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ABSTRACT

Flume experiments simulating a 12.5 hour tidal cycle were

performed to test the hypothesis that flaser and wavy bedding

can be produced in shallow subtidal areas by tidal activity.

The effects of clay composition, sand size, total amount of

sediment deposited, compaction time, and peak current velocity

were investigated. It was found that the resistance of a re-

cently-deposited mud bed to subsequent.erosion is determined

primarily by the amount of overburden. The effect of a rippled

sand bed on the erosion of an overlying mud bed is profound,

causing erosion to occur at mean flow velocities substantially

less than those required for erosion of a planar bed. The re-

sults indicate that successive deposition of thin mud layers

during several consecutive slack-water periods cannot occur

since the deposited mud will always be resuspended during the

intervening high-velocity episodes. Although thick mud layers

may accumulate during a single slack-water period, these beds

are unlikely to be preserved due to the high rate of subsequent
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reworking. It is concluded that the presence of flaser and

wavy beds in shallow subtidal regions is most likely due to

storm activity.

Thesis Supervisor: Dr. John B. Southard, Associate Professor,

Department of Earth and Planetary Sciences
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INTRODUCTION

The research described herein is concerned with the con-

ditions of sediment supply and current velocity needed for the

formation and preservation of alternating sand and mud beds.

The investigation is experimental in nature because, in addi-

tion to the great difficulties involved in an observational

study, it was felt that more useful results would be obtained

by systematic variation of several key parameters than by

making observations in a relatively uncontrolled environment.

Alternating sand and mud beds are a rather common feature

of both the stratigraphic record and of Holocene environments.

Reineck and Wunderlich (1968) have proposed a purely descrip-

tive classification system based on the relative amounts of

sand and mud (the latter defined as a material whose average

grain size is less than 60 pm), and on the lateral continuity

of the minor constituent (Fig. 1). Thicknesses of the indi-

vidual layers commonly are of the order of millimeters or

centimeters. These structures are thus rather small-scale

features, probably formed in.response to local conditions. An

important limitation on these conditions is that the sand

present is always rippled. Since ripples are formed only in

response to well-defined conditions of current velocity and

sand size, and since they are readily destroyed by current

velocities higher than those responsible for their formation,
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Figure 1: Classification of alternating sand and mud beds
(after Reineck and Wunderlich,1968)
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the range of current velocities that may exist during the

formation of these structures is rather narrow. Reineck and

Wunderlich stated that these structures form due to alternating

periods of (relatively) high and low current activity, the

sand being deposited during the high-velocity episodes and the

mud during the more quiescent periods. Accordingly, for the

formation of these deposits, there must exist not only abundant

supplies of both sand and mud, but there must also be alterna-

ting periods of high and low current veloicty. Reineck and

Wunderlich also noted that the sand could be rippled as a re-

sult of wave activity. Since the effects of waves were not

examined in this study, such structures will not be considered

further.

Based on their own and others' observations, Reineck and

Wunderlich stated that the most likely areas for the formation

of alternating sand and mud sequences are intertidal and shal-

low subtidal areas, where the alternating periods of high and

low current velocity are due to the daily tidal cycles. They

noted, however, that these deposits have also been reported

from Holocene delta fronts, lakes, and lagoons.

The author has examined examples of these deposits from

rocks formed in lacustrine, fluvial, deltaic (Fig. 2), and

littoral (Fig. 3) environments, and has been shown photos of

their occurrence in turbidite sequences. It seems, therefore,

that these deposits can be preserved in a variety of

II
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Figure 2: Flaser bedding in the Caseyville Sandstone,
Illinois. Sample is 10 cm high.

Figure 3: Wavy bedding in the Twin Creek Limestone,
Utah. Sample is 5 cm high.
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environmental settings. In addition to tidal activity, several

other common processes, such as crevasse splaying, channel

meandering, and storm activity could provide the necessary

periods of alternating high and low current velocities.

Reineck (1960, 1963, 1967) and Reineck and Wunderlich

(1969) have described the occurrence of these structures in

both intertidal flats and subtidal channels of the North Sea.

Reineck and Wunderlich (1967) have shQwn that these deposits

can be formed during a single tidal cycle. In their later

paper (Reineck and Wunderlich, 1969), however, they state that

structures formed as the result of such conditions are not

likely to be preserved since the areas in which they are formed

(intertidal channels) are subject to substantial reworking

during subsequent tidal cycles.

McCave (1970) concluded that, based on sediment budget

calculations, alternating sand and mud beds could not form in

either the open sea or in nearshore areas as the result of

tidal activity. He stated that the results of Reineck and

Wunderlich were the result of abnormally long slack-water

periods and abnormally high sediment- concentrations. McCave

suggested that storm activity was a more likely candidate for

the formation of these beds in both offshore and nearshore

waters.

Terwindt and Breusers (1971) published the results of the

only experimental investigation on the origin of alternating
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sand'and mud beds. They sought to explain the observed thick-

ness of the mud beds (up to several centimeters) found in the

Haringvliet Estuary in light of the fact that, according to

their calculations, the maximum mud thickness that could be

deposited in a single slack-water period was 0.3 cm. By

determining the erodibility of muds collected from the area,

they concluded that if the current velocity at a height of 50

cm above the bed did not exceed 60 cm/s a recently deposited

mud bed would not be eroded. This observation led them to

suggest that mud layers could be deposited during several

consecutive slack-water periods occurring during the neap

portion of the biweekly spring-neap tidal cycle. Duringe this

period the maximum current velocities would not be great enough

to erode the mud deposited, while during the spring part of

the cycle, when current velocities are higher, sand could be

deposited over the mud.

When reading the above report, the author was struck by

two points. First, in their flume experiments, Terwindt and

Breusers used a planar bed. If a rippled surface was used,

would this not lower the mean velocity needed to erode the mud?

Since even the values reported by Terwindt and Breusers are

almost always exceeded in natural settings, a further reduction

in the minimum velocity needed for mud erosion would make their

explanation untenable.

The second point relates to the rigidity of the mud beds
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that they tested. In their experiments the mud bed was formed

by depositing mud from a highly concentrated suspension in still

water. Their experiments, as well as those of Migniot (1968),

showed that the rigidity of the bed formed decreased as the

concentration of the suspension from which it was deposited

increased, due to the increased rate of deposition. Mud beds

formed in natural tidal channels will accumulate more slowly

than those formed by Terwindt and Breusers, due both to the

smaller concentrations and to the higher current velocity that

exists. The effect of this decrease in accumulation rate might

lead to an increase in the resistance to erosion of the mud

bed. Both of these effects should be considered before applying

the results of Terwindt and Breusers.

An experimental program using a real-time tidal cycle of

12.5 hours was designed to investigate -these effects. Initially

the experiments were desig7ned to reproduce the c'onditions re-

ported by Terwindt and Breusers. Later, the range of conditions

was expanded so that an investigation of the formation of flaser

and wavy bedding in a variety of conditions was performed.

Lenticular beds were not considered in this study.

Two previous investigations, those of Dillo (1960) and

Bayazit (1968), have dealt with the response of rippled sand

beds to tidal flow. Dillo, using a 12.5 hour tidal cycle, re-

ported that when the flow direction was reversed the shape of

the ripples quickly altered so that the bed was again in
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equilibrium with the flow. He also stated that although the

flow was unsteady, the ripples, because of the long time periods

involved, behaved as though they had been formed in steady-flow

conditions. Bayazit, using modeling techniques, came to a simi-

lar conclusion. He also reported that, as the number of tidal

cycles increased, the response time of the ripples to adjust

to the change in flow direction decreased.

BACKGROUND

Physical Properties of Water

The physical properties of both the fluid and the sediment

are important in sediment transport studies. In addition,

changes in the properties of the fluid as a result of suspended

sediment may be important. In the present study, the two most

important properties of water are its density (p) and its vis-

cosity (p). The value of these properties changes with both

temperature and salinity. The data used in this paper are

taken from Winegard (1970).

The effect of suspended particles on the viscosity of a

fluid was expressed by Einstein (1906) as:

susp/Uf = 1 + kc ( 1)
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where c is the concentration of-the suspended particles and k

is a coefficient equal to 2.5 for c less than or equal to three

per cent. Einstein's equation is accurate for stable suspensions

of spherical particles. For unstable suspensions and nonspheri-

cal particles, the value of k increases. In addition, for c

greater than three percent, higher order terms must be added to

equation 1. In the present study, c is one per cent or less,

so equation 1 may be used in the form presented. However, the

particles are nonspherical and the suspension unstable. Test

calculations with an increase of ten per cent in the viscosity

revealed that the resulting difference in shear velocity is

less than two per cent. Given the other inaccuracies in the

experiments, it was felt that this variation could be ignored.

Viscosity measurements taken during Run U-8 with a Synchro-

Lectric viscosimeter revealed no measurable difference in the

-viscosity from that of pure water. -

The effect of suspended particles on the density of a

fluid is given by:

Psusp (Pfvf + psv) vsusp (2)

Solving equation 2 with the appropriate values gives a density

difference of less than one per cent. This effect has also

been ignored in the present study.
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Fluid Flow

When a viscous fluid with a non-zero velocity u(Fig. 4)

moves across a rigid boundary, the "no-slip" condition demands

that the velocity of the fluid at the boundary equal the velo-

city of the boundary. Since the bulk of the fluid is moving

with a different velocity, there must exist some region in which

there is a velocity gradient. This region is known as a bound-

ary layer. Initially the boundary layer will be restricted

to a zone close to the bounding surface. As the flow progresses,

the thickness of the boundary layer increases until it either

intersects another boundary layer or until it occupies the

entire volume of the flow. Schlichting (1968) presents an

extensive review of boundary layers.

In turbulent flow, the boundary layer may be considered

to consist of three zone:

1. The zone nearest the wall, where viscous forces

are dominant, known as the viscous sublayer. Turbu-

lent fluctuations are observed, but in this zone

momentum transfer occurs primarily by molecular dif-

fusion. The thickness of this zone is on the order

of millimeters.

2. A thin zone called the intermediate or transition

layer. Turbulent eddies appear to be produced more
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frequently in this zone than in the others and hence

diffuse out into the adjoining regions.

3. The thick layer known as the outer zone. In fully

developed turbulent flow this zone occupies most of

the flow depth. This zone can be considered to con-

sist of two sub-zones which differ in the shape of

the velocity gradient observed. In the inner part,

the velocity gradient can be described by a logarith-

mic function, the so-called "law of the wall." In

the outer part, the gradient is described by the

velocity defect law.

In sediment transport studies, the shear stress at the

bed surface TO, in conjunction with the properties of the

sediment, determines the mode of transport, if indeed trans-

port occurs at all. The shear velocity is related to the

shear stress by:

U= (T0 0/fl/2 (3)

A variety of formulas to calculate u* exist, depending upon

the types and locations of the quantities measured; only those

formulas used in the present study will be reviewed here.

All are based upon the two laws describing the velocity profile

in the outer zone. Once u* is known, T 0 may be calculated
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from equation 3.

The nature of the wall has a significant effect on the

velocity profile developed in the fluid. For a planar bed a

distinction between hydraulically smooth and hydraulically

rough beds can be made. For hydraulically smooth beds the

dimensions of roughness elements of the boundary are much

smaller than the thickness of the viscous sublayer. Accordingly,

any disturbance due to these elements will be dissipated be-

fore it can propagate into the outer zones of the flow. Equa-

tion 4, derived from Prandtl's mixing-length theory, is a

method for determining u* if uz, the average velocity measured

at a height z above the bed, is known:

u z/u, = ln(u*z/v) / K + 5.5 (4)

where K is von Karman's constant, an experimentally determined

quantity whose value in clear water is 0.4. If there is a

significant amount of suspended material in the flow, K may

vary to as low as 0.2 (Vanoni, 1975). In the present study,

K varied between 0.35 and 0.4.

If the roughness elements are of the same order as the

thickness of the viscous sublayer, then disturbances generated

by them will propagate into the flow. In this case, the

roughness of the surface must be taken into account when com-

puting u*. Most flows over sand beds fall into this category.

Equation 5 enables u* to be calculated for a rough surface if
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the particle diameter d is known:

u z/u, = ln(30.2 - z/d)/K (5)

The presence of sediment in the flow can also affect the

velocity profile. Einstein and Chien (1955) proposed a modi-

fication of equation 5 for sediment-laden flows:

u z/u, = ln(z/35.45 - d) / K + 17.66 (6)

If the boundary is composed of discrete particles, and

a velocity sufficient to transport these particles is achieved,

the bed will not remain planar. Rather, it will start to de-

form and form undulations, known as bed forms. The resulting

surface topography is known as a bed configuration. Reineck

and Singh (1975) and Harms et al. (1975) provide good reviews

of the experimental and observational work done'on the forma-

tion and occurrence of bed forms. Kennedy (1969) provides a

theoretical framework for their origin. In the present study

only the bed form known as ripples will be considered.

When sediment movement is initiated, if the particle

diameter is less than 0.6 mm, the first bed form to appear will

be ripples (Southard and Boguchwal, 1973). As noted by Southard

(1971), the three parameters which determine which of the

several bed forms will develop are sediment size, flow depth,

and fluid velocity. Except for very shallow depths (less than
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8 - 10 cm), the occurrence of ripples is independent of flow

depth. Thus the unidirectional flow conditions which produce

ripples may be shown in a two-dimensional diagram (Fig. 5).

Although many different types of ripples have been described,

they all share certain characteristics. In profile they are

roughly triangular with a crest-to-crest distance about ten

times their height. Wavelengths are generally less than 30

cm. Ripples migrate downstream with a velocity far lower

than that of the fluid. Ripples are found only in noncohesive

sediments whose grain size is less than 0.6 mm, and are quickly

altered to other bed forms as the flow velocity is increased.

Due to the varying flow depth across a rippled surface, one

would expect the average velocity, and hence the average shear

stress, to vary also. Experiments by Raudkivi (1963) confirmed

this (Fig. 6). In addition, Raudkivi also found that the in-

stantaneous shear stress varied across the ripple profile,

reaching a maximum in the ripple troughs.

The presence of any bed configuration generates another

roughness, the form roughness, in addition to the bed rough-

ness caused by the individual particles. The presence of this

form roughness significantly affects the velocity gradient in

the fluid and renders the use of equations 4-6 invalid.

The value of u* is also related to the hydraulic radius

(defined as the cross-sectional area of the channel divided

by the wetted perimeter) and the energy slope by:
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u* = (gRS )l/2 (7)

S is defined ase

S = S -Fr (S S ) (8)e w w b

where w is the water-surface slope and Sb is the bed-surface

slope.

In the presence of bed configurations, the value of R

changes from its defined value, making the application of

equation 7 more complex. Simons and Sentirk (1977) have re-

viewed a variety of methods for determining u* in the presence

of bed configurations. Most of these methods attempt to evaluate

the effects of the form roughness and bed roughness separately

and then combine them by adding the hydraulic radius computed

for each roughness:

R = R' + R" (9)

where R' is the hydraulic radius associated with the bed rough-

ness and R" is the hydraulic radius associated with the form

roughness. Substitution of R into equation 7 then gives a

value for u*. These methods are cumbersome, and a knowledge

of the grain size is needed. In the present study, where the

bed is covered by mud, it is not at all clear what grain size

should be used.



-31-

Another method, presented by Richardson and-Simons (1967),

is considerably easier to use, yields results as accurate as

any of the other methods (Simons and Senturk, 1977), and does

not require knowledge of the appropriate bed roughness. Richard-

son and Simons state that the resistance to flow over a rippled

bed is due almost entirely to the form roughness, a statement

confirmed by Bayazit (1968). This fact, coupled with the narrow

size range of sediments which form ripples, allowed Richardson

and Simons to incorporate the effect of both roughnesses into

a single equation:

Uz/u* = (3.33 - (0.13/u*)) ln z + 14.3 (10)

where all quantities are measured in English units.

Hydraulic engineers have devised several formulas relating

.the average velocity of the total flow, u, to the resistance

of the bed. Two of the most commonly used are the Darcy-Weisbach

formula and the Ch6zy formula defined by:

2
u = 8gRS /f (11)

and

u = C(RSe )1/2 (12)

Combining equations 10 and 11 results in an expression relating
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the Darcy-Weisbach friction factor and the Ch6zy-coefficient:

C/(g)1/2 = (8/f) 1/2 = C* (13)

If one knows the mean velocity and the bottom and surface slopes,

one can calculate u* for a rippled bed from the following rela-

tion, also presented by Richardson and Simons:

C (7.66 - (0.3/u*)) log D + 0.13/u* + 11.0 (14)

where D, the flow depth, is measured in feet.

Physical Properties of Sedimentary Particles

Sediments may be classified into two groups, cohesive

'and noncohesive. Cohesive sediments generally consist of

materials which have large surface charges, such as clay min-

erals. In saline solutions, this surface charge leads to the

formation of strong electrochemical bonds between the individual

particles. Due to this bonding, the- density, size, and shape

of the individual particles is less important than the respec-

tive properties of the agglomerates into which they form.

Individual particles of cohesive materials are generally very

small (less than 2 pm), but the resulting agglomerates can be

much larger (up to over 60 pm).



-33-

Noncohesive sediments are formed of minerals, such as quartz

and feldspar, without strong surface charges so interparticle

bonds are negligible. In general, beds of noncohesive sediments

have grain sizes above 60 pm, although noncohesive beds with

grain sizes as small as 15 pm have been reported (Rees, 1966).

The most important particle property in sediment transport

studies is fall velocity vF. Because of its importance, fall

velocity has been the subject of extensive research. Good

reveiws may be found in Graf (1971) and Raudkivi (1976).

The fall velocity of any particular particle will depend

on the density, shape, and size of the particle. Due to the

irregular shape of most sedimentary particles, it has become

common practice to define fall velocity in terms of the dia-

meter of a quartz sphere whose fall velocity is equivalent to

that of the particle. This practice has two advantages: it

combines the effects of particle shape, size, and density, and

it gives a measure of how the particle actually behaves. In

water, for particles whose diameter is less than 60 pm, the

fall velocity can be calculated from Stokes' Law. For larger

particles, the velocity may be determined from the table of

Zeigler and Gill (1959). Figure 7 presents the fall velocity

as a function of particle diameter.

The data of Zeigler and Gill, and the use of Stokes' Law,

are, strictly speaking, valid only for single particles falling

through an infinitely broad, quiescent fluid. Such a case is
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far removed from most real situations, Many studies have been

done on the effects of the proximity of side walls, particle

concentration, and heterogeneous size distributions. Unfor-

tunately, it has not yet been possible to formulate a compre-

hensive theory to take these complications into account.

Rather, one must evaluate each factor separately and then

attempt to deduce how they interact with each other.

In the experiments described below, two deviations from

the ideal situation are important. Both have to do with the

settling velocities of clay materials. As noted above, clay

particles have strong surface charges. In saline solutions

the particles tend to form aggregates by a process known as

flocculation. The rate at which flocculation occurs is governed

by the frequency of inter-particle collisions. These collisions

may result from Brownian motion, local shearing, or differential

settling velocities. The equations'describing the rates at

which these processes occur may be found in Einstein and Krone

(1962). Einstein and Krone compared flocculation rates for

these three mechanisms and concluded that for natural situations

the most important cause of interparticle collisions is dif-

ferential settling velocities due to varying grain sizes. In

flume experiments, however, the sediment is commonly recirculated

both through the pump and through pipes whose cross-sectional

area is much less than that of the flume channel. This leads

to the generation of very high local shear stresses which are
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great enough to break the interparticle bonds, thus at least

partially negating any flocculation that takes place in the

flume. Thus, the particle size in flume experiments may be

considerably less than that in natural situations. This of

course leads to a reduction in the fall velocity of the parti-

cles. More importantly, though, it may lead to an increase

in the shear strength of the deposited bed over that found in

natural settings. Krone (1963) has described flocculated

particles in terms of the order of the agglomerates. In his

terminology, a first-order agglomerate is composed of several

primary particles, a second-order agglomerate is composed of

several first-order particles, and so on. Krone (1972), rea-

soned that the agglomerates which settle to the bed form, in

effect, an agglomerate of order n + 1 where n is the order

of the individual agglomerates. Since- the strength of the inter-

particle bonds decreases with increasing agglomdrate order,

a bed consisting of particles whose order is low will be able

to resist a higher shear stress than a bed consisting of higher-

order agglomerates. If the order of the agglomerates found

in flume studies is lower than that found in natural settings,

it follows that the resulting beds will exhibit greater resis-

tance to erosion than the natural beds.

The second consideration is the effect of concentration

of the fall velocity of the particles. In general the fall

velocity will decrease with increasing particle concentration.
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McNown and Lin (1952) reported that a sediment concentration

of one per cent leads to a reduction in the fall velocity of

twenty per cent for particles with a diameter of 0.1 mm. The

results of Steinour, summarized by Maude and Whitmore (1958),

exhibit a similar trend for particles in the silt size range

for concentrations of less than one per cent. If the particle

concentration exceeds one per cent, a phenomenon known as

hindered settling occurs. Hindered settling is characterized

by the fact that the particles tend to settle as a group, pro-

ducing a distinct interface in the fluid with clear liquid

above it and the suspended material below. This interface

gradually settles to the bed surface as the sediment is deposited.

Einstein and Krone (1962) noted the occurrence of this phenome-

non, as did Migniot (1968), who showed that the shear strength

of the deposited mud bed decreased with increasing rates of

deposition.

All of the above observations were made in still water;

extensive research on the behavior of falling bodies in flowing

water has not as yet, been done. Owen (1971) reported that

the observed fall velocity of silt-sized particles measured

in the River Thames exceeded the values measured in the labo-

ratory by as much as thirty per cent. Experiments by Murray

(1971), on the other hand, show that because of the turbulence

associated with moving water, the fall velocity of the particles

can be reduced by as much as thirty per cent. It seems likely
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that the results of.Owen are the result of an increase in

particle size due to flocculation caused by local shearing in

the fl6w. Thus, even though the fall velocity of a particle

of any given size would be reduced, the increased particle

size would more than compensate for it, resulting in a net in-

crease in fall velocity. Krone (1972) has stated that floccu-

lation due to local shearing is more important in natural set-

tings than that due to either Brownian motion or differential

settling, except at the lowest flow velocities,

Previous Experimental Studies of Noncohesive Sediment

The flow conditions under which sediment will be eroded,

transported, and deposited, and the various modes of transport,

have been the subject 'of many studies (see Graf, 1971, and Raud-

kivi, 19761. Only a brief review is given here.

Commonly, three modes of transport are considered: traction,

in which the sediment moves by rolling across the bed; saltation,

in which the particles move in a series of jumps; and suspension,

'in which the particles are continuously supported by the fluid.

Obviously, the dividing line between these modes is somewhat

indistinct, For a given grain size, the order of the modes

experienced as the fluid velocity increases is traction, salta-

tion, and suspension, Grains transported by traction and
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saltation are frequently grouped together as the bed load.

In 1936, Shields published experimental data relating his

sediment entrainment parameter to the Reynolds number of the

flow. Hjulstrbm (1935) published a graph which related sedi-

ment movement to the average flow velocity (Fig. 8). Two

points are of interest in Hjulstr6m's figure. The first is

that the velocity needed to initiate erosion reaches a mini-

mum for grain sizes of about 0.2 mm. -The second is that the

velocity required for subsequent transportation of a given

grain size is less than that required for its initial entrain-

ment.

Just as there have been investigations of the conditions

necessary for initiation of sediment movement, there also have

been studies on the conditions necessary for suspension of

sediment. Hjulstr6m's plot is an early attempt at defining

an appropriate criterion. A more recent approach is that of

Bagnold (1966). Bagnold reasoned that in order for a particle

to be suspended, the vertical turbulent velocity fluctuations

must exceed the particle fall velocity. By examining experi-

mental data of various workers, he concluded that an appropriate

value of w' to maintain particles in suspension would be

w' = 0.8 u* (15)
c

Using this value, he defined an entrainment parameter, similar
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in form to that of Shields, for the suspension of sediment:

e = 0.4 w2/gd (16)

A plot showing both 6 and the Shields parameter is given as -

Figure 9. Since w' must equal zero when averaged over time,

in theory the particle should eventually settle to the bottom,

regardless of the value of w'. To circumvent this difficulty,

Bagnold suggested that the vertical turbulence is anisotropic,

with the upward fluctuations imparting a greater momentum flux

than the downward fluctuations. This would imply that the up-

ward fluctuations must occur as limited, violent bursts, with

the downward fluctuations occurring over larger areas with

smaller velocities. The phenomenon of turbulent bursting, re-

viewed by Jackson (1976), seems to fit this pattern.

Previous Experimental Studies of Cohesive Sediments

The criteria for erosion and deposition of noncohesive

sediments have been more or less agreed on, as discussed above.

For cohesive sediments far less experimental work has been con-

ducted, so that the state of knowledge is far less complete.

In particular, it has been far more difficult to establish

uniform criteria for the entrainment of cohesive sediments
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because of both the variation in electrical properties with

mineralogic composition and the continuously changing grain

sizes caused by flocculation. In almost all cases, cohesive

sediment moves only as suspended load. Only when large chunks

of cohesive sediment are rolled along the bed can bed load

movement be considered to occur for cohesive sediments. Since

this phenomenon is of very minor importance, it will not be

considered further.

Recent experimental results on the erosion of cohesive

sediments are summarized in Table 1. Einstein and Krone (1962)

reported the results of a series of experiments using a mud

consisting primarily of illite and montmorillonite. They

reported that for conce trations greater than 10 g/l (1 %)

there was hindered settling, while for smaller concentrations

it was not observed. The hindered settling consisted of two

phases, the first lasting approximately two hours, during which

the interface between clear water and the suspension settled

to the bottom. The bulk concentration of the resulting sediment

was 170 g/l. Einstein and Krone concluded that, based on vis-

cosity measurements of lower concentrations, such a sediment

2
should be able to withstand a shear stress of 10 dynes/cm

During the second phase of the deposition, the sediment com-

pacted as interstitial water was squeezed out of the lower

layers as a result of the pressure exerted by the upper layers

of sediment.



Table 1

Previous Experimental Investigations

on the Erosion of.Cohesive Sediments

Investigators

Einstein and
Krone

Partheniades

Terwindt and
Breusers

Mineral Composition

Illite
Montmorillionite
Minor Kaolinite

Montmorillionite
Illite

70 % Illite
15 % Montmorillionite
15% Kaolinite

u, (cm/s)

0.7

0.75, 2.19

0.8-1.40
2.0

TO(dynes/cm2

0.49

0.57, 4.80

0.64-1.96
4.0

50% Illite
45% Kaolinite
5 % Chlorite

Gust 0.86
1.41

0.73
1.99
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In flume studies using concentrations of 300 ppm or less,

and low flow velocities, Einstein and Krone found that the de-

crease in sediment concentration was logarithmic with time.

The rates of deposition were low, on the order of a few per

cent per hour. By plotting deposition-rates versus associated

shear stress, they concluded that for particles 1.9 pm in dia-

meter no deposition occurred if the shear stress exceeded 0.6

2
dynes/cm2. They also reported that during deposition, material

was exchanged between the suspended load and the bed.

Partheniades (1965) reported the results of a series of

experiments using the same sediment as Einstein and Krone.

Partheniades used two different mud beds, one collected and

used at field moisture, and the other deposited directly from

suspension in the flume. He found that although the measured

shear strengths of the two beds varied-by two orders of magni-

tude, the shear stress required to erode the beds was approxi-

mately, the same (T = 0.57 dynes/cm2 ). This value is very

close to the value needed to inhibit deposition reported by

Einstein and Krone. However, Partheniades stated that the

value of the average velocity needed to inhibit deposition is

15 cm/s, considerably lower than that needed to initiate erosion

(20 cm/s). On the basis of these results Partheniades stated

that there can be no interchange of bed material and suspension

material during episodes of deposition. Partheniades also found

that when T0 exceeded 4.8 dynes/cm2 the rate of erosion was
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considerably increased. In addition, he noted that erosion

rates were independent of both sediment concentration in the

flow and the shear strength of the bed. In a subsequent series

of papers (Partheniades and Kennedy, 1966, Partheniades et al.,

1968, and Partheniades and Mehta, 1971), Partheniades and his

co-workers have established the logarithmic settling behavior

noted by Einstein and Krone for a wide range of flow velocities

and suspended-sediment concentrations. They also found that

the equilibrium suspended-sediment concentration reached is

approximately equal to half the initial concentration, regard-

less of the actual value of initial concentration. Like the

settling rate, this appears to depend only on the shear stress

generated by the flow.

Both beds used by Partheniades were unconsolidated. Ter-

windt et al. (1968) reported the results of their investigation

on the erosion of naturally occurring alternating sand and mud

beds which showed that the clay layers were eroded only when

2
0 was between 10 and 60 dynes/cm2. These results fit in well

with previous reports of the shear stress needed to erode con-

solidated clay beds. These shear stresses are in fact higher

than those needed to erode sand-sized noncohesive sediments.

Results reported by Migniot (1968) showed that the initial

rigidity (shear strength) of unconsolidated mud beds varied

with the mineralogic composition, grain size, rate of accumula-

tion, and time allowed for compaction. Although the shear
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stresses required for erosion varied widely, if the observation

of Partheniades that the resistance to erosion of an unconsoli-

dated mud bed is independent of its shear strength, then these

variations should not be too important.

Terwindt and Breusers (1971) reported results of their

investigation of alternating sand and mud bedding which showed

that a pure mud bed would erode when u* was between 0.8 and 1.4

cm/s, corresponding to T between 0.64 and 1.96 dynes/cm2 . For a

mud with thirty-seven per cent sand-sized particles, they.found

that the critical shear velocity for erosion was 2.0 cm/s.

This increase in resistance to erosion was also noted by Migniot,

who found that the resistance peaked at a sand content of forty

per cent.

Experiments by Southard et al. (1971) on erosion of cal-

careous ooze and by Lonsdale and Southard (1974) on abyssal

clays give results similar in form to'those shown in Table 1.

However, the onset of mass erosion measured by Southard and

Lonsdale is at a value of T0 considerably higher (10-60 dynes/

cm 2) than that observed by Partheniades and in close agree-

ment with that reported by Terwindt et al.(1968). This may be

due to the longer time periods allowed for compaction before

the experiments were initiated. The results of Southard et al.

(1971) give values of To considerably lower than those reported

by other workers. The sediment used in this sutdy is probably

noncohesive, however.
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Results reported by Postma (1967) indicate that mud re-

sistance to erosion increases with decreasing water content.

His results appear to be in qualitative agreement with the

experimental results described above.

Recent research on drag resistance due to suspended parti-

culate matter by Gust (1976) is of interest because if drag

reduction occurs over rippled beds as well as over the planar

beds studied by him, then the average.velocities required to

produce a given value of T0 may be increased by as much as forty

per cent over that predicted by equations 4-6. That such drag

reduction does occur over rippled beds is shown by the report

of Simons et al. (1963), who showed that the value of C* in-

creased over fifty per cent with increasing suspended-sediment

concentration. Gust reported that a planar mud bed collected

from the field was eroded at a T of 0.73 dynes/cm 2, correspond-

ing to a u, of 0.86 cm/s. This result was determined from

measurements made in the viscous sublayer. If u* is computed

from equation 4, as was done in the other studies, its value

is 1.41 cm/s. This value is somewhat lower than that reported

by Terwindt and Breusers for-a mud with a similar sand content

(40 %), but slightly higher than their value for a mud with

with no sand. Why this discrepancy should exist is not clear.

The most likely explanation is that the degree of consolidation

was different because of the differing methods of forming the

mud beds.
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Although Gust's (1976) conclusion that turbulent drag

reduction occurs in natural flows is undoubtedly correct, his

statement that the occurrence of such drag reduction (Gust and

Walger, 1976) will lead to an upward modification of the esti-

mates of the mean velocity needed to'erode naturally deposited

mud beds does not necessarily follow. This is because the

effects of drag reduction appear to be concentrated in a narrow

zone near the bed surface, while the bulk of the flow remains

Newtonian, and hence describable by the law of the wall. Since

estimates of the value of u* are generally computed from mea-

surements of mean velocity made at some distance above the bed,

the value of u* may be inaccurate, but the mean velocity needed

for erosion will still be correct. Only when the shear strength

of the mud bed is measured directly, or when u* is calculated

from measurements taken in the viscous sublayer, are Gust's

contentions valid.

A glance at Table 1 reveals that two different definitions

of mud erosion appear to have been used, one based on an in-

crease in suspended-sediment concentration, which would occur

at very low velocities as individual particles begin to be

resuspended (Einstein and Krone, Partheniades' lower value)

and the other based on visible erosion of large chunks of de-

posited material (Terwindt and Breusers, Partheniades, and

Gust). The onset of mass erosion is the more suitable definition

for the purposes of this paper and is the one that will be used.
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DESCRIPTION OF THE APPARATUS

The experiments described here were performed in a re-

versing, recirculating flume (Fig. 10). The flume is 10 m long

with a cross-section 14.6 cm wide and 30 cm deep. The bulk of

the flume is constructed of 0.75 inch plywood covered with re-

sin-saturated fiberglass mat. The sides of the four-foot ob-

servation section, situated in the center of the flume, are of

half-inch thick plexiglass. A centrifugal pump connected to a

two-horse power motor drives the flow. A system of bypasses

and valves was constructed so that the direction of the flow

could be reversed. Discharge was regulated by a gate valve

located just downstream of the pump outlet. Water temperature

was partially regulated by means of a cooling jacket surround-

ing the return pipe. As the temperature of the cooling water

increased, the cooling jacket became increasingly ineffective.

An instrument carriage containing a bed-leveling device

and a rack-and-pinion point gauge was mounted on two one-inch

diameter steel rods located above the sidewalls of the flume,

and oriented parallel to the flume bottom. Although it is

possible to vary the slope of the flume, all runs were carried

out at zero slope.

Water discharge was measured with a calibrated U-tube

mercury-water manometer connected to an orifice meter located

in the return line. The manometer was calibrated by measuring
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the volume of water discharged in a ten-second interval for

various pressure readings (Fig. 11).

To ensure fully developed turbulent flow, a series of one-

half and one-quarter inch mesh screens were installed at both

ends of the flume. It was found that smaller mesh sizes tended

to act as a sediment trap, particularly at low velocities.

Wave dampers, made of plexiglass sheets, were located directly

above the pipe outlets at both ends of the flume.

Suspended-sediment concentrations were determined by using

a 47 mm Nuclepore filtering system and 47 mm Nuclepore poly-

carbonate filters with a 0.4 pm pore opening.

All photos were taken on 35 mm Kodak Pan-X film (ASA 32)

developed in undiluted Kodak Microdol-X. Three floodlights

positioned below and behind the flume provided illumination.

Exposures were at F4 for one-eighth of a second.

All calculations and plots were made using the MIT IBM

370/168 computer and a Calcomp plotter.

The two sands used in the experiments were obtained from

the Holliston Sand Co., Holliston, Massachusetts. Microscopic

examination revealed that both sands were composed of well-

rounded grains, primarily quartz (over 95 %) with minor biotite

and feldspar. Grain-size analyses, using the method of Folk

(1966), are shown in Figure 12.

Three types of clay material were used in the experiments.

The first is a Wyoming bentonite, composed almost completely
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of montmorillonite. The second clay was obtained from the

Georgia Kaolin Co. packaged as Pioneer Kaolin, Analysis

revealed that it is composed mostly of kaolinite with very

minor amounts of other clay minerals. The third clay was

obtained from the Gorham Brick Co., Gorham, N.H. Analysis

revealed that the less than 60 pm size fraction contained

significant amounts of quartz and feldspar, as well as chlo-

ite and illite. The less than 2 pm size fraction was com-

posed primarily of illite and chlorite. Because of the dif-

ficulties of separation, and the uncertainties of the compo-

sition, this clay was not used in any of the "U" runs. All

analyses were done by X-ray diffraction.

The salt used to maintain the salinity of the solution

at 15 ppt was commercial rock salt, obtained from a local

distributor.

EXPERIMENTAL PROCEDURE

Two series of experiments were made. The first series,

the "T" runs, was conducted in order to explore the effects

of varying the init4,al sediment concentration, varying the

sediment composition, varying the peak velocity, and varying

the forcing function used to produce the tidal velocity profile.
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The second series, the "U" runs; was then conducted in order

to establish quantitatively the conditions necessary for the

formation of wavy and flaser bedding. A short summary of the

various runs is given in Table 2. Detailed descriptions of

the runs are given in Appendix A.

All runs were based on a tidal cycle with a period of 12.5

hours. A computer program (see Appendix C) was written in order

to create simulated tidal cycles with various maximum velocities

and functional forms. Two different functional relations were

used to generate the cycles. The first was a simple sine wave:

u = sin (t) (17)

This was.used in runs T-1 through T-3. The other function used:

u = 2 sin (t) + sin (2t) (18)

more closely approximates a real tidal cycle, and is the form

used for the rest of the runs. Due to the complexity of the

interactions between the tidal generating forces and local

bathymetry, almost any tidal-current velocity profile can

exist. However, a large number of tidal velocity profiles

closely resemble that described by equation 18. In particular,

the tidal cycles during which observations referred to in this

report (Gust and Walger, 1976; Postma, 1961; Reineck and Wunder-

lich, 1967, 1969; and Schubel, 1969, 1971) were made are similar



Table 2

-Summary of Experimental Runs

Peak Velocities Total Clay
(cm/s) Added (g)

+40,-40 100 No

+40,-40 200 No

+20,-20 400 Mu
re

+40,-40 400 Mu

se

+20,-20 400 Mu
re

+30,-20 400 Mu
re

+30,-20 400 Mu
re

+30,-20 100 Mu
se

+30,-20 2200 Mu
re

+30,-20 800 Mu
re

Run #

T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

T-9

T-10

Remarks

deposition observed

deposition observed

d layer deposited, not
-eroded

d layer deposited, sub-
quently eroded

d layer deposited, not
-eroded

d layer deposited, mostly
-eroded

d layer deposited, mostly
-eroded

d layer deposited, sub-
quently eroded

d layer deposited, mostly
-eroded

d layer deposited, mostly
-eroded



Table 2 (cont.)

Peak Velocities
Run # (cm/s)

Total Clay
Added (g)

Mud layer deposited and
preserved

Occasional mud flasers
preserved

Some mud lenses
preserved

Occasional mud flasers
Preserved

Semi-continuous mud
layer preserved

Continuous mud layer
preserved

Occasional mud flasers
preserved

Occasional mud flasers
preserved

Almost continuous mud
layer preserved

Note: Positive flow velocities are
are from right to left. All
velocities.

from left to right, negative flow velocities
runs began and ended with positive flow

Remarks

U-1

U-2

U-3

U- 4

U- 5

U-6

U-7

U-8

V- 1

+30,-20

+30,-20

+24,-24

+30,-24

+30,-20

+24,-24

+30,-20

+30,-24

+24,-24

3000

1000

1000

1000

1000

1000

1000

1000

1500
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to those produced by this equation.

Since the pump used was not a variable-speed pump, dis-

charge had to be controlled by means of a gate valve. This

made it impossible to continuously vary the current velocity.

It was decided to change the velocity in increments of 2 cm/s.

This increment is considered to be small enough to closely

approximate the continuously varying flow present in real tidal

systems and yet large enough to be accurately measured by the

manometer. In addition, during some parts of the runs, when

the velocity changed rapidly, more frequent velocity adjust-

ments would have made it impossible to collect the other data

being recorded. It should be noted that on all of the velocity

profiles, the time indicated is the time that the velocity was

changed to that velocity.

Prior to each run a new bed of fresh sand 4 cm thick was

placed in the flume and leveled. In the entrande and exit

regions the thickness was gradually reduced to zero. Water

was added until a water depth of 12 cm was achieved. The flume

was then turned on anr run at a velocity of 30 cm/s for approx-

imately one hour so that a fully rippled bed was developed.

Six kilograms of salt were added during this period to achieve

the desired salinity of 15 ppt. The flume was then turned off

and left overnight.

The next morning the flume was turned on and the velocity

adjusted to that desired for the beginning of the run. A given
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weight of dry clay was then added in small amounts over a period

of about ten minutes. The clay was added at the downtstream

end of the flume so that the action of the pump would destroy

any large clumps. After addition of the clay the flume was

allowed to run for a specified time before the formal initia-

tion of the run. In the case of the "T" runs this period was

one hour, at the end of which time, according to Patheniades,

an equilibrium suspended sediment concentration was established.

It was found that, when large quantities of clay were added,

substantial amounts would be deposited and covered by migrating

sand before the initiation of the run. In order to minimize

this, a shorter time period elapsed before the initiation of

the "U" runs, one-half hour. An unfortunate but unavoidable

effect of this time reduction was to superimpose two deposi-

tional trends during the early hours of the run: that due to

the deposition before equilibrium in a steady flow was reached,

and that due to the varying current velocity.

The formal part of the run was always begun at a velocity

somewhat below the maximum reached during the run. The velocity

was then raised and lowered according to the table generated

by the computer for that particular run. Photographs of the

observation area were taken every half hour. During the "T"

runs, suspended sediment samples were taken from 10 cm above

the bed every hour. Temperature readings were also taken

every hour during the "T" runs. When velocities greater than
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30 cm/s were reached, significant amounts of sand were found

in the suspended-sediment samples. In these cases the entire

sample was wet-sieved to remove the sand, which was then dried

and weighed separately. The rest of the sample was filtered

through the apparatus described above, and then dried at a

temperature of 30 0C. This removed all interstitial water, but

not that which was chemically bound to the clay particles. It

is not possible to determine at what temperature the samples

were dried in other reports (Postma, 1961; Gust and Walger, 1976).

If their samples were dried at temperatures high enough to re-

move the hydrated water as well as the interstitial water

(greater than 3000C) then the comparable concentrations of

their samples are considerably higher than those in this re-

port. During the "U" runs suspended sediment samples and

temperature readings were taken every half hour. The size

of the suspended sediment sample was governed by the capacity

of the filter. During all of the "U" runs and during Run V-1

and Run T-9, the high suspended-sediment concentrations per-

mitted a sample volume of only 50 ml to be used. During the

"T" runs in which the total amount of suspended sediment was

much lower, a larger sample volume of one liter was used.

In an effort to determine whether or not the grain size

changed during the runs, grain-size analyses were made during

several of the runs using the pipette method of Folk (1966).

The results are somewhat variable, but the average grain size
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appears to be fairly constant, both from run to run and within

individual runs (Table 3).

As a check on whether the suspended sediment affected the

fluid viscosity, a series of measurements were made during Run

U-8.using a Synchro-Lectric Viscosimeter. No significant vari-

ations were noted.

Water-surface profiles were measured during the "U" runs

by taking measurements at intervals of one meter at five po-

sitions centered about the midpoint of the observation area.

Five measurements, using the point gauge, were taken at each

point and averaged. The resulting five values were then fit

using a least-squares fitting program to determine the water-

surface slope. The results of Rathburn and Guy (1967) show

that such a procedure gives an accurate slope determination.

During several of the runs ten or more observations were taken

at each point, but the average value did not vary significantly

from that obtained using only five measurements. Water-surface

profiles were measured at the following flow velocities: 12,

16, 20, 24, 26, 28, and 30 cm/s.

The runs were terminated at various times, but never until

the maximum velocity reached shortly after the beginning of

the run had been reached for a second time. After termination

of the run, the flume was drained and cleaned prior to the

next run.



Table 3

Suspended-Sediment Grain-Size Analyses
Per Cent Fine Than

Run #
Velocity (cm/s)

Grain Size

Microns

4 62

5 32

6 16

7 8

T-7
30 0

100

100

100

100

25

8

T-8
30 0 20

100

100

100

86

25

100

100

100

67

0

100

100

100

50

0

100

100

100

67

0

u-8
0 24 30

100

100

100

25

0

100

100

100

50

0

100

100

100

100

0
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-All data were stored on punched cards and analyzed using

the program listed in Appendix C.

When considering the experiments described here, several

limitations of the apparatus should be considered. The most

significant limitations are those imposed by the dimensions

of the flume.

The flume used is narrow (14.6 cm) and at the flow depth

used (12 cm) has a width-to-depth ratio of only 1.22. Wil-

liams (1971) has suggested that for the effect of the sidewalls

to be negligible the width-to-depth ratio should be at least

3:1. At the small ratio used, the resistance of the sidewalls

is a significant percentage of the total resistance of the

flume. In addition, the presence of the sidewalls initiates

the formation of secondary currents which may modify the flow

structure so that it differs from that found in natural channels.

In order to apply the.experimental results to natural situations

it is necessary to employ a sidewall correction procedure. Two

different methods were used. The first is the method of John-

son (1942) as described by Vanoni (1975). Johnson's method in-

volves determining the resistance of the sidewalls and sub-

tracting it from the total resistance as measured from the en-

ergy slope in order to determine the resistance of the bed.

The second method was proposed by Williams (1970), who

multiplied the measured energy slope by the factor:

S = Se [1/(1 + 0.18(D/b2)M (19)
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to eliminate the sidewall effects.

Although the flume is short (10 m), it is long enough for

fully developed turbulent flow to exist in the observation

area.

A more serious limitation is the shallow depth of the

flume (12 cm). Since the depth is much less than that found

in tidal channels (2-6 m), in order for the total amount of

sediment deposited to be equal to that found in natural settings

the concentration must be considerably higher. An upper bound

on the concentrations that may be used is set by the occurrence

of hindered settling at concentrations of greater than 1 per

cent.

Since it was the observations of Terwindt and Breusers

that were being tested, at least originally, their calculations

of the amount of sediment deposited during a tidal cycle were

the ones used. Terwindt and Breusers calculated that a layer

of sediment 0.3 cm thick could form during a single tidal cy-

cle. This calculation was based on the observed bulk sediment

concentration near the bed during slack water. Other observa-

tions directly measuring suspended sediment concentrations

during tidal cycles reveal, not surprisingly, that the amount

of suspended sediment can vary over several orders of magni-

tude (Krone, 1972; Postma, 1961; Schubel, 1969, 1971a; Gust

and Walger, 1976). When compared with these observations, the

amounts calculated by Terwindt and Breusers are very low.
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It was observed that a mud layer 0.3 cm thick could easily be

eroded at low flow velocities (Runs T-4, T-6, T-7, T-8, T-10).

Accordingly, larger amounts of sediment were used in subsequent

runs. Hindered settling occurred in Run U-1, so smaller amounts

of sediment were used in the following runs. Mud layers up to 1

cm thick were produced in Runs U-2 through U-8.

The shallow flow depth also meant that the sediment would

deposit more quickly than in real tidal areas, provided the grain

sizes were equal. Fortunately, the grain sizes in the flume

runs were considerably less than those reported from natural

settings. This, plus the reduction in fall velocity due to the

increased concentrations, resulted in settling behavior quite

similar to that observed by Postma (1961) and by Gust and Walgar

(1976). One notable difference between the field and experimen-

tal observations is that in the tural settings the water was

never completely free of sediment while. in the flume it was.

This is probably due to two factors: first, the presence of

wave activity in the natural channels, and second, the greater

depths of the channels so that even in the absence of wave ac-

tivity not all of the finest material could settle out.

The mineralogy of the sediment in most of the runs was

composed only of kaolinite and/or montmorillionite, whereas

natural sediments will have compositions considerably more

complex. In particular, natural sediments will contain some

proportion of organic material, which might increase the shear
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strength of the sediment. However, organic-matter content of

nearshore sediments appears to be low. Both Young and Southard

(1978) and Einstein and Krone (1962) reported organic-matter

contents of about three per cent, and Krone (1972) characterized

an organic-matter content of ten per-cent as high. Given these

data, it was felt that the organic-matter content could be

neglected. The possible effects of non-organic binding agents

such as iron compounds should also be considered. Because of

the low iron contents and the lengths of time required for

them to increase the rigidity of the mud (Partheniades, 1965),

this effect has also been neglected.

PRESENTATION OF THE EXPERIMENTAL RESULTS

General Observations

Detailed observations of the individual runs are given

in Appendix A; only the results of the runs, and the conclu-

sions deduced from them, are given here. Some general ob-

servations which apply to all of the runs can be made first.

1. It is difficult to define exactly when erosion of a

mud bed begins. As noted above, for this study it is the on-

set of mass erosion that is of interest. This was defined to

occur when the mud surface began to become ragged. This usually
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occurred when the mean velocity was 24 cm/s. However, the on-

set of mass erosion did not guarantee that a significant por-

tion of the mud bed would be removed, since the rate of erosion

at this velocity was low. As soon as the velocity was increased

to 26 cm/s the erosion rate increased rapidly.

2. The deposited mud formed two distinct layers corre-

sponding to the two phases of deposition noted by Einstein and

Krone (1962) and Migniot (1968). The- unconsolidated upper layer

was always resuspended at relatively low flow velocities (less

than 16 cm/s) leaving the lower, more consolidated layer molded

over the rippled sand bed.

3. Erosion of the consolidated mud layer occurred first

on the stoss side of the ripples. Once the sand was exposed,

the rate of mud erosion was increased as the sand began to

be transported, thus undermining the remaining mud layer.

4. The thickness of the mud layer varies with the amount

of clay added to the flume. In general, the thicker the layer,

the greater its resistance to erosion. The 0.3 cm thickness

calculated by Terwindt and Breusers was almost completely

eroded by the time the veloc'ity reached 24 cm/s.

5. Substantial amounts of mud were deposited during

the period corresponding to low water and were not resuspended.

This does not agree with the observations of Postma (1961),

and allows longer compaction times than found in nature. It

was found, however, that even allowing a mud layer to lie
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undisturbed for up to two days did not increase its resistance

to erosion.

6. The ratio of mud deposition generally increased sub-

stantially when the velocity was lowered below 18 cm/s. The

precise value of this change in rate'depended to some extent

on the total sospended-sediment concentration-, with higher

concentrations depositing at higher velocities than lower

concentrations.

7. The sequence of deposition and erosion of the mud

followed the same general trend throughout all of the runs,

differing only in degree. During the first part of the run,

when the velocity increased to its maximum, most of the mud

was in suspension. As the velocity decreased below 18 ,cm/s

deposition began and continued through the first still-water

period until the Velocity was increased to about 10 cm/s

(Fig. 13; Note: grid is 1 cm, flow left to right unless noted).

During this first still-water episode, corresponding to low

tide, most of the mud was deposited. During the subsequent

high-velocity period, most, but not all, of.,the mud would be

resuspended. If enough mad was not resuspended, consolidation

of the remaining mud would begin to occur (Fig. 14). During

the second still-water period, which corresponded to high

tide and was much longer than the first, all of the mud would

be deposited, forming thick layers of both unconsolidated and
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i= Run U8 Velocity 0.2 Time 0300

- i4iL

Figure 13: Typical mud deposition at low water. Flow right to left.

Run U-5 T1Velocity 20 Time 0530
INT, QJJ -L

Figure 14: Partial erosion of mud during flood tide. Flow right to left.
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consolidated mud (Fig. 15). As the current velocity was in-

creased, first the unconsolidated layer and then the consoli-

dated layer would be eroded. Mass erosion of the consolidated

layer began at current velocities approximately equal to those

needed to initiate sand movement. As the mud was eroded (at

first only on the stoss side of the ripples), the exposed sand

would begin to migrate, partially covering the portions of the

mud bed not yet eroded (Fig. 16). Depending upon the veloci-

ties used it was possible to bury varying amounts of the mud

bed. Details of each run are given in Appendix A, and the re-

sults are discussed in the following sections.

The "T" Runs

Runs T-1 through T-5 were primarily exploratory. These

-runs were conducted ih order to determine how much clay should

be added and what maximum current velocities would be needed

to produce mud deposition and erosion. It was found that if

a tidal cycle with peak current velocities of more than 24

cm/s was used, and enough mud was added to produce a layer 0.3

thick, the mud would deposit during the period corresponding

to high water and be eroded during the subsequent period of

high current velocity. This was true for both tidal profiles

used. Runs T-3 and T-5 showed that if the maximum velocity did

not exceed 20 cm/s, the mud would not be eroded.

ii



Run U-6 Velocity 00 Time 1000 17

Figure 15: Mud deposition at high water.

RuniU-5 Velocity i2 TimeI330

Figure 16: Mixed burial and erosion of mud by ebb current.
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The value of u* corresponding to a mean velocity of 24

cm/s is 1.75 cm/s. This value is considerably less than the

value Terwindt and Breusers claimed is needed to erode a mud

bed (u, = 2.0 cm/s). The results of these initial runs, which

are supported by the results of runsT-6, T-7, and T-10, which

had similar suspended-sediment concentrations, show that only

flasered beds can be preserved if the mean velcoity exceeds

cm/s. Accretion over subsequent tidal cycles producing mud

layers several centimeters thick is impossible.

Runs T-6, T-7, and T-10 were conducted to determine the

effect of various mineralogic compositions on depositional

and erosional behavior. The results for the three minerals

tested show that for the short time periods used in this study

the minerals behaved identically (Fig. 17), although for longer

periods Einsele et al. (1974) have reported marked differences

in consolidation rates for different clay minerals. The higher

concentration of illite material is due to the substantial

amounts of quartz and feldspar in the sediment. This did not

appear to affect the behavior. Nevertheless, the illite sedi-

ment was not used in any of the subsequent runs.

The purpose of runs T-8 and T-9 was to see if the sus-

pended sediment concentration had an effect on the rates of

deposition. Figure 18 shows that for the concentrations used,

depositional behavior did not vary with total concentration.
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The "U" and "V" Runs

Run U-1 was conducted -with a very large amount of sedi-

ment. It was found that a substantial amount of the clay was

deposited very quickly after it was introduced into the flume.

In addition, when the flow velocity was reduced, hindered set-

tling occurred. For these reasons it was decided to use smaller

amounts of sediment in subsequent runs.

Run V-1, was conducted with less sediment than Run U-1,

but substantial amounts of sediment were still deposited

shortly after it was introduced into the flume. At the end

of both of these runs, which were ended early, an almost con-

tinuous mud layer covered the sand bed.

Runs U-2 through U-8 were all conducted with the same

amount of clay added. Because of difficulties with the point

gauge, the results of run U-2 had to be discarded. The run

was repeated as run U-8. The object of these runs was to deter-

mine the minimum velocity needed to inhibit the preservation

of a continuous mud layer and the effect of changing the sand

size. The mud layers deposited were over 1 cm thick. It was

found that if the maximum velocity did not exceed 24 cm/s, an

almost continuous mud layer could be preserved. The differing

velocity profiles between runs U-4 and U-5 (or U-7 and U-8)

tested whether a difference in the secondary velocity maximum

would have an effect on the erosional behavior of the bed.
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If the velocity during flood tide reached only 20 cm/s, there

was very little erosion and the mud layer remained continuous

(Fig. 19). If the maximum'velocity was 24 cm/s, mud erosion

progressed to the point that sand was exposed in places. Sub-

sequent bed-load movement buried portions of the mud layer

(Fig. 20) as the ripples adjusted to the change in flow direc-

tion.

Varying the sand size also had an effect on the erosional

process. Since the finer sand was transported at lower velo-

cities than the coarser, as soon as it was exposed (due to

partial erosion of the mud layer) it migrated more actively,

leading to more rapid undermining' of the remaining mud. At

the same time it buried other portions of the mud bed more

quickly than did the coarser sand. The net result was to pro-

duce more continuous flasers than were formed with the coarser

sand (Figs. 21, 22). This occurred even though the total

amount of mud resuspended did not vary with the sand size

(Fig. 23, 24, 25).

In one case, run U-6, the mud layer was never eroded,

allowing a continuous mud layer to be preserved until the end

of the run (Fig. 26). If the maximum mean velocity exceeded

24 cm/s, the mud bed was always eroded, leading to the pre-

servation of only occasional mud flasers (Fig. 27).



un U-5 Velocity 18 Time 0600
14

12.

Figure 19: Preservation of continuous mud layer during flood tide. Maximum
velocity was 20 cm/s at 0530. Flow right to left.

1~- I ,1 R un -U4 Velocity Time 00

Figure 20: Partial preservation of mud layer during flood tide. Maximum
velcoity was 24 cm/s at 0530. Flow right to left.



Figure 21: Wavy -flaser bedding. Sand size 0.0129 cm.

R u n

Figure 22: Simple flaser bedding. Sand size 0.0156 cm.

Vlocity Tim O.
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Figure 26: Development of wavy bedding.
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Figure 27: Occaisional flasers buried by migrating ripples.
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Figure 28 is a schematic re-presentation of how a flasered

bed is formed. As the flow velocity decreases (steps a through

c), an increasing amount of mud is deposited forming an un-

consolidated layer across the rippled sand; initially this layer

conforms to the bed topography (b), btt gradually fills in the

troughs as the accumulation increases (c). The total amount of

mud reaches a maximum at slack water (d), and if accumulation

is significant,. a consolidated layer begins to form. As the

flow velocity increases, the unconsolidated layer is removed

(e). A further increase in velocity results in partial removal

of the consolidated layer on what are now the stoss sides of

the ripples (f). As the sand is exposed, and if the current

velocity is large enough, sand movement begins and the uneroded

portions of the mud layer become buried by transported sand (g).

As sand transport continues, and the ripples begin to migrate,

the remaining mud patches are at first buried but' then re-eroded

as the ripples migrate across them (h through j).

Differences in the shear -stress needed to erode the mud

as compared to that needed to move the sand will lead to vary-

ing amounts of mud being preserved. If the shear stress re-

quired to erode the mud is much lower than that required to

initiate sand movement (as in runs T-4, T-6, T-7, T-8, and T-10)

no mud will be preserved if that shear stress is reached. If

the shear stress required to erode the mud is greater than

that needed to initiate sand movement, a wavy mud bed will be
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b

Figure 28: Idealized sequence showing the development of a
f laser bed.



-86-

preserved (Run U-6). If active bed-load transport of sand

occurs at about the same shear stress needed to erode the mud,

fairly continuous flaser mud beds (wavy flaser bedding in the

terminology of Reineck and Wunderlich, 1968, see Fig. 1) will

be formed (Runs U-3, U-4, U-5). If bed-load movement is less

active at the shear stress which erodes the mud, more of the

mud will be eroded before it can be buried by migrating sand,

leading to the formation of simple flaser beds (Runs U-3, U-8,

and U-7). The difference between the shear stress required

for mud erosion and sand transport will depend upon the grain-

size of the sand and the degree of consolidation of the mud.

Very small variations in the values of these stresses may pro-

duce substantial changes in the types of bedding formed. In

the present study, the shear stress needed to initiate move-

ment of the two sands used is practically identical, yet the

bedding produced is substantially different (see'Fig. 21 and

Fig. 22).

Comparison of Figures 17 and 18 with Figures 23, 24, and

25 reveals that considerable amounts of sediment were not

resuspended during the secondary velocity maximums in the "U"

runs. Part of this descrepancy is caused by the method of

calculating the percentage of sediment in suspension. Since

the concentration used as 100% was that measured during the

first velocity maximum, and because of the lograithmic settling

behavior noted by Partheniades, the difference in time between



-87-

the introduction of the clay and the initiation of the run be-

tween the "T" and "U" runs makes a difference in the calcula-

tions. In the "T" runs, because of the longer time period,

the sediment had more closely approached its equilibrium value.

Because of the shorter time period used during the "U" runs

the equilibrium value had not been achieved by the time the

velocity maximum had been reached. Experiments and calculations

show that the reference concentration for the "U" runs should

be reduced by about 30% in order to compare the results with

those from the "T" runs. When this reduction is made, the

resulting curves appear much more similar. This does not,

however, completely explain either the discrepancy or the

observation that during the "T" runs only minor amounts of mud

were not resuspended whereas during the "U" runs significant

amounts of sediment remained deposited. Perhaps the early de-

position of large amounts of sediment during the "U" runs allowed

the sediment to become more compacted, thus increasing its

resistance to erosion.

In order to compare the results of the flume runs to

natural conditions some common parameter is necessary. The

shear velocity u* is readily calculated, and because of its

relationship to TO, is a useful measure describing the flow

field near the sediment-fluid interface.
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. Calculation of u,

Three different methods of calculating u* were applied to

the experimental results. The results of these methods are

listed in Table 1 of Appendix A. U*(l) was determined by the

method of Johnson, U*(2) by the equation presented by Richard-

son and Simons, and U*(3) by the sidewall correction procedure

given by Williams. The resulting values of u* vary consider-

ably, both from run to run and according to the method used.

Although some differences due to differing topography from

run to run and experimental errors were expected, nothing like

this diversity of values was anticipated. In view of the

critical importance of the value of u*, a detailed description

of its method of determination is presented in Appendix D.

In order to determine which of the methods gives the most

accurate and consistent results, u* was.calculated for each

slope measurement by each method. The determinations were then

grouped together by mean velocity and averaged. The results,

with their standard deviations, are shown in Table 4. Surface

slopes measured at a velocity of 12 cm/s were frequently so low

that u* could not be determined. For this reason, values for

this velocity are not listed in Table 4. Of the three methods

used, that of Williams gives the most consistent results. The

values calculated by the Johnson method have high standard de-

viations, as well as large values of u*. The results of



Table 4

Mean Value of u* and their Standard Deviations (S.D.) as Calculated by the

Methods of Johnson (U*1), Richardson and Simons (U*2), and Williams (U*3)

U*l (cm/s)

1.78

2.01

2.72

2.62

3.03

3.42

S.D.

0.57

0.44

0.61

0.66

0.51

0.53

U*2 (cm/s)

1.75

1.72

2.23

1.76

1.84

2.02

S.D.

0.70

0.75

1.19

1.00

0.68

0.64

U*3 (cm/s) S.D.

1.16

1.36

1.75

1.82

1.97

2.19

0.22

0.20

0.29

0.31

0.25

0.25

u (cm/s)

16

20

24

26

28

30
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the Richardson and Simons technique are extremely- variable,

sometimes predicting a reduction in u* as the mean velocity is

increased. Because of this variability, the results of this

method were rejected, although the results for low velocities

are attractive. The third method gives by far the most consis-

tent values, as can be seen by comparing the standard deviations.

Two checks can be made on the accuracy of the values of

u*. The first involves the observation that no sand was in

suspension at velocities less than or equal to 30 cm/s.

Applying Bagnold's criterion for the suspension of sediment,

one finds that a 10 of 3.36 dynes/cm2 is sufficient to suspend

sand of the size used in the experiments. This value is less

than that predicted by Johnson's method for a mean velocity of

30 cm/s. Accordingly, if Johnson's method is accurate, there

should be sand in suspension at this velocity. Since there

is not, it is felt that the values calculated by this method

are inaccurate.

A second check can be made by measuring the slope and

mean velocity needed to initiate sediment movement on a flat

bed. For the coarser sand the resulting value of u* read from

the Shields diagram is 1.35 cm/s. From measurements made in

the flume, u* was calculated as 1.57 cm/s when using the method

of Johnson, and 1.42 when using the procedure described by

Williams. It is felt, then, that the most accurate determina-

tions of u* are those made using Williams' method.
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- Calculation of u5 0

Once u* is determined, it remains to see what values of

u will produce these values. Four equations (4,5,6, and 10)

have been presented which, for a given u*, enable uz to be cal-

culated. Values of u50 have been calculated using each of

these equations; these values are shown in Table .1 of Appen-

dix A. (U501 is calculated from equation 4, U502 from equation

5, U503 from equation 6, and U504 from equation 10.) For these

calculations a water temperature of 150C and a salinity of 15

ppt has been used. The grain diameter used is 0.0129 cm.

The use of equations 4, 5, and 6 is valid only when a

planar bed is present.- When a rippled bed is present, as is

the case when wavy and flasered beds are being formed, use of

these equations will result in values of uz that are too high.

This is because for a given uz the corresponding u* is less

over a planar surface than over a nonplanar surface. Accordingly,

for a given value of u*, equations assuming a planar bed will

give values of uz that are higher than those not assuming a

planar bed.

Equation 10 was developed specifically for use over rippled

beds. The values obtained by using this equation are distinctly

lower than those using the other equations, as would be expected,

Although equation 10 was developed for use with noncohesive
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sediments, it should be applicable in this investigation. This

is because the resistance to flow over a rippled bed is due al-

most entirely to the form roughness (Richardson and Simons,

1967; Bayazit, 1968).

It should be noted that the results of equations 4, 5,

and 6 depend on the value of K that is used. For natural flows

with suspended-sediment concentrations of up to 380 mg/l, Gust

and Walgar (1976) noted that K remained constant at 0.4. This

is the value that has been used in the calculations.

Table 5 presents the values of u50 calculated using the

equations mentioned above and the values of U*(3) presented

in Table 4. It can be seen that the values obtained using

equations 4, 5, and 6 are approximately equal, and quite a

bit higher than those obtained using equation 10. It can be

seen that the effect of a rippled bed is to reduce the flow

velocity needed to produce a given u* when compared to that

needed over a planar bed.

Examination of Table 1 in Appendix A shows that even the

highest value of u50 calculated is only about 70 cm/s, not a

great deal higher than that calculated by Terwindt and Breusers.

The highest value of u50 calculated form equation 10 is only

about 45 cm/s. These low values of u50, in conjunction with

the large amounts of mud eroded at these velocities, seem, to

preclude the possibility of continuous mud deposition over



Table 5

Mean values of u5 0 calculated

6(U503), and

u

(cm/s)

16

20

24

26

28

30

(cm/s)

1.16

1.36

1.75

1.82

1.97

2.19

U501

(cm/s)

31.01

36.90

48.58

50.70

55.27

62.02

from equations 4 (U501), 5(U502),

10 (U504).

U502

(cm/s)

33.81

39.63

51.00

53.04

57.41

63.82

U503

(cm/s)

34.08

39.96

51.42

53.48

57.88

64.35

U504

(cm/s)

16.19

21.65

32.22

34.22

38.32

44.34
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succesive slack-water periods, although the results of Runs U-1,

V-1, and U-6, in which continuous mud layers resisted subsequent

erosion, suggest that if enough mud is deposited, the mechanism

suggested by Terwindt and Breusers may be feasible. It should

be noted, though, that for these runs the total accumulation is

considerably greater than that calculated by Terwindt and Breu-

sers. The results of these runs are actually more in accord

with the observations of Reineck and Wunderlich (1967), who

noted substantial accumulations of mud in a single slack-water

period. It now remains to compare the experimental conditions

with those observed in nature in order to determine under what

circumstances conditions similar to those used in the experi-

ments might occur.

APPLICATION OF THE EXPERIMENTAL RESULTS TO NATURAL SETTINGS

The report by Postma (1961) seems to be the most appro-

priate set of data to use when attempting to apply the experi-

mental data to natural situations. Postma collected both

suspended-sediment concentration and current velocity data from

each of 16 stations located throughout the Wadden Sea over the

course of a single tidal cycle. Similar observations made by

other workers were either made in areas where sand was absent

(Krone, 1972; Schudel, 1969, 1971a) or did not extend over a
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complete cycle (Gust and Walgar/, 1976). The area studied by

Postma is close to that studied by Terwindt and Breusers, and

not far from those studied by Reineck and by Gust and Walger.

Sediment textures and grain-size characteristics, as well as

wave and current activity, seem to belfairly similar in all

of the areas studied (Reineck, 1975, Terwindt, 1975). Reineck

(1975) states that flaser and wavy bedding is most common in

subtidal channels and in the central portions of the tidal

flats. In earlier papers (1967, 1972) Reineck has pointed out

that preservation of structures located on the tidal flats is

much less likely than in the channels due to the high levels

of bioturbation on the flats. He also states that deposits

formed on channel floors are more likely to be preserved than

those on the flats since they are likely to be deposited and

subsequently buried more quickly. Since the structures are,

in fact, observed on the tidal flats', the questi6n becomes

how were they formed and preserved there.

Postma has observed that almost all sand transport in

shallow subtidal and intertidal areas, at least in his study

- region, occurs in the tidal channels. Thus it seems unlikely

that the flaser and wavy beds observed on the tidal flats formed

under normal conditions. Two other possibilities suggest them-

selves:

1. The deposits are relics that were formed when the

area in which they are found was the floor of a channel and
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have been preserved as the channel migrated to a new location.

2. The deposits formed as the result of some abnormal

situation when sand was actively transported across the tidal

flat and deposited, killing any organisms present in the sedi-

ment.

The data of Postma may be used to determine whether, in

fact, it is likely that such deposits will form in tidal chan-

nels under any conditions. The peak mean velocities measured

by Postma are on the order of 80-150 cm/s. Since the exact

water depth is not known, it is not possible to calculate u*.

Two other observations can be used, however. First, the total

sediment load is considerably higher than that used in the

experiments. Run U-1 was, in fact, an attempt to observe whe-

ther a mud bed could be deposited given the sediment available

according to Postma's observations. It will be recalled that

Run U-1 resulted in a mud bed that resisted subsequent erosion

at the velocities used. Postma's observations show that nearly

all of the mud was resuspended during the subsequent high-velo-

city period. This implies that the value of u* is considerably

greater in the areas where Postma made his observations than

it was in the flume experiments. A second point that reinforces

this conclusion is that Postma found significant amounts of

sand suspended in the water column. This could occur only if

the value of u* exceeded that measured in the flume experiments.

If, in addition to this, one considers the statement of Reineck
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and. Wunderlich (1969) that channel floor deposits are subject

to considerable physical reworking, it seems extremely unlikely

that deposits could be formed and preserved during the condi-

tions that prevailed when these observations were made. An

additional consideration might also be mentioned. Gordon (1975)

has reported that, due to the adverse pressure gradient pre-

sent during decelerating flow, the Reynolds stress and average

kinetic energy of the flow increase significantly over that

observed for a steady flow at the same velocity. Thus, for

significant periods of time, the actual value of T in natural

tidal flows may exceed that measured in the flume experiments

even if the mean flow velocities are equal.

Given the unlikeliness of "every-day" events being re-

sponsible for the formation and preservation of these deposits,

a more catastrophic mechanism seems to be indicated. McCave

(1970) suggested that storm activity was responsible for the

formation of these beds in offshore areas. There seems to be

no reason why this should not also be possible in nearshore

waters.

Terwindt (1967) has observed that the total amount of

sediment in suspension along the Dutch coast increases during

the winter due to storm activity, and reaches a peak during the

spring freshet when there is a combination of storm activity

and high sediment discharge from the rivers. Schubel (1971b)

has observed that over 70 % of the sediment influx into the



-98-

northern Chesapeake Bay occurs during two months during the

spring, and that most of the sediment transport observed during

the remainder of the year is merely reworking of this sediment.

In addition, Postma's observations were made during a period

during the summer when there was a minimum of wave activity

and suspended-sediment concentrations were about half those

observed during the winter.

Storms in shallow water produce both high wave activity

and strong currents. Experiments by Kennedy and Locher (1972)

have shown that wave activity can suspend significant amounts

of sandy material, and the observations of Anderson (1972)

showed that fine-grained sediments may be suspended by very

small waves. With these arguments in mind the following

sequence of events is proposed as a likely mechanism for the

formation of wavy and flaser bedding.

During the spring large amounts of sediment. are discharged

by rivers into nearshore waters. As the clay material enters

more saline water, it flocculates, increases in grain size,

and eventually settles to the bottom. Storms occurring during

this period, which generate both large waves and strong cur-

rents, can erode and resuspend substantial amounts of both

sand and mud. As the storms subside, the sand, which has been

carried in suspension over the tidal flats, deposits first

and is formed into rippled beds by the dwindling currents. As

the velocity declines further the mud is deposited on top of



-99-

the sand where, due to the thick overburden the lower layers

consolidate sufficiently to resist erosion. These deposits

are then buried by subsequent movement of sediment across the

flat during more quiescent periods.

CONCLUSIONS

The results of this investigation indicate that mass ero-

sion of recently deposited mud beds over a rippled surface will

begin at an average velocity (for a 12 cm flow depth) of 24 cm/s.

2
This corresponds to a u, of 1.75 cm/s and a T0 of 3.00 dynes/cm

The rate of erosion increases significantly if the mean velo-

city is increased to 26 cm/s, corresponding to a u* of 1.82 cm/s
2

and a T 0 of 3.24 dynes/cm2. These values are somwhat below

those reported by Partheniades (1965) (T O = 4.80 dynes/cm2

but are higher than those reported by Terwindt and Breusers

(1971) for a pure mud bed (u* = 0.8 - 1.4 cm/s). Since the

mud beds tested by Terwindt and Breusers (1971) were deposited

from highly concentrated suspensions, which settle quickly,

and since Migniot (1968) has shown that the initial rigidity

of a mud bed is inversely proportional to its rate of deposi-

tion, it is believed that the values of Terwindt and Breusers

for the pure mud beds are probably too low. It should be noted

though that the value of u, used by Terwindt and Breusers for
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calculating u5 0 is that for a bed with 40 % sand.

The consolidated mud layers produced in the experiments

were up to 1.2 cm thick, considerably greater than the thickness

that Terwindt and Breusers calculated could be deposited in

a single slack-water period (0.3 cm). During those runs when

a mud layer 0.3 cm thick was deposited, it -was almost completely

eroded at velocities lower than 24 cm/s. It is concluded that

the hypothesis of continuous mud deposition during consecutive

slack-water periods advanced by Terwindt and Breusers cannot

explain the thickness of the mud beds observed by them.

If thicknesses greater than 0.3 cm accumulate during a

single slack-water period, the hypothesis of Terwindt and

Breusers might be valid if the bed is planar. However, due to

the rippled nature of the bed, the value of u5 0 required to

erode mud beds up to 1 cm thick is about 32 cm/s, not 60 cm/s.

Accordingly, since a value of over 50 cm/s for u50 is invari-

ably reached, at least in the areas they studied, it seems im-

possible for mud beds to accumulate during successive slack-

water periods. The observations of Reineck and Wunderlich

(1967, 1969), who noted the deposition of mud beds over 1 cm

thick during a single slack-water period, are more in line with

the experimental results.

It appears that the most important factor determing the

resistance of a mud bed to erosion is the thickness of the bed.
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The thicker the bed, the greater- the degree of consolidation

and the greater its resistance to erosion. This factor appears

to be more important than either the mineralogy of the mud,

or the time allowed for consolidation, at least for the range

of values studied.

For most of the runs, the rate of deposition increased

rapidly when the current velocity decreased below 18 cm/s.

This value is somewhat higher than that reported by Postma

(1967), who measured an increase in depositional rate when the

velocity was lowered below 14 cm/s.

The results of this study, and those of Partheniades, sug-

gest that deposition in an unsteady flow should not be considered

to be a simple system in which the value of the flow velocity

acts as an on-off switch determining whether or not sedimenta-

tion.will occur. The system appears to be more complex, with

sedimentation proceeding at various -rates depend-ing upon both

the flow velocity and the time which that velocity has per-

sisted.

Flaser beds may be formed by migrating sand ripples co-

vering partially eroded mud beds. The grain size of the sand

is important since it determines at what value of u, sand

transport will be initiated. Most occurrences of flaser and

wavy bedding have sand that is either fine or very fine-grained.

It appears unlikely that these beds would develop in the pre-

sence of coarser-grained sand since the velocity needed to:
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initiate movement of the sand is far higher than that needed

to erode the mud. In the present study, the velocities needed

to erode the mud and to move the sand are approximately equal.

*This allows sand movement to occur once the mud layer has been

partially removed. Sand is then transported and buries those

portions of the mud bed which are still present. At the same

time, sand underlying exposed portions of the mud may be re-

moved, thus undermining the mud and leading to its erosion.

The different grain sizes used in this study appeared to have

a qualitative effect on the nature of the mud beds preserved,

with the finer-grained sand producing preservation of more

continuous mud layers.

The formation of wavy bedding requires an intact mud

layer. This requires a sand source outside the immediate

vicinity and transport of the sand across the mud layer. For

transport to occur the resistance of the mud bed to erosion

must be higher than that obtained in the experiments.

In light of the above considerations, it appears that

tidal action, on either a daily or biweekly basis, is unlikely

to cause the preservation of tlaser or wavy beds. Although a

flasered bed may be formed as the result of deposition during

a single slack-water period, the structure is unlikely to be

preserved since it most likely will be subjected to considerable

reworking.
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- It appears that a situation in which large amounts of

sand and mud can be deposited quickly and then allowed to

consolidate is required for the formation of flaser and wavy

bedding. In shallow subtidal areas, storm action, particularly

during the spring, seems to be the most likely mechanism.
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APPENDIX A: DETAILED OBSERVATIONS OF THE EXPERIMENTAL RUNS

(Note: All figures referred to are in Appendix B. Velo-

city profiles are given in Table 2, suspended-sediment concen-

trations in Table 3.)

Run T-1

Run T-1 used a sinusoidal velocity profile with maximum

velocities of ± 40 cm/s (positive values indicate flow from

left to right, negative values flow from right to left). Due

to the small amount of sediment added, no visible mud accumu-

lation was observed. Active ripple migration took place when-

ever the average flow velocity exceed 24 cm/s. At velocities

above 32 cm/s, significant amounts of sand were suspended.

Due to the high velocities, the ripples were exceedingly ir-

regular in shape.

Run T-2

This run used the same velocity profile as run T-l. The

amount of clay added was doubled, but again no deposition was

observed. As in run T-1, the ripple forms were irregular,

and significant suspended sand was observed at velocities

greater than 32 cm/s.
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Run T-3

Run T-3 also used a sinusoidal profile but the peak velo-

cities were ± 20 cm/s. Four hundred grams of montmorillonlite

were used in this run. Due to the low maximum velocities, no

sand movement was observed during the run (compare Fig. 1 and

2). A small amount of mud was deposited during the first low-

velocity period. Some of this sediment was resuspended, but

not all. During the second low-velocity period, more mud was

deposited. This layer resisted subsequent erosion. Note that

the suspended sediment concentration measured at 0200 is pro-

bably incorrect.

Run T-4

This run was done to compare the effects of a longer low-

velocity period on the sedimentation and compaction of the mud.

The generating function used for this and all subsequent runs

was u = 2 sin(t) + sii(2t). Peak velocities used in this run

were 40 cm/s. Four hundred grams of clay were added. No

deposition was observed during the first low-velocity period.

During the second low velocity period the two distinct mud

layers corresponding to the two phases of deposition noted by

Einstein and Krone were observed. Both layers were eroded as

the current velocity was increased: the unconsolidated layer
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when the velocity was 12 cm/s, and the consolidated layer at

22 cm/s. The unconsolidated layer appeared to diffuse into

the water whereas the consolidated layer was torn up in chunks.

By the end of the run no mud layer could be seen. As in the

previous runs when the peak velocities exceeded 30 cm/s, the

ripple forms were quite irregular and sand in suspension was

observed.

Run T-5

Run T-5 was similar to run T-4 except that the maximum

velocities were ± 20 cm/s. Unfortunately the photographs

taken during this run were ruined. As in run T-3, a very thin

mud layer was deposited during the first slack-water period.

This layer was eroded as the velocity was increased. During

the second, longer, l6w-velocity period, a 2 mm thick consoli-

dated layer formed. This layer was not eroded as the velocity

was increased. Due to the low velocities used, there was no

sand movement during this run. The suspended sediment concen-

tration measurement made at 0900 is wrong.

Run T-6

Runs T-6 through T-10 all used the same velocity profile

with peak velocities of + 30 and -20 cm/s. Minor bed-load
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movement was observed when the velocity exceeded 26 cm/s.

During the first low-velocity period, a very thin mud layer

was deposited. This layer was eroded as the velocity was

increased. During the second period of low velocity both a

consolidated and an unconsolidated layer formed. The uncon-

solidated layer was completely removed by the time the velo-

city had been increased to 10 cm/s. The consolidated layer

began eroding when the velocity reached 24 cm/s. As the velo-

city was further increased, the rate of erosion also increased.

Parts of the mud layer were buried by migrating ripples (Fig.3).

Run T-7

Run T-7 was identical to Run T-6 except that the mineralogy

of the clay was different. The sequence of events observed

was very similar to those seen in Run T-6 except that erosion

was initiated at slightly lower velocities (20 cm/s for the

consolidated layer). The end results were very similar (Fig. 4).

Run T-8

The purpose of runs T-8 and T-9 was to investigate the

effect of suspended-sediment concentration on depositional

behavior. Run T-8 was run with a very low suspended-sediment

concentration. During the first low-velocity period a thin
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unconsolidated layer was deposited. This layer was subsequent-

ly eroded as the current velocity was increased. As in all of

the runs in which the secondary velocity maximum was 20 cm/s,

sand movement was minimal during the interval between the two

slack-water periods. During the second slack-water both a

consolidated and an unconsolidated layer were formed, although

both layers were eroded by the time the velocity had reached

12 cm/s. Subsequent sand transport, which began at a velocity

of 26 cm/s buried some small patches of mud which had not been

eroded (Fig. 5).

Run T-9

In Run T-9 the total amount of suspended sediment added

was approximately equal to what might be deposited in a natural

setting (based on Postma's (1961) observations). By the begin-

ning of the run a substantial clay layer had already been de-

posited (Figure 6). Subsequent sand movement first buried,

and then re-exposed these deposits so that most of them had

been eroded before the first low-velocity episode (Fig. 7 and

8). Thick layers, both unconsolidated and consolidated, formed

during this period (Fig. 9). The unconsolidated layer had

been eroded by the time the velocity had reached 14 cm/s (Fig.

10). Most of the consolidated layer was eroded by the flood

current but some remained in the troughs (Figure 11). During
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the second low-velocity period a thick mud layer was deposited,

the consolidated layer reaching a thickness of 0.5 cm (Fig. 12).

Much of this layer was eroded when the velocity was increased

to more than 24 cm/s, but some was buried by the sand (Fig. 13).

Run T-10

Run T-10 was done using an illite mixture to compare its

behavior to that of montmorillinite (Run T-6) and kaolinite

(Run T-7). The results were similar to those described for

those runs.

Run U-l

Run U-1 was similar to Run T-9 in that an attempt was

made to approximate the total amount of sediment that might

be deposited during a single tidal cycle. So much sediment

was added that a large amount deposited at any velocity less

than 30 cm/s. For this reason the run was begun at this

velocity. A consolidated layer 1 cm. thick was deposited during

the first low-velocity period and was not eroded when the

velocity was re-increased. Even more mud was deposited during

the second slack water period, forming a second consolidated

layer. At the end of the run, these layers had almost com-

pletely resisted erosion, leaving an almost continuous mud
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layer (Fig. 14).

Run V-l

Run V-1 used less sediment than U-1 in an attempt to elim-

inate the deposition at high velocities and the hindered settling

which had been observed during that run. The attempt was not

completely successful since some sediment deposited before.the

beginning of the run. Since lower peak velocities were used

sand transport was much less extensive. This resulted in a

consolidated layer forming during the first slack-water period

which eroded only slightly during the following high-velocity

episode. The run was.terminated at this point.

All of the following runs used the same amount and type

of clay material. Since run U-8 was a rerun of U-2, they are

discussed together.

Runs U-2 and U-8

The results of the.two runs were very similar. By the

beginning of both runs some mud had already been deposited.

As the velocity was increased, bed-load movement became more

active, re-exposing some of the mud that had already been

buried. During the first slack-water period, a large amount
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of mud was deposited, forming a 'thick unconsolidated layer and

a thinner consolidated layer (about 1 cm thick). The unconso-

lidated layer was eroded before the velocity reached 12 cm/s,

while the consolidated layer was partially eroded and partially

buried during the subsequent increase in current velocity.

More mud was deposited during the second low-velocity period,

but most of this was eroded when the velocity was re-increased.

Only a small amount of mud was preserved at the end of the runs

(Fig. 15).

Run U-3

Run U-3 used peak velocities of ± 24 cm/s. During the

first high-velocity period, some of the mud that had already

been deposited was buried by migrating-sand (Fig. 16). As

the velocity decreased, more mud was deposited, producing a

consolidated layer about 1 cm thick, but thicker in the troughs

(Fig. 17). As the velocity increased, this layer was partially

eroded and then buried by sand movement (Fig. 18). During the

second slack-water period more mud was deposited. This formed

another consolidated layer which was not quite as thick as the

one formed previously since less mud was available (Fig. 19).

Erosion of this layer was evident when the velocity reached

16 cm/s. By the time the velocity was 24 cm/s, much of the
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second mud layer had been eroded or buried by the sand. This

resulted in a complex series of sand and mud layers (Fig. 20).

Run U-4

The initial portion of this run was much like that of runs

U-2 and U-8. Erosion was more pronounced during the flood

tide than in those runs. This is probably due to the change

in the sand size. The sand in this run was smaller than in

runs U-2 and U-8, so presumably it was transported more actively,

thus leading to increased undermining of the mud layers (Fig.

21). Another mud layer was deposited during the second low-

velocity period and was eroded as the velocity was increased.

Run U-5

As in all of the "U" runs, some mud had been deposited

and buried before the beginning of the run. As the velocity

was increased, most of this mud was exposed and eroded. During

the first low-velocity episode, a consolidated layer varying

from 0.3 to 1 cm in thickness formed. Only small portions of

this layer were eroded as the velocity was increased. During

the second slack-water period a second consolidated layer formed.

As the velocity was increased above 24 cm/s both of these con-

solidated layers were in part eroded and in part buried by the
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sand (Fig. 22).

Run UP-6

Very little of the mud deposited before the beginning of

the run was either eroded or buried during the first high-

velocity episode. During the first slack-water period a 1

am thick consolidated layer formed. Very little of this layer

was eroded as the velocity was increased (Fig. 23). More

sediment deposited during the second low-velocity period and

was only slightly eroded later. This run was the only one

in which a continuous mud layer was produced.-

Run U- 7

The mud deposited before the beginning of the run -was

mostly eroded during the first.high-velocity period. A 0.7 cm

thick consolidated layer formed during the first slack-water

period and was not eroded as the velocity was increased. More

mud deposited during the second slack-water period but both

layers were mostly eroded as the velocity was increased to

30 cm/s (Fig. 24).
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Table 1 lists the measured surface slope (SW), the energy

slope (SE)r the Froude number (FR), the friction factor (F),

r2 (R2) , u* calculated by the three methods described, u50 as

calculated from equations 4 (U50(l)), 5 (U50(2)), 6 (U50(3)),

a:nd 10 (U50(4)). The value of T,, corresponding to u*(3) is

also given.

Table 2 shows the velcoity profiles used for the various

runs. Table 3 shows the suspended-sediment concentrations meas-

ured.



TADLE 1 SUNNARY OF DATA FOR RUN U-8

DEPTH = 12 CHI

VELOCITY TEMP. VISCOSITY
(CM/S) (DEG. C) (STOKES)

24.0
26.0
28.0
30.0
30.0
28.0
26.0
24.0
20.0

-16.0
-20.0
-24.0
-24.0
-20.0
-16.0

16.0
20.0
24.0
30.0
30.0
30.0

21.0
21.0
22.0
22. 0
22.0
22.0
22.0
22.0
22.0
23.0
23.0
23.0
23.0
23.0
23.0
25.0
25.0
26.0
27.0
27.0
27.0

0.102E-01
0. 102E-01
0.993E-02
0.993E-02
0.993E-02
0. 993E-02
0.993E-02
0. 993E- 02
0.993E-02
0.971E-02
0.97 1E-02
0.971 E-02
0.971E-02
0.971E-02
0.971E-02
0.925E-02
0.925E-02
0.907E-02
0.888E-02
0.888E-02
0.888E-02

HYDRAULIC RADIUS = 4.54 CH SAND SIZE = 0.016 CH

REYNOLDS
NUNDER

0.2838+05
0.307E+05
0.338E+05
0.363E+05
0.363E+05
0.338E+05
0.314E+05
0.2901+05
0.242E+05
0.198E+05'
0.247E+05
0.297E+05
0.297E+05
0.247E+05
0.198E+05
0.208E+05
0.259E+05
0.318E+05
0..405E+05
0.405E+05
0.405E+05

SURFACE
SLOPE

0.560E--03
.0.874E-03
0.942E-03
0.153E-02
0.170E-02
0.139E-02
0.118E-02
0. 114 E-02
0.704E-03
0.348E-03
0.570E-03
0.103E-02
0.119E-02
0.760L-03
0.486E-03
0.310E-03
0.490E-03
0.810E-03
0.168E-02
0. 183E-02
0.175E-02

F 0*(1) U*(2)
(Cm/S) (CN/S)

0.979E+00
0.9578+00
0. 96 1B+00
0.994E+00
0.992E+00
0.993E+00
0.996E+00
0.99 1E+00
0. 998E+00
0.997E+0 0
0.995E+00
0.986E+00
0.99 2E+00
0.994E+00
0. 99 2E +0 0
0.999E+00
0.983E+00
0.986E+00
0.997E+00
0.981+00
0.959E+00

0.035
0.046
0.043
0.060
0.067
0.063
0.062
0.071
0.063
0.048
0.051
0.064
0.074
0.068
0.068
0.043
0.044-
0.050.
0.067
0.072
0.069

1.90
2.57
2.64
3.60
3.86
3.45
3.16
3.16
2.41
1.60
2.09
2.96
3.25
2.54
2.01
1.47
1.88
2.53
3.85
4.05
3.95

0* (3)
(CN/S)

1.38
1.72
1.79
2.28
2.40
2.17
2.00
1.97
1.55
1.09
1.39
1.87
2.01
1.61
1.29
1.03
1.29
1.66
2.39
2.49
.2.44

1.05
1.45
1.33
2.12
2.55
2.28
2.23
2.79
2.25
1.55
1.64
2.31
3. 04
2.57
2.57
1.34
1.36
1.62
2.50
2.92
2.69



TABLE 1 SUMMARY OF DATA FOR SUN -

VELOCITY U*(3)
(CM/S) (CM/S)

24.0
26.0
28.0
30.0
30.0
28.0'
26.0
24.0
20.0

-16.0
-20.0
-24.0
-24.0
-20.0
-16.0

16.0
20.0
24.0
30.0
30.0

1.38
1.72
1.79
2.28
2.40
2.17
2.00
1.97
1.55
1.09
1.39
1.87
2.01
1.61
1.29
1.03
1.29
1.66
2.39
2.49

PR

0.05
0.06
0.07
0.08
0.08
0.07
0.06
0.05
0.03
0.02
0.03
0.05
0.05
0.03
0.02
0.02
0.03
0.05
0.08
0.08

SE

0.560E-03
0. 874E-03
0.94 2E-03
0. 153E-02
0. 170E-02
0.139E-02
0. 118E-02
0. 114E-02
0.704E-03
0. 348E-03
0.570E-03
0. 103E-02
0. 119E-02
0. 76 0E-03
0. 486E-03
0.310E-03
0.490E-03
0.810E-03
0. 168E-02
0. 183E-02

TAU
DY NES/
Cn**2)

1.87
2.91
3.14
5.09
5.67
4.64
3.94
3.81
2.35
1.16
1.90

* 3.44
3.98
2.54
1.62
1.04
1.64
2.71
5.63
6.12

30.0 2.44 0.08 0. 175E-02 ' 5.85

U50(1) U50(2) U50(3) 050(4)
(Cm/S) (C M/S) (CN/S) (CN/S)

37.48
47.78
49.77
64.71
68.63
61.51
56.31
55.27
42.46
28.90
37.84
52.25

.56.57
44.27
34.68
27.13
34.84
45.84
68.27
71.39

39.55
49.40
51.29
65.28
68.90
.62. 30
57.45
56.47
44.34
31.17
39.90
53.63
57.70
46.07
36.84
29.42
36.99
47.56
68.58
71.45

39.88
49.82
51.72
65.83
69.48
62.83
57.93
56.95
44.71
31.44
40.23
54.08
58.18
46.46
37.15
29.67
37.30
47.96
69.15
72.05

20.04
25.52
26.57
34.35
36.36
32.69
30.00
29.45
22.70
15.38
20.23
27.87
30.13
23.67
18.53
14.41
18.62
24.49
36.18
37.78

69.72 69.91 70.49 36.92

HQ

W2-t

0-8



TABLE 1 SUMMARY OF DATA FOR RUN 0-7

DEPTH a 12 CA

TEMP. VISCOSITY
(DEG. C) (STOKES)

24.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
22.0
22.0
22.0
22.0
23.0
23.0
23.0
23.0
23.0
23.0

0. 102E-01
0. 102E-01
0. 102E-01
0. 102E-01
0.102E-01
0.102E-01
0. 102E-01
0. 102E-01
0.102E-01
0. 102E-01
0.102 E-01
0.993E-02
0.993E-02
0.993E-02
0.993E-02
0.971E-02
0.971E-02
0.971E-02
0.971E-02
0.97 1E-02
0.971E-02

HYDRAULIC RADIUS = 4.54 CA SAND SIZE a 0.016 CA

REYNOLD$
NUNBER

0.236E+05
0.283E+05
0.307E+05
0.331E+05
0.354E+05
0.3541+05
0.331E+05
0.307E+05
0.283L+05
0.236E+05
0.189E+05
0.193E+05
0.242E+05
0.242E+05
0.193E+.05
0.198E+05
0.198E+05
0.297E+05
0.321E+05
0.346E+05
0.371E+05

SURFACE
SLOPE

0.450E-03
0.726E-03
0.788E-03
0.982E-03
0. 135E-02
0.128E-02
0.125 E-02
0. 111E-02
0.690L-03
0.536L-03
0.3841-Q3
0. 314E-03
0.430E-03
0.360E-03
0.356E-03
0.240E-03
0.240 E- 03
0.800E-03
0.650E-03
0.101E-02
0. 106E-02

0. 99 2B +0 0
0.987E+00
0.993E+00
0. 989E+00
0.985E+00
0.966L+00
0.984E+100
0.987E+00
0.988E+00
0.974E+00
0. 99 1E+ 00
0.996E+00
0. 994E+00
0.990E+00
0. 996E+0 0
0. 990E +0 0
0.948E+00
0.994E+00
0. 100E+0 1
0. 973E+0 0
0.986E+00

F U*(1) U*(2) U*(3)
(CM/S) (Cm/S) (Cm/S)

0.040
0.045
0.041
0.045
0.053
0.051
0.057
0.05-9
0.043
0.048
0.053
0.044
0.038
0.032
0.049
0.033
0.0
0.049
0.034
0.046
0.042

1.75
2.32
2.38
2.72
3.31
3.21
3.22
3.04
2.23
2.00
1.71
1.48
1.69
1.45
1.62
1.18
0.0
2.50
2.06
2.78
2.87

1.23
1.41
1.28
1.39
1.76
1.65
1.94
2.02
1.32
1.52
1.77
1.36
1.17
0.97
1.59
1.01
0.0
1.59
1.04
1.44
1.30

VELOCITY
(Cm/S)

20.0
24.0
26.0
28.0
30.0
30.0
28.0
26.0
24.0
20.0
16.0

-16.0
-20.0
-20.0
-16.0

16.0
20.0
24.0
26.0
28.0
30.0

1.24
1.57
1.64
1.83
2.14
2.09
2.06
1.94
1.53
1.35
1.14
1.03
1.21
1.11
1.10
0.90
0.0
1.65
1.49
1.85
1.90



TABLE 1 SUNARY Of DATA FOR RUN U-7

VELOCITY U*(3)
(C1/S) (CK/S)

20.0
24.0
26.0
28.0
30.0
30.0
28.0
26.0
24.0
20.0
16.0

-16.0
-20.0
-20.0
-16.0

16.0
20.0
24.0
26.0
28.0
30.0

1.24
1.57
1.64
1.83
2.14
2.09
2.06
1.94
1.53
1.35
1.14
1.03
1.21
1.11
1.10
0.90
0.0
1.65
1.49
1.85
1.90

SE TAU
DY NES/
CN**2)

0.03
0.05
0.06
0.07
0.08
0.08
0.07
0.06
0.05
0.03
0.02
0.02
0.03
0.03
0.02
0.02
0.0
0.05
0.06
0.07
0.08

0.450E-03
0.726E-03
0.788E-03
0.982E-03
0. 135E-02
0.128E-02
0. 125E-02
0.111E-02
0.690E-03
0.536E-03
0.384E-03
0.314E-03
0.430E-03
0.360E-03
0.356E-03
0.240E-03
0.0
0.800Z-03
0.650E-03
0.101E-02
0.106E-02

1.50
2.42
2.63
3.27
4.50
4.28
4.18
3.71
2.30
1.79
1.28
1.05
1.43
1.20
1.19
0.80
0.0
2.67
2.17
3.37
3.54

U50(1) 050(2) U50(3) U50(4)
(CA/S) (CN/S) (CK/S) (Ci/S)

33.26
43.18
45.15
50.91
60.49
58.91
58.16
54.47
42.00
36.59
30.49
27.32
32.44
29.44
29.26
23.58

0.0
45.53
40.65
51.69
53.07

35.45
45.03
46.91
52.37
61.36
,59.88
59.18
55.73
43.90
38.69
32.75
29.61
34.65
31.71
31.53
25.89

0.0
47.27
42.61
53.11
54.41

35.75
45.40
47.30
52.81
61.87
60.38
59. b7
56.19
44.26
39.01
33.02
29.86
34.94
31.97
31.79
26.11

0.0
47.66
42.96
53.55.
54.86

17.76,
23.09
24.13
27.17
32. 17
31.35
30.96
29.04
22.46
19.56
16.25
14.51
17.31
15.68
15.58
12.44

0.0
24.33
21.74
27.58
28.30



TABLE 1 SUMMARY Of DATA FOR RUN U-6

DEPTH = 12 CHI

TEMP. VISCOSITY
(DEG. C) (STOKES)

10.0
10.0
10.0
10.0
20.0
20.0
20.0
20.0
20.0
20.0
30.0
30.0
30.0

0. 135E-01
0.135E-01
0. 135E-01
0.135E-01
0. 104E-01
0. 104E-01
0.104E-01
0. 104E-01
0.104E-01
0.104 E-01
0. 888E-02
0.888E-02
0.888E-02

HYDRAULIC RADIUS = 4.54 CH SAND SIZE = 0.016 CH

REYNOLDS
NUMBER

0.170E+05
0.214E+05
0.178E+05
0.142E+05
0.142E+05
0.231E+05
0.277E+05
0.277E+05
0.231E+05
0.185E+05
0.216E+05
0.270E+05
0.270E+05

SURFACE
SLOPE

0. 386E-03
0.560L-03
0. 480E-03
0. 200 L-03
0.200E-03
0.366E-03
0.570E-03
0.504 E-03
0. 470L-03
0. 198E-03
0. 300E-.03
0. 420E-03
0.420E-03

0. 989E+00
0. 99 2E+00
0.991E+00
0.950E+00
0.937E+00
0. 982E+00
0.976E+00
0.982E+00
0.967,E+00
0.994E+00
0.965E+00
0.993E+00
0.931Z+00

F U1(1) U*(2) U*(3)
(CA/S) (C"/S) (Cm/S)

0.034
0.035
0.043
0.028
0.0
0.033
0.035
0.031
0.042
0.028
0.042
0.037
0.0

1.50
1.05
1.80
0.94
0.0
1.47
1.92
1.80
1.81
0.97
1.44
1.67
0.0

1.04
1.05
1.33
0.85
0.0
0.99
1.07
0.94
1.29
0.84
1.29
1.14
0.0

VELOCITY
(CM/S)

20.0
24.0
20.0
16.0

-16.0
-20.0
-24.0
-24.0
-20.0
-16.0

16.0
20.0
24.0

1.15
1.38
1.28
0.82
0.0
1.12
1.39
1.31
1.26
0.82
1.01
1.19
0.0



TABLE 1 SUBNART OF DATA FOR BUN

VBLOCITT U*(3)
(CK/S) (CH/S)

20.0
24.0
20.0
16.0

-16.0
-20.0
-24.0
-24.0
-20.0
-16.0

16.0
20.0
24.0

1.15
1.38
1.28
0.82
0.0
1.12
1.39
1.31
1.26
0.82
1.01
1.19
0.0

FR

0.03
0.05
0.03
0.02
0.0
0.03
0.05
0.05
0.03
0.02
0.02
0.03
0.0

SE TAU
DTNES/
CM**2)

0.386E-03
0.5608-03
0.480E-03
0.200E-03
0.0
0.366E-03
0.570E-03
0.504H-03
0.470E-03
0. 198E-03
0.300E-03
0.420E-03
0.0

1.28
1.66
1.59
0.66
0.0
1.22
1.90
1.68
1.57
0.66
1.00

" 1.41
0.0

U50(1) U50(2) U50(3) U50(4)
(CM/S) (CR/S) (CK/S) (CH/S)

30.58
37.48
34.45
21.34
0.0
29.70
37.84
35.38
34.06
21.22
26.6 5
32.03
0.0

32.83
39.55
36.61
23.64

0.0
31.97
39.90
37.52
36.23
23.52
28.95
34.25

0.0

33.11
39.88
36.92
23.83

0.0
32.24
40.23
37.83
36.53
23.71
29.19
34.54

0.0

16.30
20.04
18.41
11. 19
0.0

15.82
20.23
18.91
18. 19
11.12
14.14
17.09

0.0

U-6



TABLE 1 SUMNARY OF DATA FOR RUN U-5

DEPTH a 12 CH

TEMP. VISCOSITY
(DEG. C) (STOKES)

HYDRAULIC RADIUS = 4.54 CM SAND SIZE a 0.013 Ch

REYNOLDS
NUMBER

SURFACE
SLOPE

F U*(1) U*(2) U*(3)
(CR/S) (CN/S) (CI/S)

0.107E-01
0. 107E-01
0.107E-01

' 0.107E-01
0.107E-01
0.107E-01
0. 107E-01
0. 107E-01
0. 107E-01
0.107E-01
0.107E-01
0.107E-01
0.104E-01
0.104E-01
0.104E-01
0. 104E-01.
0. 104E-01
0. 104E-01
0.102E-01
0.102E-01
0.102E-01
0.102E-01
0.104E-01
0.104E-01
0.104E-01
0.104E-01

0. 225E+05
0.270E+05
0.293E+05
0. 315E+05
0.338E+05
0. 338E+05
0. 315E+05
0.293E+05
0. 270E+05
0.225E+05 *
0. 180E+05
0. 135E+05
0. 135E+05
0. 185E+05
0. 231E+05
0.231E+05
0. 185E+05
0. 185E+05
0.185E+05
0. 189E+05
0.236E+05
0.283E+05
0.300E+05
0.323E+05
0. 346E+05
0.323E+05

VELOCITY
(C M/S)

20.0
24.0
26.0
28.0
30.0
30.0
28.0
26.0
24.0
20.0
16.0
12.0

-12.0
-16.0
-20.0
-20.0
-16.0
-12.0

12.0
16.0
20.0
24.0
26.0
28.0
30.0
28.0

19.0
19.0
19.0
11.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
20.0
20.0
20.0
20.0
20.0
20.0
21.0
21.0
21.0
21.0
20.0
20.0
20.0
20.0

0.568E-03
0. 642E-03
0.704E-03
0.782E-03
0. 102E-02
0.100 E-02
0.878E-03
0.530E-03
0.656E-03
0. 518E-03
0. 434 E-.03
0. 322E-03
0.322E-03
0.4 10E-03
0. 602E-03
0.608E-03
0.400E-03
0.400E-03
0.4 00E- 03
0. 342E-03
0.538E-G3
0.708E-03
0. 780E-03
0.86 0;-03
0. 115E-02
0. 102E-02

0.952E3+00
0.997E+00
0.9923+00
0.981E+00
0.996E+00
0.996E+00
0.986E+00
0.999E+00
0.964E+00
0.9711+00
0.981E+00
0.986E+00
0.91 4E+00
0.996E+00
0.991E+00
0.990E+00
0.989E+00
0. 935E+00
0.698E+00
0.979E+00
0. 986E+00
0.977E+00
0.980E+00
0.994E+00
0.988E+00
0.984E+00

0*05 1
0.040
0.037
0.035
0.040
0.040
0.040
0.028
0.041
0.046
0.060
0.080
0.0
0.057
0.054
0.054
0.056
0.0
0.0
0.048
0.048
0.044
0.041
0.039
0.046
0.046

2.08
2.11
2.18
2.35
2.71
2.68
2.50
1.70
2.14
1.94
1.85
1.95
0.0
1.79
2.17
2.18
1 .7 6
0.0
0.0
1.57
2.01
2.28
2.36
2.46
2.97
2.79

1.64
1.22
1.13
1.08
1.24
1.22
1.22
0.85
1.25
1.45
2.12
3.60
0.0
1.94
1.77
1.80
1.87
0.0
0.0
1.51
1.52
1.36
1.27
1.20
1.43
1.46

1.39
1.48
1.55
1.63
1.86

-1.85
1.73
1.34
1.49
1.33
1.21
1.05
0.0
1.18
1.43
1.44
1.17
0.0
0.0
1.08
1.35
1.55
1.63
1.71
1.98
1.86



TABLE 1 SUNBARY OF DATA FOR RUN U-5

VELOCITY *(3)
(C/S) (CB/S)

20.0
24.0
26.0
28.0
30.0
30.0
28.0
26.0
24.0
20.0
16.0
12.0

-12.0
-16.0
-20.0
-20.0
-16.0
-12.0

12.0
16.0
20.0
24.0
26.0
28.0
30.0
28.0

1.39
1.48
1.55
1.63
1.86
1.85
1.73
1.34
1.49
1.33
1.21
1.05
0.0
1.18
1.43
1.44
1.17
0.0
0.0
1.08
1.35
1.55
1.63
1.71
1.98
1.86

SE TAU
DYNES'/
CM**2)

0.03
0.05
0.06
0.07
0.08
0.08
0.07
0.06
0.05
0.03
0.02
0.01
0.0
0.02
0.03
0.03
0.02
0.0
0.0
0.02
0.03
0.05
0.06
0.07
0.08
0.07

0.568E-03
0.642E-03
0.704E-03
0.782E-03
0. 102E-02
0. 100E-02
0.878E-03
0.530E-03
0.656E-03
0.5189-03
0. 434E-03
0.322E-03
0.0
0.410E-03
0.602E-03
0. 608E-03
0.400E-03
0.0
0.0
0.342E-03
0.538E-03
0.7089-03
0.780Y-03
0. 860E-03
0. 115E-02
0.102Z-02

1.89
2.14
2.35
2.61
3.40
3.35
2.93
1.77
2.19
1.73
1.45
1.07
0.0
1.37
2.01
2.03
1.33
0.0
0.0
1.14
1.79
2.36
2.60
2.87
3.84
3.40

U50(1) U50(2) 050(3) U50(4)
(C"/S) (CN/S) (C I/S) (C H/S)

' 37.77
40.38
42.46
44.96
51.97
51.53
47.89
36.37
40.86
35.91
32.61
27.69

0.0
31.61
38.98
39.20
31.18

0.0
0.0

28.62
36.66
42.59
44.90
47.36
55.53
51.97

40.49
43.04
45.07
47.51
54.26
53.83
0. 34

39.11
43.51
38.66
35.39
30.48

0.0
34.40
41.68
41.89
33.90

0.0
0.0

31.42
39.40
45.20
47.45
49.82
57.66
54.26

40.82
43.40
45.45
47.90
54.70
54.27
50.75
39.43
43.87
38.98
35.68
30.73

0.0
34.68
42.02
42.23
34.26

0.0
0.0

31.67
39.73
45.57
47.84
50.23
58.13
54.70

20.19
21.59
22.70
24.03
27.73
27.49
25.58
19.44
21.85
19.20
17.40
14.72
0.0

16.86
20.85
20.96
16.63
0.0
0.0

15.23
19.60
22.77
24.00
25.30
29.59
27.73



TABLE 1 SUMNARY OF DATA FOR RUN U-4

DEPTH a 12 CE

VELOCITY TEMP. VISCOSITY
(CM/S) (DEG. C) (STOKES)

24.0
26.0
28.0
30.0
30.0
28.0
26.0
24.0
20.0
16.0
12.0

-12.0
-16.0
-20.0
-24.0
-24.0
-20.0
-16.0
-12.0

12.0
16.0
20.0
24.0
26.0

. 28.0
30.0
30.0
28.0

18.0
18.0
18.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
21.0
21.0
21.0
21.0
20.0
20.0
20.0
20.0
20.0

0.109E-01
0.109E-01
0.109E-01
0.107L-01
0.107E-01
0. 107E-01
0.107E-01
0. 107E-01
0.107E-01
0.107E-01
0.107E-01
0.104E-01
0.104E-01
0.104L-01
0. 104E-01
0. 104E-01
0.104E-01
0. 104E-01
0.104E-01
0.1 02E-01
0.102E-01
0.102E-01
0.102E-01
0. 104E-01
0.104E-01
0.104E-01
0.104E-01
0.104E-01

HYDRAULIC RADIUS = 4.54 Ci SAND SIZE 0 0.013 CH

REYNOLDS
NUMBER

0.263E+05
0.285E+05
0. 307E+05
0.338E+05
0.338E+05
0.315E#05
0.293E+05
0. 270E+05
0.225E+05
0. 180E+05
0. 180E+05
0.139E+05
0.-185E+05
0.23 1E+05.
0.277E+05
0. 2772+05
0.231E+05
0.231E+05
0. 139E+05
0. 142E+05
0. 189E+05
0..236E+05
0.283E+05
0.300E+05
0.323E+05
0. 346E+05
0.346E+05
0.323E+05

SURFACE
SLOPE

0. 138E-02
0.670E-03
0.132E-02
0.980E-03
0. 1712-02
0. 149E-02
0. 160E-02
0.128E-02
0.570L-03
0.584E-03
0.584E-03
0.334E-03
0.760E-03
0.824E-03
0. 138L-02
0.143L-02
0.846E-03
0.846E-03
0.420E-03
0.220E-03
0.2702-03
0.580E-03
0.110E-02
0. 135E- 02
0.167E-02
0.180E-02
0. 158E-02
0.151E-02

0.964E+00
0.979E+00
0.975E+00
0. 99 3E+00
0.913E+00
0.995E+00
0.9 88E+00
0.991E+00
0.971E+00
0.985E+00
0.911E+00
0.963E+00
0.981E+00
0.960E+00
0.988E+00
0.992E+30
0.997E+00
0.945E+00
0.973E+00
0.996E+00
0.978E+00
0.975E+00
0.972E+00
0.976E+00
0.994E+00
0.968E+00
0.970E+00
0.982E+00

F U*(1) U*(2) U*(3)
(CM/S) (CE/S) (CM/S)

0.085
0.035
0.060
0.039
0.068
0.068
0.084
0.079
0.051
0.081
0.0
0.083
0.106
0.073
0.085
0.088
0.075
0.0
0.104
0.054
0.038
0.052
0.068
0.071
0.076
0.071
0.063
0.069

3.54
2.09
3.32
2.63
3.87
3.60
3.82
3.38
2.08
2.62
0.0
1.98
2.99
2.67
3.55
3.62
2.72
0.0
2.22
1.27
1.30
2.11
3.08
3.44
3.87
3.99
3.68
3.614

4.29
1.07
2.10.
1.19
2.58
2.58
4. 18
3.54
1.65
3.78
0.0
3.94
9. 53
3.01
4.30
4.70
3.18
0.0
8.69
1.81
1.14
1.68
2.60
2.83
3.24
2.83
2.25
2.65

2.17
1.51
2.12
1.82
2.41
2.25
2.33
2.08
1.39
1.41
0.0
1.07
1.61
1.67
2.17
2.20
1.70
0.0
1.19
0.86
0.96
1.40
1.93
2.14
2.38
2.47
2.32
2.27



TABLE 1 SUNARY OF DATA FOR RUN U-4

VELOCITY U*(3)
(CN/S) (CM/S)

24.0
26.0
28.0
30.0
30.0
28.0
26.0
24.0
20.0
16.0
12.0

-12.0
-16.0
-20.0
-24.0
-24.0
-20.0
-16.0
-12.0

12.0
16.0
20.0
24.0
26.0
28.0
30.0
30.0
28.0

2.17
1.51
2. 12
1.82
2.41
2.25
2.33
2.08
1.39
1.41
0.0
1.07
1.61
1.67
2,17
2.20
1.70
0.0
1.19
0.86
0.96
1.40
1.93
2.14
2.38
2.47.
2.32
2.27

FR

0.05
0.06
0.07
0.08
0.08
0.07
0.06
0.05
0.03
0.02
0.0
0.01
0.02
0.03
0.05
0.05
0.03
0.0
0.01
0.01
0.02
0.03
0.05
0.06
0.07
0.08
0.08
0.07

SE

0.1388-02
0.670E-03
0. 132E-02
0.980E-03
0. 171E-02
0. 149E-02
0. 160E-02
0. 128E-02
0. 570E-03
0.584E-03
0.0
0. 334E-03
0. 760E-03
0.024E-03
0. 138E-02
0. 143E-02
0.846B-03
0.0
0. 4202-03
0.220E-03
0. 270E-03
0. 580E-03
0.110E-02
0. 135E-02
0.167E-02
0. 180E-02
0. 158E-02
0.1511-02

TAU
DTNES/
Cfl**2)

4.60
2.23
4.40
3.27
5.70
4.97
5.34
4.26
1.90
1.95
0.0
1.11
2.53
2.75
4.61
4.75
2.82
0.0
1.40
0.73
0 0.90
1.93
3.67

- 4.50
5.57
5.99
5.28
5.05

050(1) U50(2) U50(3) U50(4)
(CII/S) (CK/S) (CN/S) (CE/S)

61.27
41.33
59.80
50.85
68.89
63.92
66.49
58.76
37.84
38.34

0.0
28.25
.44.27
46.27
61.32
62.37
46.94

0.0
32.03
22.48
25.15
38.20
54.15
60.54
68.01
70.75
66.04
64.44

63.11
43.97
61.72
53. 18
70.29

.65.62
68.04
60.73
40.56
41.05
0.0

31.05
46.83
48.76
63.15
64.15
49.41
0.0

34.82
25.20
27.91
40.91
56.34
62.42
69.46
72.03
67.61
66.10

63.63
44.33
62.23
53.62
70.87
66.16
68.60
61.23
40.89
41.39

0.0
31.30
47.22
49.17
63.67
64.68
49.82

0.0
35.10
25.40
28.14
41.25
56.81
62.93
70.04
72.63
68.17
66.64

32.57
22.10
31.81
27.14
36.50
33.94
35.27
31.27
20.23
20.50

0.0
15.03
23.67
24.72
32.60
33.14
25.08

0.0
17.09
11.03
13.31
20.43
28.87
32.19
36.05
37.45
35.03
34.21



TAOLE 1 SURNARY OF DATA FOR SUN U-3

DEPTH a 12 CA

VELOCITY TEMP. VISCOSITY
(Cm/S) (DIG. C) (STOKES)

20.0
24.0
24.0
20.0

-12.0
-16.0
-20.0
-24.0
-24.0
-20.0
-16.0
-12.0

12.0
16.0
20.0
24.0
24.0
20.0
16.0

21. 0
18.0
18.0
18.0
19.0
19.0
19.0
18.0
18.0
19.0
19.0
19.0
21.0
20.0
20.0
20.0
20.0
20.0
20.0

0. 102E-01
0.109E-01
0. 109E-01
0.109 E-01
0. 107E-01
0. 107E-01
0.107E-01
0. 109E-01
0.109E-01
0. 107E-01
0.107E-01
0. 107E-01
0. 102E-01
0.104E-01
0.104E-01
0. 104E-01
0.104E-01
0. 104E-01
0. 104E-01

HYDRAULIC RADIUS = 4.54 CA SAND SIZE a 0.013 CA

BEYNOLDS
NUNBER

0.236E+05
0.263E+05
0. 263E+05
0.219E+05
0. 135E+05
0. 180E+05
0.225E+05
0. 263E+05
0. 263E+05
0.225E+05"
0.180E+05
0.135E05
0.-1428+05
0.142E+05
0.2314+05
0.277E+05
0.277E+05
0.277E+05
0.185E+05

SURFACE
SLOPE

0.620E-03
0.860E-03
0.107E-02
0.732E-03
0.326E-03
0.428E-03
0.460E-03
0.117E-02
0.137E-02
0.9304-03
0.800E-03
0.6106-03
0.258E-03
0.258E-03
0.240E.-03
0.978E-03
0.690E-03
0.690E-03
0.438E- 03

R2

0.983H+00
0. 100L0 1
0.962E+00
0.9.01E+00
0.969E+00
0.974E+00
0.99 1E'400
0.989E+00
0. 100E+01
0.909E+00
0. 100F+01
0. 996E+ 00
0.960E+00
0. 030E+00
0.993E+00
0.985E+00
0. 984E+00
0.933E+00
0.958B+00

F 0(1) U*(2) U*(3)
(CU/S) (CN/S) (CN/S)

0.055
0.053
0.066
0.065
0.081
0.059
0.041
0.072
0.085
0.083
0.111
0.151
0.064
0.0
0.021
0.060
0.043
0.0
0.061

2.22
2.61
3.02
2.47
1.96
1.84
1.78
3.19
3.53
2.87
3.07
2.68
1.74
0.0
0.92
2.85
2.23
0.0
1.87

1.85
1.75
2.47
2.41
3.71
2.07
1.26
2.92
4.20
3.96

13.11
-12.54

2.32
0.0
0.67
2. 13
1. 32
0.0
2.15

1.45
1.71
1.91
1.58
1.05
1.21
1.25
1.99
2.16
1.78
1.65
1.44
0.94
0.0
0.90
1.82
1.53
0.0
1.22



TABLE 1 SUABARY OF DATA FOR RUN U-3

VELOCITT U+(3)
(CN/S) (CH/S)

20.0
24.0
24.0
20.0

-12.0
-16.0
-20.0
-24.0
-24.0
-20.0
-16.0
-12.0

12.0
16.0
20.0
24.0
24.0
20.0
16.0

1.45
1.71
1.91
1.58
1.05
1.21
1.25
1.99
2.16
1.78
1.65
1.44
0.94
0.0
0.90
1.82
1.53
0.0
1.22

SE TAU
DYNES/
CN**2)

0.03
0.05
0.05
0.03
0.01
0.02
0.03
0.05
0.05
0.03
0.02
0.01
0.01
0.0
0.03
0.05
0.05
0.0
0.02

0. 620E-03
0.860E-03
0.107E-02
0. 732E-03
0.3268-03
0.428E-03
0.460E-03
0. 117E-02
0. 137E-02
0.930E-03
0.800E-03
0.610E-03
0.258E-03
0.0
0.240E-03
0. 978E-03
0.69OE-03
0.0
0. 4388-03

2.07
2.86
3.56
2.44
1.09
1.43
1.53
3.90
4.56
3.10
2.67
2.03
0.86
0.0
0.80
3.26
2.30
0.0
1.46-

U50(1) u50(2) U50(3) 050(4)
(Cd/S) (C"/S) (CN/S)' (CM/S)

39.62
47.36
53.34
43.37
27.88
3Z.36
33.66
56.00
61.03
49. 42
45.53
39.27

.24.53
0.0

23.58
50.79
42.00

0.0
32.77

42.30
49.82
55.57
45.96
30.67
35.14
36. 43
58.11
62.8d
51.81
48.05
41.96
27.29

0.0
26.32
53.13
44.62

0.0
35.55

42.65
50.23
56.03
46.34
30.92
35.43
36.73
58.58
63.40
52.23
48.44
42.30
27.51

0.0
26.54
53.56
44.99

0.0
35.85

21.19,
25.30
28.45
23.19
14.82
17.27
17.98
29.83
32.44
26. 39
24.33
21.00
12.97

0.0
12.44
27. 11
22.46

0.0
17.49

w
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TABLE 2 SUMARY OF DATA FOR RUN

VELOCITY

T-1

PROFILE

VELOCITY'
(CM/S)

0.0
0.07
0.13
0.21
0.30
0.37
0.47
0.56
1.07
1.22
1.49
2.26
2.52
3.07
3.19
3.28
3.37
3.45
3.54
4.02
4.07
4.15
4.22
4.30
4.36
4.41
4.49
4.54
4.60
5.06
5.11
5. 19
5.24
5.30
5.36
5.41
5.49
5.54
5.60
6.07
6.15

TI fl E
(HR-MIN)

20.00
22.00
24.00
26. 00
28.00
30.00
32.00
34.00
36.00
38.00
40.00
38.00
36.00
34.00
32.00
30.00
28.00
2~6. 00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.0

-2.00
-4. 00
-6.00
-8.00

-10.00
-12.00
-14.00
-16.00
-18.00
-20.00

T I M E
(UR-MIN)

6.22
6.28
6.36
6.'45
6.52
7.02
7.11
7.22
7.37
8.04
8.41
9.07
9.22
9.34
9.43
9.52
9.60

10.09
10.17
10.22
10.30
10.37
10.45
10.51

.10.56
11.04
11.09
11.15
11.21
11.26
11.34
11.39
11.45
11.51
11.56
12.04

.12.09
'12. 15
12.22
12.30
0. 0

VELOCITY
(CM/S)

-22.00
-24.00
-26.00
-28. 00
-30.00
-32.00
-34.00
-36-.00
-38.00
-40.00
-38.00
-36.00
-34.00
-32.00
-30.00
-28.00
-26.00
-24.00
-22.00
-20.00
-18.00
-16.00

.- 14.00
-12.00
-10.00
-8.00
-6.00
-4.00
-2.00

0.0
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
13.00
20.00
22.00
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TABLE 2 SUMMARY OF DATA FOR RUN T-2

VELOCITY PROFILE

VELOCITY'
(C M/S)

0.0
0.07
.0.13
0.21
0.30
0.37
0.47
0.56
1.07
1.22
1.49
2.26
2.52
3 . C 7
3.19
3.28
3.37
3.45
3.54
4.02
4.07
4.15
4.22
4.30
4.36
4.41
4.49
4.54
4.60
5.06
5,11
5.19
5.24
5.30
5.36
5.4 1
5.49
5.54
5.60
6.07
6.15

TIME
(HR-MIN)

20.00
22.00
24.00
26.00
28.00
30.00
32.00
34.00
36.00
38.00
40.00
38.00
36.00
34.00
32.00
30.00
28. 00
26.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00
8.0 D
6.00
4.00
2. 00
0,.

-2.00
-4.00
-6.00
-8.00-

-10.00
-12.00
-14.00
-16.00
-18.00
-20.00

TIME
(HR-NIN)

6.22
6.28
6. 36
6.45
6.52
7.02
7.11
7.22
7.37
8.04
8.41
9.07
9.22
9.34
9.43
9.52
9.60

10.09
10.17
10.22
10.30
10.37

.10.45
10,51

.10.56

.11.04
11.09
11.15
11.21
11.26
11.34
11.39
11.45
11.51
11.56
12.04
12.09
12.15
12.22
12.30

0.0

VELOCITY
(CM/S)

-22.00
-24.00
-26.00
-28.00
-30.00
-32.00
-34.00
-36.00
-38.00
-40.00
-38.00
-36.00
-34.00
-32.00
-30.00
-28.00
-26.00
-24.00
-22.00
-20. 00
-18.00
-16.00

-- 14.00
-12.00
-10.00
-8.00
-6.00
-4.00
-2.00

0.0
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00
22. 00
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TABLE 2 SUMMARY OF DATA FOR RUN T-3

VELOCITY PROFILE

TIME VELOCITY TIME VELOCITY
(HR-KIN) (C M/S) (11R-MI N) (Cm/ s)

0.0 10.00 6.28 -12.00
0.13 12.00 - 6.43 -14.00
0.28 14.00 7.02 -16.00
0.47 16.00 7.22 -18.00
1.07 18.00 7.60 -20.00
1.45 20.00 8.52 -18.00
2.37 18.00 9.30 -16.00
3.15 16.00 9.51 -14.00
3.36 14.00 10.09 -12.00
3.54 12.00 10.24 -10.00
4.09 10.00 10.37 -8.00
4.22 8.00 10.51 -6.00
4.36 6.00 11.04 -4.00
4.49 4.00 11.17 -2.00
5.02 2.00 11.28 0.0
5.13 0.0 11.39 2.00
5.24 -2.00 11.51 4.00
5.36 -4.00 12.04 6.00
5.49 -6.00 12.17 8.00
6.02 -8.00 12.30 13.00
6.15 -10.00 0.0 12.00
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TABLE 2 SUMMARY OF DATA FOR RUN

VELOCITY

T-4

PRO FILE

TIME
(HR-MIN)

0.0
0.07
0.13
0.19
0.26
0.34
0.41
0.51
0.60
1.09
1.30
1.58
2.17
2.26
2.34
2.39
2.45
2.51
2.56
3.02
3.06
3.09
3.13
3.19
3.24
3.28
3.32
3.36
3.39
3.43
3.47
3.51
3.54
3.58
4.02
4.06
4.09
4.13
4.19
4.24
4.28

VELOCITY
(CM/S)

20.00
22.00
24.00
26.00
28.00
30.00
32.00
34.00
36.00
38.00
40.00
38.00
36.00
34.00
32.00
30.00
28.00
26.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.0

-2. 00
-4.00
-6.00
-8.00

-10.00
-12.00
-14.00
-16.00
-18.00
-20.00

TIME
(HR-rI 1) ;

4.32
4.36
4.41
4.47
4.53
4.58
5.04
5.11
5.21
5.39
6.08
6.28
6.38
6.47
6.56
7.04
7.11
7.19
7.24
7.30
7.38
7.45
7.53
8.00
8.08
8.17
8.28
8.39
8.54
9.34

10.34
11.13
11. 2d
11.39
11.51
12.00
12.07
12.15
12.23
12.30
0.0

VELOCITY
(CM/S)

-22.00
-24.00
-26.00
-28.00
-30.00
-32.00
-34.00
-36.00
-38.00
-40.00
-38.00
-36.00
-34.00
-32.00
-30.00
-28.00
-26.00
-24.00
-22.00
-20.00
-18.00
-16.00
-14.00
-12.00
-10.00
-8.00
-6.00
-4.00
-2.00
0.0
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00
22.00
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. TABLE 2 SUMMARY OF DATA FOR RUN T-5

VELOCITY PROFILE

TIME VELOCITY TIME VELOCITY
(HR-MIN) (Cm/S) (HR-MIN) (CM/S)

0.0 10.00 4.38 -12.00
0.13 12.00 - 4.47 -14.00
0.26 -14.00 4.58 -16.00
0.41 .16.00 5.11 '-18.00
0.58 18.00 5.38 -20.00
1.28 20.00 6.17 -18.00
2.07 18.00 6.47 -16.00
2.34 16.00 7.04 -14.00
2.47 14.00 7.19 -12.00
2.58 12.00 7.32 -10.00
3.07 10.00 7.45 -8.00
3.15 8.00 8.00 -6.00
3.24 6.00 8.17 -4.00
3.34 4.00 8.38 -2.00
3.41 2.00 9.28 0.0
3.49 0.0 10.47 2.00
3.56 -2.00 11.38 4.00
4.04 -4.00 11.58 6.00
4.11 -6.00 12.15 8.00
4.21 -8.00 12.30 10.00
4.30 -10.00 .0.0 12.00
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TABLE 2 SUMMARY OF DATA FOR RUN T-6

VELOCITY PROFILE

TIME VELOCITY TIME VELOCITY
(HR-MIN) (CM/S) (HR-MIN) (CM/S)

0.0 20.00 4.13 -12.00
0.11 22.00 4.23 -14.00
0.21 24.00 4.34 -16.00
0.30 26.00 4.47 -18.00
0.43 28.00 5.13 -20.00

1.07 30.00 5.53 -18.00

1.39 28.00 6.23 -16.00

1.60 26.00 6.39 -14.00

2.11 24.00 6.54 -12.00
2.21 22.00 7.08 -10.00

2.28 20.00 7.21 -8.00

2.36 18.00 7.36 -6.00

2.41 16.00 7.53 -4.00

2.47 14.00 8.13 -2.00
2.52 12.00 - 9.04 0.0

2.58 10.00 10.17 2.00

3.04 8.00 11.00 4.00

3.09 6.00 11.17 6.00

3.15 4.00 -11.30 8.00

3.21 2.00 11.41 10.00

3.26 0.0 . 11.53 12.00

3.32 -2.00 .12.04 14.00
3.39 -4.00 12.13 16.00

3.47 -6.00 12.21 18.00

3.56 -8.00 12.30 20.00

4.06 -10.00 0.0 22.00
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TABLE 2 SUMMARY OF DATA FOR RUN T-7

VELOCITY PROFILE

VELOCITY
(C M/S)

20.00
22.00
24.00
26.00
28.00
30.00
28.00
26.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.0

-2.00
-4.00
-6.00
-8.00

-10.00

TIME
(HR-MIN)

TIME
(HR-MIN)

4.13
4.23
4.34
4.47
5.13
5.53
6.23
6.39
6.54
7.08
7.21
7.36
7.53
8.13
9.04

10.17
11.00
11.17
11.30
11.41

. 11.53
.12.04

12.13
12.21
12.30
0.0

VELOCITY
(CM/S)

-12.00
-14.00
-16.00
-18.00
-20.00
-18.00
-16.00
-14.00
-12.00
-10.00

-8.00
-6.00
-4.00
-2.00

0.0
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00
22.00

0.0
0.11
0.21
0.30
0.43
1.07
1.39
1.60
2.11
2.21
2.28
2.36
2.41
2.47
2.52
2.58
3.04
3.09
3.15
3.21
3.26
3.32
3.39
3.47
3.56
4.06
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TABLE 2 SUMMARY OF DATA FOR RUN T-8

VELOCITY PRO FILE

TI1E
(HR-MIN)

VELOCITY
(C M/S)

20.00
22.00
24.00
26.00
28.00
30.00
28.00
26.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.0

-2.00
-4.00
-6.00
-8.00

-10.00

TIME
(HR-MIN)

4.13
4.23
4.34
4.47
5.13
5.53
6.23
6.39
6.54
7.08
7.21
7.36
7.53
8.13
9.04

10.17
11.00
11.17
11.30
11.41

. 11.53
12.04
12.13
12.21
12.30

0.0

VELOCITY
(C,./S)

-12.00
-14.00
-16.00
-18.00
-20.00
-18.00
-16.00
-14.00
-12.00
-10.00

-8.00
-6.00
-4.00
-2.00

0.0
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00
22.00

0.0
0.11
0.21
0.30
0.43
1.07
1.39
1.60
2.11
2.21
2.28
2.36
2.41
2.47
2.52
2.58
3.04
3.09
3.15
3.21
3.26
3.32
3.39
3.47
3.56
4.'06
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TABLE 2 SUMNARY OF DATA FOR RUN T-9

VELOCITY PROFILE

TIME VELOCITY TIME VELOCITY

(H R- IN) (Cm/S) {HR - MI-N) (CM/S)

0.0 20.00 4.13 -12.00
0.11 22.00 -4.23 -14.00

0.21 24.00 4.34 -16.00
0.30 26.00 4.47 -18.00
0.43 28.00 5.13 -20.00
1.07 30.00 5.53 -18.00
1.39 28.00 6.23 -16.00
1.60 26.00 6.39 -14.00
2.11 24.00 6.54 -12.00
2.21 22.00 7.08 -10.00
2.28 20.00 7.21 -8.00
2.36 18.00 7.36 -6.00
2.41 16.00 7.53 -4.00
2.47 14.00 8.13 -2.00
2.52 12.00 9.04 0.0
2.58 10.00 10.17 2.00
3.04 8.00 11.00 4.00
3.09 6.00 11.17 6.00
3.15 4.00 11.30 8.00
3.21 2.00 11.41 10.00
3.26 0.0 11.53 12.00
3.32 -2.00 12.04 14.00

3.39 -4.00 12.13 16.00
3.47 -6.00 12.21 18.00
3.56 -8.00 12.30 20.00
4.'06 -10.00 0.0 22.00
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TABLE 2 SUMMARY OF DATA FOR RUN T-10

VELOCITY PROFILE

TIME VELOCITY TIME VELOCITY

(HR-MIN) (Cm/S) (HR- MIN) (CMvI/S)

0.0 20.00 4.13 -12.00
0.11 22.00 4.23 -14.00
0.21 24.00 4.34 -16.00
0.30 26.00 4.47 -18.00
0.43 28.00 5.13 -20.00

1.07 30.00 5.53 -18.00
1.39 28.00 6.23 -16.00
1.60 26.00 6.39 -14.00

2.11 24.00 6.54 -12.00
2.21 22.00 7.08 -10.00
2.28 20.00 7.21 -8.00

2.36 18.00 7.36 -6.00

2.41 16.00 7.53 -4.00

2.47 14.00 8.13 -2.00
2.52 12.00 9.04 0.0
2.58 10.00 10.17 2.00

3.04 8.00 11.00 4.00
3.09 6.00 11.17 6.00
3.15 4.00 11.30 8.00
3.21 2.00 11.41 10.00

3.26 0.0 11.53 12.00

3.32 -2.00 12.04 14.00

3.39 -4.00 12.13 16.00

3.47 -6.00 12.21 18.00
3.56 -8.00 12.30 20.00

4.06 -10.00 0.0 22.00
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TABLE 2 SUMMARY OF DATA FOR RUN U-1

VELOCITY PROFILE

VELOCITY
(CM/ S)

20.00
22.00
24.00
26.00
28. 00
30.00
28.00
26.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.0

-2.00
-4.00
-6.00
-8.00

-10.00

TIME
(HR-MIN)

TI 1 E
(Hh-3IN)

4. 13
4.23
4.34
4.47
5.13
5.53
6.23
6.39
6.54
7.08
7.21
7.36
7.53
8.13
9.04

10.17
11.00
11.17
11.30
11.41
11.53
12.04
12.13
12.21
12.30

0.0

VELOCITY
(CM/S)

-12.00
-14.00
-16.00
-18.00
-20.00
-18.00
-16.00
-14.00
-12.00
-10.00

-8.00
-6.00
-4.00
-2.00

0.0
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00
22.00

0.0
0.11
0.21
0.30
0. 43
1.07
1.39
1.60
2.11
2.21
2.28
2.36
2.41
2.47
2.52
2.58
3.04
3.09
3.15
3.21
3.26
3.32
3.39
3.47
3.56
4.'0 6
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TABLE 2 SUMMARY OF DATA FOR RUN U-2

VELOCITY PROFILE

TIME VELOCITY TIME VELOCITY
(HE-MIN) (CM/S) (HR-mlNi) (Cm/S)

0.0 24.00 4.21 -20.00
0.09 26.00 4.32 -22.00
0.22 28.00 4.54 -24.00
0.47 30.00 5.30 -22.00
1.19 28.00 5.56 -20.00
1.39 26.00 6.11 -18.00
1.51 24.00 6.24 -16.00
1.60 22.00 6.36 -14.00
2.07 20.00 6.47 -12.00
2.15 18.00 6.58 -10.00
2.21 16.00 7.11 -8.00
2.26 14.00 7.24 -6.00
2.32 12.00 7.39 -4.00
2.37 10.00 7.58 -2.00
2.43 8.00 8.45 0.0
2.49 6.00 9.56 2.00
2.54 4.00 10.39 4.00
2.60 2.00 10.56 6.00
3.06 0.0 11.09 8.00
3.11 -2.00 11.21 10.00
3.17 -4.00 11.32 12.00
3.23 -6.00 11.43 14.00
3.30 -'8.00 11.53 16.00
3.38 -10.00 12.00 18.00
3.45 -12.00 12.09 20.00
3.'53 -14.00 12.21 22.00
4.00 -16.00 12.30 24.00
4.09 -18.00 0.0 26.00
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TABLE 2 SUMMARY OF DATA FOR RUN U-3

VELOCITY PROFILE

VELOCITY
(CM/S)

20.00
22.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.0

-2.00
-4.00
-6.00
-8.00

-10.00
-12.00
-14.00
-16.00
-18.00
-20.00

TIME
(iH R-MIN)

TI ME
(HR- M LN)

4.28
4.51
5.26
5.53
6.08
6.21
6.32
6.43
6.54
7.08
7.21
7.36
7.54
8.41
9.56

10.43
11.02

11.17
11.30
11.43
11.54
12.06
12.17
12.30

0.0

VELOCITY
(CA/S)

-22.00
-24.00
-22.00
-20.00
-18.00
-16.00
-14.00
-12.00
-10.00
-8.00
-6.00
-4.00
-2.00
0.0
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00
22.00

0.0
0.15
0.41
1.17
1.39
1.51
2.02
2.11
2.19
2.26
2.34
2.41
2.49
2.54
3.00
3.08
3.13
3.19
3.26
3.34
3.41
3.49
3.56
4.06
4.17
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TABLE 2 SUMMARY OF DATA FOR RUN U-4

VELOCITY PROFILE

TIME VELOCITY TI1E VELOCITY
(HR-MIN) (CM/S) (R -41 N) (Cm/S

0.0 24.00 4.21 -20.00
0.09 26.00 4.32 -22.00
0.22 28.00 4.54 -24.00
0.47 30.00 5.30 -22.00
1.19 28.00 5.56 -20.00
1.39 26.00 6.11 -18.00
1.51 24.00 6.24 -16.00
1.60 22.00 6.36 -14.00
2.07 20.00 6.47 -12.00
2.15 18.00 6.58 -10.00
2.21 16.00 7.11 -8.00
2.26 14.00 7.24 -6.00
2.32 12.00 7.39 -4.00
2.37 10.00 7.53 -2.00
2.43 8.00 8.45 0.0
2.49 6.00 9.56 2.00
2.54 4.00 10.39 4.00
2.60 2.00 10.56 6.00
3.06 0.0 11.09 8.00
3.11 -2.00 11.21 10.00
3.17 -4.00 11.32 12.00
3.23 -.6.00 11.43 14.00
3.30 -8.00 11.53 16.00
3.38 -10.00 12.00 18.00
3.45 -12.00 12.09 20.00
3.53 -14.00 12.21 22.00
4.00 -16.00 12.30 24.00
4.09 -18.00 0.0 26.00
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TABLE 2 SUMMARY OF DATA FOR RUN U-5

VELOCITY PROFILE

TIME VELOCITY TIME VELOCITY

(HR-IN) (Cm/S) (HR -M N0) (Cm/s)

0.0 20.00 4.13 -12.00
0.11 22.00 4.23 -14.00
0.21 24.00 4.34 -16.00
0.30 26.00 4.47 -18.00
0.43 28.00 5.13 -20.00
1.07 30.00 5.53 -18.00
1.39 28.00 6.23 -16.00
1.60 26.00 6.39 -14.00
2.11 24.00 6.54 -12.00
2.21 22.00 7.08 -10.00
2.28 20.00 7.21 -8.00
2.36 18.00 7.36 -6.00
2.41 16.00 7.53 -4.00
2.47 14.00 8.13 -2.00
2.52 12.00 9.04 0.0
2.58 10.00 10.17 2.00
3.04 8.00 11.00 4.00
3.09 6.00 11.17 6.00
3.15 4.00 11.30 8.00
3.21 2.00 11.41 10.00
3.26 0.0 11.53 12.00
3.32 -2.00 12.04 14.00
3.39 -4.00 12.13 16.00
3.47 -6.00 12.21 18.00
3.56 -8.00 12.30 20.00
4.06 -10.00 0.0 22.00



-150-

TABLE 2 SUMMARY OF DATA FOR RUN U-6

VELOCITY PROFILE

TIM L
(HR-MIN)

VELOCITY
(Cm/S)

20.00
22.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.0

-2.00
-4.00
-6.00
-8.00
-10.00
-12.00
-14.00
-16.00
-18.00
-20.00

VELOCITY
(CM/S)

TIME
(HR- MI N)

4.28
4.51
5.26
5.53
6.08
6.21
6.32
6.43
6.54
7.08
7.21
7.36
7.54
8.41
9.56

10.43
11.02
11.17
11.30
11.43

- 11.54
-12.06
12.17
12.30

0.0

-22.00
-24.00
-22.00
-20.00
-18.00
-16.00
-14.00
-12.00
-10.00
-8.00
-6.00
-4.00
-2.00

0.0
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00
22.00

0.0
0.15
0.41
1.17
1.39
1.51
2.02
2.11
2.19
2.26
2.34
2.41
2.49
2.54
3.00
3.08
3.13
3.19.
3.26
3.34
3.41
3.49
3.56
4.06
4.17



-151-

TABLE 2 SUMMARY OF DATA FOR RUN U-7

VELOCITY PROFILE

VELOCITY
(CM/S)

20.00
22.00
24.00
26.00
28.00
30.00
28.00
26.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.0

-2.00
-4.00
-6.00
-8.00

-10.00

TIME
(HR-MiIN)

TIME
(HR-MIN)

4.13
4.23
4.34
4.47
5.13
5.53
6.23
6.39
6.54
7.08
7.21
7.36
7.53
8.13
9.04

10.17
11.00
11.17
11.30
11.41
11.53
12.04
12.13
12.21
12.30
0.0

VELOCITY
(C1M/S)

-12.00
-14.00
-16.00
-18.00
-20.00
-18.00
-16.00
-14.00
-12.00
-10.00

-8.00
-6.00
-4.00
-2.00

0.0
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00
22.00

0.0
0.11
0.21
0.30
0.43
1.07
1.39
1.60
2.11
2.21
2.28
2.36
2.41
2.47
2.52
2.58
3.04
3.09
3.15
3.21
3.26
3.32
3.39
3.47
3,56
4.06



-152-

TABLE 2 SUMMARY OF DATA FOR RUN U-8

VELOCITY PROFILE

VELOCIT Y
(Ce/S)

24.00
26.00
28.00
30.00
28. 00
26.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.0

-2.00
-4.00
-6.00
-8.00

-10.00
-12.00
-14.00
-16.00
-18.00

TIMIN TIME
(HR-MIN)

4.21
4.32
4.54
5.30
5.56
6.11
6.24
6.36
6.47
6.58
7. 11
7.24
7.39
7.58
8.45
9.56

10.39
10.56
11.09
11.21
11.32
11.43
11.53
12.00
12.09
12.21
12.30
0.0

VELOCITY
(Cm/S)

-20.00
-22.00
-24.00
-22.00
-20.00
-18.00
-16.00
-14.00
-12.00
-10.00
-8.00
-6.00
-4.00
-2.00

0.0
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00
22.00
24.00
26.00

0.0
0.09
0.22
0.47
1.19
1.39
1.51
1.60
2.07
2.15
2.21
2.26
2.32
2.37
2.43
2.49
2.54
2.60
3.06
3.11
3.17
3.23
3.30
3.38
3.45
3.53
4.00
4.09



-153-

TABLE 2 SUMMARY OF DATA FOR RUN V-1

VELOCITY PROFILE

VELOCITY
(CM/S)

20.00
22.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.0

-2.00
-4.00
-6.00
-8.00

-10.00
-12.00
-14.00
-16.00
-18.00
-20.00

TIMIE
(HR-MIN)

TI ME
(HR-MIN)

4.28
4.51
5.26
5.53
6.08
6.21
6.32
6.43
6.54
7.08
7.21
7.36
7.54
8.41
9.56

10.43
11.02
11.17
11.30
11.43
11.54
12.06
12.17
12.30

0.0

VELOCITY
(Cm/S)

-22.00
-24.00
-22.00
-20.00
-18.00
-16.00
-14.00
-12.00
-10.00

-8.00
-6.00
-4.00
-2.00

0.0
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00
22.00

0.0
0.15
0.41
1.17
1.39
1.51
2.02
2.11
2.19
2.26
2.34
2.41
2.49
2.54
3.00
3.08
3.13
3.19
3.26
3.34
3.41
3.49
3.56
4.06
4.17



-154-

TABLE 3 SUMMARY OF DATA FOR RUN T-1

TOTAL SEDIMENT ADDED = 100 G
0 G ILLITE
0 G KAOLINITE

100 G MONTMORILLIONITE

SUSPENDED SEDIMENT CONCENTRATION

TIME MUD SAND TOTAL
(HR-MIN) (G/L) (G/L) (G/L)

0.0 0.120 0.031 0.151
1.000 0.370 0.046 0.416
2.000 0.340 0.140 0.480
3.000 0.410 0.162 0.572
4.000 0.300 0.028 0.328
5.000 0.220 0.011 0.231
6.000 0.210 0.011 0.221
7.000 0.340 0.048 0.388
8.000 0.430 0.374 0.804
9.000 0.450 0.214 0.664

10.000 0.300 0.034 0.334
11.000 0.170 0.007 0.177
12.000 0.250 0.014 0.264
13.000 0.280 0.043 0.323



-155-

TABLE 3 SUMMARY OF DATA FOR RUN T-2

TOTAL SEDIMENT ADDED = 200 G
0 G ILLITE
0 G KAOLINITE

200 G MONTMORILLIONITE

SUSPENDED -SEDIMENT CONCENTRATION

TIME MUD SAND TOTAL
(HR-MIN) (G/L) (G/L) (G/L)

0.0 0.420 0.010 0.430
1.000 0.430 0.043 0.473
2.000 0.550 0.113 0.663
3.000 0.480 0.081 0.561
4.000 0.480 0.016 0.496
5.000 0.390 0.011 0.401
6.000 0.580 0.014 0.594
7.000 0.790 0.027 0.817
8.000 0.940 0.110 1.050
9.000 0.940 0.125 1.065
10.000 0.900 0.024 0.924
11.000 1.050 0.016 1.066



-156-

TABLE 3 SUMMARY OF DATA FOR RUN T-3

TOTAL SEDIMENT ADDED = 400 G
0 G ILLITE
0 G KAOLINITE

400 G NONTMORILLIONITE

SUSPENDED SEDIMENT CONCENTRATION

TIME MUD SAND TOTAL
(HR-MIN) (G/L) (G/L) (G/L)

0.0 1.230 0.0 1.230
1.000 1.140 0.0 1.140
2.000 0.540 0.0 0.540
3.000 1.220 0.0 1.220
4.000 1.290 0.0 1.290
5.000 1.210 0.0 1.210
6.000 1.020 0.0 1.020
7.000 1.070 0.0 1.070
8.000 0.980 0.0 0.980
9.000 0.940 0.0 0.940

10.000 0.860 0.0 0.860
11.000 0.940 0.0 0.940
12.000 1.060 0.0 1.060
13.000 1.070 0.0 1.070



-157-

TABLE 3 SUMMARY OF DATA FOR RUN T-4

TOTAL SEDIMENT ADDED = 400 G
0 G ILLITL
3 G KAOLIGTITL

400 G MONT'RI L L1" NI f

SUSPENDED SEDIMENT CONCLNTRATION

TIME MUD SAND TOTAL
(HR-MIN) (G/L) (G/L) (G/L)

0.0 0.102 0.007 0.109
1.000 0.120 0.029 0.149
2.000 0.121 0.053 0.174
3.000 0.122 0.021 0.143
4.000 0.098 0.005 0.103
5.000 0.114 0.050 0.164
6.000 0.114 0.442 0.556
7.000 0.106 0.052 0.158
8.000 0.108 0.023 0.131
9.000 0.094 0.016 0.110

10.000 0.004 0.014 0.018
11.000 0.0 0.018 0.018
12.000 0.095 0.012 0.107
13.000 0.106 0.022 0.128
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TABLE 3 SUMMARY OF DATA FOR RUN T-5

TOTAL SEDIIENT ADDED = 400 G
0 G ILLITE
0 G KAOLINITE

400 G MONTMORILLIONITE

SUSPENDED SEDIMENT CONCENTRATION

TIME MUD SAND TOTAL
(HR-MIN) (G/L) (G/L) (G/L)

0.0 1.080 0.0 1.080
1.000 1.230 0.0 1.230
2.000 1.210 0.0 1.210
3.000 0.720 0.0 0.720
4.000 1.040 0.0 1.040
5.000 1.170 0.0 1.170
6.000 1.040 0.0 1.040
7.000 1.070 0.0 1.070
8.000 1.010 0.0 1.010
9.000 0.830 0.0 0.830

10.000 0.200 0.0 0.200
11.000 0.060 0.0 0.060
12.000 1.010 0.0 1.010
13.000 0.990 0.0 0.990
14.000 1.000 0.0 1.000



-159-

TABLE 3 SUMMARY OF DATA FOR RUN T-6

TOTAL SEDIMENT ADDED =400 G
0 G ILLITE
0 G KAOLINII E

400 G MONTMORILLIONITL

SUSPENDED SEDIMENT CONCENTRATION

TIME MUD SAND TOTAL
(HR-MIN) (G/L) (G/L) (G/L)

0.0 1.240 0.0 1.240
1.000 1.220 0.0 1.220
2.000 1.280 0.0 1.280
3.000 1.150 0.0 1.150
4.000 1.080 0.0 1.080
5.000 1.140 0.0 1.140
6.000 1.140 0.0 1.140
7.000 0.970 0.0 0.970
8.000 0.850 0.0 0.850
9.000 0.510 0.0 0.510

10.000 0.020 0.0 0.020
11.000 0.260 0.0 0.260
12.000 1.010 0.0 1.010
13.000 1.010 0.0 1.010
14.000 0.770 0.0 0.770
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TABLE 3 SUMMARY OF DATA FOR RUN T-7

TOTAL SEDIMENT ADDED = 400 G
0 G ILLITE

400 G KAOLINITE
0 G MONTMORILLIONITE

SUSPENDED SEDIMENT CONCENTRATION

TIME MUD SAND TOTAL
(HR-MIN) (G/L) (G/L) (G/L)

0.0 1.330 0.0 1.330
1.000 1.330 0.0 1.330
2.000 1.470 0.0 1.470
3.000 1.250 0.0 1.250
4.000 1.250 0.0 1.250
5.000 1.240 0.0 1.240
6.000 1.150 0.0 1.150
7.000 1.110 0.0 1.110
8.000 1.120 0.0 1.120
9.000 1.050 0.0 1.050

10.000 0.130 0.0 0.130
11.000 0.380 0.0 0.380
12.000 0.630 0.0 0.630



-161-

TABLE 3 SUMMARY OF DATA FOR RUN T-8

TOTAL SEDI'ENT ADDED = 100 G
40 G ILLITz;
40 G KAOLINITE
20 G MONTMORILLIONITE

SUSPENDED SEDIMENT CONCENTRATION

TIME MUD SAND' TOTAL
(HR-MIN) (G/L) LG/L) (G/L)

0.0 0.510 0.0 0.510
1.000 0.520 0.0 0.520
2.000 0.570 0.0 0.570
3.000 0.490 0.0 0.490
3.500 0.390 0.0 0.390
4.000 0.470 0.0 0.470
5.000 0.470 0.0 0.470
6.000 0.520 0.0 0.520
7.000 0.510 0.0 0.510
8.000 0.380 0.0 0.380
9.000 0.310 0.0 0.310

10.000 0.100 0.0 0.100
11.000 0.150 0.0 0.150
12.000 0.390 0.0 0.390
13.000 0.480 0.0 0.480
14.000 0.590 0.0 0.590



-162-

TABLE 3 SUMYARY OF DATA FOR RUN T-9

TOTAL SEDIMENT ADDED = 1800 G
200 G ILLITE

1200 G KAOLINITE
400 G MONTMORILLIONITE

SUSPENDED SEDIMENT CONCENTRATION

TIME MUD SAND TOTAL
(HR-MIN) (G/L) (G/L) (G/L)

0.0 4.000 0.0 4.000
1.000 4.060 0.0 4.060
2.000 4.640 0.0 4.640
3.000 3.900 0.0 3.900
3.500 2.800 0.0 2.800
4.000 3.280 0.0 3.280
5.000 3.600 0.0 3.600
6.000 3.620 0.0 3.620
7.000 3.380 0.0 3.380
8.000 3.040 0.0 3.040
9.000 2.280 0.0 2.280
10.000 0.120 0.0 0.120
10.500 0.0 0.0 0.0
11.000 1.040 0.0 1.040
12.000 1.540 0.0 1.540
13.000 2.820 0.0 2.820
14.000 3.560 0.0 3.560
14.150 3.690 0.0 3.690



-163-

TABLE 3 SUMMARY OF DATA FOR RUN T-10

TOTAL SEDIMENT ADDED = 400 G
400 G ILLITE

0 G KAOLINITE
0 G MONIMORILLIONITE

SUSPENDED SEDIMENT CONCENTRATION

TIME MUD SAND TOTAL

(HR-MIN) (G/L) (G/L) (G/L)

0.0 1.370 0.0 1.370
1.000 1.270 0.0 1.270
2.000 1.450 0.0 1.450
3.000 1.360 0.0 1.360
3.500 0.250 0.0 0.250
4.000 1.270 0.0 1.270
5.000 1.090 0.0 1.090
6.000 1.200 0.0 1.200
7.000 1.190 0.0 1.190
8.000 1.310 0.0 1.310
9.000 0.970 0.0 0.970

10.000 0.0 0.0 0.0
11.000 0.080 0.0 0.080
12.000 1.040 0.0 1.040

13.000 1.460 0.0 1.460
14.000 1.530 0.0 1.530



-164-

TABLE 3 SUMMARY OF DATA FOR RUN U-1

TOTAL SEDIMENT ADDED = 3000 G
0 G ILLITE

1500 G KAOLINITE
1500 G MONT M)R ILLIO NITE

SUSPENDED SEDIMENT CONCENTRATION

TIME MUD SAND TOTAL
(HR-MIN) (G/L) (G/L) (G/L)

0.0 0.0 0.0 0.0
1.000 11.200 0.0 11.200
2.000 11.200 0.0 11.200
3.000 9.650 0.0 9.650
4.000 5.950 0.0 5.950
5.000 6.300 0.0 6.300
6.000 5.050 0.0 5.050
7.000 4.350 0.0 4.350
0.000 2.750 0.0 2.750
9.000 0.400 0.0 0.400

10.000 0.100 0.0 0.100
11.000 4.900 0.0 4.900
12.000 6.100 0.0 6.100
13.000 5.850 0.0 5.850
14.000 7.700 0.0 7.700



-165-

TABLE 3 SUMMARY OF DATA FOR RUN U-2

TOTAL SEDIMENT ADDED = 1000 G
0 G ILLITE

500 G KAOLINITE
500 G MONTMORILLIONITE

SUSPENDED SEDIMENT CONCENTRATION

TIME MUD SAND TOTAL
(HR-MIN) (G/L) (G/L) (G/L)

0.0 3.540 0.0 3.540
0.500 3.460 0.0 3.460'
1.000 3.540 0.0 3.540
1.500 3.700 0.0 3.700
2.000 3.640 0.0 3.640
2.500 3.140 0.0 3.140
3.000 0.280 0.0 0.280

3.500 0.280 0.0 0.280
4.000 1.280 0.0 1.280
4.500 1.660 0.0 1.660

5.000 1.840 0.0 1.840

5.500 1.620 0.0 1.620
6.000 1.240 0.0 1.240

6.500 1.120 0.0 1.120
7.000 0.880 0.0 0.880

7.500 0.540 0.0 0.540

8.000 0.460 0.0 0.460

8.500 0.200 0.0 0.200
9.000 0.060 0,0 0.060

9 .500 0.0 0.0 0.0
10.000 0.320 0.0 0.320
10.500 0.240 0.0 0.240

11.000 0.340 0.0 0.340

11.500 0.580 0.0 0.580
12.000 1.400 0.0 1.400
12.500 2.120 0.0 2.120

13.000 2.820 0.0 2.820



-166-

TABLE 3 SUMMARY OF DATA FOR RUN U-3

TOTAL SEDIMENT ADDED = 1000 G
0 G ILLITE

500 G KAOLINITE
500 G MONTMORILLIONITE

SUSPENDED SEDIMENT CONCENTRATION

TIME MUD SAND TOTAL
(HR-MIN) (G/L) (G/L) (G/L)

0.0 4.200 0.0 4.200
0.500 4.040 0.0 4.040
1.000 4.040 0.0 4.040
1.500 3.900 0.0 3.900
2.000 3.800 0.0 3.800
2.500 3.600 0.0 3.600
3.000 2.080 0.0 2.080
3.500 0.160 0.0 0.160
4.000 0.600 0.0 0.600
4.500 1.100 0.0 1.100
5.000 1.600 0.0 1.600
5.500 1.860 0.0 1.860
6.000 1.760 0.0 1.760
6.500 1.440 0.0 1.440
7.000 1.200 0.0 1.200
7.500 0.980. .0.0 0.980
8.000 0.700 0.0 0.700
8.500 0.460 0.0 0.460
9.000 0.300 0.0 0.300
9.500 0.140 0.0 0.140

10.000 0.080 0.0 0.080
10.500 0.460 0.0 0.460
11.000 0.480 0.0 0.480
11.500 0.440 0.0 0.440
12.000 0.560 0.0 0.560
12.500 0.940 0.0 0.940
13.000 1.920 0.0 1.920
13.500 2.520 0.0 2.520
14.000 2.720 0.0 2.720



-167-

TABLE 3 SUMMARY OF DATA FOR RUN U-4

TOTAL SEDIMENT ADDED = 1000 G
0 G ILLITE

500 G KAOLINITE
500 G MONIMORILLIONITL

SUSPENDED SEDIMENT CONCENTRATION

TIME MUD SAND- TOTAL
(HR-MIN) (G/L) (G/L) (G/L)

0.0 3.940 0.0 3.940
0.500 3.980 0.0 3.980-
1.000 4.040 0.0 4.040
1.500 4.100 0.0 4.100
2.000 3.800 0.0 3.800
2.500 3.480 0.0 3.480
3.000 2.340 0.0 2.340
3.160 0.400 0.0 0.400
3.500 0.540 0.0 0.540
4.000 1.340 0.0 1.340
4.500 1.740 0.0 1.740
5.000 2.000 0.0 2.000
5.500 1.860 0.0 1.860
6.000 1.540 0.0 1.540
6.500 1.300 0.0 1.300
7.000 1.100 0.0 1.100
7.500 0.700 0.0 0.700
8.000 0.400 0.0 0.400
8.500 0.240 0.0 0.240
9.000 0.140 0, 0 0. 140
9.500 0.060 0.0 0.060
10.000 0.280 0.0 0.280
10.500 0.220 0.0 0.220
11.000 0.200 0.0 0.200
11.500 0.300 0.0 0.300
12.000 0.820 0.0 0.820
12.500 2.160 0.0 2.160
13.000 -2.860 0.0 2.860
13.500 3.500 0.0 3.500
14.000 3.600 0.0 3.600



-168-

TABLE 3 SUMMARY OF DATA FOR RUN U-5

TOTAL SEDIlENT ADDED = 1000 G
0 G ILLITE

500 G KAOLINITE
500 G MONTMORILLIONITE

SUSPENDED SEDIMENT CONCENTRATION

TIME MUD SAND TOTAL
(HR-1IIN) (G/L) (G/L) (G/L)

0.0 2.560 0.0 2.560
0.500 2.360 0.0 2.360-
1.000 2.300 0.0 2.300
1.500 2.420 0.0 2.420
2.000 2.340 0.0 2.340
2.500 2.260 0.0 2.260
3.000 1.980 0.0 1.980
3.500 0.260 0.0 0.260
4.000 0.440 0.0 0.440
4.500 0.720 0.0 0.720
5.000 1.380 0.0 1.380
5.500 1.180 0.0 1.180
6.000 0.980 0.0 0.980
6.500 0.840 0.0 0.840
7.000 0.740 0.0 0.740
7.500 0.540 0.0 0.540
8.000 0.480 0.0 0.480
8.500 0.400 0.0 0.400
9.000 0.340 0.0 0.340

,9.500 0.160 0.0 0.160
10.000 0.040 0.0 0.040
10.500 0.200 0.0 0.200
11.000 0.280 0.0 0.280
11.500 0.300 0.0 0.300
12.000 0.480 0.0 0.480
12.500 0.900 0.0 0.900
13.000 1.380 0.0 1.380
13.500 1.720 0.0 1.720
14.000 1.880 0.0 1.880
14.500 1.880 0.0 1.880

NWNN.W-
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TABLE 3 SUMMARY OF DATA FOR RUN U-6

TOTAL SEDIMENT ADDED = 1000 G
0 G ILLITE

500 G KAOLINITE
500 G MONTMORILLIONITE

SUSPENDED SEDIMENT CONCLENTRATION

TIME MUD SAND TOTAL
(HR-MIN) (G/L) (G/L) (G/L)

0.0 2.860 0.0 2.860
0.500 2.680 0.0 2.680
1.000 2.680 0.0 2.680
1.500 2.460 0.0 2.460
2.000 2.460 0.0 2.460
2.500 2.240 0.0 2.240
3.000 0.660 0.0 0.660
3.500 0.340 0.0 0.340
4.000 0.700 0.0 0.700
4.500 0.920 0.0 0.920
5.000 1.280 0.0 1.280
5.500 1.260 0.0 1.260
6.000 1.160 0.0 1.160
6.500 0.920 0.0 0.920
7.000 0.760 0.0 0.760
7.500 0.540 0.0 0.540
8.000 0.460 0.0 0.460
8.500 0.300 0.0 0.300
9.000 0.160 0..0 0.160
9.500 0.040 0.0 0.040
10.000 0.180 0.0 0.180
10.500 0.260 0.0 0.260
11.000 0.240 0.0 0.240
11.500 0.240 0.0 0.240
12.000 0.500 0.0 0.500
12.500 1.100 0.0 1.100
13.000 1.400 0.0 1.400
13.500 1. 500 0.0 1.500
14.000 1.400 0.0 1.400
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TABLE 3 SUMMARY OF DATA FOR RUN U-7

TOTAL SEDIMENT ADDED = 1000 G
0 G ILLITE

500 G KAOLINITE
500 G MONTMORILLIONITL

SUSPENDED SEDIMENT CONCENTRATION

TIME MUD SAND TOTAL
(HR-MIN) (G/L) (G/L) (G/L)

0.0 3.080 0.0 3.080
0.500 2.880 0.0 2.880
1.000 2.940 0.0 2.940
1.500 3.100 0.0 3.100
2.000 3.060 0.0 3.060
2.500 3.000 0.0 3.000
3.000 2.700 0.0 2.700
3.500 0.200 0.0 0.200
4.000 0.320 0.0 0.320
4.500 0.740 0.0 0.740
5.000 0.940 0.0 0.940
5.500 1.100 0.0 1.100
6.000 0.820 0.0 0.820
6.500 0.760 0.0 0.760
7.000 0.600 0.0 0.600
7.500 0.460 0.0 0.460
8.000 0.360 0.0 0.360
8.500 0.220 0.0 0.220
9.000 0.240 0.0 0.240
9.500 0.100 0.0 0.100
10.000 0.0 0.0 0.0
10.500 0.080 0.0 0.080
11.000 0.200 0.0 0.200
11.500 0.160 0.0 0.160
12.000 0.400' 0.0 0.400
12.500 0.860 0.0 0.860
13.000 1.360 0.0 1.360
13.500 2.080 0.0 2.080
14.000 2.500 0.0 2.500
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TABLE 3 SUMMARY Of DATA FOR RUN U-8

TOTAL SEDIMENT ADDED = 1000 G
0 G ILLITE

500 G KAOLINITE
500 G MONT MORILLIONITE

SUSPENDED SEDIMENT CONCENTRATION

TIME MUD SAND TOTAL

(HR-31N) (G/L) (G/L) (G/L)

0.0 3.280 0.0 3.280
0.500 3.240 0.0 3.240
1.000 3.440 0.0 3.440
1.500 3.380 0.0 3.380
2.000 3.200 0.0 3.200
2.500 0.720 0.0 0.720
3.000 1.200 0.0 1.200

3.500 0.300 0.0 0.300
4.000 0.780 0.0 0.780
4.500 1.200 0.0 1.200
5.000 1.560 0.0 1.560
5.500 1.760 0.0 1.760

6.000 1.620 0.0 1.620
6.500 1.440 0.0 1.440

7.000 1.180 0.0 1.180
7.500 0.720 0.0 0.720
8.000 0.340 0.0 0.340
8.500 0.160 0.0 0.160
9.000 0.120 0.0 0.120

9.500 0.020 0.0 0.020
10.000 0.360 0.0 0.360
10.500 0.240 0.0 0.240
11.000 0.240 0.0 0.240

11.500 0.320 0.0 0.320

12.000 0.960. 0.0 0.960
12.500 1.820 0.0 1.820

13.000 2.040 0.0 2.040

13.500 2.580 0.0 2.580

14.000 2.780 0.0 2.780



-172-

TABLE 3 SUMMARY OF DATA FOR RUN V-1

TOTAL SEDIENT ADDED = 1400 G
0 G ILLITE

750 G KAOLINITE
750 G MONTMORILLIONITE

SUSPLNDED SEDIMENT CONCENTRATION

TIME MUD SAND TOTAL
(14E-MI N) (G/L) (G/L) (G/L)

0.0 3.820 0.0 3.820
0.500 3.680 0.0 3.680
1.000 3.700 0.0 3.700
1.500 3.500 0.0 3.500
2.000 2.080 0.0 2.080
2.500 3.280 0.0 3.280
3.000 0.530 0.0 0.580
3.120 0.160 0.0 0.160
3.500 0.800 0.0 0.800
4.000 0.940 0.0 0.940

S.500 1.200 0.0 1.200
5.000 3.280 0.0 3.280
5.500 1.230 0.0 1.280
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APPENDIX B: PHOTOGRAPHS OF THE EXPERIMENTAL RUNS

The figures in this appendix are the ones referred to in

Appendix A.
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APPENDIX C: LISTINGS OF THE COMPUTER PROGRAMS USED IN THE

INVESTIGATIONS

The first program listed (p. 175-180) computes the vel-

ocity profile for a tidal cycle. The second program computes

the values of u,, u50, and TO. This program also prints the

tables given in Appendix A.



C
C
C

1 FORMAT (1
2 FORMAT(6H
25H TAU=,F

3 FORMAT(21
4 FORMIAT(4H1
2= ,13, 2HLB
3,3HOB=,I3

C GENERATE V, K
PI=3.1415
V (1)=VMAX
I=1

1, 5F6. 2)
VMAX=,F6.2,6H VMIN=,F6.2,6H VINC=,F6.2,
6.2, 8H VELINT=,F6.2)
13)
IB=,13,3HIA=,I3,31JB=,13,3HJA=,I3,3HKC=,I3,3HKA=,I3,3HKB

,I3,3HLA=,I3,3HMB=,I3,3HMA=,13,3HNC=,13,3HNA=,I3,3HNB=,I3
3HOA=, 13,3 HPB=,13,3.HPA=,I3,,3HQC=,13 ,3HQA=,13,3HQB=,I3)
IS LENGTH OF V

93

22 V(I+1)= V(I)-VINC
IF(V (I+1) .GT.VMIN)

21 K=I+1
GO TO 27

20 I= I+1

GO TO 20 '

GO TO 22
C REORDER AND EXPAND V TO VP, NK IS LENGTH OF VP

27 I=1
J=1

PROGRAM TO DETERMINE AT WHICH VALUES OF TIME THE VELOCITY IN A TIDAL
CYCLE GIVEN A FUNCTION AND THE MAX AND &IN VALUES OF THE VhLOCITY
READ IN DATA

REAL %IN,MX
INTEGER OBOA,PBPA,QCQAQB
DIMENSIONV(61),VP(121),TIiETA(201),VEL(201),VC(121),VELC(201)

1TIHETAC(201),VINT(201),VELCP(201),VINTP(201) ,TIME(201),TINT(201),
2IWOhI(K(201)

1005 WRITE (6,6)
6 FORMAT(48H1 NEW RUN OF TIDAL SIMULATION CURRENT VELOCITIES)

READ (5,1) IHCVMAX ,VMINVINC ,TAU, VELINT
WRITE(6,2) VMAXVMINVINCTAUVELINT
READ (5,3) IB,IA,JBJAKCKAKBLBLAMB,MANCNA,NB,OBOA,PBPA,

1QCQA, QB
WRITE (6,4) IBIAJBJAKCKAKB,LBLA,MBMA,NCNANB,013,OA,PBPA,
1QCQA,QB



32 IF(V(I)-VELINT)
31 I=I+1

GO TO 32
30 I=1+1

J=0
M=0

35 1=1-1
J=J+ 1
VP(J)=V (I)
IF(M) 33,33,34

33 IF(I.GT.1) GO TO
JMAX= J
M=1

36 I= 1+1
J=J+1
VP(J)= v (I)
IF(I.LT.K) GO TO
GO TO 35

34 IF (V (I). NE.VELIN
NK= J
THETA(1)=O.O
Do 40 I=2,201

40 THiETA(I)= THETA(

3 0,3 0,31

35

3

T)

I-

GO TO 35

1) +PI/1 00. 0.
DO 42 I=1,201

42 VEL(I)=IB*SIN(IA*THSTA(I))+JB*COS(JA*THETA(I))+KC*SIN(KA*THETA(I))
2*COS (KB*TiETA (I)) +LB*SIN(LA*THETA(I)) +MB*COS(MA*THETA (I)) +NC*SIN (N
3A*THETA(1))*COS(NB*THETA(I))+0OB*SIN(OA*THETA (I)) +PB*COS(PA*TH
4ETA(I)) +QC*SIN(QA*TiETA(I))*COS(QB*THETA(I))

C FINE MAX AND MIN OF VEL
MN=0.0
MX=0.0
DO 2000 1=1,200
IF(VEL (I) .GT. X)
IF(VEL(I).LT.MN)
GO TO 2000

4000 MX=VEL(I)

GO TO 4000
GO TO 5000



IMX=I
GO TO 2000

5000 MN=VEL(I)
lMN =I

2000 CONTINUE
C TESTING FOR ZEROES

VEL(201) = VEL(1)
50 NZ=0
52 DC 54 1=1,200

I?(VEqL(I)) 55,53,56
55 IF(VE3L(I+1)) 54,54,53
56 IF(VEL(I+1)) 53,54,54
53 NZ=NZ+1
54 CONTINUE

IF(NZ.NE-.2) GO TO 1000
WRIT E(6,500) NZ

500 FORMAT (5H1 NZ= ,13)
C NORMALIZE

IF(ABS(VEL(IMX)).GE.ABS(VEL(IMN))) GO TO 60
Q= VMAX/ABS(VEL(IMN))
DO 61 1=1,201

61 VEL (I)= -1.0*Q*VEL(I)
L=IMN
K= IMX
IMN=K

IMX=L
GO TO 62

60 Q= ViAX/VEL(IMX)
DO 63 1=1,201

63 VEL (I) = Q*VEL (I)
62 IF (ABS (VMAX) . EQ. ABS (VMIN)) GO TO 69

R= VMIN/VEL (IMN)
DO 66 I=1,201
IF(VL(I).GT.0.0) GO TO 66
VEL(I)= R*VEL(I)

66 CONTINUE



C SETTING NEAREST VALUE 0
69 L= IMX

I=1
DO 70 J= JMAXNK

74 IF(ABS(VEL(L)-VP(J)
V C(.1)= VP (J)
VELC (1)= VEL (L)
THETAC (I) =THETA(L)
I=I+1
L= L+1
IF(L.GT.200)
GO TO 70

EQUAL TOCORRESPONDING VP

) .GT.ABS(VEL(L+1.)-VP(,J))) GO TO 71

L=1

71 L=L+ 1
IF(L.GT.200) L=1
GO TO 74

70 CONTINUE
DO 72 J=2,JMAX

76 IF(ABS(VEL(L)-VP(J)
VC (I)=VP (J)

77 VLLC(I)= VEL(L)
THETAC (I) = THETA (L)
I=I+1
L= L+1
IF (L. GT. 200)
GO TO 72

) .GT.ABS (VEL (L+1) -VP (J)))

1=1

73 L=L+1
IF(L.GT.200) L=1
GO TO 76

72 CONTINUE
K0

=0. 0
J= NK-Ji1AX+1
DO 88 I=1,NK
VELCP(i)= VELC(J)
VINTP(I)= THETAC(J)
J= J+1

+R*PI

GOTO 73



IF(J.GT.NK) J=2
IF(K.EQ.1) GO TO 88
IF(THETAC(J).GT. THETAC(J-1)) GO TO 88
R= 2.0

8P CONTINUE
C COMPUTE INTERVALS

DO 80 MS=2,NK
80 VINT (?'S) = (VINTP(MS)-VINTP(MS-1))/2.0+VINTP(NS-1)

VINT(1)= VINT(NK)- 2.0*PI
PUNCH 5,IB,IAJBJA,KC, KAKB,LS, LA, MB, MA, NC, NAINB,

20B,OA, P,PA,QC,QB,QA,VMAX,VM IN, VELINT
5 FORMAT (21I1,3F6.2)

DO 94 J=1,NK
Q=0.0
TINT(J)= (VINT (J) -VINT (1)) *TAU/(2.0*PI)
TIME(d)=TINT(J)

6400 IF(TI M (J).LT.1.0) GO TO 6500
TIME(J)=TIME(J) -1.0
Q= Q+1.0
GO TO b400

6500 TIME(J)= 0.6*TIME(J) +Q
WRITE(t,910) J,VELCP(J),JTINT(J),J,TIME(J),J,VP(J)

910 FORMAT (7H VELCP(,13,3H)= ,F12.7,6H TINT(,I3,3H)= ,F12.7
26H TrIME(,I3,3H)= ,F12.7,4H VP(,13,3H)= ,F12.7),

PUNCH15,VELCP(J) ,TINT(J) ,TIME(J) ,VP (J)
15 FORMAT (4F12.7)
94 CONTINUE

IX=1
IY=1
CALL QKRPLT(TINTVPNK,IIIY,IORK)
GO TO 1002

1000 WRITE (6,1001) NZ
1001 FORMAT(27H ERROR TOO MANY ZEROES,NZ= ,13)
1002 IF (IHC.NE.1) GO TO 1005.

7 54 e A))
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REAL MEANMEAN3
REAL MULT1,MULT2
REAL NU
DIMENSION X (5,5),XT(5),MEAN(5),MEAN3(5),SLOP(2),SLOP3(2),Y(5),
1Y3(3)

DIMENSION WATER (18,3) ,TIME(30)
DIMENSION TINT(100),VP(100),TISD(100),SD1(100),SD2(100),SDT(100)
DIMENSION AB(30,30) ,ITAB (3)
COMMON SLOM
COMMON DIA
COMMON U501,U502,U503,U504,UB3,TAU
COMMON FRRWRBRPKQ
COMMON 05011,U5012,U5021,U5022,U5031,U5032
COMMON KC -
COMMON X,XTMEANMEAN3,SLOP,SLOP3,Y,Y3,R23,R25
COMMON RHO, NUDE,DEP, RE, R, TAUT, TAUB, TAUW, UB, Z,FT,F W,FB,T,C,UB2,

1TAU2
DATA ITAB/1,2,3/
DATA WAT ER/10.0,1 1.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.

1,21.
211.7
39.07
41.01
51.01

0
6
,

0
0

,22.O,23.0,24.0,25.0,26.0,27.0,13.48,13.14,12.79,12. 45,12.10,
,11. 49, 11.21,10.94, 10.66 ,10.39, 10. 16,9 .9 3,9.7 1,9. 48, 9. 25,
8. 88, 1. 0114144, 1.0 11312, 1.0 111169, 1. 011015, 1.01085, 1.0106741
432,1.010290,
082, 1. 009865, 1.00963 8,1. 009401 ,1.009155 ,1.008899,1. 008634,

6 1. 008 360, 1. 00 8077, 1. 00778 5/
Y (1) =0.0
Y (2)=100.0
Y (3) =200.0
Y (4) =300. 0
Y (5)=400.0

C RL'AD IN DATA CARDS
C PIEAD IN CARD WITH NUMBER OF RUNS

FLAD (5,2) NR
DO 30 I=1,NR

C PEAD IN CONTROL CARD FOR EACH RUN
READ(5,3) TITLE,NES,CDV,DIA

0



DO 40 J=1,NDS
C READ IN CONTROL CARD FOR SLOPE NEASUREHENTS

READ (5,4) VDE,T,DEP
C READ IN SLOPE MEAS

DO 9 Q N=1, 5
99 READ (5,5) (X (I,N),I=1,5)

DO P10 L=1,18
IF(T.EQ.WATER (L,1)) GO TO 90

80 COWN"INUE
90 NU= WATER (L,2)/10.0**3

RHO=WATER(L,3)
CALL, SLOPE
IF(KQ.EQ.0) GO TO 550
AU (1,J) =V
AEb(2,J)= T
Ab(3,J) NU
Ab (4,J) RE
AB (5,J) SLOT
Ab(uJ)= R25
AB3(11,J)= V
DO 500 MiN=7,1O

500 ADB(MNJ)=0.0
Do 520 MN=12,19

520 AB(MNJ)=0.O
GC TO 40

550 AE=DE
VU= ABS(V)
SLOT =ABS (SLOP (2))
R2=R25
CALL CALC(AESLOTVU)

2' FORMAT(13)
3 FORMAT(A4,I2,I1,F5.3)
4 FORMAT (F5.2,4F5.3)
5 FORMAT (5(2XF4.2))

AB (1,J)= V
AB(2,J)= T



AB (3,J)=NU
AB(4,J) RE
AID(5,J)= SLOT
AB(6,J)= R2
AB(7,J)= FT
AB(8,J) Ul
AB(9,J)= UB2
Ai3(10,J)= UB3
AB(11a1 J) = V
AB(12,J)= UB3
AB (13, J) =FR
AB(14,J)= SLOZI
AB(15,J)= TAU
AB(16,J)= U501
AB(17,J)= U502
AB(18,J)= U503
AB(19,J)= U50 4,

40 CONTINUE
WRITE(6,100) ITAB(1),TITLE

100 FORMAT(1H ,////,45X,6HTABLE 12,25H SUMMARY
1//)

OF DATA FOR RUN ,A4,

WRITE(b,130) DIA
130 FORMAT(1H ,36X,57HDEPTH = 12 CM HYDRAULIC RADIUS = 4.54 CM SAN

1D SIZE = ,F5.3, 3H CM,//)
WRITE(6,110)

110 FORMAT(1li ,15X,8fVEL0CITY,5X,5HTE1P.,5X,9VISCOSITY,5X,
18HREYOLDS,5X,7HSURFACE,9X,2HR2,8X,1HF,5X,5HU* (1),4X,5HU*(2),4X,
2511U*(3) ,/,16X,6H (CM/s),5X8H (DEG. C),4X,8H (STOKES) ,7X,6HNUMBER,
37X,5HSLOPE,25X,6H(CM/S),3X,6H(CM/S),3X,6H(CM/S),//)
DO 190 M=1,NDS

190 WRITE(6,120) (AB(KI),K=1,10)
120 FORMAT(1H ,16XF5.1,7X,F4.1,5X,E1O.3,3XE10.3,3X,E1O.3,3XE1O.3,

13X,F5. 3,2X,3 (F6. 2,3X))
WRITE (6,150)

150 FORMAT(1H1)
WRITE (6,100)ITAB(1) ,TITLE

---------- dmmllLl--. -- ---- - - - - --- -- - --- -



WRITE (6, 140)
140 FORMAT (1H ,22X,8HVELOCITY,3X,5HU*(3),4X,2HFR,9X,2HSE,7X,3HTAU,

15X,6H1U50(1),3X,6HU50(2),3X,6HU50 (3) ,3X,6HU50 (4), /,24X,6H(CM/S),
23X,6H (CM/S) ,23X,6HDYNES/,4(3X,6H(Ctl/S)),/,62X,6HCM**2) //)
DO 180 M=1,NDS

180 WRITE(6,160) (AB(KM),K=11,19)
160 FORMAT(IH ,24XF5.1,5XF4.2,3XF4.2,3X,E1O.3,31,F5.2,4X,

14(F6.2,3X))
WRITe (t,150)

30 CONTINUE
READ (5,800) NRY

800 FORMAT(I2)
DO 820 3=1,NRV
READ(5,802) TITLENV

802 FORMAT(A4,I2)
NQ=NV/2
DO 810 MV=1,NV

810 READ(5,804) TINT(KV),VP(MY)
804 FORMAT(24X,2F12.7)

WHITE (6 , 100) ITAB (2) ,TITLE
WRITE(6,220)

220 FORMAT(1H ,56X,17H VELOCITY PROFILE, //,38,2(4HTINE,9X,8HVELOCITY
114X), /,36X,2(8H(HR-IN),8X,6H(CM/S),.13X),//)

DO 812 MV=1,NQ
812 WRITE(6,806) TINT(MV),VP(KV) ,TINT (MV+NQ),VP(MV+NQ)
806 FORMAT (1H1 ,35XF5.2,11X,F6.2,14XF5.2,11X,76.2)

WRITE(6,150)
820 CONTINUE

READ(5,900) NRC
900 FORMAT(I2)

DO 910 K=1,WRC
READ(5,902) TITLE, NCMULT1,MULT2,ITSILLKAOL,50NT

902 FORMAT(A4,I2,2F5.3,414)
DO 920 N=1,NC
READ(5,904) TIME(N),SD1(N).,SD2(N)

904 FORMAT(3F10.4)



SD1 (N) =SD1 (N) *MULT1
SD2 (N) =SD2 (N) *MULT2

920 SDT(N) =SD1 (N) +SD2 (N)
WRITE (6, 100) ITAB (3) ,TITLE
WRITE(6,360) ITS

360 FORMAT(1lH ,50X,23HTOTAL SEDIMENT ADDED = ,14,2H G)
WRITt (6,370) ILL

370 FORMAT(1H ,50X,14,9H G ILLITE)
WRITE (6,380) KAOL

380 FORMAT(1H ,50X,I4,12H G KAOLINITE)
WRITE (6,390) MONT

390 FORMAT (1H ,50XI4,19H G MONTMORILLIONITE,//)
WRITE(6,300)

300 PORMAT (111 ,47X,32HSUSPENDED SEDIMENT CONCENTRATION,///,40,4RTIME
1, 13X,3iIUD,lOX, 4HSAND,1OX,5HTOTAL,/,38X,8H (HR-MIN),1OX,5H(G/L),9X,
25H (G/L) ,11X,5H(G/L),/)
DO 940 ND=1,NC

940 WRITE(6,950) TIME (ND),SD1(ND).,SD2(ND),SDT(ND)
950 FORMAT-(1H ,38X,2(F6.3,1OX,F6.3,8X))

WHITE (6,150)
910 CONTINU E

END
SUBROUTINE FINDPW
REAL MEAN,MEAN3
HEAL NUj
DIMENSION X(5,5),XT(5),MEAN(5),MEAN3(5),SLOP(2),SLOP3(2),Y(5),

1Y3(3)
DIMENSION TABLE (132,2)
COMMON SLOM
COMMON DIA
COMMON U501,U502,U503,U504,UB3,TAU
COMMON FR,RWRBRPKQ
COMMON U5011,5012,U5021,U5022,U5031,5032
COMMON KC
COMMONX,XT, MEANMEAN3,SLOP, SLOP3, Y, Y3,R23,R25
COMMON RHONU,DE,DEPRE,RTAUTTAUBTAUW,UBZ,PT,FNFB,T,C,UB2,



ITAU2
DATA TABLE /2.5r2.55,r2.-6r2.65,r2.7v2.725o2.75,r2*775,r2.8,p2.825*2.85,r

12.875v2.9,r2.925,r2.95t2.975,r3.Or3.025,r3.05,r3.075v3.1,r3.l5e3.2s3.25a
23.3o3.35v3.4e3.45o3.5w3-06,r3.65e3.7,r3.8o,3.8513.9o3.95r4.Oir4.O5,r4.18
34.15*4.2,r4.3o4.4,r4.45,r4.5,r4o6,r4.65g4.7o4.80,4.85o4.9o5.Oo5.lf5.2ir
55.27o5.34,r5.4,5.6o5.7s5.8ir&87,r 5.94e6.0,6.lo,6.2,r6.4*6.506.686.8,r
66.9,r7.0,t7.2s7.4v7.5,r7.6,r7.8,r7.9,r8.OvR.2,r8.4te,.5o8.608.809.Os9o le
79e2e9o4r9o6#9o8rlOeOrIO.5ell,.Orll.25ell.5,rll.75el2.00,12.25,rl2.50
812.75vl3.0*13.25rl3.5,rl3-75,v 14.Ogl4.4,,14.7sl5.Oel5.50,16.06,16.58
917.0s 1-7.4rl7.7el8.Ovl8.5irl9.Ool9.5,r2O.Or2O.5v2l.Oir22.0822.50,23.Ov
123.5,r24.0o24.5o,25..Or26.Or27.0*28.0,r29.Or3O.Oo3.32,v3.31o,3.3063.290
23.28,r3.27o3.26,r3.25o3.24e3.23,r3.22o3.2lo3.2Oo3,l9v3.l8e3. 17*3.16t
23.15v3. l4v3.13,3.12,3. lls,3.lOe3.O9v3,-08,r3.07,r3.O6e3.')5,r3.O4v3.02,r
33.0lv3.00o-2.99v2 '98,r2.97,r2.96v2.95,t2.q4,12.93v2.92s2.9lr2.9002.890
42.88o2.87,v2.86,r2:85,2.84e2.83v2.82o2.81o,2.8Ov2.79,r2-.78v2.77s2.76t
52.75e2.74t2.73e2.72t2.7le2.70,r2.69,12.68o2.67,r2.66,r2.65t2.64v2,,63t
62.62,,2.61*2.6Oe2.59r2.58,r2.57e2.56o2.55v2.54e2,53v2.52v2.5lv2. 50a
72.49s2.28e2.47v2.26,r2.45e2.44,v2.43,r2.42'2.4le2.4Or2.39,,2.38,r2.37o
82.36,r2.35e2.34v2.33,r2.32o2.31j,2.30,t2.29s2.28e2.27v2.26o2.25,r2.. 248 00

92.23,r2.22,r2.2lv2,20v2. 19,2.18f 2. l7e2.l6v2.il5*2.l4v2.13*2.l2o2.llv
12.lOr2.O9s2.O8o2.O7,,2.O6o2.05,r2.O4o2.O3s2.O2o2.Olr2.00/
KC=O
Z= Z/100000.0

C CHECK TO ENSURE THAT Z IS -IN'-RA.NFE OF TABLE
IF(Z.LT-TABLE(lel)) GO T6' 50

IF(Z.GT.TABLE(128vl)) GO TO 50
I=66
INDEX=33
GO TO 121

10 I=I+INDEX
11 IF(INDEX-1) 12#14s12
12 INDEX=INDEX-INDEX/2

121 IF(Z-TABLR(Ij1)) l3ol6*10
13 J=I

I=I-INDEX
GO TO 11



14 IF(Z-TABLE(I,1)) 15,16,15
15 IF(ABS(Z-TABLE(I,1)).GT.ABS(Z-TABLE(J,1))) IiJ
16 FW= TABLE(I,2)/100.0

Z= Z*100000.0
GO TO 90

50 KC=1
90 RETURN

END
SUBUOUTINE CALC (QE,SLO,V)
REAL MEANMEAN3
REAL NU
DIMENSION X(5,5),XT(5),MEAN(5),tMEAN3 (5),SLOP(2),SLOP3(2) ,Y(5),
1Y3 (3)
COMO1 SLOM
COM O)N DIA
COm rn0N U501,U502,U503,U504,UB3,TAU
COM1 N FR,RW,RB,RP,KQ
COMM'I)N U 50 11,U5012,U5021 ,U5022,U5031,U5032 .
COM C)N KC
COM::C N X, XT , ME AN, ME AN3,SLOP,S LOP3, Y, Y3, R23 1 R25
COM*0 N IHWO, NUDE, DEP, RE, R, TAJT,TAUB, TAUW, UB,2,FT,FW,F1BT,C,UB2,

1TAU2
R=(Q,*14.6)/(2.0*QE+ 14.6)
RE= V*QE/NU
FR=V**2/11760.0
SLOt= SLO* (1. 0-FR**2*SLO)
FT= (7840.0*R*SLOM)/V**2

Z I /F T
C FIND FW

CALL FINDFW
IF(K.E~Q.0) GO TO 90
FB=0 .0
FW 0.0

90 FBi= r+2.0*QE/14.6*(FT-FW)
C FIND UB

U13=SQET(V**2*FB/8.0)

-----------



TAUB= (UB/RHO)**2
TAUT (V**2*FT/8.0)/(RHO**2)
TAUW= (V**2*FV/8. 0)/RHO**2
RW= TAUW
RB= TAUT
RP= RW/RB
C=SQRT (9. 0/FT)
UB2= ((.13-.3*ALOG10(QE/30.5))/((C )-7.66*ALOG10(QE/30.5)-
111.0)) v30.5

TAU2= (UI32/RHO)**2
UB3= SQRT(980.0*R*SLOM**(1.0/(1.0+.18* (12.0/ 3 0.5)/((1 4. 6 / 3 0. 5)

2**2) )) )
XU=.01176
U501= UB3*(5.75*ALOG10(UB3*50.0/XU)+5.5)
U502=U33*5.75*ALOG10(30.2*50.0/DIA)
U503= UB3*(17.66+ALOG10(50.0/(35.45*DIA)))
U504= U1B3*((3.33-. 13/(UB3/30 .5)) *ALOG(50.0/30.5)+14.3)
TAU = (UB3/RHO)**2

99 RETURN
END
SUBROUTINE SLOPE
REAL Mr-EAN,MEAN3
REAL NU
DIMENSION X(5,5),XT (5) ,MEAN(5) ,MEAN83 (5),SLOP (2) , SLOP3 (2) ,Y(5),

1Y3 (3)
COMMON SLON '
COMMON, DIA
COMMON U501,U502,U503,U504,UB3,TAU
COMMON FR,RWRBRPKQ
COMMON [5011,U50 12,5021,U5022,05031,U5032
COMMON KC
COMMONX,XTEANMEAN3,SLOP,SLOP3,Y,Y3,R23,R2 5

COMMON RHONU, DEDEP, RE, R,TAUT,TAUB,TAUW, JB, Z,T,F,FB,T, C,UB2,
1TAU2
A=0.0
5=0. 0



G=0. 0
D=o.o
E=0.0
A 3=0. 0
B3=0.0
C3=0.0
D3=0.0
E3=0.0

C COMPUTE MEAN OF SLOPE MAEASUTEMBENTS
DO 10 J=1,5
XT (J) =0.0
DO 20 K1,5
XT (J)= XT (J) +X (KJ)

20 CONTINUE
MEAN (J)= XT(J)/5.0

10 CONTINUE
C FIND SLOPE

SD5=0.0
SD3=0.0
NPTS=5
NCOEFF=2
CALL LSFIT (N4PTSCOEBF,Y, EANSLOP)

C CALCULATE R2
DO 60 K=1,5
E=E+MEA N (K) *Y (K)
A=A+ikEAN (K)
B=B+Y (K)
G= G+MEAN(K)**2
D=D+Y (K)**2

60 CONTINUE
R25=(E- (A*B/5.0))**2/((G-A**2/5.0)*(D-B**2/5.O))
Do 30 I=1,3
Y 3(I):=Y (I+1)

30 MEAN3(I) =MEAN(I+1)
NETS=3
CALL LSFIT (NPTSNCOEFFY3,MEAN3,SLOP3)



DO 70 K=1,3
E3= 3+MEAN 3 (K)*Y3 (K)
A3=A3+MEA N3 (K)
B3=B3+Y3(K)
C3=C3+LiEAN3(K)**2
D3= D3+Y 3 (K) **2

70 CONTINUE
R23= (EJ-(A3*B 3/3.0))**2/( (C3-A3**2/3.0)*(D3-B3**2/3.0))
KQ=0
IF(F25.GE.0.98) GO TO 90
IF(K23.GE.0.98) GO TO 89
IF(R25.GE.R23) GO TO 88
F25= R23
SLOP(2)= SLOP3(2)

88 IF(h25.GE.0.95) GO TO 90
KQ=1
GO TO 90

89 H 25=.R23
SLOP(2)= SLOP3(2)

90 RETURN
END
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APPENDIX D: PROCEDURE USED FOR CALCULATING THE SHEAR VELOCITY

All of the methods for determining u* involve the energy

slope. This was determined by measuring the water-surface

elevation at five separate points and determining the water-

surface slope. The energy slope was then calculated using

equation 8. The accuracy of the determination of Sw is critical

to the determination of u*. A measure of the precision of the

slope fit by the least-squares program is given by the value of

2r:

2
2 iE i ~ Uii in)]

r - (Al)
2 2 2 2

where x is the surface elevation measurement, y the horizontal

distance measurement, and n the number of observations. The

closer the value of r2 to 1.0 the more precise the fit. If

the initial fit using the five points gave a value of r greater

than or equal to 0.98 the fit was accepted. If r2 was less

than 0.98, another fit using only the central three points was

made. This was done because it was noted that, particularly

at high velocities, the two end points sometimes deviated con-

siderably from the trend of the central three. The same cri-

terion for the value of r2 was applied to this fit. If neither

of the values of r2 was greater than 0.95, the slopes were
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rejected and no determination of u* was made. For values of

2 2r between 0.95 and 0.98, the slope with the higher r was used.

It is hoped that by using this procedure, only valid values

of S were used.w

The sidewall procedure described by Johnson involves se-

parating the cross-section of the flume into areas dominated

by either the resistance of the bottom or the resistance of

the sidewalls. This is done by dividing the Reynolds number

of the flow by the Darcy-Weisback friction factor. The fric-

tion factor for the sidewalls can then be read from the graph

shown by Vanoni (1975). Once the fraction factor of the side-

walls is known, the friction factor of the bottom may be cal-

culated from:

f b (f - f (A2)bottom flume 2d flume sidewall

Substituting fbottom into:

R = bottom U2E (A3)
8g

yields the hydraulic radius associated with the bottom. The

shear velocity may then be calculated from equation 7. It was

found that for the higher velocities, the area dominated by

the bottom resistance was only 6 cm wide. This means that all

of the visual and photographic observations were made in the

area dominated by the sidewall resistance at all but the lowest



-205-

velocities. Observations taken during low-velocity periods

seem to indicate that depositional activity was fairly uniform

over the entire width of the channel. In general, the values

of u* calculated by this method appear to be higher than one

would expect.

It was hoped that the method of Richardson and Simons

(equation 14) would give acceptable.results since the equation

was developed specifically for rippled beds. In general the

results for the lower velocities seem reasonable, but at

higher velocities the values fluctuate widely with very minor

changes in slope, sometimes giving completely ridiculous re-

sults.

The third method, that of Williams, involves a simple

correction to the measured energy slope to take into account

the sidewall effects, (equation 19). U*(3) is then determined

by substitution into equation 7. Results of these calculations

are.given in Table 1 of Appendix A.


