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ABSTRACT

This thesis investigates the origin of acoustic noise in the variable-reluctance motor (VRM)
and discusses issues involved in predicting and reducing it at the design stage of' the motor.
A discussion of the physical structure and operating principles of the VRM is given as a
prelude to the presentation of a list of hypothetical noise generating mechanisms in the
VRM. An experimental procedure for determining which of these mechanisms is dominant
in the VRM is then described.

The experimental procedure is performed on an experimental 1/2-hp VRM and shows that
radial vibrations of the stator driven by radial magnetic forces in the VRM are responsible
for producing the majority of the acoustic noise. In particular, the most noise is produced
when harmonics of the radial forces coincide with any of the mechanical resonant frequencies
of the stator. The experimental VRM is found to have resonant frequencies at 2604 Hz,
9200 Hz, and 14.2 kHz. The experiments also reveal that it is possible to reduce the
acoustic noise level at a given speed by correctly choosing the control strategy. The problem
of reducing the acoustic noise, therefore, involves developing models for determining the
resonant frequencies and mode shapes of the stator and the radial magnetic forces acting
on it. With such models, the acoustic noise can be predicted as a function of the stator
geometry, the electromagnetic behavior of the motor and inverter, and the control strategy,
allowing the control strategy that minimizes the acoustic noise to be determined.

The model for determining the resonant frequencies and mode shapes of the stator is based
on the three dimensional theory of elasticity and uses the Rayleigh-Ritz method and La-
grange's equation to derive the frequency equation of the stator cylinder. This equation
takes the form of a generalized eigenvalue problem where the resonant frequencies of the
stator are the square roots of the eigenvalues, and the mode shapes are determined from
the eigenvectors. While the model correctly predicts the mode shapes of the stator, it is
not detailed enough to accurately predict the values of the resonant frequencies. Thus,
while the model is not useful for determining the optimum control strategy for reducing
the acoustic noise, it is useful for determining whether the resonant frequencies are in the
audible range and how they change as the geometry of the stator is changed.

The model for determining the magnetic forces is comprised of equations that govern the
operation of the VRM at constant speed and equations that govern the operation of the



inverter and controller. The current-flux relationship is modeled by an analytic function
determined from the experimental VRM. Numerical simulations of these equations show
that while the current and torque of the VRM can be predicted accurately enough to
determine quantities such as the peak current and average torque, the radial force cannot be
predicted accurately enough to determine the acoustic noise. This is due to the requirement
that harmonics of the radial force as high as the 7th must be accurately predicted.
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Dr. Stephen D. Umans

Titles: Associate Professor of Electrical Engineering
Principal Research Engineer
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Chapter 1

Introduction

The variable-reluctance motor has become increasingly popular in recent years. It has been

shown to have comparable performance to induction and permanent-magnet-synchronous

motors in terms of efficiency, torque per volume, and inverter power rating over a reasonable

power range [22,21,16]. In addition, it is relatively simple and inexpensive to construct,

is particularly reliable, and provides a wide range of desirable operating characteristics

through the use of different control algorithms. This makes it desirable in many variable-

speed applications [16,2].

Most of the literature on VRM drives has concentrated mainly on the design of the

motor, inverter, and controller with the explicit goal of improving control, efficiency, torque

production, drive flexibility and cost [21,2,22,15]. As improvements have been achieved,

there has been increasing incentive to use VRMs in domestic products that have strict

acoustic noise emission standards. Although the generation of acoustic noise is a charac-

teristic of all electric motors, it seems to be especially problematic in variable-reluctance

motors. This is a serious problem, because many experts recognize that, depending on the

level and duration, acoustic noise can be an irritant or even a threat to a person's hearing.

Federal, state, and local agencies, therefore, have established standards stating how much



Maximum daily exposure Sound level (dB)

(hours) A-weighting

8.0 90
6.0 92
4.0 95
3.0 97
2.0 100
1.5 102

1.0 105
0.5 110

0.25 or less 115 max

Table 1.1: Permissible noise exposure.

noise is acceptable. One such standard, which is part of the Walsh-Healey Public Contracts

Act of May 1969 [5], is given in Table 1.1. The noise of an experimental VRM used in this

thesis is well above 90 dB even at low current levels when measured at a distance of 20 cm.

Because it can be a threat to a person's health, or at least a sufficient irritant, the

acoustic noise of a VRM has the potential to offset the advantages of a VRM drive over

an induction motor drive. Therefore, it has become clear at this time that attention must

be focused upon integrating acoustic noise considerations into the overall design process for

a VRM, so that appropriate tradeoffs can be made between the traditional performance

characteristics such as cost, size, rating, and efficiency, and the acoustic noise produced by

the VRM. In order to do this, however, the acoustic noise generating mechanisms in the

VRM must be understood and modeled. Each of these mechanisms consists of an excitation

force of either magnetic or mechanical origin that acts on some part of the motor, resulting

in vibrations which produce the acoustic noise.



1.1 Background

Previous work on the acoustic noise problem of electric motors has focused almost exclu-

sively on the task of determining the resonant frequencies and mode shapes of the stators

of induction motors. Most authors have determined that the acoustic noise of these motors

is caused by magnetic forces exciting the resonant frequencies of the stator [27,10], making

the knowledge of these frequencies essential to the reduction of the acoustic noise. The

modeling of the stator and the analytical method used, however, have varied widely. The

earlier papers, cited in [27], treated the stator as a thin shell, which greatly simplified the

analysis, but gave poor results.

Verma and Girgis [27] modeled the stator as a thick cylinder encased by a thin cylindrical

frame. Unlike earlier papers, the analysis of the stator was based on the three-dimensional

theory of elasticity. The exact equations of motion were used, and radial, torsional, and

axial vibrations of the stator were taken into consideration. Fliigge's theory of thin-shells

[7] was used for the frame. The surfaces of the stator were assumed to be traction-free.

This analysis yielded reasonably accurate resonant frequencies for the lower modes when a

correction factor was used to account for the stator teeth and the windings. However, this

correction factor was not based on rigorous considerations, and the authors concluded that

the effects of the teeth and windings should be considered rigorously along with the stator

in order to attain more accurate results.

Girgis and Verma [10] also extended their earlier modeling of the stator as a thick

cylinder encased by a thin cylindrical frame. In the extension, their analysis treated the

stator teeth, windings. and cooling ribs as thin cantilevers attached to the stator cylinder.



In [27], the equations of motion were derived by satisfying the elastic equilibrium and

compatibility conditions. In this case, however, the presence of the teeth, windings, and

cooling ribs made it difficult to satisfy the boundary conditions along with the equilibrium

and compatibility conditions. Therefore, the authors resorted to using the Rayleigh-Ritz

method [13]. For complete confidence in the results, however, this method also requires

that attention be paid to satisfying the boundary conditions. This is due to the fact that

the resonant frequencies of a given structure under one set of boundary conditions can be

entirely different from those of the same structure under a different set of conditions. The

authors, however, did not address the issue of the boundary conditions. In spite of this, the

resonant frequencies obtained from their analysis showed satisfactory agreement with those

obtained from the experimental measurements made on an induction motor.

1.2 Thesis Scope

This thesis addresses several major issues concerning the origin and reduction of acoustic

noise in VRMs. First, the relative importance of the acoustic noise generating mechanisms

is examined. Although it is often stated that vibrations of the stator induced by radial

magnetic forces is the dominant mechanism in induction motors, this need not be the

case for all VRMs. An experimental procedure is presented for determining the relative

importance of several hypothetical noise mechanisms. This procedure is performed on an

experimental 1/2-hp VRM provided by the General Electric Company of Schenectady, NY.

It shows that the dominant mechanism is indeed radial vibrations of the stator induced by

pulsating magnetic forces. Specifically, the magnitudes of the vibrations are largest when

harmonics of the radial force pulses coincide with the resonant frequencies of the stator;



the radial force pulses occur at the same frequencies as the current pulses applied to the

phases of a VRM. The acoustic noise emitted by the stator is found to be proportional to

the amplitude of these vibrations at each resonant frequency. The experimental procedure

also shows, however, that there are significant vibrations of other parts of the VRM at each

resonant frequency. Depending on how the VRM is mounted and loaded, these vibrations

could potentially lead to additional noise problems. The main conclusion drawn from the

experiments is that the shape of the radial force pulses, which is determined in part by the

shape of the current pulses, has a direct effect on the amount of acoustic noise produced.

The second issue addressed by this thesis concerns the determination of the vibrational

behavior of the stator as a function of the stator geometry and material properties. As

stated above, the acoustic noise of the experimental VRM results from the interaction

of harmonic components of the radial forces and the resonant frequencies of the stator.

In order to predict the acoustic noise, therefore, a method is needed for determining the

resonant frequencies and mode shapes of the stator. Knowledge of the mode shapes allows

the elimination from consideration of those resonant frequencies whose corresponding mode

shapes do not couple to the magnetic forces in the VRM.

The modeling performed and analysis used in this thesis is based on that in [10], but

much closer attention is paid to satisfying the boundary conditions. Because frictional

losses are not modeled in the analysis, only the resonant frequencies and shapes of the

stator vibration modes can be predicted. Neither the amplitudes of the vibrations nor the

width of the resonant peaks can be predicted. Because of these limitations, the analysis is

mainly useful for determining whether the acoustic noise is in the audible range and the

effect of changes in the geometry of the stator on its frequencies.



When applied to the experimental VRM, the analysis predicts the three major resonant

frequencies along with their corresponding mode shapes as observed in the experiments.

The values of the resonant frequencies, however, are significantly in error. The errors

are attributed to the simplifications made in the analysis. The analysis also shows that

attempting to raise the resonant frequencies above the audible range by changing the length

or thickness of the stator cylinder is not very cost effective. Doubling the thickness of the

stator cylinder only increases the lowest resonant frequency by a factor of 1.5, meaning that

the lowest resonant frequency of the experimental VRM would increase from its original

value of 2604 Hz to 3906 Hz. Changing the length of the stator has a much smaller effect

than this on the resonant frequencies. Consequently, alternative methods must be used to

achieve acoustic noise reduction.

The third issue addressed by this thesis concerns the determination of the radial mag-

netic forces acting on the stator. In the context of acoustic noise prediction/reduction, this

issue has not received as much attention as the previous one even though, as the experi-

ments performed on the experimental VR.M show, it is clearly as important; this issue is

addressed by Yang in [29] where he determined the magnetic forces acting on the stator

of an induction motor. In fact, due to the difficulty in raising the resonant frequencies

above the audible range by changing the geometry of the stator, this issue takes on even

greater importance, since it offers an alternative method of reducing the acoustic noise,

which involves neither mechanical nor acoustic dampers, but rather shaping of the radial

force pulses so that none of the harmonics coincide with any of the resonant frequencies of

the stator.

In this thesis, a model for the VRM is developed which predicts its currents and fluxes



based on the inverter topology, the nonlinear current-flux-position relationship, and the

control scheme. The current-flux-position relationship is modeled by an analytic expression

derived from the actual current-flux-position curves of the experimental VRM. The magnetic

fields in the air gap are approximated as being radially directed and the gap length is

assumed to be independent of the rotor position. Simulations of the model show that while

the currents, fluxes, and torque can be predicted to a sufficient degree of accuracy, the radial

forces acting on the stator cannot. The main reason for this is that harmonic components

of the radial force pulses, as high as the seventh in the case of the experimental VRM, must

be accurately predicted. To be able to do this, a more detailed model for calculating the

magnetic fields in the air gap at all angular positions of the rotor is needed.

1.3 Thesis Outline

The outline for the remainder of this thesis is as follows. Chapter 2 discusses the VRM

drive which includes the motor, inverter, and controller. Chapter 3 describes the experi-

mental procedure used to determine the relative importance of the acoustic noise generating

mechanisms in the experimental VRM. Chapter 4 describ'es the analysis used to determine

the resonant frequencies and modes of the stator. The effect of variations in the geometry

of the stator on the resonant frequencies is illustrated. Chapter 5 presents an operational

model of the VRM which allows the magnetic forces to be predicted based on parameters

which define the control scheme used to operate the VRM. Finally, Chapter 6 contains the

summary, conclusion, and suggestions for future work.



Chapter 2

VRM Drive Principles

2.1 Introduction

In order to establish a foundation for examining the issues addressed in this thesis, this

chapter discusses the VRM drive which consists of a motor, inverter, and controller. The

first section describes the construction of the experimental 0.5-hp VRM used in this thesis.

The second section describes the basic operating principles of the VRM drive, and details

the parameters which define its operation.

2.2 VRM Construction

As noted in Chapter 1, one of the advantages of a VRM is its simple construction. In

Figure 2.1, the cross section of a typical four-phase VRM is shown. The rotor is constructed

from simple iron laminations having six salient poles. It has neither windings nor permanent

magnets. The stator is comprised of iron laminations having eight salient poles. Each of

the poles has a concentrated copper winding. Windings on diametrically opposite poles are

connected in series to form a phase winding; only one phase winding is shown in Figure 2.1

for clarity. When current is applied to a phase winding, the stator and rotor are both

magnetized with apposing polarity across the air gap. This produces a force having a



radial and a tangential component. The radial component of the force causes the radial

deflections of the stator which, as Chapter 3 shows, is the main source of acoustic noise of the

experimental VRM. The tangential component of the force acting on the rotor produces a

torque which causes the rotor to align itself with the magnetized stator pole pair, regardless

of the polarity of the current. Continuous rotation of the rotor is achieved by sequentially

exciting the phases with pulses of current. The pulses must be timed so that the torque

always acts to pull the rotor in the same direction. Consequentially, closed-loop control of

the motor is necessary for good performance.

The actual rotor and stator laminations for the experimental VRM are shown in Fig-

ure 2.2. The stator laminations are supported by two endbells. The endbells are held

together by four bolts. The rotor laminations are mounted on a steel shaft. Also mounted

on the shaft on either side of the rotor stack are bearing assemblies. These assemblies are

designed to fit into holes bored in the endbells. Ideally, when the motor is assembled, the

rotor and stator lamination stacks should be aligned and the gap separation between all

rotor and stator poles should be the same.

2.3 Principles of Operation

2.3.1 VRM Dynamics

The analysis in this section assumes that the phases are identical and magnetically inde-

pendent. With these assumptions, the general operation of a VRM can be described by the

following equations:

d,
d-R?,inl + Vt,~ n= 1,...,N, (2.1)



Figure 2.1: Cross section of a 4-phase VRM.
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Figure 2.2: Experimental VRM laminations. The depth of the lamination stack is 2 inches.



dO W(2.2)

dt

J = r,- Br, r -r;(2.3)
dt |w,|

where A,, i, and z,,, are the flux linkage, current, and applied voltage of the nth phase

winding, respectively, R, is the total resistance of the circuit that includes the nth phase

winding, 0 is the rotor position, Wr is the rotor speed, J is the total rotor and load inertia,

N, is the number of phases, r, is the magnetic torque, B, and Tf are the coefficients

of viscous and coulomb friction, respectively, and r1 is the load torque [6,14]. Under the

assumptions that the phases are symmetrically located and the rotor and stator have very

high permeabilities, the magnetic coupling between the phases can be neglected so that

A,= A=(0, i), n = 1, .. ., N, (2.4)

In general, A, is a nonlinear function of i, due to magnetic saturation. In addition,

A,, varies periodically with the rotor position 6. The period is equal to 27r/N, where N, is

the number of rotor poles. The flux-current relationship is identical for all phases except

for a constant offset angle which takes into account the spatial location of the phases. The

flux-current relationship for the nth phase can therefore be written as

A, (0, i, ) A=, (0,! in ) n =1...,N, (2.5)



angle=0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30

current in amperes

Figure 2.3: Flux versus current curves for the experimental VRM.

where the rotor position for the nth phase O is given by -

9 _ 27r
On = 0 + (n -- 1)

N,.N,

The flux linkage curves for Phase 1 of the experimental VRM are shown in Figure 2.3.

Based upon the assumption that there is no magnetic coupling between the phases,

the torque r, produced by phase n can be determined from the coenergy IW, using the
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relationship

W'(6 i()2.7)

[6] where

W'(6, i) j A,(O, i' )di' (2.8)

The total torque is the sum of the individual phase torques so that

Np

7m = mr (2.9)
n=1

In order to evaluate Equations 2.7 and 2.8, the form of Equation 2.5 must be known ex-

plicitly. However, in order to simplify the discussion of torque production, it is assumed

for now that the VRM is operated with its magnetic material unsaturated. At sufficiently

low currents, this is a good assumption for all VRMs. Referring to Figure 2.3, it is seen

that the experimental motor is magnetically linear for all rotor positions at currents below

about 5 Amperes.

Under the assumption of magnetic linearity, Equation 2.5 can be written as

A,,(6, in) =L1(?, )ifl (2.10)

where L,, is the inductance of the nth phase. The expression for torque in Equation 2.7



U

then simplifies to

1 -2 dL 1 (6n) (2.11)
2 " dOn

Equation 2.11 illustrates a point mentioned earlier. Namely, that the direction of torque in

a VRM is independent of the polarity of the phase current. Instead, it depends only on the

sign of dL/dO. At sufficiently low currents, the magnitude of the torque in a given VR.M is

proportional to the current squared. At higher current levels where the magnetic material

is in saturation, increases in current still lead to increases in torque, but the increase in

torque is no longer a quadratic function of the current magnitude.

2.3.2 VRM Control

The control of a VRM can be achieved by varying four parameters: the turn-on angle 0o,,

the turn-off angle 0 off, the chopping current level ich,, and the supply voltage V,,,,. The

angles 6O, and 6Off define the positioning of the current excitation within a cycle of induc-

tance variation. As illustrated in Figure 2.4, positive or negative torque can be produced

depending on whether the phase is excited during a region of rising or falling inductance,

respectively. At low to moderate speeds, the magnitude of the torque is controlled mainly

by regulating the phase currents using a technique known as current chopping. Chopping

is the process of applying a positive voltage Vsuppiy to the phase winding whenever the

current is below icho, and zero or a negative voltage (depending of the inverter topology)

whenever the current is above ichop. This causes the peak current to be essentially equal

to ichop. However, due to nonzero switching times of the applied voltage. there is a small
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supply

Figure 2.5: Four-phase inverter.

ripple in the current waveform around icho,. The supply voltage Vu,,iy indirectly controls

torque production through the the current. The level of Vuppiy determines how fast the

phase current can rise and fall, thereby placing constraints on the values of 0, and 9Off can

have (for positive torque production), the peak value that the current can reach during the

conduction interval defined by 0,, and Gff, and the top speed that the VR.M can attain.

2.3.3 VRM Inverter

The role of the inverter is to provide an interface between the low-level signals generated by

the controller and the high-level voltages and currents required by the motor. A simplified

schematic of the inverter used in this thesis is shown in Figure 2.5. A detailed schematic

is given in Appendix B. At the beginning of the conduction interval denoted by 6,, in

Figure 2.4, both the upper and lower transistor switches are turned on. This places the

i



supply voltage V,,,,ly across the phase winding causing the current to build up. At the end

of the conduction interval denoted by Off in Figure 2.4, both switches are turned off. This

forces the phase current to flow from the negative terminal of V,,,,il, through the lower

diode, the phase winding, and upper diode, and to the positive terminal of ,2,,ig. While

the current is flowing through this path, a voltage equal to minus V, ,,py is placed across

the phase winding causing the current to be reset to zero.

Chopping is performed by repeated turning the upper switch on and off while keeping

the lower one on. When the upper switch is off, the current is forced to flow up from the

negative rail of V,pp, through the lower diode, the phase winding, and the lower switch,

and back to the negative rail. This places a small negative voltage (approximately equal to

the sum of the voltage drops across the diode and lower switch) across the winding causing

a slow decay of the current. Both switches could be used for chopping, but this would cause

the current ripple to be greater for a fixed chopping frequency.



Chapter 3

Experimental Investigation of the
Noise Sources

This chapter describes the experiments performed on the experimental VRM. The purpose

of the experiments is first to determine the relative importance of several hypothetical noise

sources in the motor. The focus then turns to developing an understanding of the excitation

forces and response mechanisms for the sources that are found to contribute the most to

the acoustic noise. This should allow appropriate models to be developed for the dominant

sources.

3.1 Hypothetical Noise Sources

A brief description of several hypothetical noise sources in VRMs is given below.

1. Radial forces are developed by the tendency for the magnetic circuit to adopt a con-

figuration of minimum reluctance. In particular, theses forces act to decrease the gap

separation between the stator pole pair of the excited phase and a rotor pole pair,

particularly as these poles approach alignment. This results in radial vibrations of the

stator which, in turn, produce sound waves. The radial vibrations are largest when

the radial forces excite the resonant frequencies of the stator. In addition to the radial



vibration,, lateral vibrations of the stator and rotor teeth are in(uced by tangential

magnetic forces, which produce the torque in a VRM.

2. Lorentz forces act on the phase windings as they carry current. If I is the winding

current vector and B is the slot leakage flux vector produced by the winding currents,

then the force per unit length of the wire is I x B. Since the phase currents vary with

time, the forces on the windings also vary, resulting in the winding vibrations.

3. Magnetostrictive forces are present in all compressible magnetic materials under the

influence of a magnetic field. Like the radial force discussed above, these forces are de-

veloped by the tendency of the magnetic circuit to adopt a configuration of maximum

energy. Specifically, these forces act to compress the material in order to increase

its effective permeability. In small transformers, these forces are responsible for the

buzzing sound.

4. Bearing imperfections can develop either from the manufacturing process or from

normal wear. These imperfections can lead to vibrations of the rotor shaft, which in

turn, can be coupled to the motor's endbells through the bearing housing or to the

motor's load through the shaft.

5. Other nonuniformities introduced in the manufacturing process can cause unbalanced

radial or axial forces to be produced leading to undesirable bending or wobbling of

the rotor shaft.

6. Windage noise produced by the motion of the rotor. This can cause the motor to act

as a siren.
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Figure 3.1: Schematic diagram of the experimental setup.

The acoustic noise sources in a VRM can be classified as being either of magnetic origin

or mechanical origin. Of the noise sources listed above, those of magnetic origin include the

first three items and part of the fifth while those of mechanical origin include the fourth,

part of the fifth, and the sixth item.

3.2 Experimental Setup



The schematic diagram of the experimental setup is shown in Figure 3.1; more details are

given in Appendix B. The variable-reluctance motor used in testing has four phases and a

rating of 1/2-hp at about 7000 rpm. The excitation for the motor is provided by a four-phase

inverter (see Figure 2.5). The controller is implemented using an Intel 8032 microcontroller.

The computer is used to download various control programs to the controller and to moni-

tor the operation of the motor. The signal generator provides an accurate frequency signal

necessary for some of the experiments. Measurements are made of the VRM current, accel-

eration, and sound output. In all experiments, current measurements are made on Phase A

of the VRM using a current probe; Phase A serves as the reference for all measurements.

Acceleration measurements are made using two moveable accelerometers that are attached

to the motor using beeswax. Sound measurements are made in an anechoic box using a

single microphone located 20 cm from the surface of the motor. The signal from the mi-

crophone undergoes A-weighting by the sound level meter [291. Noise level readings from

the meter are in decibels where 0 dB - 0.0002 pbar. In the rotational experiments, a DC

motor is used as a load for the VRM. The terminals of the DC motor are attached to an

adjustable current source, so that various loads could be presented to the VRM.

3.3 Determination of the Dominant Noise Source

Due to the complexity of the noise sources listed in Section 3.1, the first goal of the exper-

iments is to determine the relative importance of the noise sources of magnetic origin and

those of mechanical origin. In the first experiment, a DC motor is attached to the shaft

of the VRM using a rubber coupling in order to minimize the transmission of vibrations

between the two motors. The total load torque due to brushes of the DC motor and the



speed noise level speed noise level
(rpm) (dB) (rpm) (dB)
500 68 4500 79
1000 74 5000 80
1500 76 5220 92
2000 76 5500 83
2500 79 6000 79
3000 80 6500 76
3500 80 7000 76
3700 86 7500 77
4000 80 8000 92

Table 3.1: Measured noise level of the experimental VRM.

bearings of both motors is given approximately by the following equation

load torque = 0.04 + (5 x 10- 5 )w Nm (3.1)

where w is the rotor speed in radians per second.

The VRM is then operated at speeds up to 8000 rpm while noise measurements are made

with the microphone at various positions 20 cm away from the surface. The measurements

reveal three narrow "noisy" speed ranges where the noise level is over 90 dB and "quiet"

speed ranges where the noise level is below 75 dB. A noise level of 90 dB is considered to be

at the unsafe threshold (see Table 1.1), while an average factory produces noise at a level

of 75 dB. The measured noise level at several discrete speeds is given in Table 3.1.

Next, the power to the VRM is cut while it is operating at 8000 rpm. Noise measure-

ments taken as it coasts down reveal that, after an initial transient, the noise level remains

essentially constant at a level below 72 dB. This result shows that the noise sources of

MPPW-



magnetic origin are responsible for most of the acoustic noise, since the noise is highest

only when there is magnetic flux in the VRM. This conclusion is supported by a second

experiment, where the load motor is used to drive the VRM up to 8000 rpm while noise

measurements are taken. The phases of the VRM are unconnected so that no current flows.

This time the maximum noise level is about 75 dB, again showing that the noise sources

of magnetic origin in the VRM are more important than those of mechanical origin; i.e.,

windage noise or noise caused by the bearings or mechanical imbalances.

Having determined that the noise sources of magnetic origin are responsible for the

acoustic noise, the next series of experiments is aimed at determining which of these mech-

anisms is dominant at the "noisy" speeds. At these speeds, it appears that the magnetic

forces excite mechanical resonances of the VRM since at these speeds, there is a dramatic

increase in the noise level. Therefore, the next series of experiments is performed to de-

termine the resonant frequencies of the VRM and at those frequencies, which parts of the

VRM are vibrating. To simplify matters, these experiments are performed using a rela-

tively simple excitation waveform (described below) on a single phase of the VRM, which

means that the VRM is not rotating. The results of these experiments are later verified by

rotational experiments in which all four phases of the VRM are excited in the conventional

manner.

The resonant frequencies of the experimental VRM are determined by exciting Phase A

with a current waveform of varying frequency content and identifying peaks in the acous-

tic noise level. The load motor is disconnected so that the shaft of the VRM is free to

vibrate. The VRM is resiliently mounted to prevent its vibrational behavior from being

affected by the mount. The inverter drives Phase A with a current waveform consisting
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Figure 3.2: Sawtoothed current waveform used to drive Phase A.

of a sawtoothed AC component on top of a larger DC component as shown in Figure 3.2.

The inverter generates this waveform by repeatedly turning both Phase A switches on and

off (see Figure 2.5). The frequency of the switching f.,w is varied from 100 Hz to about

15 kHz, while the duty cycle D and the supply voltage Vsppy are adjusted so that Imi,

and Imax remain constant. The values of Imin and m are chosen to be 1.75 A and 2

A, respectively, so that the magnetic material remains unsaturated and so that measurable



acoustic noise is produced at all frequencies. The current i(t) can be written as

i(t) ao + ai cos(wt - bi) + h. o. t. (3.2)

where ao, a 1. and b1 are the Fourier series expansion coefficients and w = 2 7rfsaw. Since

magnetic force in linear magneto-quasistatic systems is proportional to the current squared

[6,28], the force which results from the current i(t) in Equation 3.2 has components not only

at the fundamental frequency w, but also at the harmonics of w. It is necessary, therefore,

to check that the frequency of the dominant acoustic noise component and W coincide before

declaring w to be a resonant frequency. This experiment reveals that the VRM has resonant

frequencies at 2604 Hz, 9200 Hz, and 14.2 kHz. At all three frequencies, the signal picked

up by the microphone is almost purely sinusoidal.

At all three resonant frequencies, the following experiment is performed to determine if

vibrations the phase windings are causing the noise. Since the slot leakage flux is maximum

when Phase A's stator poles are not aligned with any rotor poles, the magnetic force acting

on the windings and therefore, the acoustic noise, should be greatest in this configuration.

However, by turning the rotor while applying the current excitation to Phase A, the exact

opposite is found to be true at all three resonant frequencies. At 2604 Hz, the noise level

drops from 94 dB to 67 dB when the rotor is turned from an aligned position to an unaligned

position. Similar results are found at the other two resonant frequencies, thus ruling out

vibrations of the phase windings as a source of the acoustic noise. This experiment also

rules out lateral vibrations of the rotor or stator teeth as a source of the acoustic noise since

the torque in a VRM is zero in the aligned position and maximum at a position between



maxinTmm and minimum alignment.

The next two experiments are performed to determine the relative importance of the

radial magnetic forces, the magnetostrictive forces, and magnetic forces due to imperfections

in the VRM. In the first experiment, acceleration and noise measurements are taken at each

resonant frequency in order to identify the parts of the VRM producing the acoustic noise.

The current waveform of Figure 3.2 is used again. The sound measurements are made by

placing the microphone at various positions on a hemisphere 10 cm from the motor. They

show that much more noise emanates from the outer surface of the stator than from the

endbells. These measurements are repeated at a distance of 20 cm from the motor. At

all three resonant frequencies, they show that about 10 dB more noise emanates from the

stator than from the endbells of the VR.M.

In the second experiment, acceleration measurements are made at various points on the

stator, endbells, and rotor shaft. The acceleration measurements are always made in sym-

metric pairs. For example, if one accelerometer is placed at a particular point on the stator,

the other is placed at a diametrically opposing point, or if one accelerometer is placed on

one endbell, the other is placed at a symmetric location on the other endbell, etc. The dual

acceleration measurements allow distinctions to be made between compressive/expansive

motion and translative motion. These measurements reveal the following types of motion:

1. Compressive radial vibrations of the stator caused by the radial magnetic forces acting

to reduce the gap separation between the stator and rotor poles. Magnetostriction is

ruled out in this case, because measurements made around the circumference of the

stator reveal that there are peaks and nodes in the acceleration magnitude. Magne-

tostriction would tend to cause uniform radial vibrations unless the magnetic material



were nonniform in the circumferential direction.

2. Compressive axial vibrations of the two endbells caused by magnetostrictive forces.

The magnitude of the vibrations is maximum where the stator contacts the endbells,

and drops off sharply as the accelerometers are moved towards the center of the

endbells.

3. Translative axial vibrations of the shaft caused by the misalignment of the rotor

lamination stack with respect to the stator lamination stack. Magnetic forces are

generated which tend to pull the rotor laminations into alignment with the stator

laminations.

4. Bending of the shaft due to nonuniform gap lengths between the rotor and stator

poles. Since radial magnetic forces are inversely proportional to the gap length, the

stator/rotor pole pair having the shorter gap length would generate greater forces

than the apposing pair causing the rotor to bend.

The maximum acceleration for these four types of motion at the three resonant frequen-

cies is shown in Table 3.2. The maximum radial acceleration (and hence displacement) of

the stator is much larger than that of the other three types of motion. This, coupled with

the result of the sound measurements which reveal that the most noise is coming from the

stator, leads to the conclusion that the majority of the acoustic noise in the experimental

VRM is due to radial vibrations of the stator caused by radial magnetic forces in the motor.

Before proceeding further, two important qualifications must be made about the exper-

imental results presented thus far. First, although the vibrations of the endbells and rotor

shaft don't produce significant noise, they are large enough to be considered potential noise



motion maximum acceleration in g's
type 2604 Hz 9200 Hz 14.2 kHz

1 18.30 21.29 28.90
2 3.05 2.29 9.25
3 0.24 0.72 1.54
4 3.91 1.10 2.19

Table 3.2: Maximum acceleration for the four types of motion at the three resonant fre-
quencies.

sources. In the above experiments, the experimental VRM is essentially an isolated struc-

ture. In a real application, vibrations of the endbells could excite mechanical resonances of

the support structure, while vibrations of the shaft could do the same to the load attached

to the VRM. Second, since the experiments are performed only on the experimental VRM,

the results are not necessarily valid for all VRMs. However, experience shows that they are

generally true for VRMs having similar constructions as the experimental VRM.

3.4 Characterization of the Dominant Noise Source

Having identified radial vibrations of the stator as being the dominant noise source, the focus

of the experiments turns to investigating in greater detail the the vibrational behavior of the

stator at the resonant frequencies and the radial magnetic forces responsible for inducing

the vibrations so that appropriate models can be developed. To simplify matters, stationary

experiments are performed first. Using knowledge gained from these experiments, rotational

experiments are performed to complete the investigation.



3.4.1 Stationary Experiments

In the first series of stationary experiments, the excitation applied to Phase A again is

the current waveform of Figure 3.2. Detailed acceleration measurements are made on the

stator at the three resonant frequencies in order to determine the pattern of vibration

around the circumference of the stator and along its length (henceforth referred to as the

circumferential and longitudinal mode shapes, respectively). Acceleration measurements

are made at 16 equally spaced points around the circumference of the stator and at 5

equally spaced points along its length as shown in Figure 3.3. One accelerometer is placed

above Phase A at axial Point (I) to serve as a reference point. The other accelerometer is

used to make measurements at the 15 other points around the circumference of the stator.

This procedure is repeated at the other four axial measuring points so that acceleration

amplitudes and phases, relative to the reference point can be made.

At 2604 Hz, the acceleration measurements reveal that the stator is exhibiting single-

ovalization, which is also referred to' as the 2nd order circumferential vibration mode [23].

Figure 3.4 shows the (highly exaggerated) deflection of the stator at two instances in a cycle

of vibration when the deflection of the stator is at a maximum. Typically, the maximum

deflection is on the order of a micron. The orientation of the stator in Figure 3.4 is the same

as that in Figure 3.3. The vibrations of the stator above Phase A are 180 degrees out of

phase with the vibrations above Phase C, while there are nodes located above Phases B and

D. The amplitude and phase of the vibrations are essentially uniform in the axial direction;

the vibrations at axial Points (I) and (V) are slightly larger than those at Point (III).

At 9200 Hz, the measurements reveal that the stator is exhibiting double-ovalization as
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Figure 3.4: Single-ovalization of the stator at 2604 Hz.

shown in Figure 3.5; double-ovalization is also referred to as the 4th order circumferential

vibration mode. In this case, the vibrations above Phase C are in phase with those above

Phase A, while the vibrations above Phases B and D are 180 degrees out of phase with

those above Phase A. As in the previous case, there is little variation in the amplitude or

phase of the vibrations along the length of the stator.

At 14200 Hz, the measurements reveal the zeroth order mode of vibration as shown in

Figure 3.6; the zeroth order mode is also referred to as the breathing mode. In this case, the

vibrations around the circumference of the stator are all in phase. The magnitude, however,

shows some variation; the amplitude of the vibrations above Phase A are larger than any

other point. As in the previous two cases, there is little variation in the amplitude or phase

along the length of the stator.

These three mode shapes are also found in sound measurements when the microphone

is located at the same points around the stator as the accelerometers, except at a distance
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Figure 3.5: Double-ovalization of the stator at 9200 Hz.

a

a b

Figure 3.6: Zeroth order vibration mode at 14200 Hz.



of 20 cm. The magnitude and phase patterns are the same as those seen in the acceleration

measurements for all three resonant frequencies.

In the second series of stationary experiments, the excitation i(t) applied to Phase A

consists of unidirectional current pulses. The duty cycle of the pulses is set to 25%. The

frequency of the pulses is varied from 10 Hz to 800 Hz, corresponding to a rotational speed

ranging from 100 rpm to 8000 rpm, respectively, if the motor were actually rotating. The

amplitude of the pulses is set to 2 A, again to prevent saturation from occurring. The same

measurements of acceleration and sound are made for this series of tests as those for the

first series.

The experiments revealed that the acceleration and acoustic noise of the motor have

responses at the same frequencies as the frequency components of i 2 (t), and that the two

responses are largest when a harmonic of i 2 (t) coincides with the resonant frequency at 2604

lz; the harmonics of i 2(t) near 9200 Hz and 14200 Hz are too small to cause any measurable

response. Figure 3.7 shows the frequency spectra of i 2 (t), the acceleration, and the noise

waveforms at a pulse frequency of 372 Hz. The acceleration is measured at Point (1,III) on

the stator, while the noise is measured above Phase A. The presence of the 7th harmonic

of i 2 (t) at 2604 Hz, which is more than 15 dB lower than the 1st harmonic, results in

acceleration and acoustic noise waveforms whose 7th harmonics are over 30 dB larger than

their 1st harmonics. The noise level recorded by the sound level meter set for A-weighting

and averaged response is 89 dB. Acceleration measurements show that the stator is again

exhibiting single-ovalization. This finding is consistent with the results of the first series

of stationary experiments which show that single-ovalization is the mode shape associated

with the resonant frequency at 2604 Hz. Since, as stated above, the harmonics of i2 (t) near
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9200 Hz and 14200 Hz are too small to excite those resonances, the fourth and zeroth order

mode shapes are not present in the measurements.

The same type of results are seen at pulse frequencies of 289 Hz and 521 Hz, where the

9th and 5th harmonics, respectively, excite the resonance at 2604 Hz, but are noticeably

absent at 325 Hz and 651 Hz. This is due to the fact that a 25% duty cycle square wave

doesn't have 4th or 8th harmonics. Since the current pulses are not exactly square, there

are nonzero 4th and 8th harmonics. However, these harmonics are too small to measurably

excite the resonance at 2604 Hz.

The results of the two series of stationary experiments show that the magnitude of the

acceleration and noise responses are dependent on the harmonic content of i 2(t). Since

the harmonic content of i2 (t) depends not only on the frequency of the current pulses, but

also their shape, it seems reasonable to expect changes in the noise level when the duty

cycle of the pulses is changed. To test this, an experiment is performed, which again uses

unidirectional current pulses. This -time, the duty cycle of the pulses is varied while the

fundamental frequency is held constant at 372 Hz. The noise level measured at several

different duty cycles is given in Table 3.3. As evident from this table, variations in the duty

cycle of the current pulses cause the noise level to change significantly.

The results of the stationary experiments show that for the experimental VRM, single-

ovalization of the stator is responsible for producing the acoustic noise. The ovalization is

due to the coincidence of a harmonic component of i 2 (t) and the resonant frequency at 2604

Hz; the harmonics of i2 (t) near the other two resonant frequencies are too small to cause

any measurable response. This result illustrates that not only the frequency of the current

pulses, but their shape determine the amount of acoustic noise produced. As discussed in



duty cycle noise level duty cycle noise level
(percent) (dB) (percent) (dB)

17 88 24 90

18 79 26 88

19 84 27 87

20 86 28 85

21 88 29 81

22 89 30 76

23 89 31 72

Table 3.3: Variation of the noise level with the duty cycle

Chapter 2, the shape of the current waveform depends on, among other things, the voltage

excitation applied to the phase windings. This fact raises the possibility of reducing the

acoustic noise by changing the voltage excitation so that the harmonics of i 2 (t) at the

resonant frequencies of the motor are reduced. The results of the stationary experiments

also offer an explanation for the "noisy" and "quiet" speeds that are observed in the initial

rotational experiments, since the current pulse frequency of the phase windings in a VRM

is directly related to the rotational speed of the motor.

3.4.2 Rotational Experiments

In the first rotational experiment, the VR.M is operated at a speed of 3720 rpm so that the

fundamental frequency of the current pulses is again 372 Hz. The total load torque seen by

the VRM is 0.106 Nm. As in the case of the stationary experiments using unidirectional

current pulses, the acceleration and acoustic noise of the VRM are found to have responses

at the same frequencies as the frequency components of i 2 (t). Likewise, the presence of the

7th harmonic of i 2 (t) at 2604 Hz results in significant acceleration and noise components



at that freqency. This is illustrated in Figure 3.8. The i2 (t) spectrum is derived from

Phase A's current, while the acceleration is measured at Point (1,III) on the stator. The

noise is measured above Phase A. The turn on and turn off angles, 0,,, and 9 off, are 34 and

49 degrees, respectively, and V,, is 40 volts. The current chopping level ichop is set high

enough so that chopping doesn't occur. The noise level recorded at this operating point is

92 dB. The current, acceleration, and noise spectra are the same for the other three phases.

Unlike the stationary experiments, the acceleration pattern around the circumference of

the stator is not stationary. At 3720 rpm, the stator is ovalizing, but the oval is rotating

at 1/3 the speed of the rotor in the opposite direction as shown in Figure 3.9. Again, the

orientation of the stator is the same as that in Figure 3.3. The time it takes for the oval to

go from the Orientation A in Figure 3.9, through Orientations B through B, and back to

Orientation A equals 1/(372Hz), the period of the current pulses.

In order to illustrate the effect that the shape of the current pulses has on the noise

level in the rotational case, the following experiment is performed. While the VRM is still

operating at a speed of 3720 rpm and a load of 0.106 Nm, 0,,, 9 off, and V,upply are adjusted

to reduce the noise level while, at the same time, keeping the speed constant at 3720 rpm.

The new values of 0,,, 9 off, and Vp,,,_ which define the second operating point are shown

in Table 3.4. The values for the first operating point are shown for comparison. As a result

of the adjustments, the noise level decreases by 6 dB to 86 dB. The difference in the shape

of the current pulses for the two operating points is shown in Figures 3.10 and 3.11. The

new i 2 (t), acceleration, and noise spectra are shown in Figure 3.12. The acceleration and

noise spectra show a reduction in the frequency components at 2604 Hz as compared to the

corresponding spectra in Figure 3.8 (note the scale change). The exact opposite is true,
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Figure 3.8: Frequency spectra of i2 (t), acceleration, and acoustic noise at the operating
point defined by 0,, = 340, 001f = 490, Vaupply = 40 V, and a motor speed of 3720 rpm.
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Figure 3.9: Single-ovalization of the stator at 3720 rpm.

Table 3.4: Definition of the two operating points used to evaluate the performance of the
constant speed VR.M model.
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Figure 3.10: Top trace: output of sound level meter on 90 dB setting; mid: accelerometer
output @ 9.6 g/div; bot: current @ 2 A/div for 0,, = 340, 9 off = 49*, and V.,p,,y = 40 V.

Figure 3.11: Top trace: output of sound level meter on 90 dB setting; mid: accelerometer
output @ 9.6 g/div; bot: current @ 2 A/div for 0,, = 300, Oqf = 450, and V,.sppy = 30 V.
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Figure 3.13: Surface used to determine the radial force acting on a stator pole.

however, for i
2

(t). The frequency component at 2604 Hz shows an increase as compared

to the previous spectrum shown in Figure 3.8. The reason for this apparent discrepancy is

that the radial force in the rotational case is not only a function of i
2

(t), but also of 6(t) as

shown below.

In deriving an expression for the radial force F,, it is assumed that the flux in the air

gap between the stator and rotor poles is radially directed and uniform in the tangential



direction. Under these assumptions, F, can be determined from the following eqpiation [28]:

F, ' i, - n da (3.3)

where S is a surface which encloses a stator pole as shown in Figure 3.13, n' is the outwardly-

directed unit vector normal to this surface, H, is the radially directed magnetic field in-

tensity which passes through S, i, is the unit vector in the radial direction, and st, is the

permeability of free space. Integration of Equation 3.3 yields

F, = 2ga (3.4)2

where Agap(O) is the effective cross-sectional overlap area between the stator and rotor

poles. The word "effective" is used here, because the concept of an air gap or overlap area

becomes obscured as the rotor and stator poles move away from alignment. The magnetic

field intensity Hr can be written in terms of the phase current i, the air gap length g, and

the number of winding turns N per phase as follows

H NiH, (3.5)2g

Substituting Equation 3.5 into Equation 3.4 yields

yr Io Agap(6) N 2 42(.6F, = 8g2
(3.6)



In the stationary experiments, 6 is constant so that F, depends only on i2(t). In the

rotational case, however, i2 (t) is modulated by the time-varying function Agap(0), an effect

not shown in the spectrum plots. Therefore, in order to predict the acceleration and acoustic

noise in the rotational case, the function Agap(O) along with i2 need to be known.

3.5 Summary of the Experimental Results

In this chapter, an experimental procedure for determining the cause of the acoustic noise

of the experimental VRM is described. The procedure was designed to investigate several

hypothetical noise, which are listed in Section 3.1, to determine which ones, if any, were

dominant. The first series of experiments focused on determining the relative importance

of the noise sources of magnetic origin and those of mechanical origin. These experiments

showed that there were several "noisy" and "quiet" speed ranges. At the "noisy" speed

ranges, the noise sources of magnetic origin were found to be dominant. In fact. when the

magnetic excitation was removed from the motor, the noise remained constant at a low level

for all speeds between zero and 8000 rpm. The second series of experiments were performed

to determine which of the noise sources of magnetic origin was dominant at the "noisy"

speeds. These experiments revealed that the experimental VRM had resonant frequencies

at 2604 Hz, 9200 Hz, and 14200 Hz, and that at those frequencies, the acoustic noise was

caused by radial vibrations of the stator induced by radial magnetic forces in the motor.

Having reached this conclusion, a series of experiments using single-phase excitation were

then performed to determine exactly how the acoustic noise was being produced. These

experiments showed that radial vibrations of the stator were set up when harmonics of the

current squared waveform coincided with a resonant frequency of the stator. The pattern of



the radial vibrations and acoustic noise around the circumference of the stator depended on

which resonant frequency was being excited; at 2604 Hz, 9200 Hz, and 14.2 kHz, the second,

fourth, and zeroth order circumferential modes were observed, respectively. However, when

the motor phase was excited with current pulses whose frequency fell within the range of

frequencies that would be seen during normal operation of the VRM, the harmonics of the

current squared waveform around 9200 Hz and 14.2 kHz were too small to produce any

measurable vibration or noise response; the experimental VRM was designed to operate at

speeds up to 8000 rpm which corresponds to a pulse frequency of 800 Hz for a single phase.

To verify the results of the single-phase stationary experiments, rotational experiments

were performed using conventional excitation on all four phases of the experimental VRM.

These experiments showed that the magnitude of the acoustic noise and radial acceleration

of the stator depended on the shape of the radial force pulses. Specifically, the noise

and acceleration were largest when harmonics of the radial force pulses coincided with the

resonant frequency at 2604 Hz: the harmonics near the other two resonant frequencies were

again too small to produce any response. The experiments also showed that by changing

some of the operating parameters, it was possible to make the VRM run quieter at a

given speed and load torque. The reason for this was that the shape of the radial force

pulses depended on the operating parameters. This dependence was illustrated through

Equation 3.6 which showed that the shape of the radial force pulses depended on the

current squared waveform and the air gap function A gap (0). The shape of the current

squared waveform, as discussed in Chapter 2, depended on the turn-on and turn-off angles,

the supply voltage, and the current chopping level. By changing these operating parameters

so that the harmonics of the radial force pulses near 2604 Hz decreased in magnitude, the



acoustic noise could be reduced.

This result lead to the conclusion that methods were needed to calculate the vibrational

behavior of the stator based on parameters defining its geometry and the radial forces

of the motor based on parameters defining its operation. These two issues are examined

in Chapters 4 and 5, respectively. Once these were known, a model could be developed

that took as inputs the geometric and operational parameters and that gave as an output

the magnitude of the stator acceleration. The acoustic noise at a given frequency, as the

experiments have shown, is proportional to the acceleration of the stator. This model could

be used to predict not only the acoustic noise of a particular design, but the sensitivities of

the noise to variations in the parameters. This would allow the operating parameters which

miiniized the acoustic noise for a particular VRM operating at a given speed and load to

be determined. As noted earlier in the chapter, the results and conclusions of this chapter

are based on tests performed on the experimental VRM, and are not necessarily valid for

all VRMs. It would seem reasonable, however, to expect that they would hold for VRMs

having similar structures.



Chapter 4

Determination of the Resonant
Frequencies and Modes of the
Stator

4.1 Introduction

In the previous chapter, the experiments showed that the acoustic noise problem of the VRM

was due to the coincidence of a harmonic component of the radial force and a resonant

frequency of the stator. This result showed that accurate knowledge of the vibrational

behavior of the stator was essential to the prediction of the acoustic noise. Specifically,

the transfer function between the radial forces acting on the stator poles and the resulting

radial vibrations of the stator needed to be known at all frequencies in the audible range.

Finding this transfer function is an extremely difficult problem for several reasons. First,

the radial forces acting on the stator are not concentrated at a single point. The exact areas

of the stator poles that the forces act on depends on the position of the rotor. Second, it is

difficult to derive equations of motion for the stator which satisfy not only the equilibrium

and compatibility conditions, but also the complex set of boundary conditions presented by

the stator and the parts of the motor which support it [25,27]. Third, adequately modeling



losses in the stator poses a major problem, since some of the damping forces acting on the

stator depend on the parts supporting it.

Therefore, instead of determining the transfer function outright, the analysis presented

in this chapter determines only the resonant frequencies and modes of the stator assuming

that the motor behaves as an elastically conservative system. Due to the assumption of

a lossless system, the analysis will not be able to determine the width of the resonant

peaks or the absolute amplitude of the vibrations. Approximations of the widths of the

peaks could be obtained by experimentally determining an effective damping factor for the

stator material. However, this still would not allow the absolute vibration amplitudes to be

determined. The main usefulness of this analysis, therefore, will be to tell the motor designer

the frequencies where the acoustic noise will occur and how these frequencies change when

the size of the stator is changed.

The problem of predicting resonant frequencies of stators has been addressed by several

authors using varying methods of analysis. The analysis presented in this chapter uses

the method described in [10] and [23] with some modifications. It is based on the three

dimensional theory of elasticity found in [25]. The well-known Rayleigh-Ritz method [13]

along with Lagrange's equation are used to derive the frequency equation of the stator. The

frequency equation is derived as a function of parameters which describe the stator's geom-

etry, material composition, and elastic properties. This allows the variation of the resonant

frequencies as a function of each parameter to be determined. Due to its transcendental

form, the frequency equation is solved numerically using a computer.



4.2 The Rayleigh-Ritz Method

The Rayleigh-Ritz method is based on the premise that a finite number of independent

position-dependent deflection functions bo(f), p . N-() may be used to provide

an approximation to the exact natural modes of a conservative system which are usually

difficult or impossible to find. Although the number of functions used is arbitrary, it is

agreed that, in a manner similar to the Fourier series synthesis of a function, a larger

number of functions leads to more accurate results at the expense of greater computational

effort.

In choosing deflection functions for use in the Rayleigh-Ritz method, there is one impor-

tant requirement that should be taken into consideration. If the natural modes determined

by this method are to satisfy the prescribed boundary conditions, then all of the chosen

deflection functions must individually satisfy them. Having the natural modes satisfy the

boundary conditions is important, because the natural frequencies of a given structure un-

der one set of boundary conditions can be entirely different from those of the same structure

under a different set of conditions. Usually, it is inconvenient to satisfy all of the bound-

ary conditions, and it is common practice to -ignore some of the constraints. However, for

complete confidence in the results, the Rayleigh-Ritz method requires that all boundary

conditions be met.

The application of Lagrange's equation to conservative systems involves the use of time-

dependent energy functions. This means that the displacement function U in general will



be a function of position and time. In the Rayleigh-Ritz method, 14 is approximated as

N-1

O( t-) = q$(p)qg (t) (4.1)

g=O

where N is the number of deflection functions, - is the position vector, and qg(t) are the

time-dependent generalized displacement coordinates. The following form is assumed for

the generalized coordinates:

qg(t) = Qg cos(wt) (4.2)

where Q9 are constant amplitudes and w is the frequency of vibration. Equation 4.1 is

inserted into expressions for the kinetic and potential energies of the system. The resulting

expressions are substituted into the following form of Lagrange's equation [19]:

d 8( KE) &( PE )
+ = 0 (4.3)

dt &(g &qg

where KE and PE are expressions, in terms of Equations 4.1 and 4.2, for the kinetic and

potential energies respectively. Equation 4.3 is evaluated for each of the N generalized

coordinates {qo, ... , qN-1} yielding N linear equations which can be written in matrix form

as

Ax = w 2Bx (4.4)



where A is a synmetric N by N matrix, B is a symmetric positive definite N by N matrix

and

x = [Qo Q1 ... QN-_1T (4.5)

Equation 4.4 is referred to as the generalized eigenvalue problem, and numerical solutions

to it can be found using either MATLAB [181, an interactive program that performs matrix

computations or the EISPACK [8,24] and LINPACK routines [3]. Solutions of Equation 4.4

yield a set of approximations to the natural frequencies of the system wo, w1 ,..., wN-1 and

a set of eigenvectors xo,x 1,..., XN-1- An approximation to the g'th natural mode of the

system can be obtained using the following equation:

(4.6)

where

(4.7)

4.3 Determination of the Deflection Functions

In applying the Rayleigh-Ritz method to the experimental VRM, several simplifying as-

sumptions are made in the analysis:

9 The stator is treated as a thick cylinder. The presence of the stator poles is ignored.

U, (P) = xg7 Y

LO
Y - - 'i P) 'N-1 (A] T0 (P) W



* All displacements are infinitesimal in comparison to the dimensions of the stator.

* The stator lamination stack is homogeneous, isotropic, linearly elastic, and compress-

ible.

* There are no surface forces acting on the stator; the endbells and windings impose

negligible constraints.

Figure 4.1 shows the dimensions of the stator and the coordinates used to describe it.

In the analysis, all lengths are made dimensionless by dividing them by the outer radius r2.

The components of the displacement distribution function U have the following form in

cylindrical coordinates:

N-1

U,(ro: 0,z t 14(r, 0, z)qg(t)
g=0

N-1

Me (r 6, z t ) { 4(r, 0, z)qg(t)
g=O

N-1

Uz(r,Oz,t) = 4((r, 0, z)qg(t)
g=O

(4.8)

where Ur, U0 , and Uz are the radial, tangential, and axial components of displacement,

respectively. The deflection functions are approximated by a double power series having

the following form:

A1-1 M-1

4 , V aI r3 zi cos(70)
i=0 j=0



CROSS-SECTIONAL VIEWI SIDE VIEWI

Figure 4.1: Dimensions and coordinates for the stator.



M-1 Ml-1

#0(r, ,z) Z bij rJ z sin(r/9) (4.9)
i=0 j=O

(r, z) = cij ri zi cos(rj6)
i=O j=O

where 77 is the circumferential mode number, M is an integer which determines the size and

accuracy of the model, and a-j, bi-, and cjj are expansion coefficients. As stated earlier, in

order for the natural modes to satisfy the boundary conditions of the problem, all of the

deflection functions must satisfy them. The boundary conditions of the stator under the

simplifying assumptions made above are

2G [(~ O8qf+ it (Or 089 r,- , 1 (4.10)1(r, 0, ) = + = at r -r1 - 2p . Or r r(90 0:

and

2G _# (86, q$, &1#e
0 2(rG[,z) =1-p + p + Or + -908 0, at Z =l, (4.11)

1 - 2p a: Z r r r(9 )

where o, and az are the components of normal stress in the radial and axial directions,

respectively, rn = ri/r 2 is the normalized length of the inner radius of the stator, l, =

L,/2r 2 is half the normalized length of the stator, C = r 2G is the normalized shear modulus

of elasticity, and i is Poisson's ratio. These two equations simply state that there are

no forces acting on any surfaces of the stator cylinder. Substituting Equation 4.9 into



Equation 4.10 yields

[aij (j + K) r j 1 z + b-j K q rj- 1 zi + cij , i ri z-i] cos(79) - 0 (4.12)
?0= j=O

and

S S [ai (j + K) z + bij K 7 + cij K i Z] cos(79) = 0 (4.13)
i=0 j=O

where K = i/(1 - pt). Equations 4.12 and 4.13 are homogeneous polynomials in z; the theta

dependence cancels out. Since these polynomial must be satisfied for -l_ < Z < In, their Al

coefficients, which are linear functions of the expansion coefficients aij, bij, and ci,, must

be equal to zero. This leads to 2M1 homogeneous equations.

In a similar manner, substituting Equation 4.9 into Equation 4.11 yields

S S [aij K (j + 1)rJ li +bK 1r1- 1 l +i j i r l-1 cos(790) = 0 (4.14)
i=0 j=0

and

M-1 A-1

E3 [aij K (j + 1) rji (in) + big K 7 r'- 1 (-)i + cij i r (-ln)i cos(7790) = 0
i0j=0

(4.15)

Equations 4.14 and 4.15 are homogeneous polynomials in r which must be satisfied for

r, < r < 1. Again, this means that the coefficients of both polynomials are zero, leading

to 21 + 2 homogeneous equations. These equations along with the 2M equations obtained



from Equations 4.12 and 4.13 can be put into the following form:

Ax = 0

where A is a (4M1 + 2) by (3M12) matrix and

x [- ai - - - ci 7

(4.16)

(4.17)

is a 3M 2 element column vector of the expansion coefficients of the deflection functions.

Thus the problem of determining the deflection functions of Equation 4.9 which satisfy

the boundary conditions reduces to finding vectors in the null space of A. This is easily

accomplished using MATLAB. which can find the complete set of independent vectors that

satisfy Equation 4.16. Assuming that A has full rank, the maximum number of independent

vectors that can be obtained for a given value of M > 2 is 3MJ2 - 4M - 2. The number of

vectors in the null space of A specifies N in Equation 4.8. The N deflection functions can

now be expressed as

09(r, 0, z)

cM(r.0,:) =

M-1 M-1

{ L aij r z cos(r/0)
i=0 =0

M-1A-1 g

E : bi ri sin(tIO)
i= j=O

{ [ cd rz cos(37=)
i=0 j=0

(4.18)



where aij, bij, and cij are the expansion coefficients taken from the g'th null space vect.or.

These functions form the set of all possible deflection functions of the form shown in Equa-

tion 4.9 that satisfy the boundary conditions given in Equations 4.10 and 4.11. Because of

this, the displacement distribution function in Equation 4.8 will be able to provide the best

approximation to the exact natural modes of the stator for a given value of A.

4.4 Determination of the Kinetic and Potential Energies of
the Stator

The kinetic energy of the stator cylinder can be obtained from the following equation [10,13):

KE = fIn 271 [ + 2 + (au )2] rdrd~dz (4.19)
2 In_, a8t 8t 8t

where = rgp, is the normalized mass density of the stator. Substituting Equation 4.8

into Equation 4.19 and changing the order of summation and integration yields

- N-1N-1 2' 2

KE = PS f $ $ + 4 + (4.20)
9=0 b7=0

Using the integrals given in Appendix A, this equation simplifies to

.. N-1 M1 ( g g h g h
KE = LE g 4h a aj akI R1?P1Z1+ bij bkl R1P 2 Z 1 + cj cki R1 P1Z1 (4.21)

gh ijkl



The potential or strain energy of the stator cylinder can be determined from the following

equation [10,25]:

PE =
2 -n

27r 1

0f r n
(OrEr + OotE + .ZE + Tre-fr6 + 7rYrz + -7027y2)rdrd~dz (4.22)

where the strains are given by

a ur
- Or

_9u'+Oue u 
~raO r r

- + a
r r9O

au+ au
Irz ~ + z Or

Ez

Yz - + r9Z
_9u6 + -u.19Z B r490

and the stresses are given by

Or = [(1 - p')fr + p1(eg + Er )]

(70 = 2G [(1 - pI)E + pl(Er + E)]

o =-[(1 -

rr = 57),r

7rz = 7 (4.24)

1)(; + p(Cr + )]

The term-by-term integration of Equation 4.22 is found in Appendix A. The result of that

integration yields:

N-1

PE= G qgqh
gh

M-1

i jkl

p(j + 1) + (1- p)(1 + il)1 Z 1

1 - 2p 2

2r q (1 - i + ( 1 - )
1 - 2p

Z 3'
2J

3 1
2J

(4.23)

g h
aij aki

g hf
+ ai bkl



g h+aijcIf 2

gr r
+ bij- bkl

9 h
+ bii c k

+ cij c {

[ii +
21tk(1 + i)

1- 2p J

2pk
1 - 2p

2(1 - p)ik
1 - 2p

Z3 . [j + ±2 1
R ,2 P]I32 j.

Equations 4.21 and 4.25 can be written in a more concise form as follows:

N-1

KE ip,(qg4h
gh

M-1
g

ijkl

7 7
aIDis

g h 8 h
+ bij bkl 7ijkl i C i ik

N-1 A-1

= 05 qgqj 1 (
gh ijkl

g h 1 g h 2
aij akI Dijkl + aij bkl Dijkl

g 11 3
+ aij Ckli Dijkl

g h 4 g h 5
+ biJ bkI DIsk + bij ckI Dijkl

g h 6
+ Cij Ck Dikl

1 p+ + / )
Dijkl= 112 P2 +- 2P1

12P1 }

1Z3 + ik1P2
22

- iP2 ]

(4.25)

(4.26)

PE

where

(4.27)

i -46

2 q2(1_I P1

Z2

2

+ (1 - p)(1 + jA IZ1 ,+ikZ 2.3

1 - 2pt1 2

+ (j- 1)(1 -1) P21



2 (1-)i22n + (1 -p) zDl'jklz 27q [(l - 1)'P- + 2P, 1 - i) 2pZI 

3k~2 2,uk( + j)] I z2 -lZ
2

1 -2(2p

[2 1tk
ijkl- 277 [1 -

6~l [2(l - IL)ik]JZ 3~-

+ ik 7lZP 2 -Z
2

- P2] R2Z2

+ ±jp 77 2P2] 7?3

D'j'kl= RlP1 2

4~1
1 ]



8 Z1
Dijkl= R 1 P 2 -2

4.5 Determination of the Frequency Equation of the Stator

The frequency equation of the stator is obtained by substituting Equations 4.21 and 4.25

into Lagrange's equation for each of the N generalized coordinates. Equation 4.3 evaluated

for the j'th coordinate yields

N-1 MI-1 -qg A I g 1
( qg (: 2 aij akI Dijkt

g 'ijkl

g j 4 9fg
+ 2 bij bkI Djkl + bij cI

N-1 A-1

Sqg 2 [(aij ai
g ,jkl

where w, = /p,. As stated earlier,

be written in matrix form as

+ (ai bkI

9 )
+ bij ckI

+ aijbkI DjkI + (aij ck + a'1 cki) Dijk

5I 9 6 '
Dijkl +2 cij ckI Dijkt

- - -g 8 )2

+ c23 ci) D ijk + b bkl Dki I (4.28)

the N equations obtained from Equation 4.28 can

Ax = w2 Bx (4.29)



where the element in row a and column 3 of A is given by

M-1[ 2 3a
a a 1 ( * a B 2 a a 3Aa,B3 = ( o 1) D2 + ai?'bkk + a D + aij cd + aij ckI Dijkl

i'jkl

0 4 130X c al ) 6430+ 2 bij bki Dijkl + (bbij cki + b? j cki Dijki +2 Cij ckl DJki] ( 4.30)

and the element in row a and column 3 of B is given by

M-1 a 3c
B A, l 2 (aij aki + cij ci) DijkI + bij bki Dijk (4.31)

i jk I

As mentioned earlier, both A and B in Equation 4.29, which are the equivalent stiffness

and inertia matrices of the stator cylinder, respectively, are symmetric and positive definite

[19].

4.6 Results

4.6.1 Resonant Frequencies and Mode Shapes

The dimensions of the experimental VRM and the material parameters used to calculate

the resonant frequencies are shown in Table 4.1. The values chosen for G, yt, and p are

those of mild steel; the actual values depend on the annealing process and the properties of

the insulation between the laminations.

The resonant frequencies and mode shapes are determined using a combination of MAT-

LAB [18] and Microsoft C 5.0 [20] routines which are listed in Appendix 4. The main driver

program for these routines is the MATLAB M-file RES.M which, in addition to the pa-



parameter value

G 8.09 x 1010 Pa

p .28

p 7860 kg/rn 3

r1 4.06 cm

r2 4.69 cm

L., 5.08 cm

Table 4.1: Dimensions and material parameters of the experimental VRM.

rameters listed in Table 4.1, must be supplied with the model size parameter M and the

desired circumferential mode number 17. Due to numerical round-off problems, the maxi-

mum model size parameter that can be used is Al 4. Increasing M beyond this point

causes the matrix B to no longer be positive definite.

Table 4.2 shows the resonant frequencies for the first six modes of the experimental VRM

as determined by the analysis with the model size parameter M = 4; only the frequencies

below 20 KHz are shown. The mode shapes associated with each of these frequencies can

be determined by evaluating Equation 4.6 at several points on the surfaces of the stator

cylinder. This allows a picture of the stator to be developed at an instant in time when

all deflections (radial, tangential, and axial) are at a maximum. From this picture, the

longitudinal symmetry of the mode can be determined. Longitudinal symmetry is defined

in terms of the radial displacement of the outer surface r = 1 along the length of the

stator. Even and odd symmetry are defined as U,(1, 0, z) = Ur(1, , -z) and U,(1, 9, z)



circumferential frequency in Hertz
mode number longitudinal synunetry

q even odd
0 18603 18548
1 - 16902

2 2127 3520
3 5936 8665
4 11168 14663
5 17633 -

Table 4.2: Calculated resonant frequencies of the experimental VRM.

-U,(1, 0, -z), respectively.

Some examples for the calculated frequency of 2127 Hz are shown in Figures 4.2 and 4.3.

Figure 4.2 shows the radial, tangential, and axial displacements of the outer radial surface

of the stator as a function of axial position. The displacements are evaluated at Phase A's

location 6 = 0 and have been normalized so that the maximum displacement is equal to one.

Figure 4.2 shows that the radial vibration amplitude changes very little along the length of

the stator. This is in agreement with the the acceleration measurements performed on the

experimental VRM as discussed in Chapter 3. Figure 4.2 also shows that the outer surface

is expanding and contracting in the axial direction, since for positive values of z the axial

displacement Uz is positive and for negative values of z it is negative. A half of a cycle

later, the opposite will be true. The tangential displacement UO is constant over the length

showing that there is no twisting motion of the stator.

Figure 4.3 shows the radial, tangential, and axial displacements of the end surface of

the stator at =+, as a function of radial position. The radial displacement U, is

constant meaning that there is no compression of the stator in the radial direction. The
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axial displacement shows that the ends of the stator, which would be in contact with the

endbells in the case of the experimental VRM, are pivoting around the radial midpoint of the

stator cylinder. This illustrates one of the problems of including the endbells in the model

for the stator. Because of this rocking motion, the area of contact between the endbells

and the ends of the stator would change with time, meaning that the boundary condition

at the stator ends would vary with time and position. The tangential displacement shows

that there is shearing between the inner and outer radial surfaces of the stator.

Using the mode shapes and symmetry arguments, most of the frequencies given in

Table 4.2 can be ruled out as being resonant frequencies of the stator of the experimental

VRM. First, since the radial forces acting on the stator are essentially uniform in the axial

direction except near the ends of the stator, resonant frequencies whose radial displacement

14 is not an even function of the axial position, will not be excited. Second, since the

radial forces act simultaneously at diametrically opposing points on the stator, resonant

frequencies corresponding to odd circumferential modes will not be excited. This leaves only

three resonant frequencies at 18603 Hz, 2127 Hz, and 11168 Hz corresponding to the zeroth,

second, and fourth order circumferential modes, respectively. In Chapter 3, these same three

mode shapes were observed for the actual resonant frequencies of the experimental VR.M.

A comparison between the respective frequencies is given in Table 4.3. As this table shows,

there is considerable discrepancy between the calculated and measured resonant frequencies

of the stator, especially at the higher frequencies. This can be attributed mainly to the

absence of the poles, windings, and endbells from the model and the small value used for

Al: a similar method of analysis that didn't account for the boundary conditions has been

shown to be accurate to within a couple of percent for thick cylinders [23]. As noted above,



Table 4.3: Comparison between the calculated and measured resonant frequencies of the
experimental VR M.

the value of Al is limited by numerical round-off problems. The particular value used for G.

p, and y does not effect the magnitude of the errors significantly since changing the first two

simply scales all three resonant frequencies up or down by the same amount, and changing

the third over the range of values for all steels causes very little change in the frequencies.

Because of the size of the errors and the sharpness of the resonant peaks measured for

the experimental VRM, it will be necessary to perform a more accurate analysis of the

stator which takes into accounts the poles, windings, and endbells, if the magnitude of the

stator acceleration is to be predicted from geometric parameters. However, as mentioned

at the beginning of the chapter, this places many more constraints on the form that the

displacement function can take which further complicates the solution. Alternatives would

be either to use finite-element analysis to determine the resonant frequencies or to simply

measure them after the machine is built..

Despite its shortcomings, the analysis presented in this chapter is useful for giving

a yes/no answer to the question of whether a potential noise problem exists for a given

design. An important question that could be answered is whether a design would lead to a

motor having resonant frequencies low enough to be excited by the magnetic forces in that

circumferential frequency in Hertz
mode number 7; calculated measured % error

0 18603 14200 +31.0
2 2127 2604 -18.2
4 11168 9200 +21.4



motor. As shown in the next section, the analysis is also useful for determining trends in

the resonant frequencies as geometric parameters are changed.

4.6.2 Effect of Dimension Changes on the Resonant Frequencies

As shown in Chapter 3, the acoustic noise problem of the experimental VRM is due to

the coincidence of a harmonic of the radial force and a resonant frequency of the stator.

Consequentially, if the resonant frequencies can be raised high enough by changing the

dimensions of the stator, so that they are not excited by the major harmonic components of

the radial force, the acoustic noise can be reduced. This section, therefore, presents figures

showing the effect of changes changes in the dimensions of the stator on the three calculated

resonant frequencies of 18603 Hz, 2127 Hz, and 11168 Hz corresponding to circumferential

modes 0, 2, and 4, respectively. In Figure 4.4, the effect of changing the stator length while

holding the inner and outer radii constant is shown. This figure shows that increasing the

length causes the two lowest frequencies to increase and the highest one to decrease. The

changes, however, are very small indicating that this is not a very effective way of reducing

the acoustic noise.

Larger changes, however, are obtained when either the outer or inner radius is changed.

Figure 4.5 shows the effect of changing the outer radius while holding the inner radius

and axial length constant. In this case, the two lowest frequencies more than double when

the outer radius is increased by 50%, while the highest one decreases slightly. Figure 4.6

shows the effect of changing the inner radius while holding the outer radius and axial length

constant. As in the previous case, increasing the thickness of the stator (by decreasing the

inner radius) causes the two lowest resonant frequencies to increase. The highest frequency,
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3

2.5

1.5

n=2

n=4

n=0

0.5 F-

(

0.9 1.1 1.2 1.3 1.4 1.5

normalized outer radius

Figure 4.5: Effect of outer radius on the resonant frequencies corresponding to circumfer-
ential modes 0, 2, and 4. The inner radius and axial length are held constant.

81

I I I I I



4

3.5-
n=2

3-

n-4
Q n=

2.5-

2,-

0.5

01
0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

normalized inner radius

Figure 4.6: Effect of outer radius on the resonant frequencies corresponding to circunfer-
ential modes 0, 2, and 4. The outer radius and axial length are held constant.



however, increases as the thickness of the stator is increased, although the percent change

is small as before. Both Figures 4.5 and 4.6 show that the most effective way to increase

the resonant frequencies is to increase the thickness of the stator cylinder. However, this

method might not be the most cost effective way of reducing the acoustic noise of a VRM,

due to the amount of increase in thickness that might be needed. This point is illustrated

below for the experimental VRM.

The experimental VRM was designed to operate at speeds up to 8000 rpm, which

corresponds to a maximum pulse frequency of 800 Hz. In Chapter 3, the experiments

revealed that harmonics of the radial force pulses as high as the seventh could excite the

lowest resonant frequency of the stator and produce significant noise. Therefore, to prevent

7th harmonic excitation from occurring, the predicted resonant frequency at 2127 Hz would

have to be raised above 5600 Hz, an increase by a factor of about 2.6. From Figure 4.5, such

an increase would require that the outer radius, for example, be increased by 50increased by

a factor of almost 5. Because such an increase would add significantly to the cost and size

of the motor, a conclusion that can be drawn here is that changing the size of the stator is

not a very practical means of reducing the acoustic noise of a VRM, and that other means

such as current/radial force pulse shaping probably offer better possibilities.



Chapter 5

Prediction of Magnetic Forces in
the VRM

As shown in Chapter 3, the two factors that determine the level of acoustic noise in the

experimental VRM are the values of the resonant frequencies of the stator and the harmonic

content of the radial forces. In Chapter 4, a model is presented for predicting the resonant

frequencies and modes of the stator based on its length and its inner and outer radii. Using

this model, the effect of changes in these three parameters on the resonant frequencies

can be determined. However, once the geometry of the stator is chosen, the level of the

acoustic noise depends on the shape of the radial force pulses. In this chapter, a model

is presented that predicts the fluxes and currents in the VRM at a constant speed based

on the electromechanical properties of the VRM, the inverter topology used to excite the

phases of the VRM, and the control scheme. As will be shown in this chapter, by using the

flux-current curves taken from the experimental VRM, the current and torque waveforms

can be predicted in a straightforward manner allowing the peak current and average torque

of the VRM to be accurately determined. The radial force waveform, however, can not be

predicted accurately enough to determine the effect of changes in the operating parameters

on the magnitude of the acoustic noise. The main reason for this is that the model of the



VRI sed here is not detailed enough to allow the harmonic components of the radial force

waveform as high as the seventh in the case of the experimental VRM, to be accurately

predicted. As a result, more detailed modeling, such as would be available through finite-

element analysis, appears necessary.

5.1 Constant-Speed Model of the VRM

As in Chapters 2 and 3, it is assumed that the phases of the VRM are identical and

magnetically independent and that the fields in the air gap are radially oriented and uniform

in the circumferential direction. The equations governing the operation of the experimental

VRM at constant, speed, taken from Chapters 2 and 3, are

dA,(t)
dt

= - Rnin + Von n = 1, 2, 3, 4 (5.1)

dO( t)
dt

1W,(On, An)

(5.2)

(5.3)
4 B(91"nO, An)

- - (gn

= in (On, A'l)dA'//

; 2 7r/

7a = 27r Jo

(5.4)

(5.5)r, dt

110 AgapI(0) N2 ?2

8g 2F,.,,(t ) (5.6)



27r
= + (n - 1)NN (5.7)

where W' and F,, are the energy and the radial force of the nth phase, respectively, Agap,n

is the cross-sectional area of the gap between the stator poles of the nth phase and a pair

of rotor poles, or is the rotor speed which is assumed to be constant, and ra is the average

torqie.

5.1.1 Modeling the Flux-Current Relationship

Before Equations 5.1- o.7 can be simulated, the current-versus-flux relationship needs to be

known. In Chapters 2 and 3 it was assumed to be linear as in Equation 2.10, which is

valid for currents below 5 Amperes in the experimental VRM. However, a VRM is normally

operated with its magnetic material in saturation in order to minimize the power rating of

its inverter [21]. In order to adequately model the effects of saturation and the dependence

on the rotor position, the current-versus-flux relationship for the VRM is approximated by

a polynomial in A whose coefficients are functions of the rotor angle 9. The current verses

flux relationship for the nth phase is given by

N1 -1

in = ak(,) An (5.8)
k=O

where

N 2

Z!(0n) = 3k1 cos[N,,(N) - 1)] (5.9)
1=0



The expansion coefficients #l are determined in the following manner. First, an N1 th

order polynomial of the form shown in Equation 5.8 is fit to each of the 16 curves shown in

Figure 2.3 in a least-squares sense. This yields the value of ak for k = 0, 1,..., N1 at the

16 discreet positions 0 = 04, 2",..., 30' which can be put into matrix form as follows

ao(0") a(O 0*) -.. aN1-1(
0 )

16 rows ao(24) a1(2*) - - N1 --1( 2 ')

ao(304) a1( 30
4) -.. aNi -1(3 0') J

Ni columns

Next, an N 2th order cosine series of the form shown in Equation 5.9 is fit to the 16 points

in column one again in a least-squares sense yielding the N 2 + 1 coefficients 0or. This step is

repeated for the other N1 - 1 columns of the matrix yielding #11, 02l, - - -, 1Ni. The values of

Alk for the experimental VR.M determined using N1 = 5 and N 2 = 10 are given in Table 5.1.

The MATLAB M-files used to determine these coefficients are given in Appendix 5.

Figures 5.1-5.3 show plots of the flux verses current curves of the experimental VRM

and the fitted curves at rotor angles of 0, 14, and 30 degrees. These plots show that

there is good agreement between the actual and fitted curves at all current levels including

those in saturation. As expected, the largest errors occur at the aligned position where the

current-flux curve bends the most. All of the curves, however, have slight errors around

16 Amperes. This is due to the fact that polynomial fits are valid only over the domain of

points used in the actual fitting. When determining the coefficients for the experimental

VRM, the maximum value of the current was approximately 15.9 Amperes. At the origin,

this problem is avoided by not having any constant term in the polynomial of Equation 5.8.



1.3205 x 105

-5.5807 x 10'
1.1096 x 106

-1.1908 x 106
-9.8087 x 10
5.3986 x 106

-3.1644 x 106
-6.9785 x 106
7.6580 x 106
4.9605 x 106

-2.8802 x 106

6.1552 x 103

-1.3583 x 104

-3.3699 x 104
1.8456 x 10'

-9.6229 x 104
-6.5613 x 105

6.4900 x 105

8.8913 x 105

-1.2448 x 106
-7.0111 x 105

4.6541 x 105

/321 /33~
-6.0646 x 102
4.3489 x 103

-5.8892 x 103

-7.1263 x 103

1.8146 x 104

2.1212 x 104

-4.0461 x 104
-3.1092 x 104

5.9599 x 104

2.9456 x 104

-1.9495 x 104

7.6789 x 10-1
-8.8548 x 101
2.2368 x 102
4.4564 x 101

-5.5584 x 102
-2.0606 x 102
9.1372 x 102
4.0449 x 102

-1.0849 x 103

-4.6172 x 102
3.2080 x 102

1.2506
-2.4099

4.8191 x 10-1
9.1909 x 10-1
1.0212 x 10-1

6.9344
-1.1264 x 101
-1.5473 x 101
6.6049 x 101

-1.7971 x 102
2.0577 x 102

Table 5.1: Expansion coefficients of the flux-current relationship for the experimental VRM.

This forces the current to be zero when the flux is zero.

5.1.2 Determination of the Torque

The total torque r, can be written in terms of the flux variables A, and 0 using the current-

flux relationship determined in the previous section as follows. Substituting Equations 5.8

and 5.9 into Equation 5.4 and simplifying the result gives

Jo ( Ni (,)'N n
0k=0

N1 -1

k=0 0A,7 dA'
k=O .

W1'"(0, A, )

I
031021
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Figure 5.1: Comparison between the flux vs. current curve of the experimental VRM and
the fitted curve at 0 = 0*. The dashed line is the fitted curve.
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Figure 5.2: Comparison between the flux vs. current curve of the experimental VRM and
the fitted curve at 6 = 14". The dashed line is the fitted curve.
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(5.10)

Combining Equations 5.10 and 5.3 yields

4 N 1 -1 AN, -k+1

T =" >Zak(On)N k±1

40 NNIAk 1 -1k(O+1

n=1 k=o

4 N1-1 AN1-k+1 8fkfOn)

_ k N1 - k +1 80O,

where

OaN(,) N2
N, E(N 2 - 0)0kI sin[NOn(N 2 -

1=0

5.1.3 Determination of the Radial Forces

In order to determine the radial forces using Equation 5.6, the air gap length g, the current

in , and the air gap Agp(On) need to be known at all times. In the simulations, the air gap

length is approximated as being constant since the experiments of Chapter 3 showed that

the maximum radial deflection of the stator was on the order of a micron, which is much

less than the nomial length of 0.0254 cm. The current in is available at each step in the

simulation since it is directly related to the state variable An through Equation 5.8. The

air gap area Agp(On) is determined from known quantities as follows. The air gap area is

(5.11)

(5.12)

N 1i 1N1-k+

= k a(On) An

k= N, - k +1



related to the flux through the following equation [6]

A = p N H, Agap,n

where H, is given by Equation 3.5.

gap area yields

Combining these two equations and solving for the air

2gAnl
Agap,n = L 2 . (5.14)

The only independent variable in this equation is the flux A,. The O-dependence of Aa,,

is contained in the current i, through Equation 5.8. By fixing A, and varying 0, a picture

of Agap(O) can be obtained. Figure 5.4 shows a plot of Agap,n verses 0 for one phase at the

flux level A, = 0.02 Wb. Substituting Equation 5.14 into Equation 5.6 yields the following

equation for the radial force

F, = - A i
4g

(5.15)

5.1.4 Modeling of the Controller and Inverter

The role of the controller is to generate the low-level signals that tell the inverter when to

turn phases on and off and at what level to chop the current. It uses the rotor position 9

obtained from a shaft-encoder (0 can also be determined from the terminal characteristics

of the VRM [11,17]) along with the turn-on angle 0,,, and turn-off angle Ooff to generate

(5.13)
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the phase-on/off signal F,, based on the following law. If Ooff ;> 0o, then

( on if on < on < 5off (5.16)
off otherwise

or if 0aff < 0,, then

on if Oon 0 , < or 0 < 0, < Oof5Fn(9,) or0.Ol of(5.17)
off otherwise

All angles are assumed to be modulo 27r/Nr. The current chopping level ichop, 0,o, and

0off are usually set by the controller according to some closed-loop speed and/or torque

algorithm. In the simulations that follow, however, these parameters are set at the start

and remain constant throughout the duration of each simulation.

The inverter (see Figure 2.5) uses the phase-on/off signal r, and icho, to generate the

gate signals for the FET's. Depending on the levels of these signals the inverter resides in

one of the following four states:

state 1: both FET's are on and both diodes are off;

state 2: upper FET and diode are off and lower FET and diode are on;

state 3: both FET's are off and both diodes are on;

state 4: both FET's and both diodes are off.



The voltage v, applied to the VRM phases during each of these states is given by:

+supply state 1

-Vdiod, state 2

of = < (5.18)

- 1-(Vopply + 2 1 diode) state 3

0 state 4

where the forward voltage drop across a diode Vdiod = 0.7 Volts. The total circuit resistance

for the nth phase is

Rphasc + 2 RFET state 1

Rpsoe + RFET state 2

R7 =<(5.19)
Rpha se state 3

RpaSoE state 4

where the resistance of a phase is Rphose = 0.8Q, and the on resistance of a FET is RFET =

0.18Q.

Current regulation during the conduction interval, defined by 0,, and 9off is performed

by the inverter using the following chopping algorithm. Like the algoritlu described in

Chapter 2, the upper FET is always switched off whenever the phase current rises above

ichop. The decision whether or not to turn on the upper FET is made every tehp seconds.

If the phase current is below ich, at a decision point then the upper FET is turned on,

otherwise, it remains off until the next decision point. This algorithm restricts the values

that the chopping frequency can take on to feo, = 1/t,hp and its submultiples. As a result,

t ciop can be chosen to maximize the distance between the discrete values that the chopping

1



frequency can take on and the resonant frequencies of the stator. In the simulations, fchop

is set to 10 kHz, the same value used by the actual inverter.

5.2 Evaluation of the Constant-Speed VRM Model

The constant-speed VRM model is numerically simulated using a fixed step, fourth-order

Runge-Kutta integration routine, which is listed in Appendix 5. A discussion of this method

is given in [9). Due to the symmetry of the phases and the periodic nature of the flux-current

relationship, the simulations need to be carried out for only one phase of the VRM over a

period of an electrical cycle. The total torque is determined by adding shifted versions of

the torque due to a single phase to itself.

The main driver program is the MATLAB M-file MOTOR.M which prompts the user for

the operating point parameters. It passes these parameters to the C routine MOTOR.EXE

which is the actual simulation program. The output of MOTOR.EXE includes the current,

torque., and radial force waveforms as well as the computed average torque. Both of these

programs are also listed in Appendix 5.

In order to evaluate the performance of the constant-speed VRM model, simulations

are performed at two new operating points (operating points 3 and 4) as well as at the two

described in Chapter 3, and the results are compared with data taken from the experimental

VRM running at the same operating points. Operating points 3 and 4 are chosen so that

comparisons of the currents and torques for the model and the experimental VRM can

be made at both low and high speeds. In order to check the validity of the radial force,

operating points 1 and 2 are used for reasons explained later. The parameters defining

all four operating points are given in Table 5.2. Figures 5.5 and 5.6 show comparisons



operating Oon 9 off Vsui speed iso, load torque
point (degrees) (degrees) (volts) (rpm) (amps) ( x10 3 Nm)

1 34 49 40.0 3720 - 106
2 30 45 30.0 3720 - 106
3 34 54 20.0 951 1.7 55.0
4 25 45 31.2 6538 - 84.2

Table 5.2: Definition of the four operating points used to evaluate the performance of the
constant-speed VRM model.

between the actual and simulated phase current waveforms at the third and fourth operating

points, respectively. The differences of the current waveforms at the third operating point

are mainly due to hysteresis in the current regulating circuitry of the inverter which isn't

included in the VRM model. The combined effects of the hysteresis and noise results

in the switching period multiplication as shown in Figure 5.5. At the fourth operating

point, the differences can be attributed to the finite resolution of the rotor position that

is available to the controller and the finite processing capabilities of the controller. As a

result of these two limitations, 0,, and 0 off can vary from their commanded values by ±3

mechanical degrees, resulting in sizable changes in the current waveform. This is illustrated

in Figure 5.7 which shows the current waveform of one phase of the experimental VRM at

the fourth operating point. The simulated torque waveforms for one phase of the VRM at

the third and fourth operating points are shown in Figures 5.8 and 5.9, respectively. The

average torques corresponding to these two simulated waveforms are 54.6 x 10-3 Nm and

81.8 x 10-3 Nm, respectively.

The simulated radial force waveforms at the third and fourth operating points are shown

in Figures 5.10 and 5.11, respectively. Since the radial force of the experimental VRM can-
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Figure 5.5: Comparison between the actual and simulated current waveform at the third
operating point defined in the text. The solid line is the actual current waveform.
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Figure 5.8: Simulated torque waveform at the third operating point.
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103

0.1

0

-0.029



7
'I

I 'I

rotor position (degrees)

Figure 5.10: Simulated radial force waveform at the third operating point. The dashed line
is the air gap area which has been scaled up for clarity.
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Figure 5.11: Simulated radial force waveform at the fourth operating point. The dashed
line is the air gap area which has been scaled up for clarity.
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not be measured, the accuracy of the simulated radial force waveforms cannot be directly

checked. However, from the experiments of Chapter 3, we know that at a given frequency,

the stator acceleration measured above the excited phase is proportional to the radial force

component at that frequency. Therefore, the accuracy of the simulated radial force wave-

forms is checked here by comparing the difference of a specific harmonic component of two

radial force waveforms to the difference of the same harmonic component of the resulting

acceleration waveform. Since this comparison is most easily done when there is significant

acceleration of the stator, operating points 1 and 2 are used. Recall that at both of these

operating points, the 7th harmonic of the radial force excites the resonant frequency at 2604

Hz.

Plots of the simulated current and radial force waveforms for operating points 1 and 2

are shown in Figures 5.12 and 5.13, respectively. The acceleration waveforms for the two

operating points, whose spectra are shown in Figures 3.8 and 3.12, respectively, are taken

from an accelerometer above Phase A of the motor. The comparison is made only for the

seventh harmonic component of the waveforms at the resonant frequency of 2604 Hz, since

it is this harmonic which produces the acoustic noise. Recall from Chapter 3 that the second

operating point was chosen so that the acoustic noise was reduced while the speed remained

the same. The seventh harmonic components of the simulated and experimental waveforms

is shown in Table 5.3. As noted in Chapter 3, the magnitude of the seventh harmonic of

i 2 at the second operating point is larger than that at the first in the experimental case.

Table 5.3 shows that this is also true for the simulated waveforms, although the difference

is slightly larger. A comparison between the acceleration harmonics and simulated radial

force harmonics, however, shows that while the acceleration magnitude decreases by 7.7
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Figure 5.12: Simulated current and radial force waveforms for the first operating point.
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Figure 5.13: Simulated current and radial force waveforms for the second operating point.
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operating experimental simulated
point i acceleration i radial force

1 37.5 55.5 35.4 51.2
2 39.5 47.8 39.1 50.2

Table 5.3: Magnitudes of the 7th harmonic components of the simulated and experimental
waveforms.

dB, the radial force magnitude decreases only by 1.0 dB. It is difficult to specify the exact

source of this error since there are many possibilities. For example, in deriving the equation

for the radial force (Equation 5.15), the assumption is made that the flux in the air gap is

radially directed and uniform across the cross-sectional overlap area of the rotor and stator

poles. Additional sources could include errors in measuring the flux-current curves of the

experimental VRM and fitting polynomials to these measured curves, errors in measuring

the acceleration of the stator, numerical round off errors, etc.

Compounding the difficulty presented by all of these possible error sources is the fact

that harmonic components of the radial force waveform as high as the seventh have to be

accurately predicted; the magnitudes of the seventh harmonic component of the radial force

waveforms shown in Figures 5.12 and 5.13 are over 20 dB smaller than the fundamental.

It seems clear, therefore, that if the acoustic noise problem of the VRM is to be solved

using current (radial force) waveform shaping, further research is needed to determine the

source(s) of the error and the model needed to account for all of the factor which influence

the shape of the radial force waveform.
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Chapter 6

Summary and Conclusions

6.1 Summary

This thesis investigated the origin of acoustic noise in VR.Ms and the issues involved in

predicting and reducing it. In Chapter 2, a brief discussion was given of the experimental

VRM used throughout this thesis. In particular, the construction of the experimental VRM

was detailed and a discussion of the basic operating principles was given.

In Chapter 3, an experimental procedure for determining and characterizing the domi-

nant noise source in the experimental VRM was presented. The experiments were designed

to investigate several potential noise sources of magnetic and mechanical origin in order to

determine their relative contribution to the total acoustic noise. From these experiments,

the experimental VRM was found to have three resonant frequencies at 2604 Hz, 9200 Hz,

and 14.2 kllz corresponding to circumferential modes zero, two, and four, respectively. At

each of these frequencies, several parts of the motor were found to be vibrating. The vibra-

tions that produced the most noise, however, were radial vibrations of the stator induced

by radial magnetic forces in the motor. The magnitude of the vibrations were largest when

harmonics of the radial forces having sufficiently large magnitudes (usually the harmonics

up to and including the seventh) coincided with resonant frequencies of the stator. The
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experiments also revealed that at the resonant frequencies, the acoustic noise was propor-

tional to the magnitude of the vibrations. Under normal operating conditions where the

speed could range up to 8000 rpm, only the resonant frequency at 2604 Hz was excited,

since the radial force harmonics near the other two resonant frequencies were too small to

produce any measurable response.

An additional finding of the experiments was that at the speeds where radial force

harmonics coincided with the resonant frequency at 2604 Hz, the acceleration and acoustic

noise could be reduced through the correct choice of the four control parameters 0., Off,

ichop, and V7,,s. This point was demonstrated for the experimental VRM operating at a

speed of 3720 rpm where the 7th harmonic of the radial force waveform excited the resonant

frequency at 2604 Hz. A 6 dB reduction of the acoustic noise level was achieved at this speed

through trial and error. In order to determine the optimal values of the control parameters,

it was concluded that a model was needed that could accurately predict the radial force

waveform based on the control parameters and the topology of the inverter.

While radial vibrations of the stator produced most of the noise in the experiments

performed in this thesis, this result is by no means universally applicable to all VRMs

in all applications. The other vibrations that were observed at each resonant frequency

(such as axial vibrations of the endbells and rotor shaft) could also produce acoustic noise

depending on how the motor is mounted and loaded. Since the experimental VR.M was

elastically mounted and attached to the load motor using a rubber coupling, these vibrations

did not produce significant noise. In other configurations, however, these vibrations could

easily excite mechanical resonances of the structure used to support the VRM or the load

attached to it. It must be emphasized, therefore, that in the context of acoustic noise
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retiction, the VRM cannot be treated separately from the structure in which it is to be

used.

In Chapter 4, an analytical method for the determining the resonant frequencies and

modes of the stator was presented. The analysis used the Rayleigh-Ritz method, which

is based on energy conservation principles, to determine the frequency equation of the

stator. Due to the difficulty in finding basis functions which satisfied all of the boundary,

compatibility, and equilibrium conditions and the difficulty in modeling losses, the analysis

was restricted to the stator cylinder and the assumptions were made that there were no

surface forces acting on this cylinder and that there were no losses. As a result of the

latter assumption, it was impossible to determine any amplitude information concerning

the vibrations.

While this analysis was able to correctly predict mode shapes, the values it predicted for

the resonant frequencies were not accurate enough to be useful in predicting the acoustic

noise. The reason for this is that the resonant frequencies of the experimental VRM had very

low equivalent damping factors so that if the predicted frequencies were off by a hundred

Hertz or more, significant errors in predicted vibration amplitudes would result. Increasing

the size of the model used in the analysis did not improve accuracy, but instead led to

round-off errors. Therefore, the main usefulness of the analysis was firstly its ability to give

a yes/no answer to the questions of whether the resonant frequencies were in the audible

range and whether they were low enough to be excited by radial force harmonics, and

secondly, its ability to show how the resonant frequencies changed as the geometry of the

stator changed so that they could be raised high enough to prevent harmonic excitation of

the resonant frequencies of the stator. When applied to the experimental VRM, the analysis
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showed that the most effective way of increasing the resonant frequencies was to increase

the thickness of the stator cylinder. However, due to the size of the increase needed to

prevent harmonic excitation of the lowest resonant frequency, this method of reducing the

acoustic noise was deemed to be too costly.

Finally, in Chapter 5, a model for predicting the magnetic forces in the VRM was

described and tested. The current-flux relationship of the experimental VRM was approxi-

mated by a polynomial in A whose coefficients were functions of the rotor position 6. The

polynomial was fit to the flux-current curves measured for the experimental VRM. This

polynomial fit allowed the operation of the motor to be simulated even at flux levels were

the magnetic material was saturated. Using this polynomial, an analytic expression for the

torque was derived enabling the total and average torque to be easily determined. Compar-

isons between the actual and simulated currents at two different operating points showed

that the model performed well. The average torque predicted by the model was also within

the range of expected values at both operating points (the means for accurate measurement

of the actual torque were not available). The radial force waveform, however, could not

be predicted accurately enough out to the seventh harmonic, which was the highest one

that could excite the resonant frequency at 2604 Hz. Such accuracy would require that

the current waveform be accurate at least out to the seventh harmonic which, as shown in

Table 5.3, was not the case.

6.2 Suggestions for Future Research

As evident from Chapters 4 and 5. two issues that have to be addressed further concerning

the prediction of acoustic noise of VRMs are the determination of the vibrational behavior
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of the stator and the radial magnetic force waveform. As far as the first issue is concerned,

a vibrational model of the VRM is needed that addresses the stator poles and windings,

frictional losses, and all of the boundary conditions. Due to the complexity that such a

model would have, the best analytical method would probably be finite-element analysis

[1].

As far as the second issue is concerned, one of the first things that needs to be done is to

identify the sources which contribute to the errors in the predicted radial force waveform. As

noted in Chapter 5, these sources could include errors in measuring the flux-current curves

of the experimental VRM and fitting polynomials to them, assumptions used in deriving

the radial force equation, and errors in measuring the acceleration of the stator. Once

the sources are found, then it can be determined whether it would be feasible to try and

compensate for them. However, since harmonics of the radial force as high as the seventh

have to be accurately predicted, is seems unlikely that a simple solution will be found. As

in the previous case, therefore, finite-element analysis would probably be the best method

of determining the radial force.

Concerning the reduction of acoustic noise in VRMs, several techniques should be ex-

amined. First, damping shells could be added to the stator in order to reduce the quality

factor of the resonant peaks. From transient experiments, the equivalent damping factors of

the three resonant frequencies of the experimental VRM were found to be .01 or less. The

shells, if fitted tightly enough around the stator, could not only increase the damping factor

of the stator, but also could add to its stiffness thereby causing the resonant frequencies to

increase.

Second, if an adequate means could be found for predicting the radial force given the
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valies of the control parameters and inverter topology, then techniques for shaping the

radial force waveform could be investigated. The goal, of course, would be to correctly

choose the control parameters so that none of the large radial force harmonics coincided

with resonant frequencies of the stator for all speeds of interest.

Third, the turn-on and turn-off angles could be randomly perturbed by ±1 or ±2 me-

chanical degrees so that coherent excitation of the resonant frequencies did not occur. When

this technique was applied to the experimental VRM, an 8 dB decrease in the sound level

was achieved while the motor was operating at 3720 rpm and at a load of 0.126 Nm. Re-

search in this area could focus on determining the size of the optimum perturbation and

the effect of the perturbations on other performance parameters of the VRM.
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Appendix A

Integrals Used in the
Determination of the Kinetic and
Potential Energies of the Stator

A.1 Notation

The integrals used to determine the kinetic and potential energies of the stator are presented

in this appendix. In order to make the equations in Chapter 4 more readable, the following

notation has been defined:

1= j+1+2{ - ln(r

3+1

z2 i+k

?, ) if j + I = 0

otherwise

ifi+ k is odd

otherwise

71 =I
I3
1-r'+1

2 ++

2 1 k+1 if i + k is even

0 otherwise

0 ifi+kisodd

0 ifi+k=0
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A.2 Integrals

The integrals presented here appear in the order that they are used in the determination of

the kinetic and potential energies of the stator.
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A.3 Integration of the Potential Energy Equation for the
Stator Cylinder

The term-by-term integration of the potential energy equation is given here. For the con-

venience of the reader, Equation 4.22 is repeated below
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Appendix B

Circuit Diagrams for the

Experimental VRM Drive

The circuit diagrams for the controller and inverter along with additional support circuitry

are given in this Appendix. The controller consists of an 8032 microcontroller based sys-

tem which communicates with a personal computer (PC) through a serial link. Based on

parameters supplied by the user and position information supplied by the shaft encoder

circuitry. the controller generates the phase on/off signals and the current chopping level.

The inverter circuitry is divided into two parts. The first part (referred to as the inverter

control circuitry) uses the signals generated by the controller along with measured values

of the phase currents to generate the turn-on/off signals for the FET pairs of each phase.

The second part is comprised of the power electronic and current sensing circuitry. The

shaft encoder circuitry is used to translate the signals from the shaft encoder into 8 bits of

position information that are used by the controller.

The connections between the various parts of the VRM drive are given in the following

tables.
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controller inverter control circuitry

14T 17

15T 19
16T 27
17T 29

18T 28

19T 30
20T 31

Table B.1: Connections between the controller and the inverter control circuitry. The suffix
"T" refers to the top pins of the edge connector.

controller shaft encoder circuitry

J1-1 J1-1
J1-7 J1-7
J1-8 J1-8
J1-9 JI-9

J1-10 Ji-10
J1-11 J1-11
J1-12 J1-12
J1-13 J1-13
J1-14 J1-14
J1-15 J1-15
J1-16 J1-16

Table B.2: Connections between the controller and the shaft encoder circuitry. The prefix
"J" indicates that the connection is made through a jumper cable.
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inverter control circuitry inverter power circuitry

J1-4 JI-4
J1-5 J1-5
J1-6 J1-6
J1-7 J1-7
J1-8 J1-8
J1-9 J1-9

J1-10 J1-10
Ji-11 J1-11
J1-12 J1-12
J2-1 J2-1
J2-2 J2-2
J2-3 J2-3
J2-4 J2-4

Table B.3: Connections between the inverter control and power

indicates that the connection is made through a jumper cable.
circuitry. The prefix "3"
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Figure B.3: Inverter Power Circuitry
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Appendix C

Source Code for the 8032
Controller Board

C.1 Monitor Program

The monitor program MONITOR.MSA resides in the 2764 EPROM on the controller board.

It provides an interface between the controller and the PC using a serial link. This allows

programs and data to be transfered between the PC and the controller.

The monitor program can be assembled and linked using the Enertec A8051 Cross

Assembler and XLINK linker for MS-DOS based computers. Since the EPROM is mapped

to the lowest 8K section of the controller's memory, the code segment is set to zero.

* ******* ******* ** ******* *** ** *** ***********************

* *

* MONITOR.MSA ver. 1.0 *
* *

;********************PROGRAM CONSTANTS AND DEFINITIONS*********************

NULL EQU OOH ;ascii for control char NULL

BELL EQU 07H ;ascii for bell

BS EQU 08H ;ascii for back space in hex

LF EQU OAH ;ascii for line feed in hex

CR EQU ODH ;ascii for carriage return in hex
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;ascii for the prompt '>' in hex

;ascii for delete in hex
;reset stack location

;this SFR is not defined in the assembler

;The stack resides in the upper half of internal RAM (80H-FFH). The SFRs

;also lie within this address range, but are accessible only by using

;direct addressing. Following are the internal memory locations defined

;for use as variables etc.

ARG1LOW EQU

ARG1HIGH EQU

ARG2LOW EQU

ARG2HIGH EQU

ORIGIN EQU

CHKSUM EQU

RECLEN EQU

20H

21H

22H

23H
24H
25H

26H

;lower byte of ist argument of an instruction

;higher byte of ist argument of an instruction

;lower byte of 2nd argument of an instruction

;higher byte of 2nd argument of an instruction

;var. used to store the stack pointer position

;keeps track of checksum in INTEL hex format

;to store the record length in INTEL hex form.

;The following are external memory locations.

2000H
4000H
8000H

;external RAM starting address

;digital to analog converter base address

;address of LS273 latch

;***********************INTERRUPT VECTOR TABLE*****************************

RSEG CODE

LOCO: ;This is

JMP INITIAL

ASEG

ORG 03H
LJMP $ +

ORG OBH
LJMP $ +

ORG 13H
LJMP $ +

ORG 1BH
LJMP $ +

location OH or 2000H depending on loading method.

;reset vector address

;The following vectors always reside in the

;1st 8K of memory

;external interrupt 0 vector address

RAM

RAM

RAM

RAM

;timer0 vector address

;external interrupt 1 vector address

;timerl vector address
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PROMPT

DEL
ISP
T2CON

EQU
EQU
EQU
EQU

RAM
DAC
LATCH

EQU
EQU
EQU

3EH
7FH

7FH
OC8H



ORG 23H
LJMP $ + RAM

ORG 2BH
LJMP $ + RAM

;serial port vector address

;timer2 vector address

***********************INITIALIZATION ROUTINE*****************************

RSEG CODE ;resume coding in relocatable segment
ORG LOCO+30H ;code begins after interrupt vectors

INITIAL:

A

IE,A
DPTR,#LATCH
QDPTR,A

PSW,A

DPTR,#DAC
QDPTR,A

DPTR

ODPTR,A

DPTR

@DPTR,A

DPTR

@DPTR,A

RO,#OFFH

QR0,A

RO,INITIAL1

SP,#ISP

TMOD,#23H

TH1,#230

SCON,#078H
TI
RI

DPTR,#RESETMSG

SSTRING

DPTR,#HELPMSG

SSTRING

ORIGIN,SP

;clear the accumulator

;disable all interrupts
;get address of latch

;clear the latch

;select register bank 0

;get address of DAC

;clear DAC A

;select DAC B

;clear DAC B

;select DAC C

;clear DAC C

;select DAC D

;clear DAC D

;prepare to clear all internal RAM except
;for the SFRs

;clear internal RAM pointed to by RO
;continue until done

;initialize the stack pointer to 80H
;timerl-mode 2, timerO-mode3, no gating
;load #230 into timer 1 higher byte for a
;baud rate of 1200

;mode 2, 1 start, 8 data, and 1 stop bit
;enable serial transmission
;clear the receive interrupt flag if set

;display the reset banner

;display the command summary
;initialize ORIGIN variable

****************************THE COMMAND LEVEL*****************************
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CLR
MOV
MOV
MOVX
MOV
MOV
MOVX

INC
MOVX

INC
MOVX
INC
MOVX
MOV

INITIAL1:

MOV

DJNZ

MOV

MOV

MOV

MOV

SETB
CLR

BANNER:

MOV

CALL

CMDSUMM:

MOV

CALL

MOV

SEENNEW00--



SP,ORIGIN
RI

CRLF

A,#PROMPT

SPOUT

SPIN

A,#BS,NEXT2
NEXT1

A,#CR,NEXT3
NEXT

ORIGIN,SP

ACC

SPOUT

NEXT:
MOV
CLR
CALL
MOV
CALL

NEXT1:
CALL
CJNE
JMP

NEXT2:
CJNE
JMP

NEXT3:
MOV
PUSH
CALL

NEXT4:
CALL
CJNE
PUSH
CALL
JMP

NEXTS:
CJNE
POP
MOV
CALL
MOV
CALL
MOV
CALL
MOV
CJNE
JMP

NEXT6:
PUSH
CALL
MOV
CJNE
MOV

;reset the stack pointer

;clear the receive interrupt flag
;send out a carriage return and line feed
;put the prompt '>' out

;get the 1st char of the command
;jump if it isn't a back space
;wait for another char

;see if the char was a carriage return
;if so, return to top of command level

;if not, save the current value of SP
;save the char in the command buffer

;echo it to the console

;wait for another char

;jump if it isn't a CR

;put the CR in the command buffer

;echo a CR and LF to the console

;jump to interpreter

;jump if char isn't a BS

;remove last char-from command buffer

;move the console's cursor back one place
;send a SPACE to the console to erase the
;last char typed

;move the console's cursor back again
;get the current value of the stack pointer
;jump if command buffer is not empty
;go to top of command level

;put the char in the command buffer
;echo it to the console
;get current value of the stack pointer
;jump if command length < 20 chars
;get pointer to appropriate error message
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SPIN
A,#CR,NEXT5
ACC

CRLF
INTERP

A,#BS,NEXT6
ACC

A,#BS

SPOUT

A,#' ')

SP.OUT

A,#BS

SPOUT

A,SP
A,ORIGIN,NEXT4

NEXT1

ACC

SPOUT

A,SP
A,#(ISP+20),NEXT4

DPTR,#ERROR3

W

;Characters are read in from the console and stored on the stack, which is
;used as the command buffer. The characters are properly echoed and a
;DELETE operation can be performed by using the backspace key.



CALL SSTRING

JMP NEXT
;send it to the console

;go to top of command level

*************************THE INTERPRETATION LEVEL*************************

;Once the command buffer contains a complete input command, terminated by a
;<CR>, the command interpreter decodes it and dispatches control to the
;proper command handler.

RO,ORIGIN
RO

A,(RO

INTERP:

MOV

INC
MOV

INTERPu:

CJNE
JMP

INTERPU:

CJNE
JMP

INTERP-d:

CJNE
JMP

INTERP-g:

CJNE
iMP

INTERP-h:

CJNE
JMP

INTERPs:

CJNE
iMP

INTERPS:

CJNE
JMP

INTERPc:

CJNE
iMP

BAD.CMD:
MOV

CALL
JMP

;RO points to beginning of command buffer

;get ist char of the command

;jump
;jump

;jump
;jump

if char isn't 'u'
to UPLOAD INTERNAL RAM cmd handler

if char isn't 'U'

to UPLOAD EXTERNAL RAM cmd handler

;jump if char isn't 'd'

;jump to DOWNLOAD EXTERNAL RAM cmd handler

;jump
;jump

;jump
;jump

;jump
;jump

;jump
;jump

if char isn't 'g'
to GO ADDRESS command handler

if char isn't 'h'
to HELP command handler

if char isn't 's'
to STORE INTERNAL MEMORY cmd handler

if char isn't 'S'

to STORE EXTERNAL MEMORY cmd handler

A,#'u',INTERP_U

UPLOADINT

A,#'U',INTERP_d

UPLOADEXT

A,#'d',INTERP_g

DNLOAD

A,#'g',INTERP_h

GO

A,#'h',INTERP_s

HELP

A,#'s',INTERP_S
STOREINT

A,#'S',INTERP_c

STOREEXT

A,#'c',BADCMD

CLEAREXT

DPTR,#ERROR1

SSTRING

NEXT

;The HELP routine displays the help message and returns to the command
;level.
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;jump if char isn't 'c'
;jump to CLEAR EXTERNAL RAM command handler

;point to proper error message
;print the error message

;return to command level



HELP:
CALL
MOV

JMP

;see if a <CR> followed the 'h'

;reset SP to beginning of command buffer

;display the help message.

;CLEAREXT clears the external RAM memory.

CLEAREXT:

CALL
MOV

CLEAREXT1:

CLR

MOVX

INC

MOV

CJNE

JMP

CHKRET
DPTR,#RAM

A

ODPTR,A

DPTR

A,DPH

A,#40H,CLEAREXT1

NEXT

;see if a <CR> followed the 'c'

;prepare to clear all external RAM

;clear ACC

;clear external RAM pointed to by DPTR
;increment external memory pointer

;get high byte of DPTR

;continue until done

;return to command level

;STORE_INT stores a byte of data in internal memory. The 1st argument
;specifies the internal memory location. The 2nd argument is the value to
;be written.

STOREINT:

CALL

MOV

INC

MOV

CJNE

CALL

MOV

CALL

MOV

MOV

MOV

JMP

GETARG
ARG1LOW, A
RO

A,ORO

A,#',',NOCOMMA

GETARG

ARG2LOW,A

CHKRET

RO,ARG1LOW

A,ARG2LOW

QRO,A

NEXT

;get the internal memory address

;save it in ARG1LOW
;point to char following the address

;get it

;jump if it isn't a comma

;get the data byte
;save it in ARG2LDW
;see if 2nd argument was followed by a CR
;move the address into RO

;get the data byte
;store it in internal memory
;return to command level

;STOREEXT stores a byte of data in external memory. The 1st argument
;specifies the external memory location. The 2nd argument is the value to
;be written.

STOREEXT:

CALL

MOV

CALL

GETARG

ARG1HIGH,A

GETARG

;get high byte of the memory address
;save it in ARGIHIGH
;get low byte of the address
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CHKRET
SP,ORIGIN

CMDSUMM



ARG1LOW,A
RO

A,ORO

A,#',',NOCOMMA

GETARG

ARG2LOW,A

CHKRET

DPL,ARG1LOW

DPH,ARG1HIGH

A,ARG2LOW

ODPTR,A

NEXT

;save it in ARGILOW

;point to char following the address

;get it

;jump if it isn't a comma

;get the data byte

;save it in ARG2LOW

;see if 2nd argument was followed by a CR

;move the address into DPTR

;get the data byte

;store it in external memory

;return to command level

;UPLOADINT sends a block of internal RAM bytes to the console. The 1st

;argument is the starting address of the block. The 2nd argument is the #
;of bytes to be sent. If the command syntax is incorrect, the command will

;be aborted.

UPLOADINT:

CALL
MOV

INC
MOV

CJNE
CALL
MOV

CALL
MOV

UPLOAD.INT1:

MOV

INC

CALL

DJNZ

UPLOAD.INT2:

JMP

GETARG
ARGILOW,A

RO
A,ORO

A,#',' ,N0_COMMA

GETARG

ARG2LOW,A

CHKRET

RO,ARG1LOW

;get the starting address of the upload

;save it in ARGILOW

;point to the next char in the cmd buffer

;get it

;abort if it isn't a comma

;get the number of bytes to be uploaded

;save it in ARG2LOW

;make sure a <CR> follows the second arg

;move the starting address into RO

A,ORO ;move byte pointed to by RO into the ACC

RO ;increment RO to point to the next byte

SENDBYTE ;send the byte to the console

ARG2LOW,UPLDADINT1 ;continue until all bytes have been sent

NEXT ;return to the command level

;NOCOMMA is the abort routine if a comma in a command line is missing

DPTR,#ERROR4

SSTRING

NEXT

;point to proper error message

;send it to the console
;return to the command level

;UPLOADEXT sends a block of external memory to the console. The 1st
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MOV

INC
MOV

CJNE
CALL
MOV

CALL
MOV

MOV

MOV

MOVX

JMP

NOCOMMA:

MOV

CALL
JMP



;2-byte argument is the starting address of the block. The 2nd 2-byte

;argument is the number of bytes to be sent. The routine aborts if the
;command syntax is incorrect.

UPLOADEXT:

CALL

MOV

CALL

MOV

INC

MOV

CJNE

CALL

MOV

CALL

MOV

CALL

MOV

MOV

UPLOADEXT1:

CLR

MOVC

CALL

INC

CLR

MOV

SUBB

MOV

MOV

SUBB
MOV

ORL

JNZ

JMP

GETARG
ARGIHIGH,A

GETARG .

ARG1LOW,A

RO

A,ORO

A,#',',NDCOMMA

GETARG

ARG2HIGH,A

GETARG

ARG2LOW,A

CHKRET

DPL,ARG1LOW

DPH,ARG1HIGH

A

A,@A + DPTR

SEND-BYTE

DPTR

C

A,ARG2LOW

A,#1

ARG2LOW,A

A,ARG2HIGH

A,#0

ARG2HIGH,A

A,ARG2LOW

UPLOADEXT1

NEXT

;get high byte of the memory address

;save it in ARGIHIGH

;get low byte of the address

;save it in ARGiLOW

;point to next char in the command buffer

;get it

;abort if it is not a comma

;get high byte of the block length

;save it in ARG2HIGH

;get low byte of the block length

;save it in ARG2LOW

;make sure a <CR> follows the 2nd argument
;load DPTR with the address of the block

;clear accumulator
;get the byte pointed to by the data pointer

;send it to the console

;increment DPTR to point to the next byte

;clear carry bit for subtraction

;get low byte of block length

.;decrement it by one

;save result in ARG2LOW

;get high byte of block length

;decrement it if borrow needed for low byte

;save result in ARG2HIGH

;check the count

;jump if count is not zero

;return to command level

;DNLOAD after confirming correct command syntax downloads an Intel hex file

;into external memory. It checks each data record for correct form and

;terminates when an End of File record (:OOOOOOO1FF) is received.

CHKRET

CHKSUM,#00

SPIN

ACC

;check for a CR at the end of the command

;clear CHKSUM used to store the checksum
;get 1st character of the hex record
;save it on the stack
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DNLOAD:

CALL
DNLOAD1:

MOV

CALL
PUSH



K
CALL
POP
CJNE
CALL
JNZ
CALL
JNZ
CALL
JNZ
CALL
CJNE
CALL
CJNE
CALL
CJNE
MOV
CALL
MOV
CALL
MOV
CALL
JMP

DNLOAD2:

MOV

ADD

MOV
CALL

MOV

ADD

MOV

CALL

MOV

ADD

MOV

CALL

JNZ

DNLOAD3:

CALL

MOVX

INC

ADD

MOV

DJNZ

CALL

ADD

SPOUT

ACC
A,#':',DNLOAD4

GETBYTE

DNLOAD2

GETBYTE

DNLOAD4

GET.BYTE

DNLOAD4

GETBYTE

A,#01,DNLOAD4

GETBYTE

A,#OFFH,DNLOAD4
SPIN

A,#CR,DNLOAD4

A,#BELL

SPOUT

A,#BELL

SPOUT

A,#BELL

SPOUT

NEXT

RECLEN,A

A,CHKSUM

CHKSUM,A
GETBYTE

DPH,A

A,CHKSUM

CHKSUM,A

GETBYTE

DPL,A

A,CHKSUM

CHKSUM,A

GETBYTE

DNLOAD4

GETBYTE

ODPTR,A

DPTR

A,CHKSUM

CHKSUM,A

RECLEN,DNLOAD3

GETBYTE

A,CHKSUM
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;echo it to the console

;get the character off the stack

;jump if it is not ':'

;get the record length

;jump if record length is not zero

;this is last record, see if address is 0000

;jump if high byte of address isn't zero

;get low byte of address

;jump if low address byte isn't zero

;get the record type

;jump if it isn't 01

;get the check sum

;jump if it isn't FF hex

;check for a CR

;jump if CR is missing

;signal that download was successful

;jump to the command level

;save record length in RECLEN

;update the check sum

;get the high byte of the starting address

;put it in DPH

;update the check sum

;get the low byte of the starting address

;put it in DPL

;update the check sum

;get the record type

;abort if the record type isn't 00

;get the next data byte of the record

;store it in external memory

;increment the data pointer

;add the last data byte to the check sum
;save the check sum in CHKSUM

;continue processing all data bytes
;get the check sum byte of the record
;add it to CHKSUM



JNZ
CALL
CJNE
CALL
JMP

DNLOAD4:

MOV

CALL

JMP

DNLOADS:

MOV

CALL

JMP

DNLOAD5

SPIN

A,#CR,DNLOAD4

CRLF

DNLOAD1

DPTR,#ERROR6

SSTRING

NEXT

DPTR,#ERROR7

SSTRING

NEXT

;GO does the syntax analysis of the command and if it is good, it takes the

;16 bit address argument, moves it into the data pointer and transfers

;control to the address pointed to by the data pointer

GO:

GETARG
ARGIHIGH,A

GETARG
ARG1LOW,A
CHKRET
DPL,ARGILOW

DPH,ARG1HIGH

A

TI,$
CA +DPTR

;get the high byte of the address

;save if in ARGIHIGH

;get the low byte of the address

;save it in ARG1LOW

;check for a CR at the end of the command

;move the jump address into the data pointer

;clear the accumulator

;wait for transmissions on the serial port

;to end and then jump to the address in the

;data pointer (since the acc. is clear)

;**********************SERIAL PORT INPUT OUTPUT ROUTINES*******************

;SPOUT sends the character in ACC to the console. It calculates odd parity
;for the 7-bit ascii character and puts it in the 8th bit of ACC before

;sending ACC out. The routine waits for TI to be asserted before sending

;the character.

SPOUT:

C,P

C

ACC.7,C

TI,$
TI

;move the parity into bit C

;complement the bit C for odd parity

;append the parity bit to the 7bit ascii
;wait for the last transmission to complete

;clear the transmission interrupt flag
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;jump if sum of record bytes is not zero

;check for a CR

;jump if there is none

;echo the carriage return (with linefeed)

;prepare to receive a new record

;point to proper error message

;send it to the console

;return to the command level

;point to proper error message

;send it to the console

;return to the command level

CALL
MOV
CALL
MOV
CALL
MOV

MOV

CLR
JNB
JMP

MOV

CPL
MOV

JNB
CLR



MOV SBUF,A ;send the the data byte down the serial link
RET ;return to the calling routine

;SPIN waits for a character to be sent from the console. It then moves

;the byte into the accumulator, strips off the parity bit, and returns to

;the caller.

SPIN:

JNB
CLR
MOV

ANL
RET

;CRLF sends

;accumulator

RI,$
RI

A,SBUF
A,#7FH

a carriage return

is affected.

;wait for an input

;clear the receive interrupt flag

;move the input byte into the accumulator

;strip the parity bit off the data byte

;return to the calling routine with the
;7 bit ascii value of the input in the acc.

and line feed to the console (PC). The

CRLF:
MOV A,#CR ;move carriage return into the acc.

CALL SP.OUT ;send it to the console

MOV A,#LF ;move ascii for line feed into the acc.

CALL SP.OUT ;send it out to the console

RET ;return to the calling routine

;GETARG takes two characters from the command buffer, representing a

;hexadecimal data byte, and converts them into a binary value. The result
;is returned in the accumulator.

GETCHAR

A

B,A
GETCHAR

A,B

;get binary value of next hex char in cmd

;buffer and put it in upper half of ACC
;save the ACC

;get binary value of 2nd hex char

;add B to it to get the result

;binary value is return in ACC

;GETCHAR takes a hex character from the command buffer and converts it to
;its binary value. If the conversion isn't possible then the routine
;aborts.

RO

A,ORO

;make RO point to the next character in the
;command buffer and move it into the acc.
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GETARG:
CALL
SWAP
MOV

CALL
ADD
RET

GETCHAR:

INC
MOV



GETCHAR1:

CALL
CLR
SUBB
JC

CJNE
GETCHAR2:

JC

CLR

SUBB

GETCHAR3:

CJNE

GET.CHAR4:

JNC
RET

TOUPPER

C

A, #'O'

BADCHAR

A,#OAH,GETCHAR2

GETCHAR3

C

A,#7H

A,#10H,GET.CHAR4

BAD-CHAR

;convert char to upper case if necessary

;clear carry bit

;subtract off the offset of the char '0'

;jump if ascii value of the char < '0'
;see if the char <= '9'

;jump if it is

;clear carry bit for subtraction

;compensate for chars between '9' and 'A'

;see if the char > 'F'

;jump if ascii value of the char > 'F'
;return to caller with binary value in ACC

;BADCHAR is the abort routine if an invalid hex character is received.

DPTR,#ERROR2

SSTRING

NEXT

;get the proper error message

;send it to the console

;return to the command level

;GETBYTE receives two hex characters from the serial link, decodes their
;ascii value and puts them together into one binary byte and returns the
;value in the accumulator.

SPIN

ACC
SPOUT

ACC
GETCHAR1

A

B,A

SPIN

ACC
SPOUT

ACC
GET.CHAR1

A,B

;get the next character from the serial link

;save it on the stack

;echo it to the console

;restore the character in the ACC

;decode the ascii char into its binary value

;since this is the higher 4 bit, put them in

;their right place

;get the 2nd hex char from the serial link

;save it on the stack
;echo it to the console

;restore the character in the acc.
;decode its ascii

;add the two to get a one byte binary number
;return with the result in ACC

;CHKRET checks to see if a command in the command buffer was correctly

;terminated by a carriage return, and if so, it returns to the calling
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BADCHAR:

MOV

CALL
JMP

GETBYTE:

CALL
PUSH
CALL
POP
CALL
SWAP
MOV
CALL
PUSH
CALL
POP
CALL
ADD
RET



;pr

RO

A,ORO

A,#CR,CHKRET1

DPTR,#ERRORS

SSTRING

NEXT

;point to the next character in the command

;jump if it is a carriage return

;return to the calling routine

;point to proper error message

;send it to the console

;return to command level

;SENDBYTE converts the binary number in ACC into its two character hex
;equivalent and sends the resulting bytes to the console.

SENDBYTE:

MOV

ANL

SWAP

CALL

MOV

ANL

CALL
RET

B,A
A,#OFOH

A

SENDCHAR

A,B

A,#OFH

SENDCHAR

;save the binary byte in B

;extract the top 4 bits

;move them into the lower half

;send them down the serial link

;get the lower 4 bits of the initial binary

;byte and again use SENDCHAR to transmit

;its ascii down the serial link and then

;return to the calling routine

;SENDCHAR takes a nibble in the accumulator, converts it into an ascii

;char, and sends it down the serial link to the console.

SENDCHAR:

ADD

CJNE

SENDCHAR1:

JC

ADD

SENDCHAR2:

CALL

RET

A,#'O' ;add on the offset for '0'

A,#':',SENDCHAR1 ;see if hex char is a letter (A-F)

SENDCHAR2

A,#7

SP-OUT

;jump if char is an ascii number (0-9)
;compensate for chars between '9' and 'A'

;send the char to the console

;TOUPPER converts the ascii character in ACC in the range 'a'-'f' to its
;upper case equivalent.

A,#'a' ,TU1 ;jump if char not 'a'
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CHKRET:
INC
MOV

CJNE
RET

CHKRETI:
MOV

CALL
JMP

TOUPPER:

CJNE

ogram; otherwise it aborts.



A,#'b' ,TU2

A,#' B'

A,#'c' ,TU3

A, #'C'

A, #'d' , TU4

A,#'D'

A,#'e',TJU5
A, #'E'

CJNE A,#'f',TU6

MOV A,#'F'

MOV

RET

;*************ROUTINES USED TO DISPLAY MESSAGES ON CONSOLE****************

;SSTRING sends the string whose starting address is in DPTR over the serial
;link. A NULL character signifies the end of a string.

SSTRING:

A

A,QA + DPTR

SSTRING1

SPOUT

DPTR

SSTRING

;clear the accumulator

;get a character

;jump if finished

;otherwise, send the character
;point to the next character
;continue until done

;return to caller

CR,LF,LF,'
'WELCOME TO THE 8032 MONITOR PROGRAM',CR,LF
' VER. 1.0',CR,LF
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;convert 'a' to 'A' and return

;jump if char not 'b'

;convert 'b' to 'B' and return

;jump if char not 'c'

;convert 'c' to 'C' and return

;jump if char not 'd'

;convert 'd' to 'D' and return

;jump if char not 'e'

;convert 'e' to 'E' and return

;jump if char not 'f'

;convert 'f' to 'F' and return

TU1

CJNE
MOV

RET

CJNE
MOV

RET

CJNE
MOV

RET

CJNE
MOV

RET

TU2:

TU3:

TU4:

TUS:

TU6:
RET

CLR
MOVC

Jz
CALL
INC
JMP

SSTRING1:

RET

RESETMSG

DB

DB

DB



DB NULL ;end of message marker
HELPMSG:

DB CR,LF,LF,'

DB 'COMMAND SUMMARY',CR,LF,LF

DB 'uaa,cc<CR> ----- UPLOAD INTERNAL RAM sends cc bytes of

DB 'memory beginning at',CR,LF,' address aa in

DB 'internal RAM to the console',CR,LF

DB 'Uaaaa,cccc<CR> - UPLOAD EXTERNAL RAM sends cccc bytes of
DB 'memory beginning',CR,LF,' at address aaaa

DB 'in external memory to the console',CR,LF

DB 'd<CR> ---------- DOWNLOAD EXTERNAL RAM from the console to

DB 'internal RAM',CR,LF

DB 'c<CR> ---------- CLEAR EXTERNAL RAM',CR,LF

DB 'saa,cc<CR> ----- STORE INTERNAL MEMORY stores the byte cc

DB 'at the address',CR,LF,' aa in internal

DB 'memory',CR,LF

DB 'Saaaa,cc<CR> --- STORE EXTERNAL MEMORY stores the byte cc

DB 'at the address',CR,LF,' aaaa in external

DB 'memory',CR,LF

DB 'gaaaa<CR> ------ GO ADDRESS transfers program execution to

DB 'the 2 byte',CR,LF,' address aaaa',CR,LF

DB 'h<CR> ---------- HELP displays the command summary',CR,LF,LF

DB 'Note: Downloads are expected to be in INTEL HEX FORMAT. '
DB 'Uploads are just',CR,LF,' strings of hex bytes. All command

DB 'arguments are hex numbers.',CR,LF

DB NULL ;end of message marker

ERRORI: DB CR,LF,'*ERROR - INVALID COMMAND*',NULL
ERROR2: DB CR,LF,'*ERROR - BAD HEX CHARACTER*',NULL

ERROR3: DB CR,LF,'*ERROR - INPUT LINE TOO LONG*',NULL
ERROR4: DB CR,LF,'*ERROR - COMMA IS MISSING*',NULL

ERRORS: DB CR,LF,'*ERROR - CARRIAGE RETURN IS MISSING*',NULL
ERROR6: DB CR,LF,'*ERROR - BAD HEX RECORD*',NULL

ERROR7: DB CR,LF,'*ERROR - BAD CHECK SUM*',NULL

END ;end of program
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C.2 VRM Controller Program

The controller program SPIN.MSA is used to drive the VRM. It allows the user to interac-

tively set the turn-on/off angles and the current chopping level while the motor is running.

It is loaded into the 6264 RAM on the controller board using the DOWNLOAD EXTER-

NAL RAM command of the monitor program. Since the RAM occupies the second 8K

section of memory, the code segment should be set to 2000 hex when linking SPIN.MSA.

SPIN.MSA ver. 1.0

;THE SFRS ASSOCIATED WITH TIMER2 ARE NOT DEFINED IN THE ASSEMBLER. THEY
;HAVE TO BE DEFINED USING EQUATES.

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

OC8H
T2CON.7
T2CON.6
T2CON.2
OCAH
OCBH
OCCH
OCDH
IE.5

;TIMER2 CONTROL REGISTER

;TIMER2 OVERFLOW FLAG

;TIMER2 EXTERNAL FLAG
;START/STOP CONTROL FOR TIMER2

;TIMER2 CAPTURE REGISTER (LOW BYTE)
;TIMER2 CAPTURE REGISTER (HIGH BYTE)
;TIMER2 (LOW BYTE)

;TIMER2 (HIGH BYTE)
;TIMER2 INTERRUPT ENABLE BIT

;PROGRAM CONSTANTS

ISP EQU
DACADD EQU
LATCH EQU
FREQ EQU

7FH
4000H
8000H
65536-50

;RESET STACK LOCATION

;BASE ADDRESS FOR DAC

;LS273 PORT ADDRESS
;ROTOR POSITION SAMPLED AT 20KHZ RATE

;PROGRAM VARIABLES

REGEN
THETA
CTABLEL

EQU
EQU
EQU

28H
29H
2AH

;VARIABLE FOR THE REGEN SIGNAL
;VARIABLE CONTAINING ROTOR POSITION
;CTABLEH:CTABLEL IS ADDRESS OF CURRENT
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T2CON
TF2
EXF2
TR2
RCAP2L

RCAP2H

TL2
TH2
ET2



LOCO + 03H

LOCO + OBH

LOCO + 13H

LOCO + 1BH

LOCO + 23H

LOCO + 2BH

TIM2_INT

;EXTERNAL INTERRUPT 0 VECTOR ADDRESS

;TIMERO VECTOR ADDRESS

;EXTERNAL INTERRUPT 1 VECTOR ADDRESS

;TIMER1 VECTOR ADDRESS

;SERIAL PORT VECTOR ADDRESS

;TIMER2 VECTOR ADDRESS

;*************************INITIALIZATION ROUTINE***************************

ORG LOCO+30H ;CODE BEGINS AFTER INTERRUPT VECTORS
INITIAL:

CLR A ;CLEAR THE ACCUMULATOR
MOV IE,A ;DISABLE ALL INTERRUPTS
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ORG
RETI

ORG
RETI

ORG
RETI

ORG
RETI

ORG
RETI

ORG
JMP

CTABLEH EQU 2BH ;TABLE
DAC EQU 2CH ;CURRENT VALUE IN DAC LATCH
ON EQU 2DH ;ON ANGLE
OFF EQU 2EH ;OFF ANGLE
TABLE EQU 2FH ;CONTAINS NUMBER OF TABLE CURRENTLY IN USE
ONANL EQU 30H ;ONANH:ONANL CONTAINS SCALED VALUE OF THE
ONANH EQU 31H ;ON ANGLE
OFFANL EQU 32H ;OFFANH:OFFANL CONTAINS SCALED VALUE OF THE
OFFANH EQU 33H ;OFF ANGLE
UTABLEL EQU 34H ;UTABLEH:UTABLEL IS ADDRESS OF UPDATE
UTABLEH EQU 35H ;TABLE
INDL EQU 36H ;INDH:INDL IS A TEMPORARY 16-BIT VARIABLE
INDH EQU 37H

;**************************INTERRUPT VECTOR TABLE**************************

RSEG CODE
LOCO: ;THIS LOCATION IS SPECIFIED DURING LINKING.

JMP INITIAL ;RESET VECTOR ADDRESS



DPTR,#LATCH

QDPTR,A

DPTR,#DACADD

ODPTR,A

DPTR

QDPTR,A

DPTR

ODPTR,A

DPTR

;CLEAR THE LATCH

;GET BASE ADDRESS OF DAC

;SET DAC A OUTPUT VOLTAGE TO ZERO

;SET DAC B OUTPUT VOLTAGE TO ZERO

;SET DAC C OUTPUT VOLTAGE TO ZERO

MOV

MOVX

MOV

MOVX

INC
MOVX

INC
MOVX

INC
MOVX

MOV

MOV

MOV

INITIAL1:

MOV

DJNZ

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

SETB

SETB

CLR

MOV

SETB

CALL

CALL

CALL

****************************THE COMMAND LEVEL*****************************

START:

CALL CR_LF

CALL SPROMPT

;OUTPUT A CR AND LF

;OUTPUT PROMPT
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ODPTR,A ;SET DAC D OUTPUT VOLTAGE TO ZERO

PSW,A ;SELECT REGISTER BANK 0

SP,#ISP ;INITIALIZE THE STACK POINTER TO 80H

RO,#OFFH ;PREPARE TO CLEAR ALL INTERNAL RAM EXCEPT

;FOR THE SFRS

@RO,A ;CLEAR INTERNAL RAM POINTED TO BY RO

RO,INITIAL1 ;CONTINUE UNTIL DONE

TCON,#0 ;MAKE SURE TIMERS ARE OFF

TMOD,#21H ;TIMER1-MODE 2, TIMERO-MODE 1, NO GATING

TH1,#230 ;LOAD #230 INTO TIMER1 HIGHER BYTE FOR A
;BAUD RATE OF 1200

SCON,#078H ;MODE 2, 1 START, 8 DATA, AND 1 STOP BIT

T2CON,#OH ;PUT TIMER2 IN AUTO-RELOAD MODE

RCAP2H,#HIGH(FREQ) ;INITIALIZE TIMER2 RECAPTURE REGISTER

RCAP2L,#LOW(FREQ)

REGEN,#0 ;INITIALIZE REGEN VARIABLE

ON,#30 ;TURN ON AT MINIMUM INDUCTANCE POINT

OFF,#45 ;15 DEGREE CONDUCTION ANGLE

TABLE,#1 ;TABLEO WILL BE SET FIRST

DAC,#0 ;INITIALIZE DAC VARIABLE

CTABLEL,#LOW(TABLEO) ;INITIALIZE CURRENT TABLE TO TABLEO

CTABLEH,#HIGH(TABLEO)

TRI ;START TIMER1

TI ;ENABLE SERIAL TRANSMISSION

RI ;CLEAR THE RECEIVE INTERRUPT FLAG IF SET
IE,#OAOH ;ENABLE TIMER2 INTERRUPTS

TR2 ;START TIMER2

CMDSUMM ;DISPLAY THE COMMAND SUMMARY

SETANGLE ;DISPLAY ADVANCEMENT ANGLE AND TABLE ADDRESS

SHAFT ;DISPLAY SHAFT ENCODER POSITION



SPINN
START1
TO.UPPER

START1:
CALL
Jz
CALL

CHECKA:

CJNE
CALL
JMP

CHECKC:

CJNE
CALL
JMP

CHECKD:

CJNE A,#'D',CHECKE

CALL DUMPTAB

JMP START

CHECKE:

CJNE A,#'E',CHECKH

JMP EXIT
CHECKH:

A,#'H',CHECKR

CMDSUMM

START

A,#'R',CHECKS

TOGREGEN

START

A,#'S',BADCMD

SHAFT

START

DPTR,#ERRMSG

SSTRING

START

DPTR,#CMDMSG

SSTRING

SETCUR:

MOV DPTR,#CMSG

CALL SSTRING

;GET CHARACTER FROM CONSOLE

;JUMP IF NO CHAR WAS INPUT

;CONVERT CHAR TO UPPER CASE

;SET ON AND OFF ANGLES

;SET CURRENT

;SEND LOOKUP TABLE TO CONSOLE

;EXIT

;COMMAND SUMMARY

;TOGGLE REGEN SIGNAL

;DISPLAY SHAFT POSITION

;POINT TO ERROR MESSAGE

;SEND IT TO THE CONSOLE

;DISPLAY THE COMMAND SUMMARY

;DISPLAY PRESENT CURRENT CHOPPING LEVEL
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A,#'A',CHECKC

SETANGLE

START

A,#'C',CHECKD

SETCUR

START

CJNE
CALL
JMP

CHECKR:

CJNE
CALL
JMP

CHECKS:

CJNE
CALL
JMP

BADCMD:

MOV

CALL
JMP

CMD.SUMM:

MOV

CALL
RET



MOV

MOV

MUL
MOV

MOV

MOV

MOV

MOV

CALL
CALL
CALL

SETCUR1:

MOV

CALL
CALL
CALL
MOV

JNZ
MOV

CJNE
SETCUR2:

JNC

MOV

MUL

MOV

MOV

MOV

MOV

MOV

CALL

MOV

MOV

MOV

MOVX

INC

MOVX

RET

EXIT:

MOV

MOV

MOV

MOVX

CLR

MOV

;R2:R1:RO = DAC * 100A,DAC

B,#100
AB

RO, A

R1,B

R2,#0

R3,#135
R4,#0
UDIV

SENDNUM

CRLF

DPTR,#CURMSG

SSTRING

INPUT

GETNUM

A,R1
SETCUR1

A,RO
A,#101,SETCUR2

SETCUR1

B,#135
AB

RO,A

R1,B

R2,#0

R3,#100

R4,#0

UDIV

A,RO

DAC,A
DPTR,#DACADD

ODPTR,A

DPTR

ODPTR,A

IE,#0

DPTR,#LATCH

A,#80H
@DPTR,A
A

DAC,A
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;R4:R3 = 135

;RO = DAC * 100 / 135

;,UTPUT RESULT TO CONSOLE

;,UTPUT A CR AND LF

;GET POINTER TO CURRENT MESSAGE

;DISPLAY PROMPT MESSAGE

;GET NEW CURRENT VALUE FROM CONSOLE
;TRANSLATE IT INTO BINARY FORM

;GET HIGH BYTE OF CURRENT LEVEL
;JUMP IF CURRENT LEVEL IS TOO HIGH

;GET LOW BYTE OF CURRENT LEVEL
;JUMP IF CURRENT LEVEL ISN'T 101

;JUMP IF CURRENT LEVEL IS TOO HIGH

;B:A = 135 * CURRENT

;MOV B:A INTO 24-BIT DIVIDEND R2:R1:RO

;MOVE 100 INTO 16-BIT DIVISOR R4:R3

;R1:RO = 135 * CURRENT / 100
;GET THE RESULT

;SAVE IT
;GET BASE ADDRESS OF DAC

;SET DACO AND DAC1 TO THE NEW VALUE

;DISABLE ALL INTERRUPTS

;GET THE ADDRESS OF THE LATCH
;TURN OFF ALL PHASES AND SIGNAL END OF RUN

-;CLEAR ACC



MOV

MOVX

INC
MOVX

MOV

DJNZ
MOVX

MOV

JMP

TOGREGEN:

XRL

MOV

JZ

MOV

CALL

RET

TOGREGEN1:

MOV

CALL

RET

SETANGLE:

MOV

CALL

MOV

MOV

CALL

CALL

MOV

CALL

CALL

CALL

MOV

CJNE

SETANGLEl:

JNC

MOV

CALL

MOV

MOV

SETANGLE2:

MOV

CALL

MOV

DPTR,#DACADD

@DPTR,A

DPTR

ODPTR,A

RO,A

RO,$

CDPTR,A

DPTR,#O

CA+DPTR

REGEN,#OFOH

A,REGEN

TOGREGEN1

DPTR,#REGENON

SSTRING

DPTR,#REGENOFF

SSTRING

DPTR,#ON.MSG

SSTRING

RO,ON

R1,#O

SENDNUM

CRLF

DPTR,#ANMSG
SSTRING

INPUT

GETNUM

A,RO

A,#61,SETANGLE1

SETANGLE

ON,A

FIXAN

ONANL,RO

ONANH,R1

DPTR,#OFF.MSG

SSTRING

RO,OFF

;GET BASE ADDRESS OF DAC

;SET DAC A OUTPUT VOLTAGE TO ZERO

;SET DAC B OUTPUT VOLTAGE TO ZERO

;CLEAR RO

;DELAY LOOP

;CLEAR END OF RUN SIGNAL

;CLEAR DPTR

;JUMP TO MONITOR PROGRAM

;TOGGLE THE REGEN SIGNALS

;GET THE REGEN VARIABLE

;JUMP IF REGEN SIGNAL IS OFF

;SIGNAL USER THAT REGEN SIGNAL IS ON

;SIGNAL USER THAT REGEN SIGNAL IS OFF

;DISPLAY ON ANGLE

;R1:RO = ON ANGLE

;SEND THE ANGLE

;DISPLAY ANGLE PROMPT

;GET THE NEW ANGLE

;TRANSLATE IT TO BINARY FORM

;GET NEW ANGLE

;TEST IT

;JUMP IF ANGLE IS TOO LARGE
;SAVE IT

;ONANH:ONANL = 100 * ON / 9

;DISPLAY OFF ANGLE

;R1:RO = OFF ANGLE
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MOV

CALL
CALL
MOV

CALL
CALL
CALL
MOV

CJNE
SETANGLE3:

JNC

MOV

CLR

SUBB

JNC

MOV

ADD

MOV

SETANGLE6:

MOV

CALL

MOV

MOV

MOV

JNZ

MOV

MOV

MOV

MOV

CALL

JMP

SETANGLE4:

MOV

MOV

MOV

MOV

CALL
SETANGLES:

MOV

MOV

CALL

MOV

MOV

CALL

MOV

R1,#O
SENDNUM

CRLF

DPTR,#ANMSG
SSTRING

INPUT

GETNUM

A,RO
A,#61,SETANGLE3

SETANGLE2

OFF,A
C

A,DN
SETANGLE6

A,DFF

A,#60

OFF,A

;SEND THE ANGLE

;DISPLAY ANGLE PROMPT

;GET THE NEW ANGLE

;TRANSLATE IT TO BINARY FORM

;GET NEW ANGLE

,TEST IT

;JUMP IF ANGLE IS TOO LARGE

;SAVE IT

;,FF - ON

;JUMP IF OFF >= ON

;ADD 60 TO OFF ANGLE

A,DFF ;GET THE DFF
FIXAN

OFFANL,RO ;DFFANH:OFFAN

OFFANH,R1

A,TABLE
SETANGLE4

TABLE,#1 ;TABLE 1 WILL
UTABLEL,#LOW(TABLE1)

UTABLEH,#HIGH(TABLEl)

DPTR,#TABLE1 ;CLEAR TABLE1
CLRTAB

SETANGLES

TABLE,#0 ;TA
UTABLEL,#LOW(TABLEO)

UTABLEH,#HIGH(TABLEO)

DPTR,#TABLEO ;CL
CLRTAB

R3,#1
DPTR,#MAXA

SETT

R3,#2

DPTR,#MAXB

SETT

R3,#4

ANGLE

L = 100 * OFF / 9

BE UPDATED

BLE 0 WILL BE UPDATED

EAR TABLEO

;TABLE DATA FOR PHASE A

;TABLE DATA FOR PHASE B

;TABLE DATA FOR PHASE C
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DPTR,#MAXC

SETT

R3,#8

DPTR,#MAXD

SETT

EA

DPTR,#LATCH

MOV

CALL
MOV

MOV

CALL
CLR
MOV

CLR
MOVX

MOV

MOV

SETB
RET

B,#100

AB

RO,A
R1,B

R2,#0

R3,#9

R4,#0

UDIV

A,R5

A,#5,FIXAN1

FIXAN2

A,RO

A,#1
RO, A

A,R1
A,#0

R1,A

FIXAN:
MOV

MUL
MOV

MOV

MOV

MOV

MOV

CALL
MOV

CJNE
FIXAN1:

JC

MOV

ADD
MOV

MOV

ADDC
MOV

FIXAN2:

RET

CLRTAB:

CLR
MOV

CLRTAB1:

MOVX

INC
DJNZ
RET

;TABLE DATA FOR PHASE D

;DISABLE INTERRUPTS

;GET THE ADDRESS OF THE LATCH

;TURN OFF ALL PHASES

;CTABLEH:CTABLEL = UTABLEH:UTABLEL

;ENABLE INTERRUPTS

;SCALED ANGLE = 100 * ANGLE / 9

;JUMP IF REMAINDER < 5
;ADD 1 TO QUOTIENT

;CLEAR TABLE POINTED TO BY DPTR

@DPTR,A
DPTR
RO,CLRTAB1
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@DPTR,A

CTABLEH,UTABLEH

CTABLEL,UTABLEL

EA

A

RO,A



MOV

SETT1:
MOVX

MOV

INC
MOVX

MOV

INC
MOV

ADD
MOV

MOV

ADDC
MOV

MOV

ANL
SWAP
MOV

MOV

SWAP
MOV

ANL
ADD
MOV

MOV

ANL
MOV

MOV

ANL
CLR
SUBB
Jc

MOV

ADD
MOV

MOV

ADDC A,#0
MOV R6,A

SETT9:
;RESULT MODULO 250
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SETT:
R2,#6

A,@DPTR
INDH,A
DPTR
A, DPTR
INDL,A
DPTR
A,ONANL

A, INDL
R4, A

A,0NANH
A,INDH
R5,A

A,R4

A,#OFOH

A

B,A
A,R6

A

R7,A
A,#OFOH

A,B

R5,A

A,R7

A,#OFH
R6,A
A, R4

A,#OFH

C

A, #8

SETT9
A,R5

A,#1

R5 ,A
A,R6

;R2 IS A COUNTER

;GET MAX INDUCTANCE POSITION

;ADD IT TO ONANH:ONANL

;DIVIDE RESULT BY 16, ROUND UP IF REMAINDER

;IS GREATER THAN 7

;CHECK THE REMAINDER

CLR
MOV

SUBB
MOV

C

A,R5

A,#250
RO,A



MOV

SUBB
JNC
MOV

MOV

SETT2:
MOV

ADD
MOV

MOV

ADDC
MOV

MOV

ANL
SWAP
MOV

MOV

SWAP
MOV

ANL
ADD
MOV

MOV

ANL
MOV

MOV

ANL
CLR
SUBB
Jc
MOV

ADD
MOV

MOV

ADDC
MOV

SETT10:
CLR
MOV

SUBB
MOV

MOV

SUBB
JNC
MOV

;RESULT MODULO 250
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A,R6

A,#0

SETT2
A,R5

RO, A

;ADD IT TO OFFANH:OFFANL

;DIVIDE RESULT BY 16, ROUND UP IF REMAINDER

;IS GREATER THAN 7

;CHECK THE REMAINDER

A,DFFANL

A, INDL
R4, A

A,0FFANH

A,INDH
R5, A
A, R4

A,#OFOH

A

B,A
A,RS

A

R7, A

A,#OFOH

A,B
R5,A

A,R7

A,#OFH

R6,A
A,R4

A,#OFH

C

A, #8

SETT10
A,R5

A,#1
R5, A
A, R6

A,#0

R6,A

C

A,R5
A,#250
R1,A

A,R6

A,#0

SETT3
A,R5



R1,A

A,R1 ;OFF ANGLE - ON ANGLE

MOV

SETT3:
MOV

CLR
SUBB
PUSH
PUSH
JC

INC
MOV

MOV

ADD
MOV

MOV

ADDC
MOV

SETT4:
MOVX

ADD
MOVX

INC
DJNZ
POP
POP

DJNZ
RET

SETTS:
MOV

MOV

INC
SETT6:

MOVX

ADD
MOVX

INC

DJNZ
MOV

ADD
MOV

MOV

ADDC
MOV

MOV

CLR
SUBB

;SAVE DPTR

;JUMP IF ON ANGLE > OFF ANGLE
;# TABLE POSITIONS = OFF - ON + 1

;POINT TO ROTH LOCATION IN TABLE

A,RO

DPL
DPH
SETTS
A

R1,A

A,UTABLEL

A,RO

DPL,A

A,UTABLEH

A,#O

DPH,A

A,ODPTR

A,R3

@DPTR,A

DPTR

R1,SETT4

DPH

DPL

R2,SETT8

DPL,UTABLEL

DPH,UTABLEH

R1

A,@DPTR

A,R3

ODPTR,A

DPTR

R1,SETT6

A,UTABLEL

A,RO

DPL,A

A,UTABLEH

A,#O

DPH,A

A,#250

C

A,RO
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;GET CURRENT TABLE VALUE

;ADD R3 TO IT
;PLACE RESULT BACK IN TABLE

;REPEAT FOR OTHER INDUCTANCE POINTS

;PROCESS POSITIONS 0 THROUGH OFF + 1

;GET CURRENT TABLE VALUE

;ADD R3 TO IT

;PLACE RESULT BACK IN TABLE

;POINT TO ROTH LOCATION IN TABLE

;# LOCATIONS = 250 - Ro



MOV

SETT7:
MOVX

ADD
MOVX

INC
DJNZ
POP
POP
DJNZ
RET

SETT8:
JMP

;REPEAT FOR OTHER INDUCTANCE POINTS

DPTR,#SHAFTMSG

SSTRING

RO,THETA

R1,#O
SENDNUM

CRLF

DPL,UTABLEL

DPH,UTABLEH

INDL,#250

A,@DPTR
DPTR

DPL

DPH

RO,A

R1,#0

SENDNUM

CRLF

DPH
DPL

INDL,DUMPTAB1

SPIN

;DISPLAY SHAFT ENCODER MESSAGE

;SEND THE SHAFT POSITION

;SEND IT TO THE CONSOLE

;OUTPUT A CR AND LF

;GET ADDRESS OF CURRENT TABLE

;GET NEXT TABLE VALUE

;SAVE DPTR

;SEND VALUE TO THE CONSOLE

SHAFT:
MOV

CALL
MOV

MOV

CALL
CALL
RET

DUMPTAB:

MOV

MOV

MOV

DUMPTAB1:

MOVX

INC

PUSH

PUSH

MOV

MOV

CALL

CALL

POP

POP

DJNZ

CALL

RET

;TIMER2 INTERRUPT ROUTINE.

TIM2_INT:
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RO,A

;GET CURRENT TABLE VALUE

;ADD R3 TO IT

;PLACE RESULT BACK IN TABLE

A,DDPTR

A,R3
ODPTR,A
DPTR

RO,SETT7
DPH
DPL

R2,SETT8

SETT1

;WAIT FOR CHAR



PUSH
PUSH
PUSH
PUSH

TIM2_INT1

CLR
MOV

MOV

MOV

SETB
MOV

MOVC

ORL
MOV

MOVX

POP
POP
POP
POP
RETI

P3.5

DPH,CTABLEH

DPL,CTABLEL

A,P1

P3.5

THETA,A

A,CA+DPTR

A,REGEN

DPTR,#LATCH

@DPTR,A

DPH

DPL

ACC

PSW

;START THE SHAFT ENCODER READING PROCESS
;GET THE BASE ADDRESS OF THE LOOKUP TABLE

;READ IN THE ROTOR POSITION

;END SHAFT ENCODER READING PROCESS
;SAVE THE ROTOR POSITION

;USE THE LOOKUP TABLE TO GET PROPER PHASE
;SET THE REGEN SIGNALS IF NECESSARY

;WRITE THE RESULT TO THE LATCH

;THE LOOKUP TABLES TABLEO AND TABLE1 ARE SET BY THE COMMAND SETANGLE. ONE
;TABLE IS THE CURRENT TABLE AND THE OTHER IS THE UPDATE TABLE. THE CURRENT
;TABLE IS THE ONE THAT IS USED BY THE TIMER2 INTERRUPT ROUTINE TO TURN THE
;PHASES ON AND OFF. WHEN THE SETANGLE COMMAND IS EXECUTED, THE UPDATE TABLE
;IS FILLED ACCORDING TO THE NEW TURN-ON/OFF ANGLES. AFTER IT IS FILLED, THE
;ROLES OF THE CURRENT AND UPDATE TABLES ARE SWAPPED

TABLEO:

DS 256
TABLE1:

DS 256

;THE FOLLOWING TABLES CONTAIN THE ALIGNED POSITIONS FOR THE FOUR PHASES.
;THESE TABLES ARE USED BY THE SETANGLE COMMAND TO GENERATE THE LOOKUP
;TABLES. THESE TABLES HAVE TO BE UPDATED WHENEVER THE SHAFT ENCODER IS
;REMOVED FROM THE VRM.

MAXA:

DW 176,843,1509,2176,2843,3509

MAXB:

DW 343,1009,1676,2343,3009,3676

MAXC:

DW 509,1176,1843,2509,3176,3843

MAXD:

;PHASE A ALIGNED POSITIONS

;PHASE B ALIGNED POSITIONS

;PHASE C ALIGNED POSITIONS
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PSW

ACC
DPL
DPH

__mw



DW

;THE FOLLOWING LINE INCLUDES THE FILE UTIL.MSA WHICH CONTAINS THE MATH AND

;I/0 ROUTINES USED IN THIS PROGRAM

$UTIL.MSA

CMDMSG:

DB CR,LF,LF,'COMMAND SUMMARY',CR,LF,LF

DB 'A - SET THE ON AND OFF ANGLES',CR,LF,LF

DB 'C - SET THE CURRENT CHOPPING LEVEL',CR,LF,LF

DB 'D - DUMP LOOKUP TABLE',CR,LF,LF

DB 'E - JUMP TO MONITOR PROGRAM',CR,LF,LF

DB 'H - DISPLAY THE COMMAND SUMMARY',CR,LF,LF

DB 'R - TOGGLE THE REGEN SIGNAL',CR,LF,LF

DB 'S - GET SHAFT POSITION',CR,LF,LF

DB NULL ;END OF MESSAGE MARKER

AN.MSG:

DB 'ENTER NEW ANGLE BETWEEN 0 AND 60 DEGREES: ',NULL

CMSG:

DB 'CHOPPING CURRENT IN TENTHS OF AN AMP IS: ',NULL

CURMSG:
DB

ERRMSG:
DB

'ENTER NEW CURRENT IN TENTHS OF AN AMP (0-100): ',NULL

'*ERROR - BAD COMMAND*',CR,LF,NULL

OFF-MSG:
DB 'OFF ANGLE IS: ',NULL

ONMSG:

DB 'ON ANGLE IS: ',NULL

REGENOFF:

DB 'REGEN SIGNAL IS OFF',CR,LF,NULL

REGENON:

DB 'REGEN SIGNAL IS ON',CR,LF,NULL

SHAFTMSG:
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9,676,1343,2009,2676,3343 ;PHASE D ALIGNED POSITIONS



DB 'SHAFT POSITION IS: ',NULL

;END OF PROGRAM
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END



* *

* UTIL.MSA ver. 1.0 *

* *

;ascii constants

NULL EQU 00H ;ascii for control char NULL
BELL EQU 07H ;ascii for bell
BS EQU 08H ;ascii for back space in hex
LF EQU OAH ;ascii for line feed in hex
CR EQU ODH ;ascii for carriage return in hex
PROMPT EQU 3EH ;ascii for the prompt '>' in hex
DEL EQU 7FH ;ascii for delete in hex

;program constants

BUFFER EQU 60H ;command buffer address in internal RAM
ENDBUF EQU 70H ;end of command buffer, it is 16 chars long

;program variables

MATHL EQU 20H ;MATHH:MATHL is a 16-bit scratch variable
MATHH EQU 21H ;for math calculations
FLAGS EQU 22H ;8-bit scratch variable
POINTER EQU 23H ;pointer into command buffer
TEMP EQU 24H ;8-bit scratch variable

;UDIV divides the 24-bit unsigned number in registers R2:R1:RO (R2 is most
;significant byte) by the 16-bit unsigned number in R4:R3 (R4 is MSB) using
;a subtract and shift algorithm. Registers R6:RS form the remainder word,
;while R7 is used as a counter. The 16-bit result is placed in the R1:RO
;word.

UDIV:
MOV R5,#0 ;clear the remainder word
MOV R6,#0
MOV R7,#24 ;24-bit divide operation
CLR C ;clear carry bit

UDIV1:
MOV A,RO ;shift the 24-bit dividend R2:R1:RO left by
RLC A ;1 bit. The least significant bit of RO will
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RO,A
A,R1
A

R1,A

A,R2
A

R2,A
A,RS
A

RS,A

A,R6

MOV

MOV

RLC
MOV

MOV

RLC
MOV

MOV

RLC
MOV

MOV

RLC
MOV

MOV

MOV

MOV

CLR
MOV

SUBB
MOV

MOV

SUBB
MOV

JNC
JNB
CPL

UDIV2:

;receive the carry bit, while the bit
;shifted out of R2 will go into the carry
;bit.

;now shift remainder word left by 1 bit,
;putting the carry bit into the least

;significant bit of RS

;save the carry bit
;save the remainder in MATHH:MATHL word

;subtract the divisor from the remainder and
;leave the result in the remainder

;jump if carry bit is clear
;jump if high bit of remainder is clear
;negate carry bit

CPL C ;C will now be set if remainder > divisor
JC UDIV3 ;jump if subtraction successful
MOV RS,MATHL ;otherwise, restore remainder to its
MOV R6,MATHH ;original value before the subtraction

UDIV3:

DJNZ R7,UDIV1 ;repeat for all 24 bits of dividend
MOV A,RO ;shift dividend I more time. It will then
RLC A ;contain the quotient.
MOV RO,A ;put the quotient in R1:RO
MOV A,R1
RLC A

MOV R1,A
RET

;SP..OUT is passed an argu;ent (an ascii value) in the accumulator. It
;calculates odd parity for it and puts it in the 8th bit of the
;accumulator. The new data byte(7 bit ascii with the 8th bit as the odd
;parity bit) is then transmitted over the serial link. The routine waits
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R6,A
FLAGS.0,C

MATHH,R6

MATHL,RS

C

A,R5

A,R3

R5,A

A,R6

A,R4

R6,A
UDIV2
FLAGS.0,UDIV2

C



;until the transmit buffer is empty before sending the character.

SPOUT:

MOV CP ;move the parity into bit C
CPL C ;complement the bit C for odd parity
MOV ACC.7,C ;append the parity bit to the 7bit ascii
JNB TI,$ ;wait for the last transmission to complete
CLR TI ;clear the transmission interrupt flag
MOV SBUF,A ;send the the data byte down the serial link
RET ;return to the calling routine

;SPIN waits for a character to be sent from the console. It then moves
;the byte into the accumulator, strips off the parity bit, and returns to
;the caller.

SPIN:
JNB RI,$ ;wait for an input
CLR RI ;clear the receive interrupt flag
MOV A,SBUF ;move the input byte into the accumulator
ANL A,#7FH ;strip the parity bit off the data byte
RET ;return to the calling routine with the

;7 bit ascii value of the input in the acc.

;SPINN checks to see if char is in input buffer. If so, char is processed
;as in SPIN routine. Otherwise, a NULL char is returned.

SP.INN:

JB RI,SPINN1 ;continue if char is available
CLR A ;clear ACC
RET

SPINN1:

CLR RI ;clear the receive interrupt flag
MOV A,SBUF ;move the input byte into the accumulator
ANL A,#7FH ;strip the parity bit off the data byte
RET ;return to the calling routine with the

;7 bit ascii value of the input in the acc.

;CRLF sends a carriage return and line feed to the console (PC). The
;accumulator is affected.

CRLF:

MOV A,#CR ;move carriage return into the acc.
CALL SPOUT ;send it to the console
MOV A,#LF ;move ascii for line feed into the acc.
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SPOUT ;send it out to the console

;return to the calling routine

;SENDBYTE takes a binary number in the accumulator and extracts its two

;hex parts the top 4 bits and the lower 4 bits. It then encodes the hex

;bytes into ascii by looking up the conversion table and then transmits

;the resulting ascii values down the serial link

SENDBYTE:

MOV

ANL

SWAP

CALL

MOV

ANL

CALL

RET

B,A
A,#OFOH

A

SENDCHAR

A,B

A,#OFH

SENDCHAR

;save the binary byte in B
;extract the top 4 bits

;move them into the lower half

;use SEND.CHAR to send the ascii for the hex

;character in acc. down the serial link

;get the lower 4 bits of the initial binary

;byte and again use SENDCHAR to transmit

;its ascii down the serial link and then

;return to the calling routine

;SENDCHAR takes a nibble in the accumulator, converts it into an ascii

;character, and sends it down the serial link to the console.

SENDCHAR:

ADD

CJNE

SENDCHAR1:
JC

ADD

SENDCHAR2:

CALL
RET

A,#'O' ;add on the offset for '0'

A,#':',SENDCHAR1 ;see if hex char is a letter (A-F)

SENDCHAR2

A,#7

SPOUT

;jump if char is an ascii number (0-9)
;compensate for chars between '9' and 'A'

;send the char to the console

;TOUPPER converts the ascii character in ACC in the range 'a'-'f' to its

;upper case equivalent.

TOUPPER:

CJNE
TUi:

A,#123,TU1

JNC TU3
CJNE A,#97,TU2

JC TU3

;JUMP IF CHAR NOT LOWER CASE LETTER

;JUMP IF CHAR NOT LOWER CASE LETTER

;CONVERT CHAR TO UPPER CASE

TU3:
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CALL
RET

TU2:

CLR
SUBB A,#32



;TOHEX converts an ascii char to hex digit.

TOHEX:

TOUPPER

A, #'0'
A,#OAH,TO.HEX1

TOHEX3

C

A,#7

A,#16,TOHEX2

TOHEX3
A

;convert char to upper case if necessary

;subtract off the offset of char '0'

;see if char <= '9'

;jump if it is

;compensate for chars between '9' and 'A'

;SEE IF VALUE IS <= 15

;JUMP IF IT IS

;INVALID HEX DIGITS ARE SET TO ZERO

;TODEC converts the ascii character in ACC to a decimal digit.

TODEC:

TOUPPER

A,#OAH,TODEC1

TODEC2

DPTR,#ERROR1

SSTRING

SP,#ISP
START

;convert char to upper case if necessary

;subtract off the offset of char '0'

;see if char is valid decimal digit

;jump if it isn't

;get pointer to error message

;send it

;reinitialize stack pointer
;return to command level

;INPUT reads a line of input from the console and stores it in the command

;buffer. If one or more characters were input, then ACC will contain the

;1st character typed, otherwise it will contain NULL. A DELETE operation

;can be performed by using either the delete or backspace keys.

INPUT:

MOV POINTER,#BUFFER

INPUT1:
CALL SPIN

;reset the buffer pointer

;get a char
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CALL
CLR
SUBB
CJNE

TO.HEX1:
Jc
CLR
SUBB
CJNE

TOHEX2:
JC

CLR
TOHEX3:

RET

CALL
CLR
SUBB
CJNE

TODEC1:
JNC
RET

TODEC2:
MOV
CALL
MOV
JMP

RET



A,#CR,INPUT3

CRLF

A,POINTER

A,#BUFFER,INPUT2

A,#NULL

A,BUFFER

CJNE A,#BS,INPUT6

INPUT4:

;jump if char not CR
;echo the CR

;get the value of thf

;jump if buffer not

;signal that buffei

;get the 1st char in buffer

;jump if char not BS

A,POINTER

A,#BUFFER,INPUTS

INPUT

POINTER

A,#BS

SPDUT

A,#' '
SPDUT

A,#BS

SPDUT

INPUTI

CJNE A,#DEL,INPUT7

JMP INPUT4

INPUT7:
RO,POINTER

RO ,A

POINTER

SP_0UT

A,POINTER

A,#ENDBUF,INPUT1

CRLF

A,BUFFER

;get buffer pointer

;jump if buffer not empty

;buffer empty, ignore BS command

;remove last char from buffer

;perform delete by sending a BS,
;and another BS to the console

;continue receiving characters

;jump if char not DEL

;perform delete operation

;get buffer pointer

;save char in buffer

;increment buffer pointer

;echo the char to the console

;get buffer pointer

;continue if buffer not full

;buffer full, output CR and LF
;get ist char in buffer

;GETWORD takes 4 ascii hex chars from the buffer, converts them into their
;16-bit binary equivalent, and stores the result in R1:RO

RO,#BUFFER

GETBYTE

R1,A

;point to beginning of buffer
;get high byte of word
;save it in R1
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CJNE
CALL
MOV

CJNE
MOV

RET
INPUT2:

MOV

RET
INPUT3:

MOV

CJNE
JMP

INPUTS:

DEC
MOV

CALL
MOV

CALL
MOV

CALL
JMP

INPUT6:

MOV

MOV

INC
CALL
MOV

CJNE
CALL
MOV

RET

GETWORD:

MOV

CALL

MOV



CALL
MOV

RET

GETBYTE:

MOV
CALL

SWAP

MOV
INC
MOV
CALL

ADD
INC

RET

;GETNUM converts the decimal number in the command buffer to it binary
;equivalent. If the number is greater than 65535, then the routine aborts.

GETNUM:
MATHL,#0
MATHH,#0
RO,#(BUFFER-1)

RO

A,RO

A,POINTER,GETNUM2
RO,MATHL
R1,MATHH

TEMP,MATHH
A,MATHL

B,#10
AB

MATHH,B

MATHL,A
A,TEMP
B,#10
AB

A,MATHH

MATHH,A
GETNUM3
A,B

GETNUM3

;initialize MATHH:MATHL word to zero

;point to beginning of buffer

;increment buffer pointer

;put it in ACC

;jump if there are more characters

;PUT RESULT IN R1:RO

;save MATHH

;get the low byte of the answer

;multiply it by 10

;put 16 bit result in MATHH:MATHL

;get high byte of the answer

;multiply it by 10
;add low byte of 16 bit product to MATHH
;put sum in MATHH

;jump if the number is too large

;get high byte of result

;jump if the number is too large
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GETBYTE
RO,A

A,MRO

TOHEX

A

B,A
RO
A,(RO
TOHEX

A,B

;get low byte of word

;save it in RO

;get the ist char

;convert it to a hex digit

;put it in upper nibble of ACC

;save ACC

;point to next char

;get it

;convert it
;combine it with ist digit

;point to next char

MOV
MOV
MOV

GETNUMI:
INC

MOV
CJNE
MOV
MOV
RET

GETNUM2:
MOV
MOV
MOV
MUL
MOV
MOV
MOV
MOV
MUL
ADD

MOV
JC

MOV
JNZ



A,ORO

TODEC

A,MATHL
MATHL,A

MOV

CALL
ADD
MOV

CLR
ADDC
MOV

JNC
GETNUM3:

MOV

CALL

MOV

JMP

;get the next char

;convert it to a decimal digit
;add it to MATHH:MATHL word

;continue if number isn't too large

;point to error message
;send it to the console

;reinitialize stack pointer

;SENDNUM converts the 16-bit binary number in R1:RO to its decimal
;equivalent and sends it down the serial link.

R2,#0

TEMP, #5

R3,#10
R4,#0

UDIV
A, RS

ACC
TEMP,SENDNUM1

TEMP,#4

ACC

SENDNUM4

TEMP,SENDNUM2

ACC

SENDCHAR

SENDCHAR

ACC

TEMP,SENDNUM4

SENDNUM3

;clear R2
;there are 5 decimal digits
;initialize divisor R4:R3 to '10'

;divide the number by ten
;get the remainder

;save it

;get all 5 digits

;remove leading zeros from number

;get the next digit
;jump if it is not zero

;send LSD to console

;send the digit to the console
;get the next digit

;SSTRING sends the string whose starting address is in DPTR over the
;serial link. A NULL character signifies the end of a string.
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A,MATHH
MATHH,A
GETNUM1

DPTR,#ERROR2

SSTRING

SP,#ISP

START

SENDNUM:

MOV

MOV

MOV

MOV

SENDNUM1:

CALL

MOV

PUSH

DJNZ

MOV

SENDNUM2:

POP

JNZ

DJNZ

POP

SENDNUM3:

CALL

RET

SENDNUM4:

CALL

POP

DJNZ

JMP



A

A,CA + DPTR

SSTRING1

SPOUT

DPTR

SSTRING

;clear the accumulator

;get a character

;jump if finished

;otherwise, send the character

;point to the next character

;continue until done

;return to caller

;SPROMPT sends a prompt to the console.

A,#PROMPT

SPOUT
;get the prompt char

;send it to the console

;** ** ** ******** ******* ********MESSAGES*** **** ** **** ******************

ERROR1:

DB '*ERROR - BAD DECIMAL DIGIT*',CR,LF,NULL
ERROR2:

DB '*ERROR - NUMBER TOO LARGE*',CR,LF,NULL
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SSTRING:

CLR

MOVC

Jz
CALL

INC

JMP

SSTRING1:

RET

SPROMPT:

MOV

CALL

RET



Appendix D

Programs for Determining the
Resonant Frequencies and Mode
Shapes

D.1 MATLAB Programs

This section contains the MATLAB routines used to determine the resonant frequencies

and mode shapes of the stator cylinder based on the analysis described in Chapter 4. They

were written to run on MATLAB version 3.13 on an IBM PC compatible machine.

The program RES.M is the main driver program. Each time it is run, it reads the

MATLAB data file CONST.MAT which contains the following variables (stored in binary

format):

mu Poisson's ratio
rho - mass density (kg/m 3 )
e - modulus of elasticity (Pa)
lz - axial length of the stator (m)
r1 - inner radius of the stator (i)

r2 - outer radius of the stator (m)

The user is allowed to change any of these variables before the analysis begins. The program

also prompts the user for the mode number "n" and the model size "m". All of these

variables are stored in the vector variable "args".
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The matrix "A" in Equation 4.16 is generated by a call to the C routine GENA.EXE.

This routine returns the matrix "anu" which is used by the MATLAB command NULL

to determine the matrix "nu". the nullspace of "anu". The columns of "nu" contain the

expansion coefficients of the deflection functions.

The vector "args" and the matrix "nu" are used by the C routine GENAB.EXE to

generate the frequency equation of the stator (see Equation 4.4). This equation is solved

using the MATLAB command EIG.

**

* RES.M *

* *

clear
load const

y=1; n=NaN;
update=input('update motor parameters, (y) or (n) ? ');
if update == y,

fprintf('mu = %6.5e ',mu), update=input('enter poisson ratio: ');
if update -= n, mu=update; end,

fprintf('rho = X6.5e ',rho), update=input('enter the mass density: ');
if update n, rho=update; end,
fprintf('e = %6.5e ',e),
update=input('enter modulus of elasticity: ');
if update -= n, e=update; end,
fprintf('lz = %6.5e ',lz), update=input('enter stator length: ');
if update ~= n, lz=update; end,
fprintf('rl = X6.5e ',r1), update=input('enter inner stator radius: ');
if update -= n, rl=update; end,

fprintf('r2 = %6.5e ',r2), update=input(enter outer stator radius: ');
if update ~= n, r2=update; end,
update=input('save new constants, (y) or (n) ? ');
if update == y, save const e lz mu r1 r2 rho, end,
fprintf('\nupdate finished\n'),

end

n=input('enter circumferential mode number :
m=input('order of model = ');
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args=[m n e lz mu r1 r2 rho];
save d:zzzz args
!gena d:zzzz.mat e shape can be
load d:zzzz

!del d:zzzz.mat

nu=null(anu); [nr,nc]=size(nu);

save resi args nu -pecified
nn=n; n=NaN;

update=input('plot deflection funct ts at
if update == y,

rn=rl/r2; ln=lz/(2*r2); n=nn; gnu=nu;
!copy zfuns.exe d:

!copy rfuns.exe d:

!d:

fprintf('\nnumber of vectors = %2.0f\n',nc);
zp=input('zp = '); args(9)=zp; vec=input('vector number
while vec ~= 0,
args(10)=vec;

save zzzz args gnu

!rfuns zzzz.mat

load zzzz

plot(r,[fl f2 f3]), grid, pause,

fprintf('\nnumber of vectors = %2.Of ',nc);
vec=input('vector number =

end,
rp=input('rp = '); args(9)=rp; vec=input('vector number =

while vec -= 0,

args(10)=vec;

save zzzz args gnu

!zfuns zzzz.mat
load zzzz

plot(z,[fl f2 f3]), grid, pause,
fprintf('\nnumber of vectors %2.0f ',nc);
vec=input('vector number =

end,
!del rfuns.exe

!del zfuns.exe

!del zzzz.mat

!c:

end

clear

fprintf('\ngenerating frequency equation\n'),
!genab resl.mat res2.mat

load res2

fprintf( '\nsolving generalized eigenvalue problem\n'),
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[x,d]=eig(a,b);

d=diag(d);

f=find(d==NaN);

d(f)=[]; x(:,f)=[];

if all(imag(d)==O)==O, d=real(d); x=real(x); end

f=find(d<=O);

d(f)=[]; x(:,f)=[];

[d f]=sort(d); x=x(:,f);
wOsq=e/(2*(1+mu)*rho*r2*r2);

eval=sqrt(wOsq*d)/(2*pi); f=[]; f1=20e3;

while length(f)<2, f=find(eval<=fl); f=find(eval(f)>1); flfl+10e3; end

f=[f eval(f)], [nrf,ncf]=size(f); g=(1:length(x))';
for i = 1:nrf,

gl=x(:,f(i,1));
g=[g,g1/norm(g1)];

end

g=g(:,2:nrf+1);

fmin=min(eval(find(eval>1)));

fprintf('fmin = %4.0f\n',fmin)
clear nrf ncf i gi eval d x

y=1 ; nn=n; n=NaN;

update=input('plot mode shapes, (y) or (n) ? ');

n=nn;

if update == y, u, end
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The program P.M is used to plot the components of the displacement distribution

function (Equation 4.8 evaluated with 0 = 0 and t = 0) so that the mode shape can be

determined. It calls the C routine RFUNS.C which calculates U,, U4, and U.: at 101 radial

positions between the inner and outer radii "r1" and "r2", respectively, at a user specified

axial position. The C routine ZFUNS.C is called to determine the three displacements at

101 positions along the length of the stator at a user specified radial position.

* *

* U.M *

* *

rn=rl/r2; ln=lz/(2*r2);

[nr,nc]=size(g); gnu=nu*g;

!copy zfuns.exe d:

!copy rfuns.exe d:

!d:

fprintf('\nnumber of vectors = '2.of\n',nc);

rp=input('rp = ');
args=[m n e lz mu r1 r2 rho rp];
for vec=l:nc,

args(10)=vec;

save zzzz args gnu

!zfuns zzzz.mat

load zzzz

titl=['n=' ,int2str(n), ' m=' ,int2str(m), ' r=' ,num2str(rp), ' f='] ;
titl=[titl,int2str(round(f(vec,2)))];

plot(z,fl), xlabel('z'), ylabel('ur'), title(titl), grid,
keyboard,

plot(z,f2), xlabel('z'), ylabel('utheta'), title(titl), grid,
keyboard,

plot(z,f3), xlabel('z'), ylabel('uz'), title(titl), grid,
keyboard,

end

zp=input('zp = '); args(9)=zp;
for vec=1:nc,
args(10)=vec;

save zzzz args gnu
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!rfuns zzzz.mat

load zzzz

titl=['n=',int2str(n),' m=',int2str(m),' z=',num2str(zp),' f='];

titl=[titl,int2str(round(f(vec,2)))];

plot(r,fl), xlabel('r'), ylabel('ur'), title(titl), grid,

keyboard,

plot(r,f2), xlabel('r'), ylabel('utheta'), title(titl), grid,

keyboard,

plot(r,f3), xlabel('r'), ylabel('uz'), title(titl), grid,

keyboard,

end

'del zfuns.exe

!del rfuns.exe

!del zzzz.mat

!C:

fprintf('done\n');
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D.

This section contains the source code for the C programs used by RES.M and U.M. These

programs were compiled using the Microsoft 5.0 C Language Compiler [20].

The program GENA.C is used to generate the matrix "A" in Equation 4.16 (this matrix

is labeled "anu" in this program and in RES.M). Assuming that GENA.EXE is on the

default drive, the program can be executed from MATLAB by typing the following line at

the MATLAB prompt:

!gena datafile

where the command line argument DATAFILE is a MATLAB binary datafile containing

the variable "args" defined below:

args[0] =m
args[1] n
args[2] e
args[3] lz
args[4] mu
args[5] ri
args[6] = r2
args[7] = rho

model size parameter
circumferential mode number
modulus of elasticity (Pa)
axial length of the stator (m)
Poisson's ratio
inner radius of the stator (m)
outer radius of the stator (m)
mass density (kg/m 3 )

After the matrix "anu" is generated, it is appended to the end of DATAFILE.

****************************************************************

* *

* GENA.C *

* *

#include <stdio.h>

#include <math.h>

#include <malloc.h>

#define MIN(x, y)
#define MAX(x, y)
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/* function declarations */

loadm(FILE *fp,char *pname,sizet *mrows,size.t *ncols,size-t *imagf,
double far *xreal,double far *ximag);

savem(FILE *fp,char *pname,sizet mrows,size-t ncols,size-t imagf,
double far *xreal,double far *ximag);

int n, m, nr, nc;
double mu, rho, e, lz, ri, r2;
double far *anu, far args[12];

main(argc,argv)

int argc;
char *argv[];

{
size-t rows, cols, imag;
FILE *fp, *fopeno;

if ((anu=(double far *)_fmalloc(8188*sizeof(double)))==NULL)
printf("insufficient memory available\n");
exit(1); }

if (argc != 2) {
printf("wrong number of arguments\n");
printf("correct usage is: gena datafile\n");
exit(1); }

if ((fp=fopen(argv[1],"ab+"))==NULL) {
printf("can't open Xs\n",argv[1]);
_ffree(anu); exit(1); }

if (loadm(fp,"args",&rows,&cols,&imag,args,args) != 0) {
printf("can't read args in Xs\n",argv[4]);
quit(fp); exit(1); }

m=args[0]; n=args[1];

nr = 4*m+2; nc = 3*m*m; /* anu will be nr x nc
for (rows=0;rows<nr*nc;rows++) anu[rows]=O.O;
e=args[2); lz=args[3]; mu=args[4]; rl=args[5];
r2=args[6]; rho=args[7];

init();

gena();

if (savem(fp,"anu",nr,nc,O,anu,anu) != 0) {
printf("error writing anu to file Xs\n",argv[1]);
quit(fp); exit(1); }

quit(fp);

}

quit (fp)
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FILE *fp;
{

_ffree(anu);

fclose(fp);

}

static double In[10], mln[10], rn[10];

init()

{
int i;
double ri, li;

ri=rl/r2; li=lz/(2*r2);

ln[0]=mln[0]=rn[0]=1.0;

for (i=1; i<10; i++) {
rn[i]=rn[i-1]*ri;

ln[i]=ln[i-1]*li;
mln[i]=mln[i-1]*(-li); }

}

gena()

{
int i, j, k, bri, br2, br3, bdij, beij;
double kb;

kb=mu/(1-mu); bdij=nr*m*m; beij=2*bdij;

brl=m+1; br2=2*brl; br3=br2+m;

for (j=0; j<m; j++)
for (i=0; i<m; i++) {

k=(i*m+j)*nr+j;

anu[k]=kb*(j+1)*ln[i];

anu[bdij+k]=kb*n*ln[i];

if (i==0) anu[beij+k+1]=0;

else anu[beij+k+l=i*ln[i-1];

anu[k+brl]=kb*(j+1)*mln[i];

anu[bdij+k+brl]=kb*n*mln[i];

if (i==0) anu[beij+k+brl+1]=0;

else anu[beij+k+brl+1]=i*mln[i-1]; }
for (i=0; i<m; i++)

for (j=0; j<m; j++) {
k=(i*m+j)*nr+i;

if (j==0) {
anu[br2+k]=(j+kb)/rn[1];

anu[br2+bdij+k]=n*kb/rn[1]; }
else {

anu[br2+k]=(j+kb)*rn[j-1];
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anu[br2+bdij+k]=n*kb*rn[j-1]; }
if (i!=O) anu[br2+beij+k-1]=i*kb*rn[j];

anu[br3+k]=j+kb;

anu[br3+bdij+k]=n*kb;

if (i!=0) anu[br3+beij+k-1]=i*kb; I
}

\* The following structure appears at the beginning of all MATLAB

binary datafiles. *\

typedef struct {
long type;

long mrows;

long ncols;

long imagf;

long namlen;

} Fmatrix;

type */
row dimension */

column dimension *1
flag indicating imag part */

name length (including NULL) */

\* The procedure LOADM is used to read a matrix variable from a MATLAB
binary datafile. */

loadm(fp, pname, mrows, ncols, imagf, xreal, ximag)

FILE *fp; /* file pointer */

char *pname; /* pointer to matrix name

sizet *mrows; /* row dimension */

sizet *ncols; /* column dimension */

sizet *imagf; /* imaginary flag */

double far *xreal; /* array of real data */

double far *ximag; /* array of imaginary data */
{

char mname [20]
Fmatrix x;
size-t i, j, nr, nc, namlen, freado, found;
double buf;

found=O;

while (fread((char *)&x, sizeof(Fmatrix), 1, fp) == 1) {
if (x.type != 0) {

printf("bad variable type\n");

return(1); I
*mrows = nr = x.mrows;
*ncols = nc = x.ncols;

*imagf = x.imagf;
namlen = x.namlen;
if (fread(mname, sizeof(char), namlen, fp) != namlen) {

printf("error reading variable name\n");

183



return(1); }
if (strcmp(mname,pname) == 0) { found=1; break; }
for (j=0;j<nc;j++)

for (i=0;i<nr;i++)

if (fread(&buf, sizeof(double), 1, fp) 1) {
printf("error reading real data\n");
return(1); }

if (x.imagf) {
for (j=0;j<nc;j++)

for (i=0;i<nr;i++)

if (fread(&buf, sizeof(double), 1, fp) != 1)
printf("error reading imaginary data\n");
return(1); } } }

if (found == 0) return(1);

for (j=0;j<nc;j++)

for (i=0;i<nr;i++) {
if (fread(&buf, sizeof(double), 1, fp) != 1) {

printf("error reading real data\n");
return(1); }

*xreal=buf;

xreal++; }
if (x.imagf) {

for (j=0;j<nc;j++)

for (i=0;i<nr;i++) {
if (fread(&buf, sizeof(double), 1, fp) != 1) {

printf("error reading imaginary data\n");
return(1); }

*ximag=buf;

ximag++; } }
rewind(fp);

return(0);

}

\* The procedure SAVEM is used to store a matrix variable in a MATLAB
binary datafile. */

savem(fp, pname, mrows, ncols, imagf, xreal, ximag)
FILE *fp; /* File pointer */
char *pname; /* pointer to matrix name
size-t mrows; /* row dimension */
size-t ncols; /* column dimension */
size-t imagf; /* imaginary flag */
double far *xreal; /* pointer to real data */
double far *ximag; /* pointer to imag data */
{
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Fmatrix x;

size-t i, j, fwriteo;

double buf;

x.type = 0;

x.mrows = mrows;

x.ncols = ncols;

x.imagf = imagf;

x.namlen = strlen(pname) + 1;
if (fwrite(&x, sizeof(Fmatrix), 1, fp) ! 1) return(1);

if (fwrite(pname, sizeof(char), (sizet)x.namlen, fp) != x.namlen)
return(1);

for (j=0;j<ncols;j++)

for (i=0;i<mrows;i++) {
buf=*xreal;

xreal++;

if (fwrite(&buf, sizeof(double), 1, fp) ! 1) return(1); }
if (imagf)

for (j=0;j<ncols;j++)

for (i=0;i<mrows;i++) {
buf=*ximag;

ximag++;

if (fwrite(&buf,sizeof(double),1,fp) != 1) return(1); }
return(0);

}
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The program GENAB.C is used to generate the "A" and "B" matrices in Equation 1.4.

Assuming that GENAB.EXE is on the default drive, the program can be executed from

MATLAB by typing the following line at the MATLAB prompt:

!genab infile outfile

where the command line arguments INFILE and OUTFILE are MATLAB binary datafiles.

The file INFILE contains the variable "args" which was defined above and the variable "nu"

the matrix containing the expansion coefficients for the deflection functions. After the "A"

and "B" matrices are generated, they are written, along with the variables "m", "n", "mu"

"rho", "e", "r1", "r2", and "lz" and the matrix "nu" to the output file OUTFILE. The

file is processed by the MATLAB M-file RES.M to yield the resonant frequencies and their

corresponding eigenvectors. The eigenvectors are normalized to unity length and are stored

columnwise in the matrix "g".

**

* GENAB.C

* *

#include <stdio.h>

#include <math.h>

/* function declarations */

loadm(FILE *fp,char *pname,size-t *mrows,size.t *ncols,sizet *imagf,
double *xreal,double *ximag);

savem(FILE *fp,char *pname,sizet mrows,size-t ncols,sizet imagf,
double *xreal,double *ximag);

double cl[256], c2[256], c3[256], c4[256];
double c5[256], c6[256], c7[256], c8[256];
double a[900], b[900], nu[1440], t1[20];
int n, m;
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double mu, rho, e, lz, ri, r2, rn, ln, wOsq;

main(argc,argv)

int argc;
char *argv[];

{
size-t i, j, ind, rows, cols, imag, ierr, eflag, size;

FILE *fp, *fopen(;
if (argc != 3) {

printf("wrong number of arguments\n");

printf("correct usage is: genab infile outfile\n");
exit(l); }

if ((fp=fopen(argv[l],"rb"))==NULL) {
printf("can't open Xs\n",argv[l]);
exit(l); }

if (loadm(fp,"args",&rows,&cols,&imag,ti,ti) != 0) {
printf("can't read args in Xs\n",argv[1]);
fclose(fp); exit(l); }

m=tl[0]; printf("m = 'd\n",m); n=t1[1]; printf("n =Xd\n"
e=tl[2]; lz=tl[3]; mu=tl[4]; rl=tl[S];

r2=t1[6]; rho=tl[7];

printf("mu = X6.5e\n",mu); printf("rho = X6.5e\n",rho);
printf("e = X6.5e\n",e); printf("lz = X6.5e\n",lz);
printf("r1 = X6.e\n",r1); printf("r2 = X6.5e\n",r2);
if (loadm(fp,"nu",&rows,&cols,&imag,nu,a) != 0) {

printf("can't read nu in Xs\n",argv[l]);
fclose(fp); exit(l); }

fclose(fp);

genab(rows,cols);

if ((fp=fopen(argv[2],"wb"))==NULL) { -

printf("can't open %s\n",argv[2]);

exit(l); I
if (savem(fp,"a",cols,cols,O,a,a) != 0) {

printf("error writing to file Xs\n",argv[2]);
fclose(fp);

exit(l); I
if (savem(fp,"b",cols,cols,0,b,b) != 0) {

printf("error writing to file Xs\n",argv[2]);
fclose(fp);

exit(l); I
if (savem(fp,"nu",rows,cols,0,nu,nu) != 0) {

printf("error writing to file Xs\n",argv[2]);
fclose(fp);

exit(l); }
tl[O]=m;
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if (savem(fp,"m",1,1,0,t1,ti) != 0) {
printf("error writing to file Xs\n",argv[2]);
fclose(fp);

exit(1); }
tl[0]=n;

if (savem(fp,"n",1,1,0,ti,t1) != 0) {
printf("error writing to file Xs\n",argv[2]);
fclose(fp);

exit(1); }
if (savem(fp,"mu",1,1,0,&mu,t1) != 0) {

printf("error writing to file Xs\n",argv[2]);
fclose(fp);

exit(1); }
if (savem(fp,"rho",1,1,0,&rho,ti) != 0) {

printf("error writing to file %s\n",argv[2]);
fclose(fp);

exit(1); }
if (savem(fp,"e",1,1,0,&e,t1) != 0) {

printf("error writing to file
fclose(fp);

exit(1); }
if (savem(fp,"lz",1,1,0,&lz,t1) !

printf("error writing to file
fclose(fp);

exit(1); }
if (savem(fp,"r1",1,1,0,&r1,tI) !

printf("error writing to file
fclose(fp);

exit(1); }
if (savem(fp,"r2",1,1,0,&r2,t1) !

printf("error writing to file

fclose(fp);

exit(1); }
fclose(fp);

Xs\n",argv[2]);

0) {
Xs\n",argv[2]);

0) {
Xs\n",argv[2]);

0) {
Xs\n",argv[2]);

genab(nr,nc)

int nr, nc;
{

int g, h, i, j, k, 1, jpl, ipk, indg, indh;
int ns, ms, ms2, ij, kl, x1, x2, x3, x4;
double pi, den, mul, temp, pi, p2;
double frl(), fr2(), fr3(, zi(), z2(), z3();
double rrl, rr2, rr3, rzl, rz2, rz3;
double *pa, *pb, *pci, *pc2, *pc3;

188

i



double *pc4, *pc5, *pc6, *pc7, *pc8;

rn=rl/r2; ln=lz/(2*r2); ns=n*n; ms=m*m; ms2=2*ms; pi=acos(-i.O);
den=1-2*mu; mul=1-mu;

if (n==0) { p1=2*pi; p2=0;
else p1=p2=pi;

printf("p1=X6.5e p2=%6.5e\n",pl,p2);

printf("\n");

pcl=cl; pc2=c2; pc3=c3; pc4=c4; pcS=cS; pc6=c6; pc7=c7; pc8=c8;
for (i=0;i<m;i++)

for (j=0;j<m;j++)

for (k=0;k<m;k++)

for (1=0;l<m;l++) {
printf("i=Xd j=Xd k=Xd 1=Xd\r",i,j,k,1);
jpl=j+l; ipk=i+k; rrl=fr1(jpl); rr2=fr2(jpl); rr3=fr3(jpl);

rzl=zl(ipk); rz2=z2(ipk); rz3=z3(ipk);
temp=(ns*p2+2*pl*(mu*jpl+mul*(1+j*1))/den)*rr3*rzl;

*pcl=temp+i*k*pl*rrl*rz3;

*pc2=2*n*((1-1)*p2+2*p1*(mu*j+mu1)/den)*rr3*rzi;

*pc3=2*pl*(i*1+2*mu*k*(j+1)/den)*rr2*rz2;

temp=(2*p*ns*mul/den+(j-1)*(1-1)*p2)*rr3*rzl;

*pc4=temp+i*k*p2*rrl*rz3;

*pc5=2*n*(2*mu*k*pl/den-i*p2)*rr2*rz2;

temp=(2*mul*i*k/den)*pl*rrl*rz3;

*pc6=temp+(j*l*pl+ns*p2)*rr3*rzl;

*pc7=2*pl*rrl*rzi;

*pc8=2*p2*rrl*rzl;

pcl++; pc2++; pc3++; pc4++; pcS++; pc6++; pc7++; pc8++; }
printf("\ninitialization complete\n\n");
printf("A and B matrices will have size %d x Xd\n\n",nc,nc);
pa=&a[0]; pb=&b[0];

* Since the A and B matrices are symmetric only the lower triangular
portion is calculated. The upper portion is filled in later. */

for (g=0;g<nc;g++) { indg=g*nr;
for (h=g;h<nc;h++) { indh=h*nr; *pa=*pb=0.0;
printf("g=X2d\th=X2d\r",g,h);

pcl=cl; pc2=c2; pc3=c3; pc4=c4; pcS=cS; pc6=c6; pc7=c7; pc8=c8;
for (i=0;i<m;i++)

for (j=0;j<m;j++) { ij=i*m+j; xl=indg+ij; x3=indh+ij;
for (k=0;k<m;k++)

for (1=0;1<m;l++) {
kl=k*m+l; x2=indg+kl; x4=indh+kl;
temp=2*nu[xl]*nu[x4]*(*pcl);

temp+=(nu[xl]*nu[x4+ms]+nu[x3]*nu[x2+ms])*(*pc2);
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temp+=(nu[x1*nu[x4+ms2]+nu[x3]*nu[x2+ms2])*(*pc3);

*pa+=temp+2*nu[x+ms] *nu[x4+ms] *(*pc4);
temp=(nu[xl+ms]*nu[x4+ms2]+nu[x3+ms]*nu[x2+ms2] )*(*pc5);
*pa+=temp+2*nu[xl+ms2] *nu [x4+ms2] *(*pc6);
temp=(nu[xl]*nu[x4]+nu[xl+ms2]*nu[x4+ms2] )*(*pc7);
*pb+=temp+(nu[xl+ms]*nu[x4+ms] )*(*pc8);
pcl++; pc2++; pc3++; pc4++; pc5++; pc6++; pc7++; pc8++; } }
pa++; pb++; } pa+=g+1; pb+=g+1; }

printf ("\n\n");

/* Fill in the upper portion */

for (g=O;g<nc;g++)

for (h=g+1;h<nc;h++) {
printf("g=X2d\th='/2d\r" ,g,h);
a [nc*h+g]=a [nc*g+h];

b[nc*h+g]=b[nc*g+h]; }
printf("\n\n");

}

double frl(x)
int x;
{

return((1.O-pow(rn,x+2.0))/(x+2.0));

}

double fr2(x)

int x;
{

return((1.0-pow(rn,x+1.0))/(x+1.0));

}

double fr3(x)

int x;

{
if (x==0) return(-log(rn));

return((1.0-pow(rn,(double)x))/(double)x);

}

double zi(x)

int x;
{

if ((x & 1) != 0) return(0.0);
return(pow(ln,x+1.0)/(x+1.0));

}
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double
int x;

z2(x)

if ((x & 1) == 0) return(O.0);

if (x==0) return(O.0);

return(pow(ln,(double)x)/(double)x);

}

double z3(x)

int x;
{

if ((x & 1) != 0) return(0.0);

if (x<=1) return(O.0);

else return(pow(ln,x-1.0)/(x-1.0));

\* The following structure appears at the beginning of all MATLAB
binary datafiles. *\

typedef struct {
long type;

long mrows;

long ncols;

long imagf;

long namlen;
} Fmatrix;

\* The procedure LOADM

binary datafile. */

loadm(fp, pname, mrows

FILE *fp;

char *pname;

sizet *mrows;

sizet *ncols; /*

size-t *imagf;

double far *xreal; /*

double far *ximag; /*

{

type */
row dimension */

column dimension */

flag indicating imag part */
name length (including NULL) */

is used to read a matrix variable from a MATLAB

ncols, imagf, xreal, ximag)
file pointer */

pointer to matrix name
row dimension */
column dimension */
imaginary flag */

array of real data */
array of imaginary data */

char mname[20];
Fmatrix x;
size-t i, j, nr, nc, namlen, fread(), found;
double buf;
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found=O;
while (fread((char *)&x, sizeof(Fmatrix), 1, fp) == 1) {

if (x.type != 0) {
printf("bad variable type\n");
return(1); }

*mrows = nr = x.mrows;
*ncols = nc = x.ncols;
*imagf = x.imagf;
namlen = x.namlen;

if (fread(mname, sizeof(char), namlen, fp) ! namlen) {
printf("error reading variable name\n");
return(1); }

if (strcmp(mname,pname) == 0) { found=1; break; }
for (j=0;j<nc;j++)

for (i=0;i<nr;i++)

if (fread(&buf, sizeof(double), 1, fp) != 1) {
printf("error reading real data\n");
return(1); }

if (x.imagf) {
for (j=0;j<nc;j++)

for (i=0;i<nr;i++)

if (fread(&buf, sizeof(double), 1, fp) != 1) {
printfC'error reading imaginary data\n");
return(1); } } }

if (found == 0) return(1);

for (j=0;j<nc;j++)

for (i=0;i<nr;i++) {
if (fread(&buf, sizeof(double), 1, fp) != 1) {

printf("error reading real data\n");
return(1); }

*xreal=buf;

xreal++; }
if (x.imagf) {

for (j=0;j<nc;j++)
for (i=0;i<nr;i++) {

if (fread(&buf, sizeof(double), 1, fp) != 1) {
printf("error reading imaginary data\n");
return(1); }

*ximag=buf;

ximag++; } }
rewind(fp);

return(0);

}

\* The procedure SAVEM is used to store a matrix variable in a MATLAB
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binary datafile. */

savem(fp, pname, mrows, ncols, imagf, xreal, ximag)
FILE *fp; /* File pointer */
char *pname; /* pointer to matrix name
size-t mrows; /* row dimension */
size.t ncols; /* column dimension */
size-t imagf; /* imaginary flag */
double far *xreal; /* pointer to real data */
double far *ximag; /* pointer to imag data */
{

Fmatrix x;

size-t i, j, fwrite();
double buf;

x.type = 0;
x.mrows = mrows;

x.ncols = ncols;
x.imagf = imagf;
x.namlen = strlen(pname) + 1;
if (fwrite(&x, sizeof(Fmatrix), 1, fp) ! 1) return(1);
if (fwrite(pname, sizeof(char), (size-t)x.namlen, fp) != x.namlen)

return(1);

for (j=0;j<ncols;j++)

for (i=0;i<mrows;i++) {
buf=*xreal;

xreal++;

if (fwrite(&buf, sizeof(double), 1, fp) != 1) return(1); }
if (imagf)

for (j=0;j<ncols;j++)

for (i=0;i<mrows;i++) {
buf=*ximag;

ximag++;

if (fwrite(&buf,sizeof(double),1,fp) ! 1) return(1); }
return(0);

}
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The program RFUNS.C is used by U.M to generate the radial, tangential, and axial

components of either the displacement distribution function (Equation 4.8) or the deflection

function (Equation 4.9) at 101 radial positions between the inner and outer radii of the

stator. Assuming that RFUNS.EXE is on the default drive, the program can be executed

from MATLAB by typing the following line at the MATLAB prompt:

!rfuns datafile

where the command line argument DATAFILE is a MATLAB binary datafile containing

the variables "args" and "gnu". The variable "args" is the same as above except for two

additional elements defined as follows:

args[8] = zp - normalized axial position
args[9] = vec - column number of gnu

To calculate the i'th displacement distribution function, the variable "vec" should be set

to i and the matrix "gnu" to the matrix product of "nu" and "g". To calculate the i'th

deflection function, the variable "vec" should again be set to i and the matrix "gnu" to

nu

* *

* RFUNS.C *

* *

#include <stdio.h>

#include <math.h>

#include <malloc.h>

#define MIN(x, y) (((x) < (y)) ? (x) : (y))
#define MAX(x, y) (((x) > (y)) ? (x) : (y))

/* function declarations */
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loadm(FILE *fp,char *pname,sizet *mrows,size-t *ncols,size-t *imagf,
double far *xreal,double far *ximag);

savem(FILE *fp,char *pname,size-t mrows,size-t ncols,size-t imagf,
double far *xreal,double far *ximag);

int n, m, vec;
double e, lz, mu, ri, r2, rho, zp;
double far *f1, far *f2, far *f3, far *r, far *gnu, far args[20];

main(argc,argv)

int argc;
char *argv[];

{
sizet rows, cols, imag, offset;
FILE *fp, *fopen();
if (argc != 2) {

printf("wrong number of arguments\n");
printf("correct usage is: rfuns datafile\n");
exit(1); }

memalloco;

if ((fp=fopen(argv[1],"ab+"))==NULL) {
printf("can't open Xs\n",argv[1]);
memfree(; exit(1); }

if (loadm(fp,"args",&rows,&cols,&imag,args,args) != 0) {
printf("can't read args in Xs\n",argv[1]);
quit(fp); exit(1); I

m=args[0]; n=args[1]; e=args[2); lz=args[3]; mu=args[4];
rl=args[5]; r2=args[6]; rho=args[7]; zp=args[8]; vec=args[9J;
if (loadm(fp,"gnu",&rows,&cols,&imag,gnu,gnu) != 0) {

printf("can't read gnu in Xs\n",argv[1]);
quit(fp); exit(1); }

offset=(vec-1)*rows;

gnu=gnu+offset;

rfuns();

if (savem(fp,"f1",101,1,0,fi,f1) != 0) {
printf("error writing fi to file Xs\n",argv[1]);
quit(fp); exit(1); I

if (savem(fp,"f2",101,1,0,f2,f2) != 0) {
printf("error writing f2 to file Xs\n",argv[1]);
quit(fp); exit(1); }

if (savem(fp,"f3",101,1,0,f3,f3) != 0) {
printf("error writing f3 to file %s\n",argv[1]);
quit(fp); exit(1); I

if (savem(fp,"r",101,1,0,r,r) != 0) {
printf("error writing r to file Xs\n",argv[1]);

195



quit(fp); exit(1); }
quit(fp);

}

memalloc()

{
fl=f2=f3=r=gnu=NULL;

if ((f=(double far *)_fmalloc(101*sizeof(double)))==NULL) {
printf("insufficient memory available\n");

exit(1); }
if ((f2=(double far *).fmalloc(101*sizeof(double)))==NULL) {

printf("insufficient memory available\n");

memfreeo;

exit(1); }
if ((f3=(double far *).fmalloc(101*sizeof(double)))==NULL) {

printf("insufficient memory available\n");

memfreeo;

exit(1); }
if ((r=(double far *)_fmalloc(101*sizeof(double)))==NULL) {

printf("insufficient memory available\n");
memfreeo;

exit(1); }
if ((gnu=(double far *)_fmalloc(8188*sizeof(double)))==NULL) {

printf("insufficient memory available\n");
memfreeo;

exit(1); }
}

memfree()

_ffree(f1);

.ffree(f2);

.ffree(f3);

.ffree(r);

_ffree(gnu);
}

quit(fp)

FILE *fp;

{
memfreeo;

fclose(fp);

}

rfuns()
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int i, j, k, indi, ind2, ind3;
double rn, rpj, zpi, temp;

rn=rl/r2; temp=(1-rn)/100;

for (i=0; i<101; i++) r[i]=rn+i*temp;

for (k=0; k<101; k++) {
fi[k]=f2[k]=f3[k]=0;

for (i=0; i<m; i++) {
zpi=pow(zp,(double)i);

for (j0; j<m; j++) {
rpj=pow(r[k],(double)j);

indl=i*m+j; ind2=m*m+indi; ind3=2*m*m+indl;

f 1 [k) +=gnu [ind] *rpj *zpi;
f2[k]+=gnu[ind2]*rpj*zpi;

f3[k]+=gnu[ind3]*rpj*zpi; } } }

typedef struct {
long type;

long mrows;

long ncols;

long imagf;

long namlen;

} Fmatrix;

/* type */
/* row dimension */

/* column dimension */

/* flag indicating imag part */

/* name length (including NULL) */

\* The procedure LOADM is used to read a matrix variable from a MATLAB
binary datafile. */

loadm(fp, pname, mrows, ncols, imagf, xreal, ximag)

FILE *fp; /* file pointer */

char *pname; /* pointer to matrix name */
sizet *mrows; /* row dimension */

sizet *ncols; /* column dimension */

sizet *imagf; /* imaginary flag */

double far *xreal; /* array of real data */

double far *ximag; /* array of imaginary data */

{
char mname[20);
Fmatrix x;
sizet i, j, nr, nc, namlen, freado, found;
double buf;

found=O;

while (fread((char *)&x, sizeof(Fmatrix), 1, fp) == 1) {
if (x.type != 0) {

printf("bad variable type\n");
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return(1); }
*mrows = nr = x.mrows;

*ncols = nc = x.ncols;

*imagf = x.imagf;

namlen = x.namlen;
if (fread(mname, sizeof(char), namlen, fp) != namlen) {

printf("error reading variable name\n");
return(1); }

if (strcmp(mname,pname) == 0) { found=1; break; }
for (j=0;j<nc;j++)

for (i=0;i<nr;i++)

if (fread(&buf, sizeof(double), 1, fp) != 1) {
printf("error reading real data\n");
return(1); }

if (x.imagf) {
for (j=0;j<nc;j++)

for (i=0;i<nr;i++)

if (fread(&buf, sizeof(double), 1, fp) != 1) {
printf("error reading imaginary data\n");
return(1); } } }

if (found == 0) return(1);

for (j=0;j<nc;j++)

for (i=0;i<nr;i++) {
if (fread(&buf, sizeof(double), 1, fp) ! 1) {

printf("error reading real data\n");
return(1); }

*xreal=buf;

xreal++; }
if (x.imagf) {

for (j=0;j<nc;j++)

for (i=0;i<nr;i++) {
if (fread(&buf, sizeof(double), 1, fp) ! 1) {

printf("error reading imaginary data\n");
return(1); }

*ximag=buf;

ximag++; } }
rewind(fp);

return(0);

\* The procedure SAVEM is used to store a matrix variable in a MATLAB
binary datafile. */

savem(fp, pname, mrows, ncols, imagf, xreal, ximag)
FILE *fp; /* File pointer */
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char *pname; /* pointer to matrix name */
size-t mrows; /* row dimension */
size-t ncols; /* column dimension */
size-t imagf; /* imaginary flag */
double far *xreal; /* pointer to real data */
double far *ximag; /* pointer to imag data */
{

Fmatrix x;

size-t i, j, fwrite(;
double buf;

x.type = 0;

x.mrows = mrows;

x.ncols = ncols;

x.imagf = imagf;

x.namlen = strlen(pname) + 1;

if (fwrite(&x, sizeof(Fmatrix), 1, fp) ! 1) return(1);
if (fwrite(pname, sizeof(char), (size.t)x.namlen, fp) != x.namlen)

return(1);

for (j=0;j<ncols;j++)

for (i=0;i<mrows;i++) {
buf=*xreal;

xreal++;

if (fwrite(&buf, sizeof(double), 1, fp) ! 1) return(1); }
if (imagf)

for (j=O;j<ncols;j++)

for (i=0;i<mrows;i++) {
buf=*ximag;

ximag++;

if (fwrite(&buf,sizeof(double),1,fp) ! 1) return(1); }
return(0);

}
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The program ZFUNS.C is used by U.M to generate the radial, tangential, and axial

components of either the displacement distribution function (Equation 4.8) or the deflection

function (Equation 4.9) at 101 axial positions along the length of the stator. Assuming that

ZFUNS.EXE is on the default drive, the program can be executed from MATLAB by typing

the following line at the MATLAB prompt:

!zfuns datafile

where the command line argument DATAFILE is a MATLAB binary datafile containing

the variables "args" and "gnu". The variable "args" is the same as above except for two

additional elements defined as follows:

args[8] rp - normalized radial position
args[9] vec - column number of gnu

To calculate the i'th displacement distribution function, the variable "vec" should be set

to i and the matrix "gnu" to the matrix product of "nu" and "g". To calculate the i'th

deflection function, the variable "vec" should again be set to i and the matrix "gnu" to

"nu.

* *

* ZFUNS.C
* *

#include <stdio.h>

#include <math.h>

#include <malloc.h>

#define MIN(x, y) (((x) < (y)) ? (x) : (y))
#define MAX(x, y) (((x) > (y)) ? (x) : (y))

/* function declarations */
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loadm(FILE *fpchar *pname,size.t *mrows,size-t *ncols,size-t *imagf,
double far *xreal,double far *ximag);

savem(FILE *fp,char *pname,size-t mrows,size-t ncols,size-t imagf,
double far *xreal,double far *ximag);

int n, m, vec;
double e, lz, mu, ri, r2, rho, rp;
double far *f1, far *f2, far *f3, far *z, far *gnu, far args[20];

main(argc,argv)

int argc;
char *argv[];

{
sizet rows, cols, imag, offset;
FILE *fp, *fopeno;

if (argc != 2) {
printf("wrong number of arguments\n");
printf("correct usage is: zfuns datafile\n");
exit(1); }

memalloco;

if ((fp=fopen(argv[1],"ab+"))==NULL) {
printf("can't open %s\n",argv[1]);
memfreeo; exit(1); }

if (loadm(fp,"args",&rows,&cols,&imag,args,args) != 0) {
printf("can't read args in Xs\n",argv[1]);
quit(fp); exit(1); }

m=args[0]; n=args[1]; e=args[2]; lz=args[3]; mu=args[4];
rl=args[5]; r2=args[6]; rho=args[7]; rp=args[8]; vec=args[9];
if (loadm(fp,"gnu",&rows,&cols,&imag,gnu,gnu) ! 0) {

printf("can't read gnu in Xs\n",argv[1]);
quit(fp); exit(1); }

offset=(vec-1)*rows;

gnu=gnu+offset;

zfuns();
if (savem(fp,"f1",101,1,0,f1,f1) ! 0) {

printf("error writing f1 to file Xs\n",argv[1J);
quit(fp); exit(1); }

if (savem(fp,"f2",101,1,0,f2,f2) != 0) {
printf("error writing f2 to file Xs\n",argv[1]);
quit(fp); exit(1); }

if (savem(fp,"f3",101,1,0,f3,f3) != 0) {
printf("error writing f3 to file Xs\n",argv[1]);
quit(fp); exit(1); I

if (savem(fp,"z",101,1,0,z,z) != 0) {
printf("error writing z to file %s\n",argv[1]);
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quit(fp); exit(1); }
quit(fp);

}

memalloc()

{
fl=f2=f3=z=gnu=NULL;

if ((f=(double far *)_fmalloc(101*sizeof(double)))==NULL) {
printf("insufficient memory available\n");
exit(1); I

if ((f2=(double far *)_fmalloc(101*sizeof(double)))==NULL) {
printf("insufficient memory available\n");
memfreeo;

exit(1); }
if ((f3=(double far *)_fmalloc(101*sizeof(double)))==NULL) {

printf("insufficient memory available\n");
memfreeo;

exit(1); }
if ((z=(double far *)_fmalloc(101*sizeof(double)))==NULL) {

printf("insufficient memory available\n");
memfreeo;

exit(1); }
if ((gnu=(double far *).fmalloc(8188*sizeof(double)))==NULL) {

printf("insufficient memory available\n");
memfree();

exit(1); }
}

memfree()

{
..free(fi1);

ffree(f2);

ffree(f3);

ffree(z);

.ffree(gnu);

}

quit(fp)

FILE *fp;

{
memfree();

fclose(fp);

}

zfuns()
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{
int i, j, k, indi, ind2, ind3;
double ln, rpj, zpi, temp;

ln=lz/(2*r2); temp=ln/50;

for (i=0; i<101; i++) z[i]=-ln+i*temp;
for (k=O; k<101; k++) {

fi[k]=f2[k]=f3[k]=0;

for (i=0; i<m; i++) {
zpi=pow(z[k],(double)i);

for (j0; j<m; j++) {
rpj=pow(rp, (double)j);

ind1=i*m+j; ind2=m*m+indl; ind3=2*m*m+indl;

f1[k]+=gnu[ind1]*rpj*zpi;
f2[k]+=gnu[ind2]*rpj*zpi;

f3[k]+=gnu[ind3]*rpj*zpi; } } }

typedef struct {
long type;
long mrows;

long ncols;
long imagf;

long namlen;

} Fmatrix;

/* type */
/* row dimension */
/* column dimension */
/* flag indicating imag part */
/* name length (including NULL) */

\* The procedure LOADM is used to read a matrix variable from a MATLAB
binary datafile. */

loadm(fp, pname, mrows, ncols, imagf, xreal, ximag)
FILE *fp; /* file pointer */
char *pname; /* pointer to matrix name
size-t *mrows; /* row dimension */
size.t *ncols; /* column dimension */
sizet *imagf; /* imaginary flag */
double far *xreal; /* array of real data */
double far *ximag; /* array of imaginary data */
{

char mname[20];
Fmatrix x;
size.t i, j, nr, nc, namlen, freado, found;
double buf;
found=0;

while (fread((char *)&x, sizeof(Fmatrix), 1, fp) == 1) {
if (x.type != 0) {

printf("bad variable type\n");
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return(1); }
*mrows = nr = x.mrows;

*ncols = nc = x.ncols;

*imagf = x.imagf;

namlen = x.namlen;

if (fread(mname, sizeof(char), namlen, fp) ! namlen) {
printf("error reading variable name\n");
return(1); }

if (strcmp(mname,pname) == 0) { found=1; break; }
for (j=0;j<nc;j++)

for (i=O;i<nr;i++)

if (fread(&buf, sizeof(double), 1, fp) != 1) {
printf("error reading real data\n");
return(1); }

if (x.imagf) {
for (j=0;j<nc;j++)

for (i=0;i<nr;i++)

if (fread(&buf, sizeof(double), 1, fp) != 1) {
printf("error reading imaginary data\n");
return(1); } } }

if (found == 0) return(1);

for (j=0;j<nc;j++)

for (i=0;i<nr;i++) {
if (fread(&buf, sizeof(double), 1, fp) != 1) {

printf("error reading real data\n");
return(1); }

*xreal=buf;

xreal++; }
if (x.imagf) {

for (j=0;j<nc;j++)

for (i=0;i<nr;i++) {
if (fread(&buf, sizeof(double), 1, fp) != 1) {

printf("error reading imaginary data\n");
return(1); }

*ximag=buf;

ximag++; } }
rewind(fp);

return(0);

}

\* The procedure SAVEM is used to store a matrix variable in a MATLAB
binary datafile. */

savem(fp, pname, mrows, ncols, imagf, xreal, ximag)
FILE *fp; /* File pointer */
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char *pname; /* pointer to matrix name
sizet mrows; /* row dimension */
size-t ncols; /* column dimension */
size-t imagf; /* imaginary flag */
double far *xreal; /* pointer to real data */
double far *ximag; /* pointer to imag data */
{

Fmatrix x;

size-t i, j, fwrite();
double buf;

x.type = 0;

x.mrows = mrows;

x.ncols = ncols;

x.imagf = imagf;

x.namlen = strlen(pname) + 1;
if (fwrite(&x, sizeof(Fmatrix), 1, fp) ! 1) return(1);
if (fwrite(pname, sizeof(char), (sizet)x.namlen, fp) != x.namlen)

return(1);

for (j=0;j<ncols;j++)

for (i=0;i<mrows;i++) {
buf=*xreal;

xreal++;

if (fwrite(&buf, sizeof(double), 1, fp) != 1) return(1); }
if (imagf)

for (j=0;j<ncols;j++)

for (i=0;i<mrows;i++) {
buf=*ximag;

ximag++;

if (fwrite(&buf,sizeof(double),1,fp) != 1) return(1); }
return(O);

}

205



V

Appendix E

VRM Simulation Programs

E.1 Current-Flux Fitting Programs

The MATLAB M-file IFIT.M is used to determine the expansion coefficients #31 in Equa-

tion 5.9. It reads the data file IVSLAM.MAT which contains points of the flux-current curves

at 16 different angles (see Figure 2.3) stored in the matrix variables "current" and "lambda".

The expansion coefficients are stored in the variable "b" in the data file IFIT.MAT.

* *

* IFIT.M *

* *

clear

nl=input('enter order of lambda polynomial: ');
n2=input('enter order of Fourier cosine series in theta: ');
load ivslam

fprintf('theta =

for theta=0:2:30,

fprintf(''..Of,',theta);

cl=theta/2+1; lam=lambda(: ,cl);
coef=pfit(lam,current(: ,cl) ,nl);
a(cl, :)=coef;

end

fprintf('\n');

for c1=17:31, a(c1,:)=a(32-ci,:); end
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theta=pi*[(0:2:60)']/180;

theta1=pi*[(0:.6:60)']/180;

fprintf('index = ');

for c1=1:nl,

fprintf('%.Of,',cl);

coef=cosfit(6*theta,a(:,cl),n2);

b(cl,:)=coef;

fit1(:,c1)=cosval(coef,6*theta1);

end

fprintf('\n');

save ifit b

for cl=1:nl, plot((0:2:60)',a(:,cl),'o',(O:.6:60)',fit1(:,cl),'-'), pause,
end

theta=pi*[(0:2:30)']/180;

for cl=1:nl, afit(:,cl)=cosval(b(cl,:),6*theta); end
for cl=1:length(theta),

lam=lambda(:,cl);

fit(:,cl)=polyval([afit(cl,:) 0],lam);

end

for c1=1:length(theta),

titl=[int2str(2*cl-2)];

plot(current(:,cl),lambda(:,cl),fit(:,c),lambda(:,c1)), title(titl),
pause,

end

clear c1 coef titl lam
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* PFIT.M *

* *

function p = pfit(x,y,n)

X PFIT(x,y,n) finds the coefficients of a polynomial formed from the data
X in vector x of degree n that fits the data in vector y in a least-squares
sense where it is known that the polynomial passes through the origin.

% The polynomial has the following form for n=3:
% y = p1 * x^3 + p2 * x^2 + p3 * x

if size(x) s= size(y)
disp('X and Y vectors must be the same size')
return

end

x = x(:); y = y(:);

A = zeros(max(size(x)),n);

for j=1:n

A(:,j) = x.^(n-j+1);

end

p = (A\y).';
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* COSFIT.M *

* *

function p = cosfit(x,y,n)

X COSFIT(x,y,n) finds the coefficients of a cosine polynomial formed from
X the data in vector x of degree n that fits the data in vector y in a
X least-squares sense. The polynomial has the following form for n=3:
X y = pi * cos(3x) + p2 * cos(2x) + p3 * cos(x) + p4

if size(x) "= size(y),
disp('X and Y vectors must be the same size'),
return,

end

x = x(:); y =,y(:);
n = n + 1;
a=zeros(length(x),n);

for j=1:n,

a(:,j)=cos((n-j)*x);

end

p = (a\y).';
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COSVAL.M

function y = cosval(c,x)

% COSVAL(x,y,n) evaluates the cosine polynomial described by the
% coefficients in the vector c at all points in the vector x.
X The polynomial has the following form for n=3:
% y = ci * cos(3x) + c2 * cos(2x) + c3 * cos(x) + c4

n = length(c);

[nr,nc]=size(x);
y = zeros(nr,nc);
for i=1:n,

y=y+c(i)*cos((n-i)*x);

end
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E.2 Motor Simulation Programs

The program MOTOR.M is the top-level driver for the simulation program. It reads the

data file MOTOR.MAT which contains the following variables:

b - matrix of expansion coefficients (see Table 5.1)
ichop - current chopping level (amps)
itheta - initial rotor position (radians)
npts - number of simulation points

lt - number of turns per phase

off - turn-off angle (radians)
on - turn-on angle (radians)
tchop - chopping period (seconds)
vs - supply voltage (volts)
w - rotor sreed (rad/sec)

The user is allowed to make changes to any of these variables before control is passed to

the C program MOTOR.EXE which performs the actual simulations.

* MOTOR.M*

clear
load motor

y=1; n=NaN;

res=input('update motor parameters, (y) or (n)

if res == y

fprintf(npts=.Of',npts), resinput(enter number of data points:(vl

if res -=n, npts=res; end,
fprintf('w=%.gw*3/pi), resinput('enter motor speed (rpm):ser e
if res '=n, wres*pi/30; end,
fprintf('ichop= .Sg ,ichop), resinput(enter maximum current (amps): to
if res MOTn, ichopres; end,

fprintf('on-%.5g' ,on*l8O/pi), resinput('enter on angle (degrees):')
if res -=n, on=res*pi/180; end,

fprintf('off=%.5g' ,off*180/pi), resinput('enter off angle (degrees):')

if res -=n, off=res*pi/180; end,
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fprintf('itheta=X.5g',itheta*180/pi),
res=input('enter initial rotor position (degrees): ');
if res -= n, itheta=res*pi/180; end,

fprintf('vs=%.Sg',vs), res=input('enter supply voltage (volts): ');
if res n, vs=res; end,
fprintf('tchop=X.5e',tchop),

res=input('enter chopping period (seconds): ');
if res -= n, tchop=res; end,

res=input('save new parameters, (y) or (n) ? ');

if res == y,

save motor b ichop itheta npts nt off on tchop vs w

end,

end

save mottemp b ichop itheta npts nt off on tchop vs w

clear

!motor mottemp.mat

load mottemp

!del mottemp.mat

if exist('t')=1,

clg, xlab='time in seconds';

titl=['on=',num2str(on*180/pi),' off=',num2str(off*180/pi)];
titl=[titl,' vs=',num2str(vs),' tchop=',num2str(tchop)];
ylab='current'; subplot(211)

plot(t,i), grid, xlabel(xlab), ylabel(ylab), title(titl)
ylab='flux'; subplot(212)

plot(t,lam), grid, xlabel(xlab), ylabel(ylab), title(titl), pause
clg, subplot(211), xlab='rotor position in degrees'; ylab='current';
angle=180*theta/pi;

plot(angle,i), grid, xlabel(xlab), ylabel(ylab), title(titl)
ylab='torque'; subplot(212)
plot(angle,torque), grid, xlabel(xlab), ylabel(ylab), title(titl),
pause,

clg, subplot(211), xlab='rotor position in degrees'; ylab='current';
plot(angle,i), grid, xlabel(xlab), ylabel(ylab), title(titl)
ylab='radial force'; subplot(212)

plot(angle,rf), grid, xlabel(xlab), ylabel(ylab), title(titl), pause
subplot(111)

plot(angle,[area/norm(area) i/norm(i) rf/norm(rf) lam/norm(lam)]),
xlabel(xlab)

end
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The program MOTOR.C performs the actual motor simulation. It is invoked by typing

the following line at the MATLAB prompt:

!motor datafile

where the command line argument DATAFILE is a MATLAB binary datafile containing

the same variables that are in the file MOTOR.MAT. Since the phases of the VRM are

identical, only one phase is actually simulated. The results of the simulation, which consist

of the following variables, are appended to the end of DATAFILE. All variables are vectors

of data points unless otherwise noted.

t - time (seconds)
lam - flux (volt-seconds)
theta - rotor position (radians)
i - current (amperes)
torque torque for one phase (Newton-meters)
tav - average torque (Newton-meters, scalar)
tort - total torque of all phases (Newton-meters)
rf - radial force (Newtons)

area - air gap overlap area (meters2 )

* *

* MOTOR.C *

* *

***************** * ****** *** * ********************************

#include <stdio.h>

#include <math.h>
#include <malloc.h>

#define MIN(x, y) (((x) < (y)) ? (x) : (y))
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
#define NS 2

#define MAXLEN 4096

/* function declarations */

loadm(FILE *fp,char *pname,size-t *mrows,sizet *ncols,size-t *imagf,
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double far *xreal,double far *ximag);
savem(FILE *fp,char *pname,sizet mrows,sizet ncols,size_t imagf,

double far *xreal,double far *ximag);

double far *tout, far *lam, far *angle, far *cur, far *area;
double far *tor, far *tort, far temp[10], far *tp, far *rf;
double b[100], ichop, itheta, off, on, tav, tchop, vs, w;
int nr, nc, npts, nt;

main(argc, argv)

int argc;
char *argv[];

{
sizet rows, cols, imag;

FILE *fp, *fopen();

if (argc != 2) {
printf("wrong number of arguments\n");
printf("correct usage is - motor datafile\n");
exit(1); }

if ((fp=fopen(argv[1],"ab+"))==NULL) {
printf("can't open %s\n",argv[1]);
exit(1); }

tp=&b[0];
if (loadm(fp,"b",&nr,&nc,&imag,tp,tp) != 0) {

printf("can't read 'b' in %s\n",argv[1]);
quit(fp); }

if (loadm(fp,"ichop",&rows,&cols,&imag,temp,temp) 0) {
printf("can't read 'ichop' in %s\n",argv[1]);
quit(fp); }

ichop=temp[0]; printf("ichop=/..Sg\n",ichop);
if (loadm(fp,"itheta",&rows,&cols,&imag,temp,temp) ! 0) {

printf("can't read 'itheta' in Xs\n",argv[1]);
quit(fp); }

itheta=temp[0]; printf("itheta=X.Sg\n",itheta);
if (loadm(fp,"npts",&rows,&cols,&imag,temp,temp) != 0) {

printf("can't read 'npts' in Xs\n",argv[1]);
quit(fp); }

npts=temp[o]; printf('npts=Xd\n",npts);

if (loadm(fp,"nt",&rows,&cols,&imag,temp,temp) != 0) {
printf("can't read 'nt' in Xs\n",argv[1]);
quit(fp); }

nt=temp[0]; printf("nt=Xd\n",nt);

if (loadm(fp,"off",&rows,&cols,&imag,temp,temp) != 0) {
printf("can't read 'off' in %s\n",argv[1]);
quit(fp); }
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off=temp[O]; printf("off=%.Sg\n",off);
if (loadm(fp,"on",&rows,&cols,&imag,temp,temp) != 0) {

printf("can't read 'on' in Xs\n",argv[1J);
quit(fp); }

on=temp[O]; printf("on=%.5g\n",on);
if (loadm(fp,"tchop",&rows,&cols,&imag,temp,temp) != 0) {

printf("can't read 'tchop' in Xs\n",argv[1]);
quit(fp); }

tchop=temp[0]; printf("tchop=X.Se\n",tchop);
if (loadm(fp,"vs",&rows,&cols,&imag,temp,temp) != 0) {

printf("can't read 'vs' in Xs\n",argv[1]);
quit(fp); }

vs=temp[O]; printf("vs=%.5g\n",vs);
if (loadm(fp,"w",&rows,&cols,&imag,temp,temp) != 0) {

printf("can't read 'w' in %s\n",argv[l]);
quit(fp); }

w=temp[0]; printf("w=%.5g\n",w);

if (npts>MAXLEN) {
printf("error: maximum number of points is Xd\n",MAXLEN);
quit(fp); }

if (memalloco) quit(fp);

rko;
forces();

if (savem(fp,"t",npts,1,0,tout,tout) != 0) {
printf("error writing to file Xs\n",argv[1]);
memfreeo; quit(fp); }

if (savem(fp,"lam",npts,1,O,lam,lam) != 0) {
printf("error writing to file Xs\n",argv[l]);
memfreeo; quit(fp); }

if (savem(fp,"theta",npts,1,o,angle,angle) != 0) {
printf("error writing to file Xs\n",argv[1]);
memfreeo; quit(fp); }

if (savem(fp,"i",npts,1,0,cur,cur) != 0) {
printf("error writing to file Xs\n",argv[i);
memfreeo; quit(fp); I

if (savem(fp,"torque",npts,1,0,tor,tor) != 0) {
printf("error writing to file Xs\n",argv[1]);
memfreeo; quit(fp); I

temp[O]=tav;

if (savem(fp,"tav",1,1,0,temp,temp) != 0) {
printf("error writing to file Xs\n",argv[l]);
memfreeo; quit(fp); I

if (savem(fp,"tort",npts,1,o,tort,tort) != 0) {
printf("error writing to file Xs\n",argv[1]);
memfreeo; quit(fp); I
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if (savem(fp,"area",npts,1,O,area,area) != 0) {
printf("error writing to file Xs\n",argv[l]);
memfreeo; quit(fp); }

if (savem(fp,"rf",npts,1,0,f,f) != 0) {
printf("error writing to file Xs\n",argv[1]);
memfreeo; quit(fp); }

memfreeo;

fclose(fp);

}

mot(double t, double *y, double *m);

double current(double theta, double lambda);
double torque(double theta, double lambda);
double an1S, an30, an45, an60, h, pi, tlast;

int rk()
{

int i, ind;
double t, y[NS], yt[NS], ml[NS], m2[NS], m3[NS], m4[NS];
double atemp;

pi=acos(-1.O); an60=pi/3.0; an45=pi/4.0; an30=pi/6.0; anlS=pi/12.0;
h=pi/(3.0*w*npts); tlast=t=0.0; y[0]=0.0; y[1]=itheta;
atemp=2*(2.54e-4)*.02/(4*pi*(1e-7)*nt*nt);

for (ind=O;ind<npts;ind++,t+=h) {
tout[ind]=t; lam[ind]=y[O]; angle[ind]=y[l];

cur[ind]=current(y[1],y[O]); tor[ind]=torque(y[1],y[O]);
rf[ind]=lam[ind]*cur[ind]/(4*2.54e-4);

area[ind]=atemp/current(y[1],0.02);

mot(t,y,m1);

for (i=0;i<NS;i++) yt[i]=y[i]+h*ml[i]/2;

mot(t+h/2,yt,m2);

for (i=0;i<NS;i++) yt[i]=y[i]+h*m2[i]/2;

mot(t+h/2,yt,m3);

for (i=0;i<NS;i++) yt[i]=y[i]+h*m3[i];
mot(t+h,yt,m4);

for (i=0;i<NS;i++) y[i]+=h*(m[i]+2*(m2[i]+m3[i])+m4[i])/6;
if (t-tlast>tchop) tlast+=tchop;
printf("ind=X4d\r",ind);

}
printf("\n");

}

forces()

{
int i, offb, offc, offd, indb, inc, indd;
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offb=(3*npts)/4; offc=npts/2; offd=npts/4;

for (i=O;i<npts;i++) {
indb=(i+offb)Xnpts; indc=(i+offc)Xnpts; indd=(i+offd)Xnpts;

tort[i]=tor[i]+tor[indb]+tor[indc]+tor[indd];

}
tort[npts]=tort[0];

for (i=0,tav=O.O;i<npts/2;i++)

tav+=tort[2*i]+4*tort[2*i+i]+tort[2*i+2];

tav/=3.0*npts;

printf("tav=}.5e\n",tav);

#define PHASE(on,off,an) ((off>=on) ?

(an>=on && an<=off):(an>=on || an<=off))

int ph=O;
double v=0;

mot(t, y, m)

double t, y[], m[];

{
double theta, i, r;

theta=fmod(y[1],an60);

i=current(theta,y[0]);

if (PHASE(on,off,theta)) {
if (ph) {

if (i>ichop) {v=-0.7; r=0.18;}

else if (t-tlast>tchop) {v=vs; r=0.36;}}

else {ph=l; v=vs; r=0.36;}}

else {
ph=O;

if (y[0]>0) {v=-(vs+1.4); r=0.0;} else {v=r=0.0;} }
m[l=-(0.8+r)*i+v;

m[1]=w;

}

double current(theta,lambda)

double theta, lambda;

{
int ci, c2;
double a[5], lpow, i, cm, *bp;
theta*=6.0;

for (c1=0;c1<nr;c1++) a[c1]=0.0;

for (c1=0;c1<nc;c1++) {
bp=&b[nr*c1]; cm=cos((nc-c1-i)*theta);

for (c2=0;c2<nr;c2++) a[c2]+=bp[c2]*cm; }
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for (c1=nr-1,lpow=lambda,i=O.O;c1>=;c1--,pow*=lambda) i+=a[ci]*1pow;
return(i);

}

double torque(theta,lambda)

double theta, lambda;

{
int ci, c2;
double a[5], lpow, torque, sm, *bp;

theta*=6.0;

for (cl=0;c1<nr;ci++) a[c1]=0.0;

for (c1=0;c1<nc;c1++) {
bp=&b[nr*c1]; sm=(nc-c1-1)*sin((nc-ci-i)*theta);

for (c2=0;c2<nr;c2++) a[c2]+=bp[c2]*sm; }
lpow=lambda*lambda; torque=0.0;
for (c1=nr-1,c2=2;c1>=0;c1--,c2++,lpow*=lambda)

torque+=a[c1]*lpow/c2;
return(6.0*torque);

}

memalloc()

{
tout=lam=angle=cur=area=tor=tort=rf=NULL;

if ((tout=(double far *).fmalloc(npts*sizeof(double)))==NULL) {
printf("insufficient memory available\n");
return(1); }

if ((lam=(double far *).fmalloc(npts*sizeof(double)))==NULL) {
printf("insufficient memory available\n");
memfreeo; return(1); }

if ((angle=(double far *).fmalloc(npts*sizeof(double)))==NULL) {
printf("insufficient memory available\n");
memfreeo; return(1); }

if ((cur=(double far *).fmalloc(npts*sizeof(double)))==NULL) {
printf("insufficient memory available\n");
memfreeo; return(1); }

if ((area=(double far *)_fmalloc(npts*sizeof(double)))==NULL) {
printf("insufficient memory available\n");
memfreeo; return(1); }

if ((tor=(double far *).fmalloc(npts*sizeof(double)))==NULL) {
printf("insufficient memory available\n");
memfreeo; return(1); }

if ((tort=(double far *).fmalloc((npts+1)*sizeof(double)))==NULL) {
printf("insufficient memory available\n");
memfreeo; return(1); }

if ((rf=(double far *)_fmalloc(npts*sizeof(double)))==NULL) {
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printf("insufficient memory available\n");

memfreeo; return(1); I
return(O);

memfree()

{
_ffree(tout);

_ffree(lam);

_ffree(angle);

_ffree(cur);

_ffree(area);

_ffree(tor);

_ffree(tort);

_ffree(rf);

quit (fp)
FILE *fp;

fclose(fp);

exit(1);

typedef struct {
long type;

long mrows;

long ncols;

long imagf;

long namlen;

} Fmatrix;

/* type */
/* row dimension */
/* column dimension */

/* flag indicating imag part */

/* name length (including NULL) */

\* The procedure LOADM is used to read a matrix variable from a MATLAB

binary datafile. */

loadm(fp, pname, mrows, ncols, imagf, xreal, ximag)

FILE *fp; /* file pointer */
char *pname; /* pointer to matrix name

size-t *mrows; /* row dimension */
size-t *ncols; /* column dimension */
size-t *imagf; /* imaginary flag */

double far *xreal; /* array of real data */
double far *ximag; /* array of imaginary data */

char mname[20];
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Fmatrix x;

size-t i, j, nr, nc, namlen, freadO, found;

double buf;

found=O;

while (fread((char *)&x, sizeof(Fmatrix), 1, fp) == 1) {
if (x.type != 0) {

printf("bad variable type\n");

return(1); }
*mrows = nr = x.mrows;

*ncols = nc = x.ncols;

*imagf = x.imagf;
namlen = x.namlen;
if (fread(mname, sizeof(char), namlen, fp) != namlen) {

printf("error reading variable name\n");
return(1); }

if (strcmp(mname,pname) == 0) { found=1; break; }
for (j=0;j<nc;j++)

for (i=0;i<nr;i++)

if (fread(&buf, sizeof(double), 1, fp) != 1) {
printf("error reading real data\n");

return(1); }
if (x.imagf) {

for (j=0;j<nc;j++)

for (i=0;i<nr;i++)

if (fread(&buf, sizeof(double), 1, fp) != 1) {
printf("error reading imaginary data\n");
return(1); } } }

if (found == 0) return(1);
for (j=0;j<nc;j++)

for (i=0;i<nr;i++) {
if (fread(&buf, sizeof(double), 1, fp) != 1) {

printf("error reading real data\n");
return(1); }

*xreal=buf;

xreal++; }
if (x.imagf) {

for (j=0;j<nc;j++)

for (i=0;i<nr;i++) {
if (fread(&buf, sizeof(double), 1, fp) != 1) {

printf("error reading imaginary data\n");
return(1); }

*ximag=buf;

ximag++; } }
rewind(fp);

return(0);
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\* The procedure SAVEM is used to
binary datafile. */

store a matrix variable in a MATLAB

savem(fp, pname, mrows, ncols, imagf, xreal, ximag)
FILE *fp; /* File pointer */
char *pname; /* pointer to matrix name
size-t mrows; /* row dimension */
size-t ncols; /* column dimension */
size-t imagf; /* imaginary flag */
double far *xreal; /* pointer to real data */
double far *ximag; /* pointer to imag data */
{

Fmatrix x;

size-t i, j, fwrite();
double buf;

x.type = 0;

x.mrows = mrows;
x.ncols = ncols;

x.imagf = imagf;
x.namlen = strlen(pname) + 1;
if (fwrite(&x, sizeof(Fmatrix), 1, fp) 1) return(1);
if (fwrite(pname, sizeof(char), (size.t)x.namlen, fp) != x.namlen)

return(1);

for (j=0;j<ncols;j++)

for (i=0;i<mrows;i++) {
buf=*xreal;

xreal++;

if (fwrite(&buf, sizeof(double), 1, fp) ! 1) return(1); }
if (imagf)

for (j=0;j<ncols;j++)

for (i=0;i<mrows;i++) {
buf=*ximag;

ximag++;

if (fwrite(&buf,sizeof(double),1,fp) != 1) return(1); }
return(0);
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