
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Electrophoresis
Purify PCR product by agarose gel electrophoresis. The aim of this step is to remove template
DNA and, if possible, any improper PCR product.

Make 1.5% agarose gel (0.75 g agarose, 49 mL ddH,0, I mL 50x TAE).
Add 5.6 uL 10x restriction stop buffer to each epPCR tube.
Run epPCR samples and ladder at 100V for ~45 min.
Dye with SYBR Gold (10 uL in 50 mL 1x TAE) for 20 min.
Excise PCR products.
Gene band should be visible. Loop bands will not be visible.
Cut a large piece to ensure PCR product recovery.
** primer dimers and loop PCR product not discernable **
OK - step is designed to eliminate template not primer

100bp Gene BC DE FG
ladder 460 bp 139 126 179

RSN

6. Purify PCR product using Qiaquick Gel Extraction kit. Elute in 40 uL elution buffer.

Amplification PCR
Amplify PCR products to create large quantities of DNA for transformation into yeast.

1. Prepare 200 uL for each epPCR sample.

20 uL  10x ThermoPol buffer 1x ThermoPol buffer

20uL  5'primer, 10 uM 1 uM 5' primer
20ul  3'primer, 10 uM 1 uM 3' primer
4ul  dNTPs, 10 mM each 200 uM each dNTP

8uL  extracted PCR product -
126 uL ddH,O -
2ul.  Tag DNA polymerase
2. Split into two 100 uL aliquots (for each epPCR sdmp]c)
3. Thermally cycle:

94° for 3 min. 1 step
94° for 45s, 60° for 30s, 72° for 90s. 30 cycles
72° for 10 min. 1 step
Sample S5' Primer 3' Primer

gene GeneAmp5 GeneAmp3

BC loop BCamp5 BCamp3

DE loop DEamp3 DEamp3

FG loop FGamp5 FGamp3

These primers are shorter versions of the mutagenic primers; the oligos are shorter.
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Concentrate
Concentrate amplification PCR products for use in transformation.

Combine two identical ampPCR GENE samples into a 1.7 mL tube.
Combine six ampPCR LOOP samples into in a 2 mL tube.

Add 2 uL PelletPaint to each tube.

Add 20 and 60 uL 3M NaAc. Mix briefly.

Add 500 and 1200 uL 100% ethanol. Incubate at room temperature for 2 min.
. Centrifuge at 12krpm for 5 min. Remove supernatant.

. Add 500 uL 70% ethanol. Vortex briefly.

Centrifuge at 12krpm for 5 min. Remove supernatant.

. Add 500 uL 100% ethanol. Vortex briefly.

10 Centrifuge at 12krpm for 5 min. Remove supernatant.

11. Airdry.

12. Add 1 uL of ddH,0 to pellet once dry.
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Electroporation Transformation

1. Grow EBY100 in YPD overnight.

2. Inoculate 50 mL of YPD with 5x107 cells (OD = 0.1).

3. Incubate culture at 30°, 250 rpm until cell density is 1.3-1.5x10 cells/mL.
This will generally take 6-8 hours. Note that the culture can be inoculated at a lower density
(in step 2) and incubated for a longer time, e.g., overnight.

Prepare Competent Cells

Chill electroporation cuvettes and buffer E

1. Pellet cells (3,000 rpm in large centrifuge for 3 min.). Remove supernatant.

2. Resuspend in 25 mL of 100 mM lithium acetate, 10 mM Tris, pH 7.5, 1 mM EDTA.
3. Incubate at 30° for 15-60 min.

4. Add 0.096 g DTT to 0.5 mL 1M Tris, pH 8.0. Filter sterilize into EBY100.

5. Incubate at 30°, 250 rpm for 15 min.

from now until after electroporation, keep cells chilled on wet ice and use chilled rotors for
centrifugation

6. Centrifuge cells at 2500g, 4° for 3 min. Discard supernatant.

7. Wash with 25 mL of buffer E (10 mM Tris, pH 7.5, 270 mM sucrose, 1 mM MgCl,).
8. Centrifuge cells at 2500g, 4° for 3 min. Discard supernatant.

9. Resuspend in 1 mL buffer E. Transfer to 1.5 mL tube.

10. Centrifuge at 5000g, 4° for 1 min. Discard supernatant.

11. Resuspend in 1 mL buffer E.

12. Centrifuge at 5000g, 4° for 1 min. Discard supernatant.

13. Resuspend cells to a total volume of 300 uL.

Electroporation

1. Prepare samples in a microcentrifuge tube: 150 uL cells + 2 uL vector (4 ug) + all insert .
vector: pCT-Fn3-Gene or pCT-Fn3-Loop (digested at 3 sites)

Transfer mixture to two electroporation cuvettes and incubate on ice for about 5 min.

Pulse at 25 uF, 0.54 kV (for 2 mm cuvette). Time constant should be 15-45 ms.

Add 1-2 mL room temperature YPD to cuvette. Transfer to 14 mL Falcon tube.

Incubate at 30°, 250 rpm for 1-2 hours.

Centrifuge cells at 1300g for 1 min.

Resuspend in I mL SD-CAA. Transfer to flask with 50-1000 mL SD-CAA.

Plate serial dilutions on SD-CAA plates to determine transformation efficiency.
typical: ~10°-107 transformants, but lower efficiencies sometimes occur

9. Incubate culture at 30°, 250 rpm.

10. Incubate plates at 30°.

S R
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Fn3 Production in Bacteria

Transformation

Thaw Rosetta(DE3) cells [Novagen 70954] on wet ice.

Add 20 uL of cells + 0.5 uL of pETh(k)-Fn3 plasmid miniprep to a microfuge tube.
Incubate on ice for 5 min.

Heat shock at 42° for 30s.

Incubate on ice for 2 min.

Add 80 uL of room temperature SOC.

Incubate at 37°, 250 rpm for ~1h.

Plate 20 uL on LB+kan+chlor plate.

BN RO~

Grow Starter Culture

1. Add ~5 mL of LB+kan+chlor to a test tube.

2. Transfer a single colony of Rosetta + pETh(k)-Fn3 to the test tube.
3. Incubate culture at 37°, 250 rpm for 10-24h.

Grow and Induce Large Culture
Add 100 [1000] mL of LB (no antibiotics) to a 0.25 [2] L flask.

Add 0.1 [1] mL of saturated culture to the flask.

Incubate at 37°, 250 rpm for until Agy ~1.0 (0.1-1.5 is ok).
Add 0.1 [1] mL of 500 mM IPTG to yield 0.5 mM IPTG.
Incubate at 37°, 250 rpm for 3-24h.

D=

Prepare Lysate
1. Pellet cells (e.g. 2500g for 15 min.). Remove supernatant.

2. Resuspend in 5 [50] mL of lysis buffer (50 mM phosphates, pH 8.0, 0.5M NaCl, 5% glycerol,
5 mM CHAPS, 25 mM imidazole, 1x protease inhibitors).

Freeze cells at -70°.

Thaw cells in room temperature water bath.

Lyse cells by sonication or 3x freeze/thaw.

Centrifuge lysate at 15,000g for 30 min.

Save supernatant. Filter if necessary.

NoawnsEWw

Protein Purification
1. Purify Fn3 from lysate using TALON resin.
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