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Analysis of Some Solar System Dynamics Problems

Part 1: Some Implications of the Yarkovsky Effect

on the Orbits of Very Small Asteroids

Part 2: Stable Retrograde Orbits Outside the

Sphere of Influence

by Charles Peterson

Abstract

Part I

Some previous difficulties associated with attributing an

asteroid belt origin to meteorites are briefly reviewed. In

order to overcome these difficulties, a two-step mechanism is

proposed by which the small fragments produced by asteroid col-

lisions are gradually sent into eccentric earth crossing orbits

while the larger parent bodies themselves remain relatively un-

affected. Central to this mechanism is the Yarkovsky effect,

which arises from the asymmetric reradiation emitted by an il-

luminated rotating body. Due to thermal lags, the "evening"

hemisphere of such a body will always be warmer on the average

then the "morning" hemisphere. Not only can the Yarkovsky effect

be three orders of magnitude greater than the well-known Poynting-

Robertson drag, but unlike the latter, the Yarkovsky acceleration

can be either positive or negative depending upon the sense of

the body's rotation. The second stage of the proposed mechanism

becomes important only when either of these two secular



accelerations succeeds in causing the orbital elements of the

body to evolve into a secular resonance with Jupiter. There is

some evidence that such transient resonances with Jupiter,

brought about by the Yarkovsky effect, are responsible for the

rather large orbital eccentricities observed for most meteorites.

The Yarkovsky acceleration is explicitly calculated for both

cylindrical and spherical bodies. When the orbital consequences

of the Yarkovsky acceleration acting alone upon small asteroid

belt fragments are determined, the results are found to be rea-

sonably consistent with both the relative and absolute cosmic

ray exposure ages of stony and iron meteorites.

Part II

The usual concept of the sphere of influence is violated

by the retrograde orbit of Palomar-Leiden Survey object number

7617 about Jupiter. An analytic investigation of this orbit is

presented. First Hill's equations for the sun-Jupiter system

are used in the limit of zero secondary mass to demonstrate the

existence of a class of distant retrograde variation orbits about

Jupiter. It is then shown by two-body perturbation analysis that

Jupiter's gravitational influence stabilizes this variation orbit,

and some of the associated characteristic motions are explored.

A comparison of the analytic results with a numerical integration

of Hill's equations shows good agreement at large distances (>l

A.U.) from Jupiter. However, because of its large heliocentric

eccentricity (e~ 0.65), the orbit of Palomar-Leiden object 7617



is not well described by Hill's equations. Nonetheless, the

investigation does provide a good heuristic explanantion for the

stability of this retrograde motion.
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Preface

The first part of this thesis deals quantitatively with the

Yarkovsky effect as a possible means for the orbits of small (1-

100 meters) asteroid fragments to gradually evolve into earth-

crossing trajectories. Although first proposed by a Pplish civil

engineer more than 70 years ago and based upon sound physical

principles, the Yarkovsky effect still remains rather obscure in

the minds of most workers in the planetary sciences. In fact,

had the author not independently rediscovered the effect for

himself in the course of explaining the unexpected behavior of

a laboratory experiment, he probably would have continued to

remain unimpressed with its potential implications. It is hoped

that this work will help in the future to heighten an awareness

of the Yarkovsky effect in the minds of planetary investigators.

The second part of this thesis challanges the conventional

concept of the "sphere of influence". It is shown that there is

a continuum between distant retrograde orbits and one-to-one

orbital resonance. The analytic approach used in this part is

original with the author, and it is hoped that the approximate

model upon which it is based succeeds in making the surprising

stability of this motion comprehensible to the reader in an

intuitive way.
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I. Introduction

For nearly two centuries science has accepted the fact that

cosmic debris occasionally falls onto the earth as meteorites.

This unquestionably extraterrestrial material has long been the

object of intense mineralogical study, and the maturing of atomic

physics during this century has made possible many types of

sophisticated analysis from which, among other things, the "age"

of the material can be deduced. Such studies have already pro-

vided both considerable insight into the chronology of the solar

system and valuable clues into its early physical state (Anders,

1971a,b). More recently, laboratory spectral reflectance

measurements of some meteorites have been shown to closely

resemble the spectral reflectances of some asteroids (McCord and

Gaffey, 1974; Chapman et al, 1975), thus adding to the circum-

stantial evidence that the asteroid belt is an important, if not

the major, source of meteorites. But there have always been

severe difficulties in explaining how fragments heavier than a

kilogram which are generated by asteroid collisions (Dohnanyi,

1971) can efficiently enter the inner solar system (Wetherill,

1969, 1971, 1974).

A. The Problem

The well known Poynting-Robertson effect is capable of

causing the orbital decay and eventual passage through the inner

solar system of all asteroid fragments smaller than about 10

centimeters. However, such fragments would be too small to



survive atmospheric entry, and most fragments large enough to

survive entry and reach the earth's surface would be too big (i.e.

would have too large a ratio of mass to surface area) for this

mechanism to affect them significantly during the 4.6 billion

year age of the solar system. So although the Poynting-Robertson

effect undoubtedly influences both the distribution of solar

system dust particles and many of the objects which are seen as

meteors in the night sky, it probably cannot account for any

meteorites recovered on the earth's surface that might have

originated in the asteroid belt.

Neither is it likely that the collision process itself could

impart enough of a velocity change for a resulting asteroid

fragment to directly enter an earth crossing orbit. Although

many meteorites display clear signs of shock which could indicate

a violent collision in their past histories (Wasson, 1974), all

meteorite classes contain a significant number of members which

display no evidence of shock. Studies of the cratering process

have shown that the highest velocity ejecta tend to be broken up

into the smallest fragments, and that most of the larger fragments

are ejected at less than 1 km/sec (Gault et al, 1963). Since a

5 km/sec velocity change is needed within the asteroid belt to

enter an earth crossing orbit, it seems improbable that many

fragments large enough to survive earth atmospheric entry could

result from such a mechanism. In fact, even if we remain entirely

within the earth's gravitational sphere of influence where only a

3 km/sec velocity change would be necessary to enable lunar crater



ejecta to reach the earth, we find that there is as yet not one

recovered meteorite that is known to have come from the moon

(Wetherill, 1974).

Various orbital resonances of asteroid fragments with the

major planets, principally Jupiter, are sometimes invoked to

explain how meteorites enter the inner solar system. Indeed this

concept has gained new support with the recent discovery that both

the Lost City and Pribram bodies were undergoing very rapid

secular changes in their orbital elements just prior to their

entering the earth's atmosphere (Lowery, 1971; Williams, 1972).

However, it does not seem to be generally recognized that there

are two serious difficulties with this mechanism when considered

in its simplest form. First the cosmic ray exposure ages of most

stony meteorites indicate that the separation events from their

parent bodies occurred more than 4 million years ago while the

rates of orbital evolution due to Jovian resonances are so great

that only about one million years are necessary to bring their

orbits into the inner solar system (Williams, 1973). It would

be as though the fragments were content to orbit uneventfully

within the asteroid belt for most of their lives as free bodies

and then were abruptly removed from the belt by Jovian perturba-

tions during the last quarter of their lives. The implausibility

of this scenario would become even more pronounced for iron

meteorites which have cosmic ray exposure ages typically fifty

times greater than those for stones. The second difficulty

results from the fact that gravity perturbations produce acceler-



ations independent of density, size, or physical properties. If

Jupiter can perturb small fragments within tens or hundreds of

millions of years and send them into earth crossing orbits, then

why couldn't it do the same thing to the larger asteroids from

which the fragments originated during the 4.6 billion year age of

the solar system? The typical orbits of the fragments could not

be expected to be significantly different from that of the aster-

oid source. It has been noted that both the Lost City and Pri-

bram meteorites were in secular resonances with Jupiter (Williams,

1972, 1975), and perhaps this fact points toward a combination of

effects comprising a multistep mechanism which somehow must act

more efficiently upon the small fragments than upon the asteroids

themselves.

The evidence we have so far indicates that the final step

in the source mechanism for meteorites may involve gravitational
as a candidate for the next-to-last step,

resonances (a nonselective process), therefore, consider the

effect of the well-known Poynting-Robertson drag on a small

fragment in the same orbit as its much larger asteroid parent

body. Because "light pressure" forces accelerate bodies of the

same density in direct proportion to their surface areas and in

inverse proportion to their volumes, the Poynting-Robertson drag

will act selectively on the orbit of the small fragment and cause

it to evolve more rapidly. By itself, this process would cause

a continuous decrease in both the semimajor axis and orbital

eccentricity until the small body either collided with a planet

or was vaporized close to the sun. However, it has been



previously observed that in the course of its journey from the

asteroid belt to the inner solar system, such a body would have to

traverse the Kirkwood gaps and perhaps would encounter various

other resonance phenomena as well (Peterson, 1975). Evidence that

such complications on the orbital dynamics of small solar system

bodies actually do occur will be discussed later. Unfortunately,

the Poynting-Robertson effect is too weak for even this scenario

to work as a source mechanism for meteorites within the time con-

straints imposed by cosmic ray exposure age measurements. How-

ever, a largely ignored phenomenon known as the Yarkovsky effect

does seem capable of explaining most of the dynamical data on

meteorites (Peterson, 1975). Although it is also a (selective)

light pressure type of force, the Yarkovsky effect can he a few

orders of magnitude greater than the Poynting-Robertson effect

as we shall soon see.

B. The Yarkovsky Effect

According to Opik (1951), a Polish Civil Engineer named

Yarkovsky* published a paper in Russian about 1900 proposing that

the anisotropic thermal reradiation from a rotating body in solar

orbit could have a significant long term effect on that orbit. He

suggested that because of thermal lags, the "evening hemisphere"

(see figure 1) of a rotating body will always be warmer on the

average than the "morning hemisphere". The T4 radiation law will

then require that more thermal energy be emitted from the evening

*This name also appears as "J. Yarkovski" in a French language

publication of 1888.



hemisphere and consequently more electromagnetic momentum flux

as well. This will result in a force imbalance in a direction

perpendicular to that of the incident radiation. It is the

production of this net transverse force on the rotating body that

we shall call the Yarkovsky effect. Of course, much of the

anisotropic reemission of electromagnetic momentum will be in the

direction of the sun and thus only serve to increase the outward

radial force on the body already incurred when the light energy

was first absorbed. But as long as both gravity and the radial

component of light pressure vary as the inverse square of the

distance, the net result of the two forces acting together may

be treated by simply modifying the effective gravity constant of

the sun. Unlike these purely radial forces, which do no net work

on the body during a complete orbit, the Yarkovsky force can have

a steady transverse component parallel to the orbital velocity

vector, and thus do net work over an orbital period, thereby

causing significant secular changes in the semimajor axis.

The only direct reference to Yarkovsky's work of which the

author is aware was made from memory by Opik in 1951. In the

course of an enlightening quantitative comparison of the Poynting-

Robertson and Yarkovsky effects, Opik simply stated that he had

read Yarkovsky's paper sometime around 1909. A year later

Radzievsky (1952) considered the effect, and he treated the quan-

titative aspects of the problem more rigorously. Jacchia (1963)

referred to both Opik's and Radzievsky's papers, but remained

noncommital as to the actual significance of the effect. In 1965



the author independently rediscovered the effect while working

at the MIT Center for Space Research on methods of passive

attitude control for small spacecraft. The application of the

effect to asteroids and meteoroids was recognized at the time but

not exploited; however, a quantitative mathematical analysis of

the Yarkovsky effect was the central topic of the author's Mas-

ter's thesis (Peterson, 1966).

In order to properly assess the significance of the Yarkovsky

effect operating in the region of the asteroid belt, a quantita-

tive treatment is necessary. First we calculate the temperature

distribution on a rotating cylinder receiving solar illumination,

and thereby obtain an analytic expression for the reradiation

forces as a function of illumination intensity, cylinder physical

properties, and spin rate. Although only a linearized approxim-

ation to this problem is actually oltained in the text, some

mathematical ground work is laid out for a more extensive non-

linear treatment using analytic methods in Appendix A. The

results for the reradiative forces on a cylinder may first be

generalized to a cone and then applied to each differential

"slice" of a sphere. When this expression is integrated, there

emerge simple analytic relationships which may be used to cal-

culate explicity in two dimensions the effects of reradiation

forces on the orbital parameters of the sphere. A numerical

example is used both to help compare the Yarkovsky and Poynting-

Robertson effects and to acquaint the reader with the rates of



orbital evolution characteristic of the Yarkovsky effect acting

upon meteorite-sized bodies. Finally, an attempt is made to

correlate various dynamical data on meteorites to what might be

expected from the source mechanism proposed in this work.



II. The Temperature Distribution on a Rotating Cylinder

A. The Basic Equations

Consider a cylinder of radius R whose axis is perpendicular

to the incident solar radiation of intensity I. As the cylinder

rotates at angular velocity w, let $= wt represent the angular

position of a cylindrical element with respect to "local sunrise"

as shown in figure 1. If conditions allow us to neglect circum-

ferential heat conduction, which would certainly be the case for

a large body, and we let r represent the depth into the body as

measured from its surface inward, then the one dimensional heat

flow equation determines the temperature, T(r,t) within the

cylinder as

DT(r,t) = k 32T(r,t) k K

at 3r 2  PCp

where k is the thermal diffusivity, K is the thermal conductivity,

C is the heat capacity, p is the density, and t is the time.

Because the environmental conditions here determine the heat flux

at the cylinder surface and not the actual temperature itself,

the surface boundary condition on equation (1) takes the form of

an energy conservation statement for r= 0 which may be written

as

K 9T(r,t) = eaT (0,t) - aI(t) (2)

r= 0

where the net heat loss from a cylinder element is attributed to

the well-known T4 thermal radiation law less the solar heat which
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Figure l

The coordinate ss7tem used in treating the probler of the

temperature distribution on an illuminated rotating cylinder.

The spin axis is assumed to be perpendicular to the orbital

plane, which is defined by the x and y coordinates as shown.



the element absorbs. Here a is the surface absorptivity, e is

the surface emissivity, a is the Stefan-Boltzmann constant, and

I(t) is the solar flux which a cylinder element experiences as a

function of time, which will have the form of a half-rectified

sinusoid of amplitude I and whose Fourier series is given by

I(t) = Io 1 + sin wt _ 2 cos 2nwt (3)
( 2 Tn=1 4n2_ 1

B. Steady State

An enormous, yet justifiable, simplification of the general

problem results if we assume that the temperature distribution

within the cylinder has already reached its steady state value

independent of the initial conditions. This means that the

cylinder as a whole is not heating up or cooling off and also

that every element radiates away exactly as much heat as it ab-

sorbs during each cycle. (Except possibly for the case of large

bodies in rather eccentric orbits, transients would not be of

interest here anyway.) This in turn means that even though the

temperature profile beneath each cylinder element changes with

time, it is always exactly the same for any element as it reaches

a given fixed value of the rotation angle, $. Another way of

looking at this is that while the cylinder itself rotates with

respect to the sun, the temperature distribution within it does

not. This situation allows us to use $ and wt interchangeably in

what follows.



The most general solution to equation (1) which can result

from the periodic driving term given by equation (3) and satisfy

the assumption of steady state can be written as

T(r,t) =.To 1 + A (r) sin nwt + IB (r) cos nwt (4)
n=1 n=

When this equation is substituted into equation (1) and the coef-

ficient of each periodic term is required to vanish, we get two

coupled ordinary differential equations

d2A d2B
-nwB = k n nwA = k -n n=,2,3,4,.....

dr2  n dr2

whose solution is readily found to involve a growing and decaying

exponential for both A and B . However, if it is assumed thatn n

the cylinder is "large", then we may safely deduce that the steady

state temperature fluctuations will certainly not grow exponen-

tially with r as we approach the cylinder's center. This interior

boundary condition thus permits us to reject the growing expon-

ential which leaves

A (r) = e- r( v sinAiXr + u cos/Xr )
(5)

B (r) = e- r(-u sin/iXr + v cosir )

where X = 1/w/2k and v and u are the two remaining arbitrary

constants of integration which must be determined from the sur-

face boundary condition (2). A "large" cylinder is now defined

after Opik (1951) as one for which XR> 4, and this criterion is

seen to depend upon spin rate and thermal diffusivity as well as

upon the actual cylinder radius.



When equation (5) is substituted into (4) and the result is

used to evaluate the left hand side of equation (2), we get for

the net heat flux through the cylinder surface

(r 
00

K Tr,$) = KToX I /f(vn- un)sin n$ - (un+ vn)cos n*P (6)
r=O n=1

where the steady state assumption has permitted us to replace wt

by $. Now because of the nonlinear nature of the radiation boun-

dary condition, it is no longer convenient to write general

expressions for the nth fourier term. Therefore, only second

order terms up through the third harmonic will be retained from

now on with each v and u considered to be first order. (It isn n

shown in Appendix A that all higher odd harmonic terms are actu-

ally third order quantities.) Thus substituting equations (5)

into (4) and evaluating the result at r= 0 we get for the surface

temperature

T(O,$) = To( 1 + uisin $ + vicos * + u2sin 2$

+ v2cos 2* + u3sin 39 + v3cos 3$ ) (7)

and raising this equation to the fourth power yields

T(0,0) = 1 + 6 + Ulsin $ + Vicos $ + U2sin 2$

+ V2cos 2* + U3sin 3* + V3cos 3$ ) (8)

where we have defined:



2 2 2 2 2 2
6(u ,v )*= 3( u1 + vI + U2 + V2 + U2 + v3

Ui (u ,vn) = 4u, + 6( vIu 2- u1v2 - u2v 3+ v2u3 )

Vi(u ,v ) = 4vi + 6( UIU2+ ViV 2+ u2u3+ v2v3 )

U2(u ,vn) = 4u 2 + 6( uivi- uiv 3+ v1u3 ) (9)

V2 (u ,vn) = 4v2 + 3( v1 - ul ) + 6( UlU 3 + viv 3)

Us3 (u nV) = 4u3 + 6( uiv 2 + ViU 2 )

V3 (unV n) = 4v3 + 6( ViV2- UIU2)

The many trigonometric cross products which result from raising

equation (7) to the fourth power have been decomposed into their

Fourier components and incorporated into the coefficients defined

above.

All of the expressions necessary to apply the boundary con-

dition (2) have now been evaluated in terms of their respective

Fourier series. So if we substitute equations (3), (6), and (8)

into equation (2) and then require that the resulting expression

be an identity for all values of V, we will get seven equations

in the seven unknowns To, ui, vi, u2, v2, u3, v3 as follows:

4
0 = eaT o(1 + 6) - aI 0/IT

-KToX( ui- vi) = CaToUi- aIo/ 2

4
-KToX( ui+ vi) = eaTOVi

4
-KTo/'2AX( u2- v2) = CaToU2 (10)

4
-KTo/A2( u2+ v2) = caTOV2 + 2aIo/3w

4
-KTo/3AX( u3- v3) = caTOU 3

4
-KTo/X3( u3+ v3) = caToV3

* Here we mean u n= {u 1 ,u 2 ,u 3 ,...l and vn = (V2 **}*



Next use the first of the above equations to eliminate the EaTo

factor from the remaining six, and then multiply these resulting

equations by 7(l+6)/aIo to get

4 -
To = aIo(ear(1+6)) (lla)

-P(l+6)( ui- vi) = U1- (1+6)/2 (llb)

-P(1+6)( ui+ Vi) = V1  (llc)

-v/2P(1+6) ( u2- V2) = U2  (1ld)

-/2P(1+6)( u2+ V2) = V2+ 2(1+6)/3 (lle)

-/IP(l+6) ( u3- V3) = U3  (llf)

-/3P(1+6) ( us+ V3) = V3  (llg)

where we have defined

7rT 0
P = nKToAt/aIo =pC KO.

aIo/Z

It is now our task to solve equations (11) for To, un, and vn

remembering that 6= 6(u ,v ), U =U(u v), and V(u v). The

more detailed treatment is reserved for Appendix A, however a

simplified version of the method yields results that not only

turn out to be quite accurate for large values of P, but which

also provide considerable insight into one nonlinear characteris-

tic of the exact solution.

C. An Approximate Steady State Solution

An approximate but useful solution to equations (11) can be

obtained by neglecting the second order terms in equations (llb -

llg). This permits us to ignore the third harmonic entirely since



us= O= V3 is then a solution to equations (lf) and (llg), and

we have left;

4 ( 2 2 2 2 ~1
To = aIo (ar,(l+ 3(ui + VI + U2 + v2)) (12a)

-P( ui- vi) = 4u,- w/2 (12b)

-P( ui+ vi) = 4vi (12c)

-/IP( u2- V2) = 4u2 (12d)

-V/ P( u2+ V2) = 4v2+ 2/3. (12e)

Since equations (12b) and (12c) are now decoupled from (12d) and

(12e), we can immediately solve for ul, vi, U2, and v2 as

Ui= 7(P+ 4)/(P + 4P + 8) (13a)

vi= P/(P + 4P + 8) (13b)

2, 2
u2 = -- P/(P + 2/ P + 4) (13c)6

V2= - (/ZP + 4)/(P + 2/7P + 4) (13d)

which expressions agree exactly with equations (15) of Radzievsky

(1952) if his spin angle X is replaced by our angle $- and his

4
parameter is replaced by our quantity . In fact, because

Radzievsky retained only linear terms in raising his counterpart

of our equation (7) to the fourth power, he was able to express

ththe general n fourier coefficient in equation (8) as U = 4u
n n

and V = 4v ; thus he could solve explicity for all u and v .

This proceedure works quite well for "large" values of P, and it

is one of the main purposes of Appendix A to show just where this

linear approximation breaks down.



D. An Important Nonlinear Effect

One such source of breakdown is already discernible in

equations (12) and (13). As long as w is large, then P will be

large, and u and v n will be small. Thus equation (12a) shows

that in such a case there will only be a very small effect of w

on To, even if we neglect u and v initially. However, oncenn

these values have been calculated from equations (13), then their

effect in equation (12a) is to slightly reduce the original value

of To, the new value of which we can then use to get an improved

value for P in equations (13) and again solve for u and v ifn n

desired. A simple example can provide a clearer physical under-

standing of why the "average" temperature, To, should decrease

nonlinearly with spin rate. Consider first a cylinder spinning

so rapidly that the entire surface is virtually at the same tem-

perature To. Under such circumstances the energy balance between

the absorbed and emitted radiation may be written as

ef2Wr 4  
4

ejaToRd$ = 2aIoR, or neaTo = aIo.

Now imagine the spin slowed down until a perceptible temperature

variation over the cylinder's surface appears which might be

expressed approximately as

T($) = To(l + u sin $ + v cos *). (14)

The corresponding energy balance now becomes (to second order)

2T 2i 4
0 aT ($)Rd$ ~ C f To(l + 4(u sin $ + v cos $)

+ 6(u sin $ + v cos *) 2 )Rd$ = 2aIoR



which reduces to

4 22
7reaTo (1 + 3u + 3v ) = aIo

whose To must now be less than that for the previous situation

involving only a uniform temperature distribution. What has hap-

pened here is that the T4 radiation law causes a greater excess

of heat to be radiated near the maximum value of T(*) than is

compensated for near its minimum value. Consequently, the "aver-

age" temperature, To, must be lowered to maintain an energy

balance. Indeed, equation (lla) turns out to be equivalent to

the condition that energy be conserved to second order. An

important consequence of this fact is that linear treatments of

this problem will always yield temperature distributions on the

cylinder which radiate away more total heat than they absorb.



III. Thermal Reradiation Forces on a Rotating Cylinder

A. Analysis

Once we know the temperature distribution on the surface of

a thermally radiating body, then it can be shown that if each

element radiates according to the cosine law, the resulting force,

F, may be calculated by integrating

d =- 2eaT d
3c

over the body's entire surface, where dS represents the outward

normal to a differential surface element and c is the speed of

light. In particular, the x and y components of this force may

be evaluated by recognizing that dS,=- Rd*- sin $ and dS Y= Rd$.

cos $ respectively. Thus using T4 as given by equation (8) we
a

get forfcylinder of unit height (see figure 1)

4

2eaR 2- 4 2eaTo
F x= -3c T (0,$)sin d$ = 3c rRU,

4

2eaR 2w 2eaTo
F = - T (0,$)cos $ d =- 3c iTRVi
y 3c 0 c

where all harmonics other than the first have been eliminated by

the orthogonality property of fourier series. Here it is a con-

venient notational coincidence that we may associate the quantity

F with both the y component of the reradiative force and the

Yarkovsky force because both of these designations happen to

begin with the same letter. Next we use equation (lla) to

4eliminate the factor 7saT0 from the above equations and then de-



fine F =2RIO/c as the "direct" light pressure force or the magni-

tude of momentuintercepted by our cylinder of unit height to get

aUl
F = F (15a)

X 3 (1+6) d

aVi
F =- F . (15b)
Y 3(1+6) d

The quantity Fd represents the total electromagnetic momentum

flux intercepted by the cylinder, and so the dimensionless ratio

F /F is a measure of the efficiency with which this reradiationy d

process produces a transverse force. In our momentum budget we

explicitly ignore that portion of the incident energy which is

not absorbed at the cylinder's surface (i.e. that portion which

is specularly reflected or diffusely scattered). Rather than

evaluating Ui (u ,v ) and Vi (u ,v ) from definition (9), it is

more convenient to use equations (llb) and (llc) in equations

(15) to get

aF d(1a
Fx -= w/2 - P(ui- vi) (16a)

F = aFdP(ui+ vi)/3 (16b)

where now all of the other u and v are only implicitly involved

through the solution of the nonlinear coupled equations (11) for

ul and vi.

No approximations were made in obtaining equations (16);

however, we are in a good position to gain some more insight into

the nature of these reradiative force components by using the



approximations (13a) and (13b) in equations (16) to get

F = (7/3) pP4 -aF (17a)
P 2+ 4P +8

F Y= (ir/3) 2 P aF d(17b)
P2+ 4P + 8

which are graphed in figure 2. While F decreases monotonically
X

with increasing P, the Yarkovsky force, F , is seen to have a

maximum which can readily be determined by setting the derivative

of equation (17b) to zero which yields

P( F =max ) =8* (18a)

mraF
max(F ) = d = 0.108 aF . (18b)

12(1+ /2)d

Thus a large (XR>4) cylinder undergoing illumination at right

angles to its axis of symmetry and rotating at just the optimum

angular velocity can experience a transverse force (Yarkovsky

force) which amounts to about 10% of the available incident

momentum flux. Neither the fact that the Yarkovsky force would

be maximized for some value of P nor the rather large values it

could attain near this maximum seems to have been noticed by

Radzievsky (1952). Instead he quickly replaced his equivalent

of our equation (17b) with an asymptotic approximation valid for

large P which is given in our notation by

'racFd

y 3P P >20

and which is depicted by the dashed line in figure 2.

* The linear approximations may not be very accurate for such a

small value of P. 29
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Figure 2

The x and y components of the reradiation force on an

illurminated rotating cylinder expressed as a fraction of the

"available" light pressure. NTote that the Yarkovsky force can

attain ten percent of this value at its rmaximur. The quantity

a represents the cylinder's surface ahsorptivity whil.e Pd ray he

reg7aredO as the arount of incident electromnaanetic ronentu flux

wThi ch is rissincr fror the cvi n'Ier's shadow. The parareter P i s

given by

P -pC K w
aT 2 p



Although equation (19) is indeed satisfactory for the specific

case which Radzievsky considered, note that it blows up for P= 0.

On the other hand, it is not difficult to show that equations

(17) actually attain the correct values of F and F for both
x y

P=O and P= o as follows:

F (0) = ('r/6)aFdxd

F (o) = F (0) = F (co) = 0
x y y

For the Yarkovsky force, this is in accord with our intuition

which demands that F vanish for a very rapidly spinning cylinder

(P+zx) as well as for a nonrotating cylinder (P= 0).

B. A Numerical Example

It is now appropriate to assess some of the implications of

our calculations by considering a numerical example. Using

Alexeyeva's (1958, 1960) measurements of the thermal properties

for a number of meteorites, we may model a "typical" low-metal

stony meteorite as follows;

-3
p = 2.5 gm cm

CP = 1.0 x 10 erg Oilgn

K = 1.5 x 10 erg Kl cm sec

Other physical parameters needed are

-5 -1
a = 5.67 x10 erg K c 2 sec

Io= 1.4 x106 erg cm2secl -at 1 Astronomical Unit

a= = 1

from which we derive the following quantities using equation (lla)
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with 6 =0 and equation (18a)

To= 1/4 298 0K

16I. 
6

F(F = max ) = = 9.6 x16 radians/second
ir 2ToPC K

where this optimum angular velocity corresponds to a rotation

period of 183 hours. If we now choose a "typical" rotation rate
-4 -1

of w =3.5 x10 sec corresponding to a period of about 5 hours,

then we obtain from equations (5), (11), (17), and their associ-

ated definitions

X = -- =0.17 cm
2K

P = pC Kw = 17.1
aIo/ 7

F = 0.060 aFd

F = 0.049 aF .
y d

The derived value for X shows that the thermally conducting

"skin depth" under these conditions is about 6 centimeters; that

is, the diurnal temperature fluctuations are diminished in ampli-

tude beneath the cylinder surface by a factor of e for every 6

centimeters of depth. Thus the criterion XR> 4 means that the

cylinder's radius, R, must exceed 24 centimeters in order for the

assumption leading to equations (5) to be valid. The derived

value for P, when compared to the optimum value of /8, shows that

we are in the "fast" spin regime. Because the cylinder's surface

absorptivity is assumed to be unity in this case, we see from the



value for F above that the Yarkovsky force still amounts to

nearly 5% of all the available electromagnetic momentum flux in

this non-optimal case. However, we should observe that this

rather vigorous value for the Yarkovsky force would be substan-

tially reduced by two separate effects if the cylinder were to

be transported from 1 A.U. to the asteroid belt at 3 A.U. First

the available incident momentum, Fd, would diminish by a factor

of nine since the solar illumination obeys an inverse square law.

Second, this reduced value for I would also cause P to increase

by about-a factor of five, and this in turn would reduce the

coefficient of Fd by exactly this same factor in equation (19),

which would then become a satisfactory approximation.

C. Earlier Calculations

Although Radzievsky (1952) was the first to perform a

thorough first order calculation for the steady-state temperature

on a rotating body, O5pik (1951) seems to have anticipated an

asymptotic approximation to Radzievsky's results by using only

"dimensional considerations". With this method Opik (1951) in

his equation (58) estimates the "surface radiative temperature

between the evening and morning points" evaluated at 1 A.U. to

be (in our notation)

AT = - degrees Kelvin

for a "stony sphere, with proper values for the conductivity,

specific heat, and solar constant ..... ". The quantity under the

radical sign is simply the rotation period in seconds. We can

extract this same equation from our own results using equations
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(7) and (13b) as follows;

AT = 2Tovi~ ffTo _ -Io degrees Kelvin
2P /2pC K

P

where the second step involves making an asymptotic approximation

to equation (13b) for large P. Unfortunately, Opik does not list

the actual thermal parameters which he used nor does he express

the functional relationship between them and AT. However, if we

evaluate the above equation using the same thermal parameters that

appeared in the numerical example above, we get simply

AT =degrees Kelvin

which remarkably differs by only about 20% from 5pik's estimate.

Indeed, because of the wide range of thermal parameters measured

in the laboratory for actual meteorites, the author feels that

even now one cannot draw any firm conclusions as to which formula

is more representative of the "typical" situation. The present

work, however, has a more rigorous basis than 5pik's early

effort.



IV. Reradiation Forces on a Rotating Sphere

Consider a sphere of radius R as shown in figure 3 which is

comprised of truncated cones whose axes coincide with the sphere's

spin axis which in turn is parallel to the z coordinate. If the

direction of incident radiation is perpendicular to this axis,

then the maximum intensity which a conical element that is tangent

to the sphere at latitude 6 experiences will be Iocos 6. If the

"average" radius of such a cone is R' and its slant height mea-

sured along a conical element is L, then the normal to a differ-

ential surface element will be given by

dS = -LR'd* sin$ cos0

dS = LR'd* cos$ cose
y

in the coordinate system of figure 1. In a manner exactly ana-

logous to the derivation of equations (15), we find that

F (0) - 2aIocos2 LR'U1  (20a)
3c(l+ 6)

2

F (6) =- 2aIocos 2 LR'Vi (20b)
3c(1+ 6)

where one factor of cos 6 comes from the fact that the reradiation

pressure is always directed by the cone's slanted surface at an

angle 0 to the x-y plane, and the other factor of cos 6 is a con-

sequence of the reduced incident energy on this same surface.

We must now determine how to modify the parameter P that

appears in equations (11) from the cylindrical to the conical

case. It has been found convenient to require that P retain its



Figure 3

The coordinate systerc used for calculating the reradiation

forces on an illuminated rotating sphere. Here the x coordinate

is directed out of the plane of the paper, but otherwise this

syster is the sare as that depicted in figure 1. The sphere is

regarded as being comprised of rany thin truncated cones with

a radius of R' and a height given by L cosO = R cosO do.



currently defined value, and then to introduce the 8 dependence

of the parameter that appears in equations (llb-llg) by using

equation (lla) and the original definition of P as follows;

Io(e) = Iocos 6 (21a)

To (8) = aIo() ' = Tocos 1 (21b)
Lsa'rr (1 + 6))

P(0) =- To (6) pCPK= (21c)
aIo(6)V P cos 8

where the quantities Io, To, and P on the right hand side of these

relationships have all had their original identities preserved.

We can now substitute equation (21c) into equations (1lb) and

(llc) which can then be used to eliminate Ui and V, from equation

(20) to get

2

F (6) - 2aI cos 0 LR' } - 3 4 (ui- vi) (22a)
X 3c Cos 04

2

F (6) = 2aIocos 6 LR' , (ui+ vi) (22b)
Y 3c cos 6

in a manner exactly analogous to the derivation of equations (16).

Next we use relationship (21c) in the approximations (13) to get

the reradiative force on a rotating cone of half-angle 8 as

F (e) = 2aIgcos26 LR'ir P cos 3/a + 4 cos 2 (23a)
x 3c p2+ 4P cos/4 + 8 cosW8

2aIocos2 ' P cos 6 (23b)
F = cco LR'ir 2 3 3/3c p+ 4P cos / + 8 cos 6

a
which indeed reduce to equations (17) for-cylinder when 8 = 0.



In order to use these results to get the reradiation forces

on a rotating sphere., first note from figure 3 that we may iden-

tify R'=Rcos e and L= Rd6 in equations (23). Then we integrate

these equations over the entire surface to get

F = F F(G)dO = 0- CxFf P coAS4e + 4 cos9 e aed (24a)
x 3 2+ 4P cos6 + 8 cos/2e

F = F (e)d = y aF P cos + s de (24b)
y edo 3 dJ 2+ 4~P cos 4e + 8 cos y2 9 (2b

2

FdI(sphere) = TR /c

which has the same physical significance as the quantity first

introduced in equations (15).

The procedure used to evaluate the integrals in equations (24)

is somewhat tedious, and therefore it will only be briefly

sketched here. First the denonimator is factored into 2 complex

products and the result is then expanded in partial fractions

as follows;

1
2 co3~ o

P + 4P cos 6 + 8 cos /2 8

4P cos3/40 + (1+ i) P/4 cos3"46 + (1- i)P/4



Both terms can then be readily expanded in a power series valid

for large P which permits the trigonometric terms to be integrated

term by term using standard techniques. The results after some

simplifications are

F = - aF dO - sin[! - r(3j+21)/8 (25a)x y 3P d J= P 4 r((3j + 23) /8)

/, aF -/ .*I 1(31+1)8
F = - aF 0 1- - sin r3 (25b)

Y 3 d .1 P 4 f((3j + 20) /8)

which can be further transformed by the method of Padd approxi-

mants on the first three terms of each series to yield the

following;

F = 0.808 P + 3.79 aF (26a)
P + 3.79 P + 6.89 d

F = 0.808 2 p caF (26b)
P + 3.69 P + 6.74 d

which expressions have also been constrained to take on their

correct values for P= 0.

Because the basic physical processes here are the same for

both cylinders and spheres, it is not surprising that equations

(26) closely resemble equations (17). We would expect, however,

that a sphere with its high latitude surface elements will radi-

ate more isotropically than a cylinder and thus the resulting

reradiative forces will not be as great. Due to the fact that

the conditions for attaining the maximum Yarkovsky efficiency

3osoccur for a fixed value of P/cos /4e, the higher latitude regions



of the sphere will become most efficient at a smaller value of P

than for a cylinder where O= 0. Thus we would expect that the

optimum value of P for the sphere as a whole will be somewhat

smaller than that for the case of a cylinder. Differentiating

equation (26b) with respect to P and setting the result equal to

zero yields

P( F =max ) = /6.74 (27a)

max(F ) = 0.091 aFd (27b)

which, when compared to equations (18), are seen to be exactly in

accordance with our expectations as stated above.

The reader is reminded that equations (26) are derived for

the case where the sphere's spin axis is perpendicular to its

orbital plane. It is probably worth noticing here that equation

(26b) could be amended approximately after Opik (1951) to take

into account a rotation axis inclined at an angle i to this per-

pendicular by multiplying the right hand side by cos 1. With

this modification retrograde rotation simply corresponds to

i= 180 0. Moreover, for a random distribution of spin axis orien-

tations the average value for cos 1 will be zero while the average

magnitude will be only one half of that given by equation (26b).

Since many different effects are known to be capable of changing

both the angular velocity and spin axis orientation of a small

irregularly-shaped interplanetary fragment, a comprehensive study

would be required in order to draw any useful conclusions about



the rotational evolution of such bodies. Such a study is beyond

the scope of this work and so in the calculations that follow we

will simply assume a sphere with its spin axis maintained perpen-

dicular to its orbital plane. Except for a constant factor of

cos 1, there is as yet no compelling evidence that such an assump-

tion is entirely unrealistic for fragments large enough to sur-

vive passage through the earth's atmosphere.
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V. Orbital Effects from Reradiative Forces

A. Generalization of the Basic Parameters

Now that we have calculated the reradiation forces on a

"large" sphere rotating about an axis which is perpendicular to

the direction of incident radiation, some of the orbital changes

arising from such thermal re-emissions can be determined. Be-

cause even the simplified case of orbital evolution involving

gravity perturbations by Jupiter can be extremely complex, we

will initially consider just the reradiative force as the only

perturbation on a two-body system. Another simplification, which

will be adequate to get at least some idea of the true importance

of the Yarkovsky effect, can be made by replacing equations (26)

with an asymptotic approximation valid for large P as follows;

F = F = F ~ 0.808 aF /P (28)
x y d

which is exactly analogous to equation (19). Next, using the

inverse square law of radiation intensity with distance as a

basis, we determine the dependence of F on orbital distance in

a manner exactly analogous to the procedure outlined in equations

(21) to get

Io(d) = Io/d 2  (29a)

2 2 2
F d(d) = 7R2Io (d)/c = wR2Io/cd (29b)

To(d) = (d) Tod (29c)

P(d) = 'To (d) /pC Ku = PdY2 (29d)
aIo (d)/2



where d is the orbital distance from the sun expressed in Astro-

nomical Units (A.U.). When equations (29b) and (29d) are substi-

tuted into (28) we get

F 0.808 aIo'jR (30)
cPd72

where Io and P are now both constants to be evaluated at 1 A.U.

At this point the perturbing accelerations can be readily com-

puted by dividing both sides of equation (30) by the sphere's
3

mass given by m= 4pwR /3 to get

F(d)/m = 0.606 aIO = Q/d /2 (31)
cPpRd/2

where Q= 0.606 alo is the reradiative acceleration on the sphere
cPpR

evaluated at 1 A.U.

B. Variation of Orbital Elements

Next we employ the method of the variation of orbital ele-

ments in the coordinate system of figure 1 which takes the form

da a3 s F (32a)=2 e sin f _ + (1 + e cos f) f3J
de ( _ ale) F F 1

d[ +2 cos f + e COs2 f (32)

dt e ym 1 + e cos f m

where a is the semimajor axis of the sphere's solar orbit, e is

its eccentricity, f is the true anomaly, r is the argument of

pericenter, and y is the gravitational constant of the sun. Noting



that d= a(l -e2 )/(l+e cos f) for our two-body orbit, we substi-

tute equation (31) into (32) and then average over a complete rev-

olution keeping only terms in lowest nonvanishing order in e to

get approximately

da 2Q
<at> =(33a)

< HE> =1"- 3 (33b)
/ja

<d> = -3Q (33c)dt 4v'jia 3

where the notation < > signifies time averaging over a complete

orbit. Here equations (33a) and (33b) are found to depend only

upon the y component of the disturbing acceleration while equation

(33c) depends only upon the x component. Thus the major changes

involving the size and shape of the orbit are determined solely

by the Yarkovsky force whose sign depends upon the relative sense

between the sphere's spin and orbital angular velocities. In

particular, if the two angular velocities have the same sense,

then the plus sign in equations (33a) and (33b) is correct;

otherwise the minus sign must be used. The minus sign in equation

(33c) means that the orbit's pericenter will always regress.

Equations (33) may be regarded as a coupled set of differential

equations whose solution, which neglects the nonsecular fluctua-

tions, is readily found to be



a(t) = ao 1 - 6Q a t )1/3 (34a)

e(t) = eo 1 - t J (34b)

n (t) = no + ln 1 - 6Q t (34c)
8 /;ia o

where ao, eo, and rno are the initial values of the orbital ele-

ments at t=0. Also since we are primarily interested in the

case of asteroid fragments which eventually pass inside the

earth's orbit, the minus sign was chosen in equations (33a) and

(33b). Note that this choice corresponds to the fragment having

a rotation which is retrograde with respect to its orbital motion.

By comparing equations (34a) and (34b), also note that a (t) and

e(t) maintain a ratio which is constant with time.

C. A Numerical Example

The real significance of equations (34) can best be appreci-

ated by extending our numerical example of a previous section

which illustrated the force on a rotating cylinder. Because no

homogeneous set of units are particularly convenient here, we may

hybridize the problem as follows. First let the quantity Q in

equation (31) be evaluated in cgs units so that it has the dimen-
-2

sions of cm sec . If a convenient unit of time is chosen to be

one million years, then we get

Q {cm sec 2}= 6.66x 10' Q {A.U. Myr2 }

13 3 -2
yn = 3.956 x 10 A.U. Myr .



If we take R, the radius of our sphere, to be 50 centimeters and

and require that p, P, and Io retain their previous values of
-3 6 -2 -12.5 gm cm , 17.1, and 1.4x 10 erg cm sec at'l A.U. respectively,

then we get for a black stony sphere one meter in diameter

8 -2 5 -2
Q = 1.32 x 10 cm sec = 8.80 x 10 A.U. Myr

6Q//y 0.84 A.U. Myr per A.U.

and equation (34a) becomes simply*

3 3
a(t) = ao( 1 - 0.84 t/aO ) (35)

which is graphed in figure 4 for ao= 3 A.U. Note that this size

sphere under the action of the Yarkovsky effect would require

only about 30 million years to cross inside the earth's orbit

from the middle of the asteroid belt. A larger object would take

longer in proportion to its diameter, but unfortunately the situ-

ation is a bit more complex for "small" objects as we shall soon

see. If the above numerical values are used in equation (34c),

it is found that during the time the sphere's semimajor axis is

changing from 3 A.U. to 1 A.U., its perihelion regresses only

about 240.

As indicated by the dashed portion of the curve in figure 4,

equation (35) actually breaks down in this case when the sphere

gets much closer to the sun than 1 A.U. The reason for this can

be seen by noticing that while equation (28) is a valid approxi-

mation to (24b) only for large values of P, equation (29d) shows

*The "extra" factor of A.U2, which appears in some of the di-

mensions, arises from the way in which equation (31) was de-

rived.
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Figure 4

Possible orbit evolution of a stony meteorite one meter in

diameter under the influence of the Yark-ovsky effect acting

alone. Any initial orbital eccentricity would also evolve by

following a profile identical to that shown above for the semi-

major axis. The simplifying assumptions used in obtaining eauation

(30) are violated in this case when the body passes inside 1 A.U.



that P(a) decreases with a. Therefore, the approximation (28)

must breakdown ultimately as the sphere spirals into the sun.

However, equations (34) are probably applicable to many cases

of interest.
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VI. Comparison with the Poynting-Robertson Effect

The Poynting-Robertson drag on absorbing particles in orbit

about a luminous body has been well understood since its careful

documentation by Robertson (1937). It arises from the fact that

such a particle, while re-emitting the radiation it has absorbed,

must necessarily impart net momentum to this radiation at the

expense of its own orbital energy. The resulting drag on a par-

ticle which is in a circular orbit about the sun will always be

in the negative y direction in our notation and can be written as

Fpr= 10 aFd//a (with "a" in Astronomical Units)

2
where for a sphere again we have Fd = 7R Io/c and where the factor

of 10 comes from the ratio of the earth's orbital velocity to

the speed of light. The corresponding expression for the Yarkov-

sky force on a sphere can be found by substituting equation (29d)

into (26b) to get

F (a) - 0.808 Pa/t
P2a3+ 3.69 Pa 3 + 6.74 d

and so the ratio between the two forces is readily found to be

F Y 8080 Pa2

F P2a3+ 3.69 Pa3/2+ 6.74pr

For a given value of a,this ratio is maximized when P = 6.74/as

and the value attained at this maximum is then found to be 910/a.

These results are consistent with equations (27) which were only

valid for a= 1 A.U. Although this approach demonstrates that



under the most favorable of circumstances the Yarkovsky force can

exceed the Poynting-Robertson drag by three orders of magnitude,

it also requires rather small values for P.

Perhaps a more realistic approach to the comparison of these

two effects is to form the asymptotic approximation to their

ratio valid for large P which is simply

-- 80Pa > 20.
F Pa

pr

Here it is interesting to note that a stable balance between these

forces is possible when the above ratio is unity and the sphere's

spin sense is prograde with respect to its orbital motion. This

fact was first pointed out by Opik (1951). However, if P takes

on a "typical" value of 20 at 1 A.U., then we may say that the

Yarkovsky force is "typically" two hundred times greater than the

Poynting-Robertson drag for asteroid fragments spiraling in

towards the earth's orbit.



VII. The Yarkovsky Effect on "Small" Bodies

If the thermal conductivity within a rotating body is suf-

ficiently large for a given sized object, then a significant

amount of the energy absorbed at its surface can be thermally

conducted through its interior. Compared to the previously con-

sidered situation, such a process would serve to greatly diminish

the net reradiation forces on the body by reducing differences

in its surface temperature and hence, the asymmetry of emitted

thermal radiation. More quantitatively, we may say that such

internal heat conduction is important whenever XR< 4, since this

would violate the condition used in deriving equations (5) upon

which all our analyses up to now have been based. Although this

process probably deserves as much attention as the case for

"large" bodies already considered, we will only briefly discuss

it here by following the treatment of Spik (1951).

For the case of a "small" rotating body where XR< 4, Opik

(1951) derives a formula which in our notation would be approxi-

mately equivalent to

vi=- aIoR (36)
17ToKdM

where as before in equations (29), Io and To are the solar flux

and equilibrium temperature respectively evaluated at 1 A.U.

Note that equation (36) displays no dependence of vi upon either

the heat capacity or spin rate of the body. Using equation (15b)

with 6= 0, we can calculate the Yarkovsky force on a "small"



cylinder with the help of the linear approximation, Vi= 4vi, from

equations (9) to get

4
F = -viaFd

If we assume that this equation is also a reasonably good approx-

imation for a spherical body with a proper value of vi as given

by equation (36), then we may estimate the Yarkovsky acceleration

on the body at a distance d from the sun in exactly the same man-

ner used to derive equation (31) by writing

F 2 2 Q
y = aIo - S (37)

m l7cKTopdV2 d7/2

2 2

where as before, Q =a I 0  is defined as the Yarkovsky accel-
s 17cKTO-p

eration evaluated at 1 A.U. Note that the radius of the body, R,

has dropped out of equation (37) which means that in this situa-

tion the y-component of acceleration is independent of size. If

equation (37) were to be substituted into equations (32a) and

(32b), then we would first get equations (33a) and (33b) which

could then be integrated to yield equations (34a) and (34b) with

Q replaced by Qs'

The distinguishing physical parameter in equation (36) turns

out to be the thermal conductivity, K. We now choose this and

the other physical properties of the body to be typical of an

iron-rich alloy as follows;

T = 300 0K at 1 A.U. a = 0.8
6 -1 0-1 -1 -3

K = 4x 10 erg cm K sec p = 8.0 gm cm
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from which we compute

-10 -2 4 -2
Q = 2.56 x 10 cm sec = 1.71x 10 A.U. Myr .

SS
When this value of QS is substituted into equation (34b) and the

result used to compute the time necessary for the body to move

from 3 A.U. to 1 A.U., we find that about 1600 Myr would be re-

quired. If we were to perform precisely the same calculation

for a stony object which is "small enough" for equation (36) to

apply, then we would find that only 12 Myr would be required for

the body to reach 1 A.U. from an initial distance of 3 A.U. The

decrease in both thermal conductivity by a factor of 25 and den-

sity by more than a factor of 3 would thus seem to indicate a

rapid rate of transport for stony material from the asteroid belt

by this mechanism compared to the rate for metallic material. It

is interesting to note here that such a dichotomy in the rates of

orbital evolution, depending upon the body's physical properties,

is consistent with the cosmic ray exposure ages of meteorites as

measured in the laboratory (Wasson, 1974).

It is now instructive to compare the actual sizes of stony

and iron bodies for which equation (36) becomes valid. Using the

criterion XR< 4 and the respective thermal parameters as already

set forth including an assumed rotation period of 5 hours, we get

the condition R< 120 cm for the "small body" approximation to

hold for an iron composition. Recall that in a previous numeri-

cal example, we showed that the corresponding condition for a

stony compostion was R< 24 cm. Thus it would seem that the sub-



ject of reradiative effects on "small" bodies is a relevant con-

sideration for some stony and nearly all iron meteorites.



VIII. Discussion

A. Cosmic Ray Exposure Ages

The measured cosmic ray exposure ages for stony meteorites

fall in the range of 1 to 100 Myr and show a tendency to "cluster"

for certain meteorite classifications (Anders, 1964;Wasson, 1974).

Whether their respective parent bodies were disrupted catastroph-

ically or gradually, the previous section showed that all "small"

(R< 25 cm) retrograde-rotating stony fragments initially at 3

A.U. could be perturbed into earth crossing orbits by the Yarkov-

sky effect in about 12 Myr. For values of the thermal conductiv-

ity and/or bulk density which are higher than those used to ob-

tain this figure, equation (37) shows that the exposure ages ex-

pected from this mechanism would be proportionally longer. Thus,

some achondrite exposure age clusters, such as the ones at 40 Myr

for aubrites and 15-20 Myr for diogenites, seem to be consistent

with an asteroid belt origin if the Yarkovsky effect is the domi-

nant perturbation. Moreover, this hypothesis is supported by the

fact that the aubrite with the longest exposure age, Norton Coun-

ty, also happens to be the largest (Herzog and Anders, 1971).

This is precisely what one would predict for the Yarkovsky accel-

eration operating on a "large" body (R> 25 cm) for which we have

shown in equation (31) that, all else being equal, the expected

exposure age is proportional to its radius. With this exercise

in mind, the measured thermal parameters of the Norton County

meteorite (Alexeyeva, 1960) were chosen for a previous numerical

example in which it was calculated that this mechanism could



bring a "large" body of 50 cm radius from 3 A.U. to 1 A.U. in

30 Myr. This value, which assumes an optimum spin axis alignment

and a five hour rotation period, is really quite easy to reconcile

with the 100 Myr exposure age actually measured for Norton County.

If this body had its spin axis tilted 60 degrees from the normal

to its orbital plane and its rotation period shortened from 5 to

2 hours, then a revised theoretical calculation of the Yarkovsky

effect in this instance would yield results that agreed almost

exactly with the 100 Myr exposure age. Alternatively, if we re-

tain the original spin parameters, then we can also account for

the longer exposure age by simply starting at 4.4 A.U. rather

than at 3 A.U. However, very few asteroids are known beyond 3.25

A.U., probably as a result of perturbations by Jupiter, and so

the hypothetical spin parameters appear to be the more satisfac-

tory quantities for adjustment in this case.

The most pronounced clustering of cosmic ray exposure ages

for any meteorite group occurs at 4 Myr for H-group chondrites

(Wasson, 1974). Although a single step process involving just

the Yarkovsky effect on these bodies seems to be too weak by a

factor of 3 to account for an asteroid belt origin at 3 A.U., it

could just barely manage to account for an initial orbit at 2

A.U. A somewhat more plausible explanation may reside in a two-

step mechanism which combines the Yarkovsky effect with secular

and/or commensurability resonances with Jupiter. If a parent

body for H-group chondrites were to lie in the asteroid belt near

one of the more important resonances, then it would only be



necessary for the Yarkovsky effect to move the fragments a rela-

tively short distance until they could interact with it. Jupi-

ter's gravitational perturbations could then do the rest in a

time scale short compared to the exposure age (Williams, 1973).

Unfortunately, actual calculations on the orbital evolution of

meteorites which include these two effects combined have not yet

been done, and so on the basis of exposure age data alone the

existence of such a two-step mechanism would have to be considered

as mere speculation. However, both the Lost City and Pribram

H-group chondrites were recently found to have been in or very

near exact secular resonances with Jupiter just prior to their

atmospheric entry (Williams, 1972), and this new development adds

some measure of credence to an otherwise unsupported hypothesis.

In fact, Lost City has an exposure age of 5.5 Myr (Bogard et al,

1971) making it a member of the 4 Myr cluster.

Carbonaceous chondrites seem to have the shortest cosmic

ray exposure ages of any other meteorite class. Although there

are no obvious clusters, Wasson (1974) has observed that there

is a tendency for their exposure ages to decrease with increasing

friability. If increasing friability is correlated with both

decreasing density and thermal conductivity, then this tendency

would be consistent with what one would expect if the Yarkovsky

effect were the major perturbation on carbonaceous chondrite

orbits. However, we would have to decrease the product, pK, for

these bodies by a factor of at least 6 in order to account for

the exposure ages of 2 to 4 Myr and still have an asteroid belt
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origin. It is just possible that such conditions could be met

if these volatile rich meteorites were somehow enveloped by light

frothy material in their space environment, perhaps as a result

of out gassing within the newly created outer layers of a freshly

released fragment. Such material would completely disappear upon

atmospheric entry, and so we could never expect to actually see

a recovered carbonaceous chondrite in this condition. Alterna-

tively, as seems to be the case for some H-group chondrites, a

resonance with Jupiter might be involved, but the existence of

such a mechanism here remains to be demonstrated both theoretic-

ally and observationally.

Iron meteorites have cosmic ray exposure ages ranging from

less than 0.1 to 2.3 Gyr, which are typically 20 to 100 times

greater than the exposure ages found for stony meteorites (Wasson,

1974). It does not seem likely that this vast difference can be

adequately explained merely as a result of the greater resistance

of iron-nickel alloy to mass wastage in the solar system environ-

ment (Wasson, 1974; Wetherill, 1974). A prominent feature in the

exposure age data is a "cluster" at 650 Myr for group-III AB

irons which is usually interpreted as evidence that an iron par-

ent body somehow disrupted about 650 Myr ago, and we are still

receiving the remnants of that event. Consistent with this theory

is the fact that it has been estimated (Eberhardt and Geiss, 1964)

that the diameter of such a hypothetical body would only need to

be about 5 kilometers in order to account for the present influx

of irons reaching the earth. However, the Yarkovsky acceleration
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operating upon "small" bodies could produce a similar exposure

age distribution which would look almost the same whether a single

parent body disrupted at one time in the past or whether a number

of such bodies in the same region of the asteroid belt have been

continuously producing fragments such that we are now witnessing

a steady-state situation with respect to the terrestrial influx.

The reason for this can again be found in equation (37) which

shows that "small" bodies (i.e. those which are not large enough

to maintain a substantial thermal gradient from one side to the

other) will all be perturbed to the same extent by the Yarkovsky

acceleration independant of size or spin rate as long as XR< 4.

Thus, from a common region within the asteroid belt, we would

expect all the meteor-sized fragments to take about the same

time to attain earth-crossing orbits whereupon they would survive

for only a small fraction of their exposure ages (about 10 Myr)

before impacting the earth or some other planet (Wetherill and

Williams, 1968). Therefore, we are faced with the problem that

two very different fragmentation mechanisms for a parent body in

the asteroid belt could give rise to very similar exposure age

distributions as sampled by the earth.

The previous section showed that pure iron bodies less than

about 2 meters in diameter would require about 1.6 Gyr to reach

the earth's orbit from 3 A.U. by the Yarkovsky effect. In order

to account for the somewhat shorter exposure ages actually found

for most irons, it is probably safe to say that resonances with

Jupiter would play a very important role. The reason for this



is that the high thermal conductivity and density of irons causes

their semimajor axes and other orbital elements to vary extremely

slowly, thus maintaining any resonance conditions for relatively

long periods of time. We have seen that the orbit of the Lost

City meteorite was apparently strongly influenced by a Jovian

resonance even though it only had an exposure age of 5.5 Myr.

As in the case of the Yarkovsky effect, gravitational perturba-

tions would also be independent of size and spin rate, and so the

influence of such a resonance does not alter the end result of

any explanation presented here concerning the clustering of cos-

mic ray exposure ages.

B. Earth-Based Observations of Asteroids

As a result of recent advances in determining the physical

properties of asteroids, useful information concerning the sur-

face composition of some of the brighter minor planets is now

available. When high quality spectrophotometric, radiometric,

and polarimetric data on asteroids are analyzed and compared to

corresponding laboratory data on meteorites, diagnostic features

are observed which demonstrate a compositional similarity between

some asteroid surfaces and some meteoritic minerals. More speci-

fically, the spectral reflectance curves for most asteroids tend

to resemble either carbonaceous chondrites or metal-rich assem-

blages of metal plus silicate phases (McCord and Gaffey, 1974;

Chapman, Morrison, and Zellner, 1975). However, the brightest

asteroid, Vesta, is still the only one yet found with a spectral

reflectance curve resembling a basaltic achondrite (eucrite).
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The correlations between the spectral reflectance characteristics

and orbital elements of some scores of asteroids have been re-

ported elsewhere (Chapman, Morrison, and Zellner, 1975). It now

appears that a majority of the asteroids larger than 40 km in

diameter resemble carbonaceous chondrites, a comparatively un-

common class of meteorite recovered on the earth. Even allowing

for the difficulty of these very friable bodies to survive earth

atmospheric entry, it seems that the earth is not receiving a

representative sample of asteroid belt material as we can now

observe it. Actually, about 85-90% of terrestrial falls consist

of ordinary chondrites, and yet from current spectral reflectance

measurements the only candidates for the parent bodies of these

meteorites include some very small (<10 km) Apollo and Amor class

asteroids. It is hard to understand why these rather highly

metamorphosed meteorites would come from such small parent bodies;

they must be small (<40 km) or else we would see them; they must

exist in order to account for the cosmic ray exposure ages. In

brief, ground based optical observations have identified some

belt asteroids as candidate parent bodies for carbonaceous chon-

drites, irons, stony-irons, and some types of achondrites. This

thesis has shown that from a dynamical point of view, such can-

didates could be consistent with the cosmic ray exposure ages for

most meteorites in these classes. However, these two pieces of

information certainly do not serve to positively identify any

particular parent body or group of parent bodies as such.
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C. Effects of Jovian Resonances

Several times in this work, the role of possible secular

resonances with Jupiter has been hypothesized to explain the

measured cosmic ray exposure ages for some meteorites. There

exist additional astronomical data which might also be accounted

for by such a mechanism. If we consider either a rotating body

perturbed by the Yarkovsky effect or a small particle perturbed

by the Poynting-Robertson effect, then as their semimajor axes

together with other orbital elements undergo continuous change,

it is quite possible that nearly all such bodies will at least
the

temporarily enter a resonance with a major planet. On one hand

Williams (1973) has shown that one major consequence of such a

resonance could be a large increase in the perturbed orbit's

eccentricity. On the other hand, for the case of a body spiraling

in towards the sun under their influence, either the Yarkovsky

or Poynting-Robertson effects by themselves would tend to decrease

the orbital eccentricity (Robertson, 1937; Opik, 1951). Because

of the rather large heliocentric eccentricities (e>0.5) actually

found for most Prairie Network optical meteors (McCrosky, 1967),

for kilogram size objects impacting the lunar surface (Dainty,

Stein, and Toksoz, 1975), for some' radio meteors (Hawkins, 1962;

Eshleman and Gallagher, 1962), and for most micrometeorites (Berg

and Gerloff, 1970; Dohnanyi, 1972), it would seem that resonant

perturbations could have a dominant influence on the orbital

eccentricity of small solar system bodies. Therefore, the work

on secular resonances done by Williams (1969, 1972, 1973, 1975)



might actually be applicable to the orbits of most meteorites

and dust particles during some phases of their evolution and not

be restricted to just a handful of special cases.

D. Some Recommendations for Further Study

A major aspect of this paper which has not yet been treated

is the expected spin rates for small solar system bodies. How-

ever, in doing so one should remember that the Yarkovsky effect

does not depend particularly strongly (i.e. weaker than linear

dependence) on angular velocity. In calculating that surface

asymmetries in non-magnetic tektites acted upon by solar light

pressure could cause these bodies to suffer rotational bursting

in only 60,000 years, Paddack (1969) realized that interplanetary

magnetic fields would provide some spin damping to electrical

conductors. Paddack (1975) has more recently concluded that for

iron bodies, rotational bursting is important only for diameters

smaller than about 0.01 cm. Based in part upon the relatively

narrow range of asteroid rotation periods and the lack of polar-

ization from asymmetric dust particles observed near the anti-

solar point, Sparrow (1975) believes that Radzievsky (1954) and

Paddack had overestimated the magnitude of such mechanisms.

Actually, most meteorites do contain at least some metal, and

cosmic ray exposure ages clearly show that they can remain in-

tact in space for typically tens of millions of years. Since

carbonaceous chondrites have both the shortest exposure ages for

stones yet a relatively high electrical conductivity (Brecher et

al, 1975), it seems that exposure ages for stones do not correlate



well with the amount of magnetic spin damping. Therefore, it

appears unlikely that this destructive mechanism is important in

determining the fate of most meteorites. Also observing that

asteroid rotation periods fall in a fairly narrow range despite

a very large dispersion in their masses, Icke (1973) has discussed

various surface torques including the "ponderomotive" effect.

Additional work in these areas is clearly needed, but it seems

quite possible that various competing spinup and spin damping

mechanisms could determine some equilibrium angular velocity for

each body.

Among the various calculations presented in this thesis,

there are at least three areas of analysis which should be ex-

tended. First, equation (36), which was obtained by Opik (1951)

using "dimensional considerations" for the temperature variation

on a "small" body, should be explicitly rederived for a sphere.

Although a previous section in this work has pretty much verified

his expression for a "large" body, a calculation with a basis

equally rigorous to that of equations (26) would be desirable.

Second, the temperature distribution on a "large" rotating body

as described by equations (13) represents a linearized approxi-

mation to a nonlinear problem, although it turns out that these

equations actually yield quite satisfactory results as long as

P >5. A more complete solution which is valid for still smaller

values of P would demand that the real nonlinear characteristics

of this problem be fully taken into account. Such an effort

would have applications for planetary science other than those



considered here, and this will be the subject of a future paper.

Third, this work has been concerned with only two dimensional

calculations both for orbital evolution and the temperature dis-

tribution on a rotating sphere. Radzievsky (1952) has considered

the latter problem (linearized) in three dimensions. Three dimen-

sional orbits were not treated here because even though the Yar-

kovsky acceleration may have an out-of-plane component, the forced

precession of the line of nodes for a typical asteroid orbit

seems rather short (about 105 years) for any appreciable incli-

nation to build up. However, this effect must eventually be

taken into account.

E. Conclusions

The Yarkovsky effect is powerful enough to reconcile an

asteroid belt origin for many meteorites with their measured

cosmic ray exposure ages. A significant property of this effect

is that it operates much less efficiently on irons than on stones

due to the large differences in thermal conductivity and density

for these materials; correspondingly longer exposure ages are

actually found for iron meteorites. From any given point in the

asteroid belt, all retrograde spinning iron bodies less than about

2 meters in diameter would take about the same length of time to

reach the earth's orbit under the influence of this continuous

process. This means that it might not be necessary to postulate

a catastrophic breakup for an iron parent body 650 million years

ago in order to explain the clustering of exposure ages for group

III AB iron meteorites. If one considers some possible implica-



tions of both the Yarkovsky effect and Jovian gravity perturba-

tions operating simultaneously on a small asteroid fragment, then

a two-step mechanism controlling its subsequent orbital evolution

is strongly suggested. Such a mechanism could account not only

for much of the cosmic ray exposure age data, but also for some

of the more prominent characteristics of meteorite orbits. In

particular, the existence of sufficiently powerful non-gravita-

tional forces as outlined in this thesis eliminates for many

meteorites the need to require that their parent bodies were in

some special ad hoc orbit.



APPENDIX A

A. The Generalized Equations

All straightforward attempts by the author to solve equations

(11) in conjunction with definitions (9) have yielded unsatis-

factory results. Not only were the algebraic expressions pro-

duced by such efforts extremely complex, but they also generated

imaginary values for ui whenever P<<l. Therefore, a method has

been formulated whereby an asymptotic series for u and v valid

for large P is calculated as the first step. One consequence of

this treatment is that, unlike the assumption made in generating

equations (9), the order of a harmonic coefficient is now defined

by its asymptotic behavior for large P. For example, equations

(13) show that both the first and second harmonic coefficients
-1

behave like P asymptotically, and so we may designate ul, vi,

u2, and v2 as first order quantities. When this result is in-

corporated into equations (llf) and (llg), it is found that both
-3

u3 and v3 behave like P , and as such are third order quantities.

In fact, all odd coefficients except the first are third order

quantities while all even coefficients are first order. The

reason for this can be found in equation (3) which shows that

only the even and first harmonics are the ones directly "driven"

by the time dependent input radiation. All higher odd harmonics

are only indirectly driven by, at most, second order cross pro-

ducts comprised of first order harmonics. The foregoing argument

can be supported by displaying the general form of equations (11)
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for n>l which may be written as;

-ViP(1+ 6) (u - V ) = U

2 (A-la)
-Y/nP(l+6) (u + v ) = V + 2(1+ 6)/(n2_ 1)

n n n

if n is even, or

-ViP(l+ 6)(u- v) = U

-ViP(l+ 6) (u + v) = V

n n n

if n is odd.

Because we originally assumed that all the Fourier coeffi-

cients in equation (7) were first order when we raised it to the

fourth power, some higher order terms were inadvertently retained

when we intended to keep only those of second order. However,

the simplification permitted by neglecting such terms in equations

(9) is more than offset by the fact that our original naive ap-

proach also neglected important second order terms from higher

harmonics. If we were to expand equation(7) to include all har-

monics and then carefully raise it to the fourth power while

keeping all second order terms for the even harmonics and all

third order terms for the odd, then we would get in place of

definitions (9),

2 2 V2_ U2)
6(ua,va) = 3(u + v1 ) + iS 3 (0) + 6uvlu 2 + 3v2 (v1- u1 )

S un (S2 (n) + S4 (n)) + v (S ( + S3(n))
+3 1 2 nI 3 (1 S(n) +S()

n=1 n=1

3 2
Ui(un nV) = 4ui+ 6(viu2- uiV2) + 3u,+ 3uivi

+ ui.(S3(0) - S 3 (1)) + viS 4 (1)
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VI (u ,vn)

U2 (u V n)

V2 (u ,v)

U3 (u n v n)

V3 (un V n)

= 4vi+ 6 (UlU2+ V1V2) + 3UVi+ 3VI

+ UiS4 (1) + VI (S3 (0) + S3 (1))

= 4U2+ 6uivi+ S4(1)

2 2= 4v2+ 3(vi- ui) + S3(1)

3
= 6 (UV2+ V1U2- UiV4+ VIU4) + 4u 3- UI

2 2 2+ 3uv 1 + 6viu 2 v 2 + 3ui (u2 _ v 2 )

+ ui (S 3 (1) - S3(2)) + vi (S4(1) + S4(2))
3= 6(Viv 2 - UIU2+ UIU4+ VIV4) + 4v3+ V1

2 2 2
- 3uivi+ 6ulu2v2+ 3viv U2)

+ u1 (S4(2) - S4(1)) + vi (S3 (1) + S3(2))

(A-2)

where we have defined

n-1
Si (n) = 3 v 2 V2 (n-j)- u 2 ju2 (n-j

j=11

n-1
S2(n) = 6 1 u2j 2 (n-j)

j=1 (

S3 (n) = 6 f 2 (n+j)+ v v2 (n+j)
n=1

S4 (n) 6 1(v2 ju2 (n+j) - u2 j 2(n+j)]3=1

(n>l)

(n>l)

(A-3)

Note that each of the above sums involves only products of even

harmonic coefficients, each of which is a first order factor.

Thus, the above sums are all second order quantities. We may

now generalize equations (A-2) and write an expression for all
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the harmonic coefficients of T4 in terms of those for T as

follows;

for the 2nth (even) harmonic with n>l we have,
-3

U2n (U m) = 4u 2n+ S2 (n) + S4 (n) + O(P )

V2n (um' M 2n + Si(n) + S3(n) + O(P )

for the 2n+lst odd harmonic with n>l we have,

U2 n+1 (um Vm) = 6(uiv 2n + viu2n- UIV2n+2 + viu 2 n+2)

+ 4u n+ui (Si(n) + S3 (n) - SI(n+l) - S3 (n+l))

+ vl (S2 (n) + S4 (n) + S2(n+l) + S4 (n+l)) + 0(i)

(A-4b)

V2n+ 1 (U )M = n6(viv - u u + uu2n+2+ viv 2n+2)

+4v2n1 + u (-S2 (n) - S4 (n) + S2 (n+l) + S4 (n+l))

+ vi (Si (n) + S3 (n) + Sl (n+l) + S3 (n+l)) + O ()

where the notation 0 (fn) represents a general expression for all

terms of order n or smaller.

Before proceeding further into this problem, it should be

stated that the derivation of equations (A-r2), (A-3), (A-4), as
as

well many equations to follow involve extensive algebraic mani-

pulations, most of which will not be displayed here. However,

a few basic principles involved in these tedious computations

can be enumerated which at least may serve to justify the form

of the final results. First if we define

00

g = (usin n$ + v cos n$)
n=1

then equations (7) and (8) can be written as

T = To(l+g)

4 4 4 4 2
T = To(l+ g) To(l + 4g + 6g + ..... ) 70



respectively, where the second equation has only been expanded

to second order for this example. Our task is to understand the

form of g2 as it relates to definitions (9). To do this we note

secondly that the following identities are relevant;

sin j cos k = (sin(j+k) + sin(j-k))/2 (u.v k U. term)

sin j sin k = (cos(j-k) - cos(j+k))/2 (u.u k V term)

cos j cos k = (cos(j-k) + cos(j+k))/2 (v.v k V.+k term)

2 th thThus a cross product term in g from the j and k harmonic of

T will contribute in second order to the (j± k) th harmonic com-

ponent of T 4 Now we may understand the general form for the

second order contributions to U and V as follows;n n

N
U 0 I u.v + I ±u.v

n j+k=n 3 j-k=n

N
V c . k- u u) + I (v v + u uk)

j+k=n j-k=n

where there are only a finite number of harmonic pairs whose sum

is n, but an infinite number of such pairs whose difference is n.

Equations (A-3) illustrate the fruits of an exact treatment to

second order.

B. A Nonlinear Asymptotic Approximation

A major computational advantage of solving for the harmonic

coefficients in the form of an asymptotic series in inverse

powers of P is that the higher order coefficients in such a ser-

ies may be determined recursively from the lower by means of

relatively simple relationships. This effectively eliminates
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much of the complexity inherent in the nonlinear equations (A-2),

(A-3), and (A-4). Let the solution series for u and v be

represented by

u u u
U 2 +... + n,m +n P p2 pm

(A-5)

vn,1 vn,,2 vnrm
V 2 + ... * + + ..... ,

then we may simplify all of the sums in equations (A-3) to lead-

ing order by first solving for all u2n, 1 and v2n, l. If we sub-

stitute equations (A-5) into (A-4a) and then the result into

equations (A-la), we get

-V2-Pu 2n,1- 2n,1 =0
P

u2 n, + v 2n, 2

P 4n2_1

where we have equated terms in the zeroth power of P. The

solution to the above pair of equations is readily found to be

1u2 1 = v - ( (A-6)2n12n,1 /Zi 4n2 _l)

for all n>O. If we likewise continue one step further and
-1

equate terms of order P , we get

2n,2- v2n,2 2n,1
nP2

u + v4v
2n,2 2n,2 _ 2n,1

P p
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which may be readily solved using equation (A-6) to yield

2
u 2n,, n42_ 1

(A-7)
v2n,2 

for all n>0. As can be seen from equation (3), the first har-

monic is a special case, and it is the only first order quantity

that cannot be handled by the general treatment above. There-

fore, if we substitute equations (a-5) first into (A-2) and then

into (llb) and (llc) and proceed in the same manner described

above, we will find

u = v =f /4 (A-8)

u1, = 0, vi, =w'u1,2 o 11,2 7.

Because we only wish to compute the even harmonic coeffi-

cients to second order and the odd coefficients to third order,

equations (A-4) show that it is only necessary to compute the

sums in equations (A-3) to leading (second) order. Therefore,

as a consequence of the fact that u2n,l= 2n, 1 as shown in (A-6),

we immediately see that Si(n) = S4 (n) = 0 to leading order. This

permits us in turn to simplify equations (A-4) and substitute

them into (A-1) to get for n>l,

-/2nP(1+ 6)(u2n 2n ) = 4u2n+ S2 (n) + O(P )

-/2nP(l+ 6) (u 2n+ v2n = 2n+ S3(n) (A-9a)

2 -3
+ 2(1+ 6)/(4n - 1) + O(P )



as the equations to be solved for the higher even harmonics, and

-/2n+l P(l+ 6)(u2n+1 2n+1 ) = 6ui(v2n 2n+2

+ 6v,(u2n 2n+2) + 4u2n+1

+ '(S3(n) - S 3 (n+l) S2(n) - S 2 (n+l))P1 + o(P )

(A-9b)

-/2n+l P(l+ 6) (u 2n+1+ v 2n+1) 6ui(-u 2n+ u2n+2

+ 6vi(v2n+ v 2n+2) + 4v2n+1

- 1(S2(n) - S2(n+l) + S 3 (n) + S3(n+l))P 1 + O(P )

for the higher odd harmonics where we have also used the fact

derived in equation (A-8) that ui=- vi= Tr/(4P) to leading order.

The reader is reminded that the above simplifications would not

be correct if we wished to compute the even harmonics to third

order or the odd harmonics to fourth order. However, because

in this instance we only require the leading term for the sums

defined by equations (A-3), we may use equation (A-6) to numer-

ically evaluate the quantities S2(n) and S3(n) to second order.

This has been done for Q<n<l0 and the results are displayed in

table 1.

A similar simplification may be performed on equations (A-2).

If this is done and the results are substituted into equations

(11), we get for the first three harmonic coefficients and 6

2' v2) M~'O
6 = 3(u1+ VI) + -S3(0) + 6 ulvlu2+ u2 S 2 (n)

n=1

+ 11 v2 S3(n)
n=1



S 2 (n)

0 0.0

1 0.0

2 0.3333333333

3 0.0942809042

4 0.0396581106

5 0.0205387106

6 0.0120957281

7 0.0077729648

8 0.0053201037

9 0.0038188661

10 0.0028451453

Table 1

Evaluation of S2(n) and S3(n)

0. 6 822338333

0.1000967834

0.0359258116

0.0176049170

0.0101611106

0.0064927576

0.0044477362

0.0032052530

0.0024007772

0.0018537248

0.0014669360

to Leading Order

S3 (n)



-P(l+ 6) (ui- vi) = 4ui+ 6(viu 2 - uiv 2)

+ ( v2f2+ S 3 (0) - S3 (1))P-- i(1+ 6)/2 + O(P )

-P(1+ 6) (ui+ vi) = 4v,+ 6(u1U2+ v1v 2 )

1( 3 2 -2-i-

- r P + S 3 (0) + S3 (1))P + 0(P

-/zP(l+6)(u 2 - v2) = 4u2+ 6uivi+ 0(P3)
-3 (A-10)

-/ZP(l+ 6)(u2+ v2) = 4v2+ S 3 (1) + 2(1+ 6)/3 + O(P)

-/3P(l+ 6) (u3- v3) = 6(uiv2+ ViU2- uiv 4+ v1u4 )

+ 4U3+ 4( 12 - 6u2v2+ S2 (1) - Sa3 (2))I+ O()

-/ZP(l+ 6) (U3+ V3) = 6(viv 2 - UiU2+ UiU4+ vivI)

1 12-2 S3 2)P+ -(4+ 4v3+ 1 2( ir P + 6u2v2- S3 (l) - 3(2)(

The reason why these first three harmonics must be treated

separately stems from the fact that the first harmonic is the

only odd one which is "driven". It is thus the only first order

quantity which, when cubed, can contribute to the third harmonic.

It is likewise the only odd harmonic which, when squared, can

contribute quadratically to the second harmonic. If we were to

attempt a fourth order calculation, then it would become nec-

essary to extend such special consideration to the fourth har-

monic as well.

It is now possible to extend the collection of explicit

expressions for un,m and v a which began with equations (A-6)

and (A-7). If we substitute these equations first into (A-5),

-2
and then the result into (A-9a) and equate terms of order P ,

we will get



2 n~ /2n
U 2  = - -. 2 -- ( (n) + S 3 (n)
2n.3 n2 (4n2- 1) 4n

(A-ll)

v = + -- S2 (n) - S 3 (n)2n,3 n2 (4n2- 1) 4n(

for all n>l where, surprisingly, the second order quantity 6

always manages to get itself eliminated from the equations. If

we likewise substitute equations (5) together with (A-8) into

-2
(A-9a) and equate terms of order P , we will get the leading

asymptotic coefficients for the higher odd harmonics as;

u =2 -73T /ri + /n +1
2n+1, 3 4 (2n +1) 2  n (2n - 1) (n + 1) (2n + 3)

(A-12)

v 2n+1=,3 3 / 3 C /n + 1
4 (2n + 1)2 n (2n - 1) (n + 1) (2n + 3)

-3
for all n>l. Using this result and equating terms of order P3

we get

u 2n+1,4 = 1 (S 3 (n+l) + S2(n))
4/'2n+ 1

37r 1 1 + /Z-2n + / n + /2 n + 2

(2n + 1) n (2n - 1) v2n+ 1I (n + 1) (2n + 3)

(A-13)

v =n~l,.4 T (S 3 (n) - S 2 (n+l))
4 /2n + 1

+ -371 +2

(n + 1) (2n + 3) (2n + 1) V2 2n+ 1

for all n>l.
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As has already been noted, the first three harmonics must

be considered separately, and those lower harmonic asymptotic

coefficients which depart from the general formulas already

given are as follows;

u 13 = -7 (2 + //4)

Vi,3 = -7r(2 - v/4)

u = r(8 + V + IS 3 (l))

v 1,4 = -r(1 + v/2- + S 3 (0) -

u r2 (-3W2-2 1S
2,3 32 3 4

v2,3 32_ 3 + S3(1))

u =r ( V3 + IV6 I + Z+ 1/3S3 (2))
3, t4 5 3 3 12 96

3,4 180 15 12

The above coefficients together with equations (A-6), (A-7),

(A-8), (A-ll), (A-12), and (A-13) have all been collected,

evaluated, and tabulated through the tenth harmonic in table 2.

If one desires explicit values of an harmonic coefficient when P

is greater than 5 or 10, then these asymptotic formulas should

be suitable for most purposes. For example, if one is interested

in a particular value of u4 , then table 2 in conjunction with

equation (A-5) shows that it may be calculated from the formula

u4(P) 0.033333 + 0.066667 0.158981

P P 2 P 3



n n n,1 n,1

Ui

Vi

U 2

V 2

U 3

V 3

U4.

V4

U5

V 5

U 6

V 6

U 7

V 7

U8

V8

U 9

V9

u 10

v 10

0.785398

-0.785398

-0.235702

-0.235702

0.0

0.0

-0.033333

-0.033333

0.0

0.0

-0.011664

-0.011664

0.0

0.0

-0.005612

-0.005612

0.0

0.0

-0.003194

-0.003194

Un,2 Vn, 2

0.0

3.141593

0.666667

0.0

040

0.0

0.066667

0.0

0.0

0.0

0.019048

0.0

0.0

0.0

0.007937

0.0

0.0

0.0

0.004040

0.0

U n,3' n,3

-7.393906

-5.172465

0.330338

-0.401118

-0.731965

-0.550585

-0.158981

0.141019

-0.094830

-0.045666

-0.038391

0.031204

-0.030771

-0.010780

-0.014419

0.010826

-0.013833

-0.003798

-0.006829

0.004776

Table 2

Asymptotic Coefficients

un, 4, Vn, 4

29.654240

-16.840816

5.679489

-0.496581

0.768743

-0.104611

0.219423

-0.035794

0.091633

-0.015753



C. Accuracy of the Linear Approximation

We will now use our nonlinear results to estimate the

accuracy of the linear approximations (13a), (13b), and (17b)

derived in the text for u1 , v1 , and F respectively. These

equations may be reduced to asymptotic series valid for large

P in a straightforward manner to yield

= (P+ 4)/(P + 4P + 8) 4 + P 2 ~ 3 + .

vi = - P/(P 2 + 4P + 8) ~ - -2 + 8 .. J (A-14)
z P P 2 P 3

F = -PaF /(P2 + 4P + 8) - + 8 + F
Y 3 d 3 3 ide

These may now be compared with the nonlinear results as presented

in table 2 as follows;

'/4 0 7.393906 29.654240
ui - + ~ - 3 + + ...

P P 2 P 3P4

2/4 + 5.172465 16.840816 +F (A-15)
P P P P

F = £(ui+ vi)aFd = - + 4.271141 + ... aF
y 3 d p 2  d3 d

Thus we find that not only are the linear approximations correct

to leading order, but they are also correct to second order for

large P as well.



Next in order to investigate the accuracy for "small" P we

first note that because equations (A-15) are obviously not valid

for P<<l, we must restrict ourselves to P>5 where these expres-

sions seem to converge. If the truncation errors in equations

(A-15) are assumed to be less than the absolute value of the last

term, we may compare these series with the rational form of

equations (A-14) for P=5 and P=10 as follows;

= 5 nonlinear last term linear
series

ui 0.1454 0.0475 0.1334

vi -0.0997 -0.0270 -0.0741

F /aFd 0.0761 0.0342 0.0988

P = 10

ui 0.0741 0.0030 0.0743

vi -0.0540 -0.0017 -0.0531

F /ad 0.0671 0.0043 0.0708

Here it is interesting to observe thatfor both values of P

above, the results obtained from the linear approximation fall

within the range of truncation uncertainty associated with the

nonlinear expression. Thus, by comparing the nonlinear series

with their contributions from the last terms, it seems likely that

both approximations are within 50% of the true values for P=5

while for P=10 they are within 6.5%. As P increases, we have

seen that the absolute errors of the linear approximations will
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-3
eventually all decrease as P so that the relative errors will

-2
fall off as P . Thus it seems that the linear approximations will

probably be satisfactory for most purposes as long as P>l0.



PART II

I. Introduction

In conducting a search for new planetary satellites, one

of the first steps an investigator undertakes is to calculate

theoretical limits on the region of space near the planet within

which stable orbital motion can take place. If valid, such a

limit, usually called a "sphere of influence", can serve to

greatly reduce the labor of such a search by excluding from it

large regions of the sky within which no satellite of the planet

could exist. The commonly used Laplace radius for the sphere

of influence about Jupiter is approximately 0.32 Astronomical

Units (A.U.). However, not long ago,using a numerical integration,

Chebotarev (1974) investigated the orbit of Palomar-Leiden Survey

object number 7617 and discovered that it was reasonable to

interpret its motion as that of a distant retrograde satellite

about Jupiter which never came closer than about 3 A.U. to that

planet. Although Chebotarev has examined the orbit of an actual

solar system object, earlier investigations into Hill's problem

by Henon (1970) and into the distant retrograde orbits of fic-

titious Jovian satellites by Benest (1971) indicated that there

seemed to be no fundamental limit to the distance at which such

motion was stable except the sun-Jupiter distance! In each in-

stance, however, the method used by these investigators was

mostly limited to numerical integration of the basic dynamical

equations by a computer, and no analytic descriptions of these

orbits were attempted.



Given that there exists an actual solar system object

which violates the Laplace criterion, it would be of interest

to investigate analytically those orbits which remain entirely

outside the "classical" sphere of influence. Considerable in-

sight could thus be gained over a pure numerical approach toward

a fundamental understanding of such orbits. The thrust of this

part of the thesis is to describe the results of such a study.

The author's initial interest in such an investigation,

however, arose from an entirely different direction - an attempt

to circumvent a serious dynamical difficulty which would be en-

countered in the course of a close photographic mission to Mars'

satellite Phobos. Since it turns out that Phobos' sphere of

influence lies entirely within its own solid surface, it would

be impossible to place a spacecraft (third body) in a Keplerian

orbit about that satellite (secondary). Unfortunately, the

same gravity field of Phobos, which is too weak to hold onto

satellites of its own, also turns out to be too strong for a

spacecraft to long remain in a Mars orbit that either closely

leads or closely follows Phobos. In order to illustrate the

origin of this latter difficulty, consider a spacecraft which is

in the same circular orbit about Mars as Phobos, but which starts

out a little behind it. Initially the spacecraft will be

"stationkeeping" with Phobos and there will be no relative

velocity between them. But in this configuration the small

gravitational attraction of Phobos will soon succeed in "accel-

erating" the spacecraft into a higher orbit. Since Mars would



still be exerting the dominant gravitational force on both

bodies, this higher orbit will cause the spacecraft to fall be-

hind Phobos, and the distance between the two will then contin-

uously increase. By a similar argument, if we start with the

spacecraft slightly ahead, then the continuous retarding force

of that satellite on the spacecraft will lower its orbit causing

it then to continuously gain distance on Phobos. Thus we have

the apparent paradox that attractive forces between two small

masses, each in orbit about a massive primary, act to effectively

repel each from the other! This same result is more elegantly

illustrated by the well known result of the restricted three-

body problem in which only two libration points, each a full

orbital radius away from the secondary, are shown to be stable.



II. The Variation Orbit

The type of orbit investigated by the author in an attempt

to overcome the difficulties mentioned above is illustrated in

its simplest form in figure 1. We assume we have a small second-

ary of mass M in a circular orbit about a primary whose gravi-

tational constant (GM ) is V. If the semimajor axis of the
P

secondary's orbit is a, then its mean motion, n, is given by

n=/P/a. Our coordinate system is centered onand rotates with,

the secondary at an angular velocity n. We identify +x as the

outward radial coordinate and +y as the direction of the second-

ary's motion. This same coordinate system was used by Hill in

his three-body study of the Moon's orbit about the Earth, and

the dynamical equations he derived are

2
d x 2n + 3n2x- 2E

dt dt r
(1)

2

9-j= 2 n dxG- M- where r x+2
dit dt r

If at first we neglect the secondary's mass and only look for

periodic solutions to equations (1), we get

x = -docos nt
(2)

y = 2dosin nt + constant (for some fixed do)

which precisely describes the variation orbit shown in figure 1

when the arbitrary constant is zero. The initial conditions are

deliberately chosen so that at t= 0 the (massless) third body is



VARIATION ORBIT ABOUT A SMALL SECONDARY

If f is the true

anomaly of the

secondary's orbit,

then we have f= nt.

The variation orbit

is described as follows:

x=-do cos nt x

y=2d0 sin ht

Primary - secondary line

rotates at n, the

seconary's (constant)

angular velocity.

Path of third

Identity:

tan ==-= 2dosin nt

x dcs nt

tan S = 2

e1



closest to the primary. The reason for this, illustrated in fig-

ure 2, is that the third body is in a Keplerian orbit about the

primary and orbital angles are customarily measured from peri-

center. This figure also shows that while these retrograde

variation orbits appear to encircle the secondary in our rotating

(posigrade) reference frame, the mean direction of a line joining
second and third

the A bodies would remain nearly constant in a non-rotating

frame. Also note from equations (2) that for any do, the varia-

tion orbit's period about the secondary is constrained to be the

same as that of the secondary's period about the primary since

both motions proceed at an angular frequency of n. Further note

that the shape and orientation of the elliptical variation orbit

is also independent of do.

Another result that we will need later is the "stationary

solution" found by setting x*= z = I= y = 0 in equations (1). If

the secondary's mass is not neglected, then we get two algebraic

equations whose solution is

r3 +x3 =GM

k 3n 2  
(3)

y = 0.

This means that there exists two stationary points equidistant

from the secondary along the x axis at the so-called "libration"

distance which we have defined as x . This result corresponds

to two of the well known Lagrangian librations points, Li and L2,

of the restricted three-body problem.



Figure 2

Variation orbit in an inertial coordinate syster

(neglecting the gravitational perturbation of the secondary)
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III. The Perturbed Variation Orbit

A. Disturbing Accelerations

Now that we have established the existence of a variation

orbit about a massless secondary, let us consider the effect of

its (small) gravitational perturbation on the third body. Let

d be the (changing) distance between the two bodies, and let S

be the angle as shown in figure 1. If we define A and A as

the radial and tangential componentsrespectively,of this per-

turbing acceleration, then we have

GM GM .A - cos S A = --- sin 0
X d2 y d2

where G is the universal gravitation constant. Since the second-

ary is in a circular orbit, the angle f is a linear function of

time (i.e. f= nt). Our task then is to find A and A as func-x Y
tions of f.

If we pursue the special case where the secondary is exactly

in the center of the elliptical variation orbit, we can see from

figure 1 and equations (2) that

d = x2+y2 = dCoos f + 4 sin f =do (1 - cos 2f). (4)

Since it is also identically true from figure 1 that tan j=-x/y,

we have

sin 2 tan = 2 = 4 tan 2

cos 2
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from which there follows

sin 2 tan f 2 sin f
f+ 4 tan2f cos 2f)

Cos 1 cos f

/1 +4 tan 2f /(l - gcos 2f)

In order to examine the stability of the retrograde variation

orbit, it is also necessary to consider the situation when the

secondary is not at its exact center. The geometry illustrating

this case is shown in figure 3 where the x and y offsets of the

center from the secondary are denoted by x and y, respectively.

It should be noted that the quantities d and $ in figure 3 are

still the same as those just calculated in equations (4) and (5).

However, our previous expressions for A and A must be amendedx y
to read

A GM sin 6  A =G cos 6 (6)
r r

where now r is the distance between the second and third bodies.

The projections of r onto the x and y axes are readily seen from

figure 3 to be

r = d cos -' r =d sin + y
x y

from which we immediately get

r d o 'r dsi +
sin 6 x = dcos - , cos 6=-=dsin +y

r r r r

(7)
2 2 2 2 +2 + 2r = r + r = d + 2d9 sin 6 - 2di' cos x + 2 + y

x Yy



4 4 4

Perturbations on an off-center Variation Orbit

r = d cos S -

) ) )



Using these results to evaluate equations (6) we get

A = (d cos X'-) , A = (d sin + ) (8)X r 3Y r3

At this point the complicated form for r 3 in the denominator

of equations (8) can benefit from the approximation that both X'

and y' remain small compared to d. Thus, raising both sides of

equation (7) to the -3/2 power we get

~2 ~.2 -2
= 1- + 2Y sin - 2 cos + x + 2

r d d2 d2
(9)

3 1 - 3Y sin + 3- cos
d d d

where we have neglected quadratic terms in R and 9, and then

applied the binomial theorem to the remaining terms as (1+ a)~

l +ay. Another simplification we have made, which might not be

obvious, is to assume that do is constant, an assumption that

will be justified later on. Substituting the results of equation

(9) into (8) and again neglecting second order terms we get

A ~ GM Cos 2 + 3 cos 2 - 1 (3 sin 3 cos J j
xd2 da 33

(10)

A -GM sin 2 + 3 sin cos x (1 - 3 sin2
a3Y I Jd3J

This result when combined with equations (4) and (5) will yield

A and A explicitly as functions of f and hence of time.
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B. Variation of Orbital Elements

Our next task is to find what effects these perturbations

will have on the third body's variation orbit about the secondary.

We will consider secular changes in the variation orbit's center

( i and 9), in its size (do), and in its frequency of motion (n).

In a non-rotating reference frame, changes in do correspond to

variations in the eccentricity (e =do/a) of the third body's

orbit about the primary, and changes in i correspond to variations

in the semimajor axis, a. Also, if a is constant, then small

changes in n for the variation orbit described by equations (2)

correspond to the line of apsides of the third body's Keplerian

orbit about the primary undergoing a constant rotation (n) in

inertial space as shown in figure 4. Quantitatively, we can make

use of the well known variation of parameters formulae which for

a nearly circular orbit reduce to

-- = a( cos f A - 2 sinfA) (11)dt V e x y

da a'd 2 A (12)

de a e)

( sin f A + 2 cos f A + eA(13)
dt P x y y

(Normally, we would have to use a bit more care than this in

simplifying these equations, but it will soon be clear why, in

this case, we may dispense with such complications.) Since e=

do/a, we may expand the left hand side of (13) as
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Configuration

at t= to

The regression of the line

of apsides in a non-rotating

coordinate system.

(Includes the gravitational

perturbation of the secondary

on the third body.)

Configuration

at t> to

Figure 4
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d = ( . - 1d(do) - doda
dt dt a adt a dt

Substituting this into equation (13) and using (12) to eliminate

the da term we finally get
dt

(do) (sin f A + 2 cos f A + 3dA ). (14)
dt x y a y

Although we now have expressions for the instantaneous

rates of variation for w, a, and do, we are really interested in

the secular changes in these quantities ever many orbital cycles

(assuming, of course, that only small changes accrue during one

cycle). If we now proceed to average equations (11), (12), and

(14) over one cycle, then the only additional change in any left

hand member is that we may identify d- as synonomous with di If
dt dt

we similarly average the right hand members of these equations,

it is necessary to compute <A >, <A sin f>, <A cos f>, <A sin f>,y x x y

and <A cos f>. Explicitly, this is done by substituting equations
y

(4) and (5) into equation (10), forming the above expressions,

and then averaging for 0 < f< 27. This messy operation is dis-

played in table 1 where in order to conserve space, we have de-

fined D =V(5/2) (1- (3/5)cos 2f). The result of numerically

carrying out the integrals indicated in table 1 is as follows;

<A > = -(0.385491 - 0.485808)GMy/d3 = 0.100317 GMy/do
y

2
<A cos f> = 0.285175 GM/dox

<A sin f> = -0.200633 GM/doy

<A sin f> = <A cos f> = 0x y



) 4 -)

define D = (l- .os 2f)

<A > 2'

-GM d-GM do 0~

0

2 sin df+ 2

D ds 0O

<A sinf> 2 sinf co df +

GM d 2Jf 0

0

6 sinf sf df + df 12 sin2
-d 0 D 0 Ds

00

3 sinf f df _ j2w df 2r
dD d 0

2
6 sin cosf df

Ds

<A cosf>

GM

<A sinf;>
y
-GM

3 cos ff(
f2 cos2 df

d 20 D 3

1 2 sinf df2 6 sin2 f Zos df

d 0 D d fo D

cosf 4
3 j

0

6 sinf 2

D0

+ 2- in

d 0 S f 0

<A cosf>
y-
-GM

2sinf c+ 2+ 6 sinf cs2f d +- cosfdf 2w
d 2 d d 3 f df 0 D0dj 0

Table 1

R 2w 7

d3 0



This enormous simplification is a result of 16 out of the 20

integrals in table 1 vanishing identically. This is why we

could afford to be a bit hasty in simplifying the variations of

parameters formulae (11) - (13); the coefficients of many of

their small terms turn out to be zero.

If we now utilize these results in equations (11), (12),

and (14), we get

3

- 0.68644 - = -2.05932 n(15)
nd0  Jdo

3

d- - 0.20063 y = 0.60189 n (16)
dt ndo kdo

3

-(do) = 0.30095 G- p = 0.90285 n (17)

where we have used equation (3) to eliminate the quantity GM.

Also as before n= /p/a3 and we have used the fact that e= do/a.

If we had allowed do to vary explicitly beginning with equation

(9), the only contribution would have been to add an extra term

dwto T- in equation (15). But we will soon see from equation (17)

that this was in fact unnecessary for examining the stability

of the system to first order.

C. Analytic Approximation to the Perturbed Variation Orbit

Equations (15), (16), and (17) represent three equations

in the four unknowns x, y, w, and do. In order to obtain a

fourth equation recall that for Hill's equations (1), only per-

iodic solutions are represented by equations (2) for a negligible
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mass, M. If we search for a (independent) secular solution to

(1) with M=0 by setting i*=y= 0, we get

e 3 a
y=--nx x = 0.

Since this represents a constant y "drift" corresponding to any

steady x displacement, the same will be true of their average

values if x and y oscillate rapidly. Thus we are justifiedein

identifying such average values with R and 9 because the center
of the variation orbit is certainly an "average" of sorts for

the motion around it. Our fourth equation then is

_t -Inx. (18)
dt2

In solving the system of equations (15) - (18) first note

that (16) and (18) represent two equations in the two unknowns

i and 9. Differentiating (16) and using the result to eliminate

from (18) we get (assuming for now that do= constant)dt
2, x 3

+ 0.90285 n - ] = 0.
dt do

This is just an elementary differential equation for a harmonic

oscillator, so arbitrarily setting '(t=O) =0 we get

x(t) = xosin $t (19)

where iRo is a constant and $, the libration frequency of the

center of the variation orbit about the secondary, is given by

x3/

= 0.9502 n (20)
d9o
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We may now calculate '(t) by substituting equation (19) into (16)

and making use of equation (20) to get

~(t -3n di' 3 n (2.y"(t) = =2n-Rcos $t (21)
2* 2 dt 2 i

=Yo

where we have identified, by inspection, the quantity 2nio/*

with the amplitude of the 9 excursion which we define as 9o.
The ratio of the maximum i excursion to the maximum R excursion

then is just

= 3 n-= 1.5786dA} (22)
2 iqX-

which thus turns out to be independent of n. Equations (19) and

(21) taken together show that the center of the variation orbit

itself librates about the secondary in a retrograde sense. This

motion proceeds at an angular velocity of $ as given by equation

(20). Furthermore, the axes of this libration orbit are not

fixed in a two-to-one ratio as is the case with the variation

orbit, but the libration orbit becomes increasingly elongated

in the y direction as do increases.

If we rewrite equation (17) using equation (20) we get

d _ 2
-(do) - do y
dt an

If we likewise rewrite equation (16) and solve for y we get

S3 n diX
2 *2 dt
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and eliminating y from both of the above equations yields

d 3 do d
-(do) =--
dt 2 a dt

If we now divide through by do and integrate both sides, we

finally get

d o (t) = do (0) exp( 3 (t)) do (0) (1 + -- (t)) (23)

2a 2a

which approximation should remain valid since x«<1 and R(t)

does not grow with time. From this analysis one can conclude

that to first order in do/a, the variation orbit .is stable against

a small i or y displacement of its center.

Finally, observe from figure 4 that if counterclockwise

motion is taken as positive, we may use equation (15) to get the

perturbed angular velocity, n', of the variation orbit in the form

3

n' = n = n[ 1 + 2 .05 9 3 - (24)
dt d1

To see this, imagine that the orbital motion of both bodies

about the primary(at the rate n)is suddenly frozen. If we do

this at t= 0 and then allow a to become increasingly negative

while invoking the x vs y constraint of the variation orbit, it

can be seen that the third body then must move clockwise about

the secondary in direct measure to -o. Since this clockwise

(retrograde) motion of the variation orbit corresponds to the

normally positive n in equation (2) as both secondary and third
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body normally orbit the primary counterclockwise, a negative d
dt

increases the variation orbit's angular frequency (n').
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IV. Comparison of the Analytic Results with a Numerical Integration

In order to test the accuracy of the various approximations

made in the previous sections as well as to gain some appreciation

of the stability of distant retrograde orbits, computer simulations

of Hill's equations were made for such orbits about Jupiter. Using

a 500 hour time step, a fourth order Runge-Kutta proceedure for

this task was implemented on a Hewlett-Packard 9820A programmable

desk calculator. For purposes of checking the numerical accuracy,

the Jacobi constant for Hill's problem was formed and tracked

throughout the integration; it remained constant to better than
7

one part in 10

The first case investigated numerically, which is plotted

in figure 5, was that of a fictitious asteroid with do= 1.06 A.U.

and the moderately large libration amplitude of yo= 0.65 do.

The second case more nearly resembled the orbit of Palomar-Leiden

object 7617 with do= 3.02 A.U. and yo= 0.66 do. The first two

columns of table 2 display the parameters of the orbits generated

by these numerical investigations together with the analytically

determined parameters predicted by equations (20), (22), and (24).

(Here x = 0.355 A.U. for the sun-Jupiter system.) It is thus seen

that our analytic methods yield results which differ by no more

than 5.1% from the exact values. The actual orbit of Palomar-

Leiden object 7617 has Yo>do, but this case was not investigated

because the linear approximations used to obtain equations (10)

break down for such a large libration amplitude. However, such
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Case I

d1
do= 1.58 x10 mn (1.06 A.U.)

Y- = 0.649
do

x
- = 0.3361

Numerical Integration

Quantity Analysis

0.1851

8.102yo/xO

Hill's Equations Restricted 3-Body

0.1937

8.410

n' =n (1+k) k=0. 0782 k=0.0783

Case II

do= 4.518 x 10 1n (3.019 A.U.)

Y-= 0.662
do

x k
- = 0.1175

Numerical Integration

Quantity

p/n

d%/O

Analysis

0.0383

39.17

Hill's Equations Restricted 3-Body

0.0401

38.09

n '=n(1+k) k=0.00334 k=0.00351

Table 2
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a breakdown in the analysis will not invalidate our basic quali-

tative explanation for the stability of these orbits provided in

the next section.

The last two columns in table 2 permit a comparison of the

orbital parameters resulting from a numerical integration of Hill's

equations with the corresponding parameters resulting from a nu-

merical integration of the restricted three-body equations. It

can be seen that while Hill's equations appear adequate for do~

1 A.U. (corresponding to a heliocentric eccentricity of 0.2),

they are not a good approximation to the real situation when do~

3 A.U. (corresponding to a heliocentric eccentricity of 0.6).
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V. Discussion

At this point a simple physical explanation for the stabil-

ity of the variation orbit might be welcome in order to clarify

what has already been demonstrated both analytically and numer-

ically. In this regard, noting the differences and similarities

between the variation orbit and "stationkeeping" orbits is par-

ticularly instructive. First consider a third body's variation

orbit whose center slightly lags behind a secondary. Then since

the third body will be closest to the secondary when it is also

in front of the latter, the net perturbing acceleration of the

secondary on the third body will be a retarding one. This will

"decelerate" the variation orbit (which is now being regarded as

an entity in and of itself) and cause its center to migrate inside

the secondary's orbit. Consequently, this center must slowly

overtake the secondary and move forward. Conversely, if the

center of the variation orbit starts out ahead of the secondary,

the closest approach will be behind it and the third body's

variation orbit will undergo a net acceleration. Then the vari-

ation orbit's center will be raised so as to move outside the

secondary's orbit and be overtaken by the secondary. Note that

the secondary's gravitational perturbations seem to "attract"

the variation orbit's center yet "repel" a stationkeeping third

body. The reason for this difference lies in the fact that the

direction of the secondary's net gravitational acceleration is

in the same direction as the displacement of the variation orbit's

center, but in the opposite direction for a "stationkeeping" dis-

placement.
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