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The Adjustment of Barotropic Currents at the Shelf Break to a Sharp
Bend in the Shelf Topography

by
William James Williams
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Science in Oceanography

Abstract

During January-March, Scotian Shelf water has been observed to flow episodically
from the southwestern Scotian Shelf directly across the Northeast Channel to Georges
Bank. The possible factors that allow Scotian Shelf water to break the topographic
constraint presented by the Northeast Channel and flow directly to Georges Bank are
considered. As a simple analog to the flow over the southwestern Scotian Shelf near
the Northeast Channel, the adjustment of a barotropic current near a shelf-break to
a sharp bend in the shelf topography is studied numerically. For parameters within
the oceanographic range, the adjustment to the bend is smooth and steady with no
eddies shed at the corner. The vorticity dynamics allow a balance between the vortex
stretching in the flow and the curvature in the flow. This is possible since the bend is a
right-hand one facing downstream, a similar balance not being possible for a left-hand
bend, in which case eddy formation is likely. A simple model of this balance clarifies
the vorticity dynamics and provides the scaling rc = V4L/O.765 for any streamline in
the flow, where rc is the radius of curvature at the corner, e = uo/fL and L = ho/b,
where uo is the initial speed, f the coriolis parameter, ho the initial depth and b
the bottom slope. These results show that other factors such as stratification, wind
stress, and time-dependent inflow must play a role in any flow across the Northeast
Channel.
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Chapter 1

Introduction

1.1 Northeast Channel Area

The mean flow over the Scotian Shelf and the Mid-Atlantic Bight is equatorward.

Chapman et. al. (1986) show that this equatorward flow over the Mid-Atlantic

Bight can be considered a downstream extension of the flow over the Scotian Shelf.

However, the Gulf of Maine and Georges Bank lie between the Scotian Shelf and the

Mid-Atlantic Bight and the circulation is complex due to a possible bifurcation of

the flow at the equatorward end of the Scotian Shelf where the Northeast Channel

separates the southwestern Scotian Shelf from Georges Bank (Figure 1.1).The mean

currents near the shelf-break of the southwestern Scotian Shelf flow southwards to the

Northeast Channel and then follow isobaths and turn right into the Gulf of Maine

(Smith and Petrie, 1982, Smith, 1983). This flow is rotationally dominated and the

wall of the Northeast Channel is viewed as a topographic constraint, preventing the

Scotian Shelf water from continuing southward. The purpose of this study is to begin

to identify the processes involved with the episodic occurrence of Scotian Shelf water

on Georges Bank during late-winter/early-spring. Bisagni et. al. (submitted) show
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Figure 1.1: A map of the Northeast Channel area showing the mean circulation (solid
arrow), and the episodic flow across the Northeast Channel (dashed arrow). The x
and y axes are marked in degrees longitude and degrees latitude, respectively.

that during this period Scotian Shelf water can move directly from the southwestern

tip of the Scotian Shelf across the Northeast Channel and onto the southern flank of

Georges Bank. Inertia, stratification, bottom friction, and wind stress are likely to be

involved with this topographic constraint being broken and the Scotian Shelf water

crossing the Northeast Channel.

The southward flow over the Scotian Shelf towards the Northeast Channel has a

component which flows close to the shelf break (Smith and Petrie, 1982, Smith 1983).

Following this current, the shelf-break turns 90* to the right at the Northeast Channel

with a radius of curvature of approximately 6 km. The topographic constraint that
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Figure 1.2: A typical section across the Northeast Channel during January-March

(Flagg, 1987). The properties shown are: (a) temperature *C, (b) salinity ppt, (c)
oxygen mL/L (d) density ot. The Scotian Shelf is on the right and Georges Bank on

the left.

barotropic, inviscid, geostrophic flow should follow contours of f/h is weakened at the

corner since, at such small scales of flow, the local Rossby number can become large

and the non-linear terms in the momentum equation become important. Therefore,

due to its inertia, it may be possible for the flow to leave the bathymetry at the corner

and begin to cross the Northeast Channel.

Figure 1.2 shows the typical water properties of a cross-section of the Northeast

Channel during January-March. The bottom of the Northeast Channel contains

warm, salty, and dense oceanic water that is flowing into the Gulf of Maine while the

surface water contains fresher, colder, and lighter shelf water flowing into the Gulf of

Maine over the Scotian Shelf and out of the Gulf of Maine over Georges Bank. The

vertical stratification weakens the topographic constraint of the Northeast Channel by

effectively splitting the flow into two layers, thereby reducing the vorticity stretching

involved with any cross channel flow in the upper-layer. The inertia of the flow over

the Scotian Shelf may then be large enough to carry the Scotian Shelf water to Georges

Bank. This stratification is present in all seasons, reaching a maximum in summer,

and so if it is an important factor in this problem Scotian Shelf water may cross the

Northeast Channel in all seasons if the appropriate forcing is present. However, the



difference in the water properties between the Scotian Shelf and Georges Bank are

relatively small from June through December, and so it may be difficult to identify

Scotian Shelf water over Georges Bank for much of the year.

The difference in water properties between Georges Bank and the Scotian Shelf

is greatest during January-March. The density front between the two water masses

runs diagonally from the sea-floor near the shelf-break of the Scotian Shelf to the sea

surface near the middle of the Northeast Channel, with the Scotian Shelf water being

more buoyant than the Georges Bank water (see Figure 1.2). Any cross channel flow

of Scotian Shelf water will be two layer in nature and involve vorticity stretching

between the layers of Scotian Shelf water and Georges Bank water. This may allow

Scotian Shelf water to cross the Northeast Channel in winter.

The surface stress due to winds and the bottom stress due to bottom friction

may also play a role in forcing the Scotian Shelf water across the Northeast Channel.

The wind-stress over the southwestern Scotian Shelf is dominated by the passage of

storms during January-March, which provides periods of intense wind forcing. The

mean wind-stress during that time of year is directed southeastward ( Bisagni et.al,

submitted), so the Ekman transport associated with it is directed southwestward,

across the Northeast Channel. For the flows over the Scotian Shelf near the Northeast

Channel, the Ekman transport associated with bottom friction is directed off the shelf

( Gawarkiewicz and Chapman, 1991), and so also tends to force Scotian Shelf water

across the Northeast Channel.

1.2 The Model

Although it is expected that stratification is important to this problem, it is necessary

to study the barotropic case first in order to understand the simplest case involving

flow around a curving shelf break. The simplicity of the barotropic case may also

lend insight into the more complicated dynamics of the baroclinic case. The problem



Figure 1.3: A schematic showing model topography representative of the southwestern
Scotian Shelf. The arrows represent the flow near the shelf-break and its possible
adjustment at the corner.

here is further simplified by considering only the initial separation of the shelf-break

current from the Scotian Shelf. The baroclinic Rossby radius for the region is about

15 km and the width of the Northeast Channel is about 40 km, and so it is further

assumed that the dynamics of separation from the Scotian Shelf do not depend on

the presence of Georges Bank. This assumption is consistent with the nature of the

barotropic adjustment found in this study.

A schematic of the model considered here is shown in Figure 1.3. Only the

Scotian Shelf and the 900 bend in the shelf-break have been retained in the model.

The adjustment of barotropic flows near the shelf-break to this bend were studied.



Klinger (1994) suggested that the appropriate criterion necessary for the sep-

aration of a barotropic current from a coast is that the radius of curvature of the

coastline should be less than the inertial radius u/f of the flow. When this crite-

rion is met, the flow overshoots the corner and then re-attaches to the coast further

downstream, creating a region of recirculation at the coast in which the local Rossby

number is greater than one. It was expected that a similar criterion would apply to a

current flowing around a bend in the shelf-break, and that if the inertial radius and

Rossby number of the flow were large enough, the flow would overshoot the bend and

eddies would form. This is found not to be the case for oceanographically reason-

able parameters. The flow adjusts to the presence of the corner in a smooth, steady

manner and does not form eddies.

A three-dimensional primitive equation model was used to study the adjust-

ment of shelf-break currents to the bend in the shelf-break. This approach was

used because the problem did not appear to be tractable analytically and the three-

dimensional primitive equation model allows the future introduction of baroclinicity,

wind-stress, time-dependent forcing, and the resolution of the top and bottom bound-

ary layers.

The model is described in Chapter 2 and a base case examined in Chapter 3.

Parameter variations from the base case are studied in Chapter 4 and a simple scaling

for the deflection of the flow at the corner is presented. A discussion of the results

and conclusions appears in Chapter 5.



Chapter 2

The Numerical Model

2.1 Introduction

The numerical model used for this study was version 3.0 of the Semi-spectral Prim-

itive Equation ocean Model (SPEM) described by Haidvogel et. al. (1991). SPEM

attempts to solve the primitive equations of motion for a Boussinesq, hydrostatic,

rotating, fluid. The momentum equations are

+ (u - V)u - fv

+ (u - V)v + fu

op
az

18P
-- 1a + Fx + Dx,

PO
- + F" + D-,

=O -pg,

with the continuity equation

O8t Ov Ow+ + = 0, (2.4)
ax ay az

where (u, v, w) is the velocity in the (x, y, z) direction, P is the pressure, f the Coriolis

parameter, po the reference density, p the total density, g the acceleration due to

au

8v

at

(2.1)

(2.2)

(2.3)



gravity, (FX, F') the forcing term in the (x, y) direction, and (Dx, DN) the dissipative

term in the (x, y) direction. For this study (F', F") are set equal to zero and (Dx, D")

are Laplacian friction of the form

DX= Ah 2 + + A, , (2.5)
y(x 2  6y 2 ) Bz2
Y 82v 892v (92v

D = A - + & + A, (2.6)
8jX2 (9Y2 ) BZ2'

where Ah is the horizontal viscosity, introduced to damp numerical noise, and Av is

the vertical viscosity, introduced to represent the vertical mixing of momentum.

SPEM has a rigid lid. The rigid lid can support a barotropic pressure gradient

and so mimic the barotropic pressure gradients which are normally produced by

gradients in the free surface elevation. However, with no free surface elevation, there is

no mass storage associated with the free surface and wave-like motions which depend

on it are not present. These waves (e.g., barotropic tides, surface gravity waves, and

barotropic Kelvin waves) are not relevant to this study, the pertinent dynamics being

that of vortex stretching due to flow over topography. Thus the presence of the rigid

lid (i.e., lack of free surface) does not affect the results of this study.

The pressure P can be decomposed into the surface pressure P' on the rigid

lid, and a hydrostatic pressure ph

P = P' + Ph. (2.7)

The surface pressure is a diagnostic variable in SPEM. SPEM calculates the depth-

averaged flow field (s, ;i3) by inverting a depth-averaged vorticity equation for the

transport stream function I, and so does not require information about the depth-

independent forcing from surface pressure gradients. The surface pressure gradient is

inferred from the momentum equations (2.1) and (2.2).

16



The calculation of the hydrostatic pressure requires knowledge of the density

field p. The density is calculated by solving the advection/diffusion equations for salt

and heat and then using an equation of state to calculate density

+ (u - V)T = FT + DT, (2.8)at
+ (u - V)S = FS + DS, (2.9)at

p = p(T, S, P), (2.10)

where T is temperature, S is salt, FT is the temperature forcing, FS is the salt

forcing, DT is the temperature diffusion, and DS is the salt diffusion. For this study,

the model is run with a constant density po of 1000 kg m-3 throughout the domain.

There is no flux of heat or salt through the boundaries of the domain so the density

remains constant and the flow is barotropic. The advection/diffusion equations for

heat and salt are switched off.

2.2 Vertical Structure

The governing equations are transformed to sigma-coordinates before attempting to

solve them. The transformation between a and z is given by

o = 1 + 2 , (2.11)

so that the model bottom is at o, = -1 and the model top is at a = 1. The grid

points in the vertical are chosen at fixed sigma values so the vertical grid is stretched

in deep regions and compressed in shallow regions.

The solution in the vertical is computed spectrally by representing the vertical

structure of any variable as a sum of Chebyshev polynomials. The number of Cheby-

shev polynomials used in this sum will set the vertical resolution of the model. The

grid points in the vertical are chosen so as to lie on the extrema of the highest order



Chebyshev polynomial used. This allows lower resolution at mid-depth and higher

resolution in the boundary layers near the model top and bottom boundaries.

The spectral expansion of a variable is calculated from its values at the vertical

grid points. For the purposes of SPEM, this expansion is then used to do vertical

integration and differentiation of the model fields.

2.3 The Numerical Solution Technique

The horizontal transport is non-divergent because SPEM has a rigid lid. This allows

the definition of the transport streamfunction to be

U= v = -. (2.12)
h ay 'h ax'

The non-divergence of the horizontal transport can then be guaranteed by solving for

the transport streamfunction first and then deducing the horizontal transport from

it. The transport streamfunction is obtained from the depth-averaged vorticity by

solving the following elliptic equation, given the values of T on the boundaries of the

domain

a (1 alp) a (1 = ap (2.13)
ax hax ay hay'

where w is the depth-averaged vorticity, and h is the depth.

The flow field is integrated in time in the following manner. The horizontal

velocity field is stepped forward using all the forcing except the surface pressure gra-

dient. The model fields are now correct except for their depth-averaged component.

The depth-averaged component is then found by stepping forward the depth-averaged

vorticity equation, and solving the above elliptic equation for the transport stream-

function and then deducing the depth-averaged flow. The horizontal velocities u and

v are therefore prognostic variables and the vertical velocity w is a diagnostic variable

computed from the u and v fields through the continuity equation (2.4).



The top and bottom boundary conditions for w specify no flow through the

rigid lid and the model bottom

w = 0 at z = 0, (2.14)

uh, + vh, = 0 at z = -h. (2.15)

For this study, there is no wind stress so the surface stress boundary condition

reduces to

uZ = 0, o = 0 at z = 0, (2.16)

and at the bottom, the bottom stress is specified though a linear bottom friction

parameterization

Avuz = rfu, A,,v = rfv at z = -h, (2.17)

where rf is the linear drag coefficient.

2.4 Numerical Resolution and Stability

SPEM uses a leapfrog time stepping scheme which computes the fields at the current

time step using the fields two time steps previously. This causes the fields at the

current time step to diverge from the fields at the previous time step. Every fourth

time step is a trapezoidal time step which corrects for this 'splitting' of the model

fields by, in effect, averaging the fields in time (Mesinger and Arakawa, 1976).

The numerical noise inherent in any finite difference scheme occurs on the scale

of 2Ax, where Ax is the resolution of the grid. Laplacian friction in the horizontal

with small viscosity was added to the momentum equations to damp out this noise.

The viscosity acts to preferentially damp the small scales in the flow and also leads

to the broadening of the inflow jet as it flows through the domain. The viscosity was



then chosen to be small enough (4 - 100 m 2 S-1) so that the spreading of the jet was

negligible.

The horizontal grid size for this model was chosen to be close to 2 km. Features

in the flow and topography that are on the order of 10 km are properly resolved. The

smallest non-zero radius of curvature used in this study for the bend in the bathymetry

was 10 km and it was assumed that the smallest scales of the flow fields would also

be about this size. It was impossible to resolve the sharp corner in the runs where the

radius of curvature of the corner was set equal to zero, so for these runs the horizontal

resolution was kept at 2 km. The smallest scales in the flow field were well resolved

in these runs.

The time step was chosen so that the advection, wave-propagation, and diffu-

sion contained in (2.1), (2.2), (2.3) were properly resolved. The CFL-like conditions

for this are

AX < Uma, (2.18)
Ax

< C ,ma + Uma, (2.19)

AX2  > 1 (2.20)
VAt 2'

where Umax is the maximum flow speed, Cma, is the maximum of the group velocity

and phase speed for the waves in the system, and v is the horizontal viscosity chosen

for the model.

The resolution in the vertical needs to be chosen so that the top and bottom

boundary layers are well resolved. Nine vertical modes were used so that the bottom

Ekman layer was well resolved over the shelf and the top of the slope when the linear

bottom friction was switched on (Gawarkiewicz and Chapman, 1995). Condition

(2.18) must also hold in the vertical where Ax is the closest spacing of the vertical

grid points and v is now the vertical viscosity in the model.



To check that the flow was being properly resolved by the model, the base case

was re-run at twice the horizontal resolution and a quarter of the time step so as to

maintain condition (2.18). The flow fields produced are essentially identical.

2.5 Open Boundary Conditions

The purpose of the open boundaries of the model domain is to allow flow to enter or

leave the domain with the same velocity and density that it would have if the domain

was unbounded. The flow field cannot be calculated at the open boundary and is

not prescribed there, so it must be appropriately estimated from the flow field near

the boundary and its dynamical balance. The no-gradient open boundary condition

and the Orlanski open boundary condition were both used in this study. These two

boundary conditions and the types of flow they were useful for are described below.

2.5.1 No-gradient open boundary condition.

This open boundary condition gives no gradient in all the flow fields across the open

boundary, i.e.,

4t = , (2.21)

where 4 represents any variable, t is the current time level and B is the value of the

cross-boundary index on the open boundary.

This condition allows the value of the variable at the open boundary to vary

with time but allows no variation of the variable across the boundary. This gives

an infinite phase speed at the open boundary to wave-like features crossing the open

boundary. The no-gradient open boundary condition is then not well suited to al-

lowing strongly time-varying and wave-like flows to pass out of the domain and a

large amount of the incident wave energy will be reflected (Chapman, 1985). The



no-gradient open boundary condition is best suited to allowing steady or slowly time-

varying flows to pass through the open boundary.

The domain used for this study has an open boundary that allows the shelf

current to leave the domain after it has encountered the corner in the shelf bathymetry.

The flow leaving the domain is in geostrophic balance after the transient adjustment

of the flow, and so is a steady flow following the straight bathymetry at the open

boundary. Since there is no gradient in the bathymetry across the open boundary

there is no gradient in the geostrophic velocity across the open boundary and the

no-gradient open boundary condition is dynamically consistent with the geostrophic

flow. Hence, this boundary condition was used for all runs where the initialization

was close to the final adjusted state since the flow at the open boundary was then

always close to geostrophic balance.

2.5.2 Orlanski open boundary condition

The Orlanski open boundary condition is described in detail by Orlanski (1976) and

studied further by Camerlengo and O'Brien (1980) and Chapman (1985). It is de-

signed to let wave-like flows pass though the open boundary with a minimum of

distortion and reflected energy. The flow near the open boundary is assumed to be

dominated by a single wave described by the simple wave equation

#t i c., = 0, (2.22)

where # represents any variable, t is time, x is the cross-boundary coordinate, and c

is the phase speed of the wave. Using this wave equation, an estimate of the phase

speed of the wave is made just within the open boundary, and then this phase speed is

used to project the value of the variable on the open boundary at the next time step.

The phase speed is allowed to vary continuously between Ax/At and 0 following



E if T- >
c=t 4 if 0 < T < 4, (2.23)

0 if -t < 0.

There is also a modified version of this boundary condition suggested by Camerlengo

and O'Brien (1980) where the phase speed is allowed to be either Ax/At or 0 following

If - > 0,C * if '0 (2.24)
0 if Ot < 0.

Both versions of this open-boundary condition were used in this study when the initial

condition was far from the final adjusted state. The transient response in this case

contains eddies and coastally trapped waves which have a large enough amplitude to

make the no-gradient open boundary condition inadequate. An Orlanski boundary

condition was found to work well in most of these cases. It tended to be less effective

when the non-linear terms were large in the momentum equation for high flow speed

model runs. The solution to this was to introduce a region near the open boundary

where the non-linear terms were made smaller. This allowed the Orlanski boundary

condition to work better and did not generate significant upstream disturbance of the

flow. When the transient adjustment has decayed away, the Orlanski open-boundary

condition is less than ideal since 4t/q, is ill defined. The no-gradient open boundary

condition is then preferable.
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Chapter 3

The Base Case

3.1 Introduction

Various model configurations were used in this study, all of which show a similar

adjustment of the flow to the topography. The base case was chosen from amongst

these to illustrate the adjustment to the bend in the topography as clearly as possible

and to be in a region of parameter space that is more extreme than the conditions

over the Scotian Shelf near the Northeast Channel.

A 1 m s- 1 geostrophically balanced jet, centered on the shelf break, is set to

impinge on a sharp, right-hand, bend in the shelf bathymetry ( Figure 3.1). The mean

flow over the Scotian Shelf is less than 1 m s-1 and the corner in the shelf-break at the

Northeast Channel has a radius of ~ 6 km (Smith and Petrie, 1982, Schwing, 1992).

Hence, the base case is more extreme in both these respects. The jet was chosen so

that the inflow decays over the slope and the half width of the jet is narrower than the

width of the shelf, so there is no flow near the coast. The flow does not then adjust

to the bend in the coastline, and the boundary condition chosen for the coast cannot

affect the adjustment of the jet to the bend in the shelf break. The jet is stable to



small perturbations when flowing parallel to straight bathymetry, it being stabilized

by the change in bottom slope at the shelf-break (see Appendix A).

3.2 The Model Configuration

The model configuration for the base case is shown in Figure 3.1. The model domain

is 200-km wide in the x-direction with 97 grid points and 300-km wide in the y-

direction with 145 grid points. This gives a resolution of 2.083 km in each direction.

The time step used was 432 s. The topography has a 100-km wide shelf, with a

bottom slope of 0.001, which goes from 50-m deep at the coast to 150-m deep at the

shelf-break. Beyond the shelf-break, there is then a 60-km wide slope, with a bottom

slope of 0.03, which joins the 150-m deep shelf-break to the 1660-m deep abyss. The

changes of bottom slope from the shelf to the slope and from the slope to the abyss

are smoothed using quadratic functions. For a straight section of coastline with the

coast at y = 0, the topography is given by

50 + ly if y < 100 km,

155 + 1.5(y - 100km) 2 - 0.05(y - 110km) 2 if 100 < y < 110 km,

h(y) = 305 + 30(y - 110km) if 110 < y < 150 km,

1660 - 1.5(y - 160km) 2  if 150 < y < 160 km,

1660 if y > 160 km,
(3.1)

where h is the depth in meters and x is the cross-shelf distance in kilometers. One

hundred kilometers downstream of the inflow boundary, which runs along x = 0, the

shelf-break turns sharply 90* to the right and then is straight again to the outflow

boundary, which runs along y = 0.

A Gaussian jet is introduced on the inflow boundary (x = 0) between 100 <

y < 300 km, with the maximum velocity centered on the shelf-break,
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Figure 3.1: An overview of the model configuration for the base case showing the
bathymetry (dotted lines) at 200 m, 400 m, 600 m, 800 m, 1000 m, 1200 m, 1400 m,
and 1600 m, the free-slip boundaries (thick lines), and the inflow jet. The radius of
curvature of the corner is zero and there is no bottom friction.



Uinfow = umaxe( 2
0  v = 0. (3.2)

The base case has Umax = 1 ms- 1 which gives the maximum relative vorticity of the

jet to be 4.2 s-1. This jet then flows towards the corner in the shelf topography, and

eventually, after adjusting to the presence of the corner leaves the domain through the

outflow boundary y = 0 where the no-gradient open boundary condition is applied.

The other boundaries of the domain, X = 0, O<y < 100 km, x = 200 km, and

y = 300 km are free slip boundaries. For example, along x = 200 km, the boundary

condition

U = 0, V, = 0, (3.3)

is applied. The offshore boundaries (x = 200 km and y = 300 km) are solid for

convenience only. The base case was also run with these boundaries as no-gradient,

open boundaries and whilst this proved to be unstable over the abyss, with flow into

the domain along y = 300 km and flow out of the domain along x = 200 km, the flow

over the shelf remained essentially unchanged and so the presence of closed offshore

boundaries does not affect the adjustment of the inflow jet to the corner in the shelf

break.

The base case is a frictionless run so the linear bottom friction coefficient rf

is set to zero.

3.3 Description of the Flow

This model run has no bottom friction and the horizontal viscosity, introduced to

damp numerical noise, is dynamically insignificant. The forcing of the flow is then

solely through the depth-independent forcing from the surface pressure gradient on

the rigid lid which produces a depth-independent acceleration since the density of the

flow is constant. The inflow velocity, which is initially depth-independent, will remain



depth independent with depth-independent acceleration and this is found to be the

case on examining the flow field. The governing equations for the flow are then the

shallow water equations

Ou Ott Ou 18P+ U + o - fo = , (3.4)at ax ay po ax
e8v 8v v 1l8P

+ U v + + fu = ,p ) (3.5)at ao X By po ay
and the appropriate form of the potential vorticity II is

I = + (3.6)
h

where w is the relative vorticity defined by v. - u1 .

Figures 3.2, 3.3, 3.4, and 3.5 show various properties of the flow field after the

transient adjustment to the initial conditions has decayed and will be discussed in

detail in the following paragraphs. The flow is steady and the streamlines are very

nearly symmetrical about the corner. The inflow jet does not flow to the corner in

the shelf-break and overshoot, even with the radius of curvature of the corner equal

to zero, but adjusts to the presence of the corner before the corner is reached and

turns the corner smoothly. This illustrates that the inertial radius criterion given by

Klinger (1994) for the separation of flow from a coast does not apply here.

The flow shoals as it approaches the corner and then deepens again as it flows

away from the corner. The shoaling and deepening of three streamlines are shown in

Figure 3.6. The depth of a streamline is very nearly symmetrical about the corner,

and so far downstream of the corner the flow returns to close to its initial upstream

depth. The relative change of depth of a streamline is defined by (ho - h)/ho where

ho is the initial depth and h is the current depth. Over the shelf, the relative change

of depth at the corner is ~ 0.1, whereas over the slope the depth changes much more

sharply, the relative change of depth reaching a maximum of 0.52 near the top of the

slope.
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Figure 3.3: The base case continued: (a) magnitude of the velocity, (b) vorticity.
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Figure 3.5: The base case continued: (a) radius of curvature, (b) local Rossby number.
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Figure 3.6: The depth along three streamlines plotted as a function of distance along
the streamline. One streamline is located entirely over the slope (dashed line), one
entirely over the shelf (dotted line), and one over the slope far from the corner and
over the shelf near the corner (solid line).

The flow that is over the shelf at the corner is weakly constrained horizontally

in comparison with that which is over the slope. This is because the bottom slope

over the shelf is 1/30 of the bottom slope over the slope, so, for a given amount of

vortex stretching, the horizontal displacement is 30 times greater. Hence, the flow

adjusts in a much broader fashion over the shelf, the radius of curvature at the corner

being ~ 35 km over the shelf compared with ~ 15 km over the slope (see Figure 3.5

(a)).

Near the corner, the flow deviates from the linear solution which follows lines of

f/h, and the non-linear terms in the momentum equation are found to be significant.

To consider the acceleration of a fluid column as it turns the corner, it is useful

to use streamwise coordinates to resolve the acceleration into an along-stream (or



streamwise) component and a cross-stream (or centrifugal) component. In streamwise

coordinates, the shallow water equations (3.4) and (3.5) become, for a steady flow

u, - -, = - - - , (3.7)as PO as
U 2 1 ap

1 + fu, = O, (3.8)
r PO an'

where s is the along-stream coordinate, n is the cross-stream coordinate, and u, is the

along-stream velocity. Figures 3.4 (a) and (b) show the streamwise advection term

and the centrifugal advection term. The flow broadens to 1.5 times its inflow width

as it approaches the corner so that, although it is shoaling, there is a wide region of

streamwise deceleration that is centered on the shelf-break before the corner. This

deceleration, reaching a minimum of ~ -6 x 10-6 m S-2, reduces the maximum

speed of the jet to 0.79 m s-1 at the corner (see Figure 3.7 (a)). In keeping with the

symmetry of the flow, there is a similar region of streamwise acceleration as the flow

leaves the corner. Thus the shoaling of the jet almost compensates for the broadening

of the jet, and the streamwise velocity is roughly constant following a streamline.

The centrifugal advection term u2/r is the acceleration perpendicular to the

flow due to the curvature of the flow, and so reaches a maximum at the corner. The

maximum centrifugal advection is 22 x 10-6 m S-2 which occurs at the corner over

the slope where the flow is turning with a small radius of curvature of 15 km and

moving at 0.5 m s-1. There is a smaller maximum in the centrifugal advection of

18 x 10-- m s- 2 which occurs at the corner over the shelf where the flow is turning

with a larger radius of curvature of 35 km and moving at 0.79 m s-1.

The local Rossby number, calculated as u,/fr, reaches 0.4 at the corner over

the slope. It is the broad adjustment and shoaling of the flow that prevents u,/fr

reaching 1. This is fundamentally different from the results of Klinger (1994) , where

at the corner in the coast, the local Rossby number is greater than one. It is the

broad shelf, which allows the broad adjustment near the shelf break, that leads to



the small local Rossby number in the case considered here. This kind of adjustment

is not possible for the experiments in Klinger (1994) because of the presence of the

coast.

3.4 Vorticity Dynamics

The dynamical balance of this flow is best understood through the conservation of

shallow water potential vorticity. Since the flow is steady, and the frictional terms

are zero or negligible, the conservation of potential vorticity is expressed as

U + V = 0. (3.9)
8~x ay

Potential vorticity is then constant along streamlines and the model results were

checked for this.

The vorticity field for this flow is shown in Figure 3.3 (b). The fluid first gains

and then loses negative relative vorticity as it shoals and deepens in accordance with

(3.9). The maximum change in relative vorticity coincides with the greatest change

in relative depth, which occurs over the top of the slope. Figure 3.7 (b) shows the

relative vorticity of the inflow jet and the relative vorticity of the jet at the corner.

The large gain in negative relative vorticity over the top of the slope can clearly be

seen. In streamwise coordinates, the relative vorticity is written

o = - -- (3.10)
r (9r

The first term on the right-hand side of (3.10) is the relative vorticity due to the

turning of the flow and the second term is the relative vorticity due to the shear in

the flow. The dotted line in Figure 3.7 (b) is the relative vorticity due to the shear

of the flow at the corner. The difference between this and the total relative vorticity

is the relative vorticity due to the curvature of the flow. It can be seen that on the

right-hand side of the jet, which is over the shelf, the total relative vorticity changes

6
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little and the decrease in the size of the shear of the flow, due to its deceleration,

provides the increase in curvature. On the left side of the jet a reduction in the size

of the shear and an increase in the curvature both cause a gain in negative relative

vorticity so the the adjustment is more dramatic with a larger change in both the

shear and the curvature of the flow.

The dynamical balance is consistent with the following vorticity argument. If

a fluid column is followed from the inflow jet, as the flow begins to turn the corner

it becomes shallower, and so, through conservation of potential vorticity, must gain

negative relative vorticity ( see Figure 3.3 (b)). If we consider that this negative

vorticity is manifested, crudely, in the turning of the jet rather than the shear of the

jet, then the flow will continue to turn as it approaches the corner and so continue to

shoal. On passing the corner, the argument is reversed. The flow is now heading into

deeper water so the fluid column now loses its negative relative vorticity and turns

less. Far from the corner the flow stops turning and follows lines of f/h, once again.

A similar balance is not possible if the flow is reversed, i.e., when the coast

is on the left of the inflow jet rather than the right. In this case, if the flow shoals

before the corner, the gain in negative relative vorticity will tend to put the jet in

deeper water again if it is manifested in the turning of the jet. The tendency will be

for the jet to flow towards the corner rather than to turn before it.

For the base case, with the coast on the right of the jet, the direction of

propagation of long-wavelength coastally trapped vorticity waves is with the flow and

so perturbations in the vorticity field near the corner will always tend to propagate

downstream. However, if the coast is on the left of the jet, perturbations in the

vorticity field at the corner will tend to propagate upstream for low flow speeds and

then, if the flow speed is increased, the perturbations would become trapped at the

corner. It is expected that at this point the dynamics of the flow around the corner

would change and the flow would separate from the bathymetry. This illustrates an



additional difference between having the coast on the left and having the coast on

the right.

3.5 A Simple Model

To gain further insight into the vorticity dynamics, a simple analytical model is

presented here which builds on the vorticity arguments of the previous section.

A schematic of the model is shown in Figure 3.8 (a). A thin, barotropic jet

with a 'top-hat' profile is set to run parallel to bathymetry which slopes upwards to

the right with a constant bottom-slope b, and surfaces a distance L from the jet. The

initial depth of the jet is ho, so ho = bL. As in the base case, there is a sharp bend

to the right in the bathymetry far downstream of the initial conditions and the jet

must adjust to it as it approaches.

Assuming the jet shoals as it approaches the corner, it must gain negative

relative vorticity. The assumption is made that the shear in the flow is initially zero

and remains zero at all times, so the relative vorticity is now

w= - (3.11)
r

and all the negative relative vorticity is in the curvature of the jet. The equation for

potential vorticity conservation can then be written

u, f(ho - h) (3.12)
r ho

A particularly simple continuity equation is chosen

u, = constant, (3.13)

which dictates that as the jet shoals, it must broaden to maintain a constant speed.

The base case flow roughly does this.
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Figure 3.8: (a) A schematic of the simple model. (b) The path of the jet for the
non-dimensional, scaled solution to the simple model. The X-axis runs along-shore
and the Y-axis runs off-shore. The axes are marked in the non-dimensional, scaled
length 1.



The rate of change of depth with distance along the jet is given by

dh = -bsin#, (3.14)
ds

where # is the angle the jet has turned through.

The substitution 1/r = d#/ds is made in (3.12) and then equations (3.12) and

(3.14) are non-dimensionalized, writing s* = Ls and h* = h0h, to get

eo 1 - h) (3.15)
ds
dh - sin4, (3.16)
ds

where the starred variables are now the dimensional ones, and e = u,/fL is the

Rossby number for the flow.

Differentiating (3.15) with respect to s and substituting for dh/ds using (3.16)

yields an equation for the path of the flow

d2 b _

d2  = - 1sin# (3.17)ds2 e

which is similar to the path equation given by Robinson and Niier (1967).

# and sin # are both 0(1) numbers for this problem so it is appropriate to scale s

with the square-root of the Rossby number, s = Vel, which gives the equation

= sin #. (3.18)
dJ2

Because of the symmetry of the flow, this equation can be solved by shooting back

towards the inflow from the corner with the initial conditions

7r do
' -, - = o at I = 0. (3.19)4) dl

When no is chosen correctly, # -> 0 as s -> -oo. This value of ro is ~ 0.765 and the

solution obtained is shown in Figure 3.8 (b).
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Figure 3.9: Two streamlines from the base case (dotted lines) and the corresponding
streamlines from the simple model (solid lines).

The solution was rescaled to fit the base case model run for various positions

across the inflow jet. e varies across the inflow jet as the speed of the jet varies and

the distance to where the local bottom slope would surface varies. Note that, because

of the x/e scaling, the flow turns more sharply for low e and more broadly for large

e. Figure 3.9 shows a comparison between two streamlines from the base case, one

over the shelf and one over the slope, and the simple model. The base case flow turns

more sharply over the shelf than the simple model solution does because some of the

relative vorticity due to the turning of the flow is from the reduction of the size of the

shear on the right-hand side of the jet. Over the slope the base case and the simple

model compare very well.

The non-dimensionalisation and scaling that lead to this equation give the

appropriate scaling for the flow at the corner and this will be discussed in the next

chapter.



Chapter 4

Scalings and Parameter Variations

4.1 Introduction

The parameters for the base case were varied to explore the nature of the adjustment

at the corner for oceanographically reasonable parameters. The simplest way to alter

the Rossby number of the flow for the base case is to vary the inflow velocity. A series

of runs show the adjustment at the corner for a range of inflow speeds from 0.1 m s-1

to 2.0 m s-'. The simple model of the previous chapter is then used to give a scaling

for the flow at the corner.

The model configuration for the base case was chosen so that the resulting

dynamics were as simple as possible. The sharp corner, inviscid dynamics and jet

inflow are to some extent unrealistic of the Scotian Shelf, so dependence of the flow

on these aspects of the base case was examined in order to check the robustness of

the results.



4.2 Inflow Velocity

Figures 4.1 and 4.2 shows the adjustment at the corner for a series of runs with inflow

jet speeds of 0.1 m s- 1, 0.5 m s- 1, 1.0 m s-1, and 2.0 m s-1 . The runs were otherwise

identical to the base case. The flow is steady and adjusts to the corner in a similar

manner to the base case. The 0.1 m s-1 jet has essentially linear dynamics, and turns

the corner very sharply with the local Rossby number reaching a maximum of 0.1 at

the corner. As the flow speed is increased, the symmetry of the flow is maintained and

the flow adjusts in a broader manner, the radius of curvature of the flow increasing

with increasing flow speed. For the 2.0-m s-' jet, the maximum radius of curvature

at the corner is 50 km and the local Rossby number reaches 0.62, which is less than

one due to the broad nature of the adjustment.

4.3 Scaling

For an inviscid Gaussian jet flowing parallel to straight bathymetry of constant bot-

tom slope b, there are two length scales, the distance L from the center of the jet to

the coast where the bathymetry surfaces, and the width of the jet W. The velocity

scale is taken to be the maximum speed of the jet Umax and the rotational time scale

is 1/f.

The two relevant non-dimensional parameters for this problem are the Rossby

number e and the ratio of the two length scales a

Umaz W
a = a = .(4.1)

fL' L

Note that it is not necessary to consider the bottom slope since it is the relative

depth of a fluid column that is important to the vorticity dynamics and this does not

depend on the bottom slope.
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Figure 4.1: Contours of the transport streamfunction for the base case with varying

inflow speeds (a) 0.1 m s-1 (b) 0.5 m s-1.
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The simple model considered in the previous chapter agrees fairly well with

the base case on applying the model to several streamlines from different positions

across the inflow jet. The Rossby number used in each case was uo/f L where uo is the

inflow velocity at that point in the jet and L = ho/b, the distance from that point to

where the local gradient in the bathymetry would surface if continued upward. This

suggests that the adjustment of the jet to the corner in the bathymetry is independent

of a. To test this, the base case configuration was redone at inflow velocities of 0.1,

0.2, and 0.4 m s-1 with the inflow jet half as wide. The minimum radius of curvature

of the jet at the corner compares well with that for the base case so the dependence

on a is weak and will not be considered here.

If the scaling of the flow is independent of a, then the scalings obtained from

the simple model for the flow at the corner should apply. These are

VEL ho - hc
rc = ,5 ho = 0.765V'-, (4.2)

0.765'h

where rc is the radius of curvature at the corner, and he is the depth at the corner.

Figure 4.3 shows the scaling for the curvature at the corner for the series of runs

described above. The maximum radius of curvature and the Rossby number estimated

for the center of the jet are used. The 'best fit' least squares line through the data

has a slope of 0.88 and a y-intercept of -0.0068. The data lies close to this line

and the y-intercept is close to zero so this scaling argument seems appropriate for

this range of parameters. The slope of the line is less than that predicted by the

simple model presumably because the simple model assumes all the negative relative

vorticity gained at the corner goes into the turning of the flow and this is not exactly

the case for the numerical model results.



Figure 4.3: re/L plotted against ei. The data are taken from the center of the jet
for model runs with inflow velocities of 0.1, 0.5, 0.75, 1.0, 1.5, and 2.0 m s-' for the
base case jet (+) and inflow velocities of 0.1, 0.2, and 0.4 m s- for an inflow jet half
as wide (o). The solid line is the 'best fit' line to the data in the least squares sense
and the dotted line is the scaling that the simple model would give.
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4.4 Other Variations

The linear bottom friction parameterization given in Chapter 2 was used to illustrate

the effects of adding bottom friction to the base case. The vertical viscosity used was

0.002 m 2s- which gives an e-folding scale for the Ekman layer of 6.32 m. The linear

bottom friction parameter rf was set to 5 x 10' ms-', which gives an Ekman layer

with 75% of the Ekman suction and 59% of the Ekman transport of an Ekman layer

with no-slip bottom friction.

Figure 4.4 (a) shows the flow for the base case configuration with the bottom

friction described above. The nature of the adjustment is the same and the change

in the flow very slight. The Ekman transport in the bottom boundary is directed off

the shelf so the streamlines are slowly deepening where in the base case the flow was

parallel to the bathymetry.

All the following runs have similar bottom friction since the decay time of

transients during the model spin-up period is much shorter. The effect of friction is

always to give a small flow off the shelf, not to radically change the adjustment.

The base case was re-run with a 10-km radius corner instead of a sharp corner

(see Figure 4.4 (b)). This gives the inertial radius of the 1.0-m s- inflow jet at

the shelf-break to be equal to the radius of curvature of the corner. The flow is

essentially unchanged by this smoothing of the corner, indicating that an inertial

radius criterion does not govern the adjustment of this flow and the scaling presented

earlier still applies.

The previous runs all have an inflow jet over the shelf-break. This was chosen

so that the flow decayed over the slope and decayed towards the coast and was also

stable. The flows over the Scotian Shelf are not necessarily focused at the shelf-break

like this. It is likely that the southward flow over the Scotian Shelf is much broader

in nature, extending from near the shelf-break to the coast.
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Figure 4.4: Contours of the transport strearnfunction for (a) base case with bottom

friction,(b) base case with bottom friction and a rounded corner of radius 10 km.
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Figure 4.5 shows the flow field for a 1 m s' inflow uniformly distributed over

the shelf. The flow turns the corner in a similar manner to the base case. It is

necessarily slightly asymmetrically about the corner since at (0,0) km there is an

imposed velocity of (1,0) m s- at the coast. Immediately downstream of the corner

in the coastline there is an adjustment region near the coast that appears similar to

the results of Klinger (1994). The result of this appears to be to force some fluid off

the shelf downstream of the corner.

4.5 Different Topographies

Some runs were made with the bottom topography twice as steep and half as wide

on the downstream side of the corner. This was done to mimic the Scotian Shelf

which is narrower along the inflow side to the Gulf of Maine and also has very steep

bathymetry dropping down to the Northeast Channel. The qualitative adjustment at

the corner is the same but the flow is no longer symmetrical about the corner since

the bottom topography is not symmetrical about the corner. The volume over the

shelf is halved in going from the inflow to the outflow and this causes fluid to move

off the shelf downstream of the corner.

Also examined was a step rather than a single corner in the shelf-break, which

is an abrupt downstream narrowing of the shelf with no overall turn in the shelf-break.

Flow adjusts on the scale of the step in this case. The adjustment to the convex part

of the step is similar to that found in the base case. However, the flow is not flowing

parallel to the step on leaving the corner but is flowing across the bathymetry and

adjusting to the concave corner at the downstream end of the step in exactly the

opposite manner to the adjustment at the convex corner. This adjustment is not

considered important to the dynamics of the separation from the Scotian Shelf since

there is no direct continuation of the Scotian Shelf to Georges Bank.



Chapter 5

Conclusions

5.1 Discussion and Conclusions

The parameter variations in Chapter 4 indicate that the nature of the adjustment to

the sharp bend in the bathymetry that was described in detail in Chapter 3 is robust.

For parameters in the oceanographic range, barotropic flow over the shelf/shelf-break

adjusts to a 90 *right-hand bend in the shelf bathymetry in a smooth, steady manner.

Eddies do not form at the corner as was initially expected. The flow is nearly sym-

metrical about the corner and it shoals as it approaches the corner and deepens as it

leaves, returning to close to its initial depth.

The conservation of shallow water potential vorticity demands that as the flow

shoals it gains negative relative vorticity, and as it deepens it loses negative relative

vorticity. The comparison between the base case and the simple model in Chapter 3

supports the argument that the gain in negative relative vorticity due to the shoaling

at the corner is largely manifested in the turning of the flow. This is how the vorticity

adjustment at the corner is consistent with the broad scale turning of the flow around

the corner.



The scaling presented and verified in Chapter 4 demonstrates that the radius

of curvature of the flow scales with the square root of the Rossby number (r ~ VCL).

This implies that the adjustment width of the flow becomes broader as the Rossby

number increases, and this can be seen in the model results. It is the broad shelf

which allows for this broad-scale adjustment of the flow, and means that the local

Rossby number of the flow is less than one at the corner. The experiments here are

fundamentally different from those of Klinger (1994) where a broad-scale adjustment

is not possible because of the presence of the coast and the local Rossby number is

greater than one in the adjustment region.

For the model runs presented here, the flows are attached to the bathymetry

at the corner rather than overshooting and separating from the corner. Therefore,

steady barotropic dynamics and bottom friction do not appear to explain the flow of

Scotian Shelf water directly across the Northeast Channel. The initial time-dependent

adjustment at the beginning of any model run includes eddies and coastally trapped

vorticity waves that are generated at the corner and then propagate downstream. It

may be that some kind of overshoot is possible at the corner with time-dependent

upstream forcing.

The barotropic model is limited in its applicability to the Scotian Shelf because

the density front at the shelf-break of the Scotian Shelf is expected to be dynamically

significant. The density front weakens the topographic constraint presented by the

Northeast Channel. Having understood the barotropic case, the next step is to include

a shelf/slope front in the model to mimic the density stratification found at the shelf-

break of the Scotian Shelf. Both time-dependent forcing and wind-stress could later

be put into this baroclinic model as appropriate.

The irreversibility of the vorticity adjustment found in this model suggests

further barotropic runs for current impinging on a left-hand bend in the bathymetry

where it is expected to flow to the corner and separate. This may have applications

to the separation of the Gulf Stream from Cape Hatteras.



Appendix A

Stability of a Barotropic Gaussian

Jet Over Sloping Bathymetry

For the inviscid shallow water equations with a rigid lid, the relevant criterion to en-

sure that a jet flowing parallel to straight bathymetry is stable to small perturbations

is that the initial potential vorticity gradient across the jet does not change sign. For

a Gaussian jet of the form u = Umaxe(w flowing along straight bathymetry with

a constant bottom slope b, and the coast on the right, this criterion implies the jet

is stable for

a2
->2, (A.1)

where a = W/L, E = Uma/fL and L is the distance to the coast as in the simple

model. Note that a 2 /E oc 1/L so that as L decreases the jet bcomes more stable

for a given Uma, and W. The jet broadens as a increases and comes into contact

with the coast for a > 0.5, so we cannot consider very broad jets in the numerical

model independently of the boundary conditions at the coast, and the range of Rossby

numbers is restricted to 0 < e < 0.1.

The shelf/slope topography used in the numerical model stabilizes the inflow

jet in the base case. If the slope is continued upward it reaches the surface very close



to the center of the jet so that for the left-hand side of the jet, which is over the slope,

L is small and a 2/ce > 2 for the range of e and a used in this study. The right-hand

side of the jet is over the shelf where L is large and a 2/6 < 2. The jet as a whole is

found to be stable.
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