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Abstract

Localizing sources of activity from electroencephalography (EEG) and magnetoen-
cephalography (MEG) measurements involves solving an ill-posed inverse problem,
where infinitely many source distribution patterns can give rise to identical measure-
ments. This thesis aims to improve the accuracy of source localization by incorporating
spatio-temporal models into the reconstruction procedure.

First, we introduce a novel method for current source estimation, which we call the
¢105-norm source estimator. The underlying model captures the sparseness of the active
areas in space while encouraging smooth temporal dynamics. We compute the current
source estimates efficiently by solving a second-order cone programming problem. By
considering all time points simultaneously, we achieve accurate and stable results as
confirmed by the experiments using simulated and human MEG data.

Although the #,/>-norm estimator enables accurate source estimation, it still faces
challenges when the current sources are close to each other in space. To alleviate
problems caused by the limited spatial resolution of EEG/MEG measurements, we
introduce a new method to incorporate information from functional magnetic resonance
imaging (fMRI) into the estimation algorithm. Whereas EEG/MEG record neural
activity, fMRI reflects hemodynamic activity in the brain with high spatial resolution.
We examine empirically the neurovascular coupling in simultaneously recorded MEG
and diffuse optical imaging (DOI) data, which also reflects hemodynamic activity and
is compatible with MEG recordings. Our results suggest that the neural activity and
hemodynamic responses are aligned in space. However, the relationship between the

temporal dynamics of the two types of signals is non-linear and varies from region to



4

region.

Based on these findings, we develop the fMRI-informed regional EEG/MEG source
estimator (FIRE). This method is based on a generative model that encourages similar
spatial patterns but allows for differences in time courses across imaging modalities.
Our experiments with both Monte Carlo simulation and human fMRI-EEG/MEG data
demonstrate that FIRE significantly reduces ambiguities in source localization and ac-

curately captures the timing of activation in adjacent functional regions.

Thesis Supervisors: Polina Golland, Associate Professor

of Electrical Engineering and Computer Science at MIT

Matti S. Haméldinen, Associate Professor
of Radiology at Harvard Medical School
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NOTATIONAL CONVENTIONS




Chapter 1

Introduction

[Ahlfors & Simpson,2004] Electroencephalography (EEG) and magnetoencephalogra-
phy (MEG) are widely used for functional brain mapping. With appropriate source
estimation algorithms one can locate the activated regions and estimate their dynamics.
The non-invasive nature of EEG and MEG makes these methods particularly suitable for
neuroscience research [Chafetz & Cadilhac, 1954, Hari & Forss, 1999, Engel et al., 2001,
Jaaskelainen et al., 2004, Ahveninen et al.,2006] and clinical studies, such as surgical
planning for epilepsy patients [Kershman et al., 1951, Knake et al.,2006]. There are
two main types of EEG and/or MEG (EEG/MEG) studies: signal analysis in the sen-
sor space [Lachaux et al., 1999, Engel et al., 2001, Grill-Spector et al., 2006] and spatio-
temporal analysis in the source space [Hari & Forss. 1999, Lin et al., 2004, Jaaskelainen et al., 2004,
Ahveninen et al., 2006]. In this thesis, we focus on the spatio-temporal modeling in the
source space, which entails mapping of the data from the sensor space to the source
space. This procedure is referred to as source localization and requires an inverse solver.
Fig. 1.1 illustrates the relationship between the EEG/MEG measurements and the un-
derlying neural activity; the inverse problem is the inference of neural activity from the

measurements.

B 1.1 Challenges in Current Source Estimation

The principal difficulty in EEG/MEG source localization stems from the ill-posed nature
of the electromagnetic inverse problem: infinitely many source distributions can give rise
to identical measurements [Hadamard, 1902, Hamaéldinen et al.,1993]. Additional as-
sumptions, such as minimum energy [Hamalédinen & Ilmoniemi, 1984, Wang et al., 1993]
or minimum current [Uutela et al., 1999], must be incorporated into the estimation pro-

cedure to obtain a unique estimate [Baillet et al., 2001]. The corresponding estimation

17
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Neural
Activity
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Figure 1.1. Relationship between neural activity and EEG/MEG measurements.

methods belong to the class of algorithms that model the sources as a spatial distribu-
tion, in contrast to the dipole fitting approach where the EEG/MEG data is explained
by a small number of current dipole sources [Wood, 1982, Scherg & Von Cramon, 1985,
Mosher et al., 1992]. In this thesis, we focus on the distributed approach.

The widely used minimum norm estimate (MNE) [Hamaldinen & Ilmoniemi, 1984,
Dale & Sereno, 1993, Wang et al., 1993] recovers the source distribution with minimum
overall energy (or minimum fs-norm) that induces signals at the sensors consistent
with the measurements. Although the /3-norm method leads to an efficient linear
estimator, the MNE solutions are often too diffuse. Hence, MNE is not appropriate for
localization of focal epilepsy and early sensory activations, which have been shown to be
highly localized in intra-cranial experiments [Barth et al., 1982, Allison et al., 1989]. To
overcome this disadvantage, the minimum current estimate (MCE) utilizes the sparse

property of the £1-norm to achieve more focal solutions[Uutela et al., 1999].

B 1.2 Sparse Source Estimation

Similar to MNE, MCE is applied to each time point in the data separately. One of the
drawbacks of MCE is its sensitivity to noise: the estimated activations tend to “jump”
among neighboring spatial locations from one time instant to another. Equivalently, the
time course at a particular location can show substantially “spiky” discontinuities when
viewed over time. Hence, in Chapter3 of this thesis, we propose a novel solver that
takes advantage of the smooth properties of the underlying source signal and estimates

the current source distribution for all time points simultaneously. The corresponding
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solver is called the £1¢s5-norm estimator.

The ¢1f3-norm estimator imposes £;-norm regularization in the spatial domain and
¢5-norm regularization in the temporal domain. Similar to MCE, the ¢1f3-norm esti-
mator uses £1-norm regularizer to encourage spatial sparsity. For the temporal domain,
we assume that the source signals are linear combinations of multiple temporal ba-
sis functions, and estimate the coeflicients of all basis functions simultaneously. We
utilize the conventional definition of amplitude, the fo-norm, to summarize the acti-
vation strength at each location. The resulting model can be formulated as a second-
order cone programming (SOCP) problem and solved efficiently using the interior-point
method [Alizadeh & Goldfarb,2001]. Experimental comparisons in Section 3.3 reveal
that this joint spatio-temporal model implicitly increases the signal-to-noise ratio (SNR)

and achieves more accurate estimates than the traditional methods.

B 1.3 Neurovascular Coupling

Due to the limited spatial resolution of EEG/MEG measurements, relying solely on
assumptions about the spatial patterns of activation, such as ¢;- and f>-norm, does
not allow us to distinguish activation sources that are close in space. Specific prior
knowledge about activated locations can be obtained from other imaging modalities.
Among these, functional magnetic resonance imaging (fMRI) provides the most relevant
information due to its good spatial resolution. In addition, its non-invasive nature makes
this imaging technique suitable for a wide range of applications.

The main concern in integrating fMRI information into the estimation of the neural
activity is that fMRI measures hemodynamic activity, which only indirectly reflects
the neural activity measured by EEG/MEG. The flow chart in Fig. 1.2 illustrates the
source activities for EEG/MEG and fMRI measurements, as well as the relationship
between these two types of activities. The time courses of the neural and the vascular
activities differ substantially, and their exact spatio-temporal relationship is yet to be
fully characterized [Logothetis & Wandell, 2004, Sharon et al.,2007]. In addition to the
differences in their physiological origins, EEG/MEG and fMRI have different sensitivity
characteristics. For example, a brief transient neural activity may be difficult to detect
in fMRI, but it is often easily observable by EEG/MEG. On the other hand, while a
sustained weak neural activity may lead to a relatively strong fMRI signal, it might

have a poor SNR in EEG/MEG. Hence, in Chapter4 we examine the neurovascular
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Figure 1.2. Source activities for EEG/MEG and fMRI measurements, as well as the relationship

between neural and hemodynamic activities.

coupling relation.

In this work, we develop a simultaneous MEG-diffuse optical image (DOI) record-
ing technique to examine the neurovascular relationship using somatosensory stimulus
trains with varying train duration. Similar to fMRI, DOI measures hemodynamic ac-
tivity. Despite its lower spatial resolution, DOI provides a higher temporal resolution
and good SNR for weak stimuli, such as the median-nerve stimulation, compared to
fMRI. Furthermore, MEG and DOI are compatible with each other with a few tech-
nical precautions. These two modalities allow for simultaneous measurement of neural
and vascular responses.

We choose median-nerve electrical stimulation because the corresponding somatosen-
sory responses have been extensively studied in humans with EEG and MEG [Brenner et al., 1978,
Goff et al., 1978, Kaufman et al., 1981, Hari et al., 1984, Tiihonen et al., 1989, Allison, 1992,
Mauguiere et al., 1997, Hari & Forss, 1999]. The active regions include the contralateral
primary sensory cortex (cSI), the bilateral secondary sensory cortex (SII), and other
associated areas such as the posterior parietal cortex (PPC). With DOI we recover
both oxy- and deoxy-hemoglobin (HbO and HbR) evoked responses in cSI for different
stimulus train durations. From MEG data, we estimate the sites of neural activity and
extract the cSI current dipole time course. By co-registering the two measurements
with respect to each subject’s structural magnetic resonance imaging (MRI), we verify
that there is spatial co-localization between neural and hemodynamic activities. Our
results suggest that neural activity and hemodynamic responses are generally aligned

in space.
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The MEG response to median nerve stimulation typically contains several peaks.
They are induced by excitatory post-synaptic potentials (EPSPs) or inhibitory post-
synaptic potentials (IPSPs) [Wikstrom et al., 1996]. We evaluate which peak best pre-
dicts the hemodynamic responses as measured by DOI. By limiting the consideration
to specific peaks of the neural responses, we aim to isolate the part of neuronal activity
that causes the local excitatory hemodynamic response. Our experimental results show
that the habituation effect in the hemodynamic response is stronger than that in the
earliest cortical neural responses. Furthermore, using a linear convolution model to pre-
dict hemodynamic responses, we find that including late neural components (> 30 msec)
improves the prediction. This finding suggests that in addition to the initial evoked-
response deflections related to the thalamic afferent input, later cortical activity needs

to be taken into account to predict the hemodynamic response.

B 1.4 Joint Estimation

Based on the findings reported in Chapter4, we propose a novel method, the fMRI-
informed regional estimation (FIRE), to improve the accuracy of the EEG/MEG source
estimate, which is referred to as “joint inference” in Fig.1.2. We present the method
in Chapter 5. Fig. 1.3 illustrates the model assumptions of FIRE. The regions indi-
cated by different colors are chosen based on the subject-specific cortical parcella-
tion [Fischl et al.,2002]. Our neurovascular coupling study implies that neural and
hemodynamic activities are aligned in space and that the relationship between the
dynamics of these two types of activities is largely unknown. Therefore, we only model
the similarity of spatial patterns in the two processes in FIRE. Furthermore, we expect
the shape of the activation time courses to vary across brain regions, especially for the
neural activity. To account for this fact, FIRE treats the temporal dynamics in different
brain regions independently. In other words, there is no constraint imposing similarity
of the activation time courses across regions. We assume the shape of the activation
time courses to be constant within a brain region, modulated by a set of location-specific
latent variables. Handling the temporal dynamics of the two types of activities sepa-
rately while exploiting their common spatial pattern preserves the temporal resolution
of EEG/MEG and helps to achieve accurate source localization.

To fit the model to the data, we use the coordinate descent method, alternating be-

tween the estimation of current sources and that of other model parameters. This itera-
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Figure 1.3. Graphical illustration of the model assumptions in FIRE. The anatomical regions of
the left hemisphere are depicted in the middle of the figure. Region-specific neural waveforms (top
two panels) and the vascular waveforms (bottom two panels) for two separate regions are shown in
black. Location-specific current time courses and fMRI time courses for two locations in each of the
two highlighted regions are shown in blue and green. The current time courses and the fMRI time

courses are scaled versions of the corresponding region-specific waveforms.

tive update scheme is similar to the re-weighted MNE methods, such as the FOCal Un-
derdetermined System Solver (FOCUSS) [Gorodnitsky & Rao, 1997]. In contrast to the
re-weighted MNE, our method determines the weights jointly from both the estimated
neural activity and the vascular activity measured by fMRI. Moreover, the estimates
at different time points influence each other. The computation of the weights is related
to problems arising in continuous Gaussian mixture modeling, which can be efficiently
optimized using the Expectation-Maximization (EM) algorithm [Dempster et al., 1977].

We employ a Monte Carlo evaluation procedure to compare FIRE to several other
joint EEG/MEG-fMRI algorithms. Our results show that FIRE provides the best
trade-off in estimation accuracy between the spatial and the temporal accuracy. Anal-
ysis using human EEG/MEG-fMRI data reveals that FIRE significantly reduces the
ambiguities in source localization present in the MNE estimates, and that it accurately

captures activation timing in adjacent functional regions.

B 1.5 Contributions of This Thesis

To summarize, this thesis introduces three main contributions to improve functional

brain mapping accuracy:

1. Improvement in robustness of MCE through a temporal model that encourages
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smooth underlying source signals — £1fo-norm estimator.

2. An empirical study of neurovascular coupling relationship. Neural activity and
hemodynamic response are generally aligned in space, but their temporal relation-

ship is non-linear and varies across brain regions.

3. A new method for source estimation, FIRE, that combines spatial and temporal

advantages in EEG/MEG and fMRI data to distinguish sources close in space.

In the following, we first review background material, including various functional
imaging measurements and their corresponding analysis methods, as well as the neu-
rovascular coupling relationship, in Chapter 2. We then introduce the ¢1fs-norm esti-
mator to improve robustness of inverse solutions in Chapter 3. In Chapter 4, we present
our empirical findings on the neurovascular coupling. Based on these findings, we de-
velop the FIRE estimator in Chapter5. We summarize and propose future research

directions in Chapter 6.
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CHAPTER 1.

INTRODUCTION




Chapter 2

Background

In contrast to anatomical images, which provide a static view of the brain, functional
brain imaging records the temporal dynamics of brain activity. In this section, we dis-
cuss various functional brain imaging techniques, followed by a literature review on data
analysis methods for localizing activation areas in the brain. We then present recent
findings on neurovascular coupling and review joint analysis methods that integrate

functional data across multiple imaging modalities.

W 2.1 Functional Brain Imaging Methods

Each functional imaging method measures either the neural activity directly or the asso-
ciated changes such as hemodynamics and metabolism. While electroencephalography
(EEG), intra-cranial EEG, and magnetoencephalography (MEG) measures neural ac-
tivity, functional magnetic resonance imaging (fMRI) and near infrared spectroscopy
(NIRS)/diffuse optical imaging (DOI) reflect hemodynamic activity. Positron emission
tomography (PET) measures metabolism of neurons.

These functional imaging methods can be also categorized as invasive or non-
invasive. Intra-cranial EEG requires an open-skull surgery where the electrodes di-
rectly measure voltage fluctuation at a specific location on the cortex. Therefore, only
few locations can be tested during the surgery. For PET, a small dose of radioactive
tracer isotope is needed to measure changes of glucose metabolism in cells. In con-
trast, EEG, MEG, fMRI and DOI are completely non-invasive. Consequently, they
are widely used in both neuroscience research and clinical practice, such as localization
of functional differences in schizophrenic and Alzheimer’s patients [Mayberg et al., 2000,
Maestu et al., 2001] and surgical planning in epilepsy patients [Knake et al., 2006]. They

all measure activation in the whole brain, in contrast to specific locations probed by
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inter-cranial methods. However, this characteristic also makes source localization diffi-
cult, especially for EEG, MEG and DOI. Here, we mainly focus on the source localiza-
tion problem for EEG and MEG.

W 2.2 EEG/MEG Measurements

For a linear isotropic material, Faraday’s Law and Ampere’s Law in Maxwell’s equations
describe the relationship among magnetic field B, current density J, and electric field
intensity E as:

0B

OE
VXB—M(J—I—EE), (2.2)

where ¢4 and € are the permeability and permittivity of a material, respectively.

The brain is a passive non-magnetic medium. In the typical frequency range of
neural activity of 1 kHz, the electric and magnetic fields of the brain can be accounted for
by the quasi-static approximation of Maxwell’s equations - that is, magnetic induction
and capacitive effect are negligible [Plonsey 1969, Nunez, 1981]. In other words, % and
%—? are negligible in Eq.(2.1)-(2.2). For the quasi-static approximation to be valid,
we need to satisfy two conditions: (a) the time-derivative of the electric field must be
much smaller than the ohmic current: [e0E/0t| << |oE| and (b) 0B/dt must be small.
Parameter ¢ denotes the electrical conductivity of the medium.

To show the validity of condition (a), we let
E = Ege?™/!, (2.3)

where i = y/—1 and f is the neural activity frequency. Given that brain tissue conduc-
tivity is 0 = 0.3 'm™!, permittivity ¢ = 10%¢g, and f = 100 Hz,

[eOE/Ot| = 27 fe|Eq| = 5.6 x 1074|Ep| < |oE| = 0.3|E|. (2.4)

Parameter €y denotes the permittivity of free space. Furthermore, condition (b) is true

since the wavelength of the electromagnetic propagation is
|27 f oo (1 + i27 fe/o)| ™% ~ 65m, (2.5)

much longer than the diameter of the head. We can derive the wavelength formula by
solving differential equation V x V x E = _NO% (O'E + 6%1;3), which is obtained from
Eq.(2.1) and Eq. (2.2) with p = po.
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Therefore, under the quasi-static approximation, V x E = 0. That means the electric

field can be expressed as the gradient of a scalar potential:
E=-vV. (2.6)

Moreover, with this approximation, the forward problem for magnetic field outside of
the head B(r) due to currents in the brain J(r’) can be expressed as

B(r) = Z—; / J(‘B—gddv’, (2.7)

where r is a point where the field is computed, and r’ is a point inside the brain
volume v'. We define vector d = r — r’ to simplify the notation. Substituting identities
d/|d® = —v(1/|d]) = v'(1/|d]) and J x v'(1/|d]) = (V' x J)/|d| — V' x (J/|d]) into
Eq. (2.7), we get
/ /
B(r) = 42 [/ VTT']I(Udv'—/V' x (J/|d|)dv’] : (2.8)
In the above, V indicates the curl with respect to the observation coordinates, Vv =
e,0/0x +e,0/0y +e,0/0z; V' indicates the curl with respect to the source coordinates
V' =e,0/0z' +e,0/0y +e,0/07.
If we transform the second integral of Eq. (2.8) into a surface integral, we can see that
the current density approaches zero sufficiently fast when r’ goes to infinity. Therefore,

B(r) = %/Y—%@dv’. (2.9)

The current density J(r’) can be divided into the primary current JP(r’) and the
volume current JV(r’). Neural activity gives rise to primary current mainly inside or
in the vicinity of a cell, whereas the volume current flows passively everywhere in the

medium [Hamaélédinen et al., 1993]:
J(') =JIP0") + 3°(r') = IP(r') + oE(r') = JP(r') — o V'V (1'). (2.10)

Using the identity V' x (cV'V) = V'a x V'V, we substitute Eq. (2.10) into Eq. (2.9):
Lo v x JP(r') |, / Viex V'V
B(r) = — ———dV — | —————dv'|. 2.11
0= G2 | S e - [ T (21
The first term is the magnetic field induced by the primary current J?, and the second
term is induced by the volume current JV. If we are in an infinite homogeneous con-

ductor, i.e., Vo = 0, the magnetic field is solely contributed by JP. However, generally,
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both JP and JV determine the magnetic field. If we take the divergence of Eq.(2.10)

and re-arrange the terms, we get
VI =V I0) + V- (o) VV()). (2.12)

Using the quasi-static approximation and the fact that the divergence of a curl is
zero, i.e., V' - (V' x B) = 0 in Eq. (2.2), we get V' - J(r') = 0. Therefore, Eq. (2.12) can

be reduced to
v IR =V (o()V'V (). (2.13)

With proper boundary conditions, we can solve for Eq. (2.13) numerically. We then
substitute the solution into Eq. (2.11) to compute B(r).

To simplify notation, we omit the superscript P in the rest of the thesis. From the
above we see that there is a simple linear relationship between the electric/magnetic
recordings and the strengths of the currents, allowing us to express the forward solution

in a simple matrix form:
y(t) = AJ(t) + e(t), (2.14)

where y(t) is the vector of instantaneous electric and/or magnetic recordings at time ¢,
A is the so-called gain matrix (with each column specifying the electric and/or magnetic
forward model for a given dipole component). Throughout this thesis, the forward
matrix A is of size M x N, where M and N denote the number of electrodes/sensors
and the number locations (i.e., vertices or voxels) in the brain, respectively. J is a
vector of current dipole component strengths, and e is a vector specifying the noise at
each electrode/sensor.

Historically, the forward matrix A has been calculated assuming an idealized head
shape with multiple concentric spheres of different conductivities [Cuffin & Cohen, 1977].
With the advancements in high-resolution 3-D magnetic resonance imaging (MRI) scans
and numerical techniques, we can now customize the forward models to the indi-
vidual subject’s anatomy via either finite element method (FEM) or boundary ele-
ment method (BEM) [Hamaélainen & Sarvas, 1989, Oostendorp & Van Oosterom, 1989,
Dale & Sereno, 1993].

B 2.3 EEG/MEG Source Estimation

Localizing active regions from EEG/MEG data involves solving an electromagnetic in-

verse problem. Unfortunately, even with perfect knowledge of the electric and magnetic
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fields outside of the source region, this problem does not have a unique solution be-
cause there are currents which are electrically silent, or magnetically silent, or both.
Moreover, solutions might not depend continuously on the data without regularization,
which means small errors in measurements might cause errors of arbitrary magnitude
in the estimated sources. These two characteristics make the inverse problem ill-posed

in the sense of Hadamard [Hadamard, 1902].

H 2.3.1 Dipole Fitting and Distributed Source Estimates

Inverse solvers for EEG/MEG source estimation can be classified into two broad cate-
gories: discrete parametric solvers, also known as dipole fitting, and distributed inverse
solvers. The dipole fitting algorithms estimate the location, orientation, and ampli-
tudes of a fixed number of current dipoles [Wood, 1982, Scherg & Von Cramon, 1985,
Mosher et al., 1992, Uutela et al., 1998]. In contrast, distributed solvers discretize the
source space into locations on the cortical surface or in the brain volume without ex-
plicitly controlling for the number of current dipoles. The desired solution is com-
puted by introducing a cost function that depends on all sources in the source space,
such as an overall minimum power or minimum current [Haméldinen & Ilmoniemi,1984,
Dale & Sereno, 1993, Wang et al., 1993, Uutela et al., 1999].

Dipole fitting usually provides robust estimates for activation signals, but localiza-
tion is challenging when several sources are active because the cost function depends
non-linearly on the dipole locations. Additionally, the quality of the results degrades
when the assumed number of dipoles differs from the true number of sources (see,
e.g. [Wood, 1982, Hari & Forss, 1999]). Although it is possible to obtain an initial guess
for the number of dipoles based on a singular-value decomposition (SVD) of the record-
ings [Huang et al., 1998|, this method is sensitive to user-defined thresholds and is prob-
lematic in the presence of correlated source signals. Furthermore, it has been argued
that a set of current dipoles may not be a good model for activations with relatively

large spatial extent [Jerbi et al., 2004].

Bl 2.3.2 Distributed Estimations

Not restricted to a fixed number of dipoles, the distributed solvers estimate the source
amplitudes of all possible source locations. In this subsection, we first present the basics
of point-wise estimators that estimate the source current distribution at each time point

separately, and discuss their limitations. We then summarize the recent development
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in spatio-temporal estimators.

Point-Wise Solvers The widely used minimum norm estimate (MNE) [Hamaéldinen & Ilmoniemi, 1984,
Dale & Sereno, 1993, Wang et al., 1993] recovers a source distribution with minimum
overall energy (or minimum ¢s-norm) that produces data consistent with the measure-
ments. It is computed for each time point separately. For time ¢, the solution JMNF is

expressed as
JVNE = arg n}Iin 117113 (2.15)
st. y(t) = AJ,

where ||J||3 is the square of the £o-norm of vector J.

We use the method of Lagrange multipliers to solve Eq. (2.15):
I = argmin |y (¢) — AJ|3+ 223113, (2.16)

where X defines the relative importance of the data term |y(t) — AJ||3 and the reg-
ularization term ||J||3. Since the data term depends on the amplitude of noise in the
measurements, A\?> can be viewed as the signal-to-noise ratio. Taking the derivative of

Eq. (2.16) with respect to J and setting it to zero, we get

IVN = (ATA + My) ATy (t) (2.17)
— AT (AAT 4 221) y(t) (2.18)

based on the following set of identities:

(ATA +22Ty) " AT = (ATA + 22Iy) AT (AAT 4 A2Ty) (AAT + 220,,)
=

ATA +X14) 7 (ATAAT + X2ATT,,) (AAT + 220,,)
= (ATA +XIy) " (ATA +2%Ty) AT (AAT + 221)
= AT (AAT £ 21,)

-1

where Iy; and Iy are the M x M and N x N identity matrices, respectively. The above
derivations assume that the data has been whitened in the preprocessing step; the noise
covariance matrix is therefore an identity matrix. A more general derivation replaces
the white noise correlation matrix Iy; with the noise covariance matrix C. Due to the
size of the forward matrix A, Eq.(2.18) is preferred since it leads to more economical

computation. Operator A" (AAT + NI M) s usually referred to as the MNE inverse
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operator. It is linear and independent of the data. In practice, this operator is pre-
computed and applied to data at each time point separately.

Although the ¢3-norm estimation leads to an efficient linear inverse operator, the
MNE solutions are often too diffuse in space. In particular, MNE is not appropriate for
localization of early sensory activations and for focal epilepsy, which have been shown
to be focal in intra-cranial experiments [Barth et al., 1982, Allison et al., 1989].

To overcome this problem, the FOcal Underdetermined System Solver (FOCUSS)
[Gorodnitsky & Rao, 1997] augments the MNE solver with a recursive weighting scheme.
FOCUSS has been shown to be equivalent to a p-norm solver where p < 1 in previous
work [Rao & Kreutz-Delgado, 1999]. Other regularizers based on a norm penalty can
provide bias towards sparsity. Among them, the minimum current estimate (MCE) is
the most popular [Uutela et al.. 1999]. In contrast to the minimum energy assumption
in MNE, MCE assumes that the optimal current estimate is the one that produces the

minimum current or minimum #;-norm:

JMCE = arg nhin 1)1 (2.19)

where [|J]|; is the sum of absolute value of the elements in vector J. Although the objec-
tive function in Eq. (2.19) is convex, it is not differentiable at zero. Hence, a gradient-
based method is not directly applicable. One can solve the above optimization problem
using the simplex method and the interior point method [Bertsimas & Tsitsiklis, 2008].

One of the drawbacks of the conventional £;-norm inverse solvers, as well as other
focal solvers such as FOCUSS, is their sensitivity to noise. Similar to other distributed
solvers, the conventional ¢1-norm solvers are typically applied to each time sample in
the data separately. The solvers’ sensitivity to noise causes the estimated activations to
“jump” among neighboring spatial locations from one time instant to another. Equiva-
lently, the estimated time courses at a particular location exhibit “spiky” discontinuities
when viewed over time. To avoid this problem one commonly averages time courses
across adjacent sites, at the expense of spatial resolution. In Chapter 3, we introduce a
method that addresses this issue by incorporating a model for temporal properties of
the signals into MCE.

Spatio-Temporal Solvers Two alternative approaches utilize temporal constraints to

improve source estimation accuracy: a direct application of the temporal constraint as a
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regularizer in the cost function and a use of temporal basis functions. In [Baillet & Sereno, 1997,
Brooks et al., 1999, Schmitt et al., 2001, Galka et al., 2004, Zhang et al.,2005a, Lamus et al., 2007],
a regularizer is explicitly incorporated into the cost function to model the smooth-
ness of the current source distributions across consecutive time instants. For example,
[Baillet & Sereno, 1997] encourages small residuals in the least squares estimates of
the current sources between the current time point and the previous one. The stud-
ies of [Galka et al., 2004, Zhang et al., 2005a, Lamus et al., 2007] propose a state-space
model with smooth transitions between states that represent the current source distribu-
tions at consecutive time points. The temporal regularization terms in [Brooks et al., 1999,
Schmitt et al.,2001] are expressed as the fo-norm of the output of the current sources
passed through a pre-designed low-pass filter in the time domain. While these meth-
ods address the problem of sensitivity to noise, their implementation requires a sub-
stantial amount of computation, except for a limited number of low-pass filters; see
[Zhang et al., 2005a] for a comprehensive comparison of the above regularization meth-
ods.

Taking a significantly different approach to reducing the sensitivity to noise, the
vector-based spatio-temporal minimum #¢;-norm solver (VESTAL) projects the sample-
wise £1-norm estimates to the signal subspace defined by a set of temporal basis func-
tions [Huang et al., 2006]. In other words, it separates the spatial and the temporal
models into a two-step estimation procedure. Although VESTAL significantly reduces
the noisy sensitivity in MCE, its estimates have limited accuracy due to errors prop-
agated from the first estimation step to the second one. Models based on temporal
basis functions have also been proposed for other types of inverse solvers. For in-
stance, Geva [Geva, 1998] constructed a basis set using wavelets and computed inverse
solutions for each basis function separately using dipole fitting. Trujillo-Barreto et
al. [Trujillo-Barreto et al., 2007] explored the use of wavelets as a temporal model in the

context of distributed solutions.

B 2.4 Hemodynamics

It is known that neural activity causes an increase in blood flow to the activated re-
gions to provide extra oxygen and glucose for the active brain cells. As large amounts
of freshly oxygenated blood pours into an activation region, it causes reduction of the de-

oxygenated hemoglobin (HbR) to oxygenated hemoglobin (HbO) ratio [Jezzard et al., 2002].
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To measure the hemodynamics, fMRI [Ogawa et al., 1990, Kwong et al., 1992] and DOI
[Arridge et al., 1999, Boas et al.,2001] detect the changes in the paramagnetic and opti-
cal properties of blood, respectively, as the ratio of HbR-to-HbO changes. Compared to
neural activity, the change of HbR-to-HbO ratio is a much slower process, and temporal

sampling rate of every second is usually sufficient to capture this change.

N 2.4.1 fMRI

fMRI signals are acquired using a standard MRI system with suitable pulse sequences,
such as echo planar imaging (EPI) [Jezzard et al.. 2002]. fMRI signals reflect differences
in the paramagnetic properties of oxygenated and de-oxygenated blood as a consequence
of activation. Iron atoms are bound to oxygen in HbO, but not in HbR. Since iron
atoms cause distortions in the magnetic field, but oxygenated iron atoms do not, HbO
and HbR have different paramagnetic properties. A change in the HbO-to-HbR ratio
causes a small change in the effective magnetic field in the active region, and thus a
small variation in the fMRI signal. This type of image is called Blood-Oxygen-Level-
Dependent (BOLD) fMRI.

It is important to remember that fMRI is a measure of hemodynamic activity and
not a direct measure of neural activity. In contrast to EEG/MEG, fMRI produces a 4-D
image, 3-D in space and 1-D in time. In other words, there is a time course associated
with each location in the brain. The standard spatial resolution is about 2 x 2 x 3 mm?3.
Using the EPI technique, standard fMRI achieves a temporal sampling on the order of

a second.

Block Design and Event-Related Design  In today’s neural studies, block design (box-
car) and event-related design are the most common experimental techniques. In a block
design experiment, stimuli are usually presented at a constant pace over a fixed period
of time, alternating with a fixed-length rest period in which no stimuli are presented.
The experimental protocol is fixed regardless of subject responses. Because a block is
treated as a single unit for analysis, samples within a block are considered as a single
condition.

While block design has strong detection power, event-related design has the ability to
estimate the shape of the hemodynamic response. Built on rapid imaging, event-related
design experiments maximize the opportunity to analyze the data by randomizing and
mixing trials or by using differences in speed or accuracy of subject responses. Event-

related design does not assume that signals obtained under all physiological tasks share
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the same HRF. Instead, it models the HRF's corresponding to various physiological tasks
separately. Hence, signals are analyzed by task category. Event-related design trades
improved specificity for reduced sensitivity. During an event-related design experiment,
stimuli are presented according to a pre-designed protocol, whose timing might change
based on the subject’s response to the previous stimulus, or on the accuracy of the
subject’s responses. The event-related design is also called a single trial design because
each trial is statistically independent of the other trials. To be statistically independent,
different trial types must be intermixed so that it is impossible to predict the next trial
type from the previous one.

Although the scheduling of stimulus presentation is different in the two types of
experimental protocols, they are both based on a linear assumption of the responses.
The total response to multiple stimuli is modeled as the sum of the responses to each
individual stimulus. Hence, fMRI data acquired using either protocol can be analyzed

via the general linear model (GLM).

fMRI Analysis Given an fMRI scan [fy, ..., fx], where the vector f,, denotes the fMRI
time course at location n with T time samples, the GLM detector produces an ac-
tivation map by thresholding the statistic value corresponding to a hypothesis-testing
procedure. The GLM detector assumes that the observed time course is a linear com-
bination of the protocol-dependent component B and the protocol-independent com-
ponent C, such as the cardiopulmonary contributions to the fMRI signal. Activation
corresponds to the presence of the protocol-dependent component B3,,, leading to a

binary hypothesis test:

Hy: f,=Ca,+e, (2.20)
H: f,=Co,+Bg,+e,

forn=1,..,N, and e, ~ N(0,02I). The matrix D = [C B] is referred to as the design
matrix. The least squares estimates of the activation response 3, and the protocol-

independent factor o,

a -
B” = (DTD) D, (2.21)
n

and the covariance of the estimates i]gn are used to form the corresponding F-statistic
~T N
for rejecting the null hypothesis, F, = Niﬁﬂn ZE: B, with (Ng, Tg —rank(C)) degrees of



Sec. 2.4. Hemodynamics 35

freedom, where Ng is the number of regression coefficients in 3,,. Instead of testing the
entire estimate Bn, it is common to apply a contrast matrix to construct the test statis-
tic based on the neuroscientific question of interest. A user-specified threshold is then
applied to the statistic at each location to create the activation map. A detailed discus-
sion on the GLM framework can be found in [Friston et al., 1995, Worsley et al., 2002].

® 2.4.2 DOI

The basic principle of DOI is to illuminate the tissue with an array of near-infrared
light sources and to measure the light leaving the tissue with an array of detectors. The
recorded signals at each sensor reflect the light reaching that detector from all sources. A
model of light propagation in tissue is parameterized in terms of the unknown scattering
and absorption as a function of position in the tissue. Then, using the model together
with the ensemble of signals over all the sources, one can estimate the scattering and
absorption parameters from the data. The estimation method shares similarities with
the EEG/MEG source estimation algorithms.

DOI at depths greater than a centimeter is made possible by the relationship of
the absorption spectra of three primary absorbers in tissue, namely water, HbO, and
HbR, at near-infrared wavelengths between 700 and 1000 nm. At frequencies higher
than this range, the absorption by water increases rapidly. Moreover, within this wave-
length range, the spectra of HbO and HbR are distinct enough to offer the possibility
of performing spectroscopy: illuminating with several wavelengths and recovering sep-
arate concentrations of both types of molecules. The physics of light transport in
tissue has been explained in a number of recent review articles [Arridge et al., 1999,
Boas et al., 2001, Dunsby & French, 2003].

In contrast to fMRI, DOI can separately measure concentrations of HbO and HbR,
as well as blood volume with good temporal resolution. However, due to the highly
scattered light propagation, we only detect a blurry image of the underlying structure.
Compared to fMRI, DOI provides higher temporal resolution and better SNR for weak
stimuli such as the median-nerve stimulus. Furthermore, it is inexpensive and portable.
Recent work in [Custo & Wells, 2006] proposed a joint DOI and fMRI analysis to exploit

the complementary strengths of these two modalities.
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B 2.5 Neurovascular Coupling

As mentioned earlier, neural activity triggers a hemodynamic response. A large amount
of fresh blood flows into active regions to supply oxygen and glucose. However, the exact
relationship between the neural activity and hemodynamics is still largely unknown, and
it is expected to be non-linear and to vary across brain regions.

To date, significant efforts have been devoted to study the relationship between the
neural and vascular evoked responses in animals, measuring the two types of signals
simultaneously with invasive techniques (see i.e., [Ngai et al., 1999, Jones et al., 2001,
Norup Nielsen & Lauritzen, 2001, Devor et al., 2003, Sheth et al., 2003, Logothetis & Wandell, 2004,
Ureshi et al., 2004, Martindale et al., 2005, Royl et al., 2006]). Non-invasive studies of
the neurovascular coupling are more challenging in humans because of the difficulty in
simultaneous acquisition of fMRI and EEG data. While progress in simultaneous EEG-
fMRI acquisition has been recently made [Negishi et al., 2004, Ritter & Villringer, 2006,
Schmid et al., 2006, Vasios et al., 2006, Mantini et al., 2007, Riera et al., 2007], the SNR
of the combined measurements is still not optimal. The use of near infrared spec-
troscopy (NIRS)/DOI, instead of fMRI to measure the vascular response, in combi-
nation with EEG/MEG achieves excellent SNR since there is no interference between
the optical and electrical measurements. NIRS/DOI has recently been introduced to
study neurovascular coupling in humans in combination with EEG [Obrig et al., 2002,
Butti et al., 2006, Rovati et al., 2007, Koch et al, 2008, Herrmann et al., 2008] and DC-
MEG [Mackert et al., 2008].

Despite the technical difficulties, neurovascular coupling studies by Logothetis and
Wandell have demonstrated similarity in spatial patterns of these two types of acti-
vations [Logothetis & Wandell, 2004]. However, the time courses of the neural and the
vascular activities differ substantially, and their exact relationship is yet to be fully
characterized.

To avoid the technical difficulties, some studies focus on either the relationship
between the stimulus train duration and the neural responses or on the relationship be-
tween the stimulus train duration and the hemodynamic responses [Gruber et al., 2002,
Grill-Spector et al., 2006]. Several fMRI studies have shown a strong non-linear depen-
dency of the vascular response on the variations in stimulus train duration [Vazquez & Noll, 1998,
Birn et al., 2001, Birn & Bandettini, 2005]. In particular, it has been shown that while

the hemodynamic responses to long stimulus trains behave in an approximately linear
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fashion, the responses to shorter stimulus trains (<2 s) are larger than those predicted
by a linear model. The non-linearity of the BOLD signal could arise from the habitu-
ation effect in the neuronal response, the habituation effect in the hemodynamics, or
both.

B 2.6 Combined EEG/MEG and fMRI Source Estimation

As discussed in Section 2.2, each EEG electrode and MEG sensor reflects activity from
all current sources in the brain. Furthermore, there is no unique estimate of the current
source from EEG/MEG measurements. In contrast, fMRI has spatial resolution on the
order of one millimeter. Leveraging on spatial models of neurovascular coupling, several
research groups proposed to incorporate the hemodynamic responses estimated from
fMRI data into EEG/MEG source estimation [Liu et al., 1998, Ahlfors & Simpson, 2004,
Sato et al., 2004b, Deneux & Faugeras, 2006, Daunizeau et al., 2007]. We categorize them

into two groups: point-wise estimation and spatio-temporal estimation.

Point-Wise Solvers The most straightforward way to incorporate fMRI information
into EEG/MEG source estimation is through fMRI-weighted minimum-norm estimate
(fMNE) [Liu et al., 1998, Ahlfors & Simpson, 2004]. This method uses a thresholded
statistical parametric map (SPM) from fMRI GLM analysis to construct weights for
the standard MNE, leading to significant improvements when the SPM is accurate. It

is formulated as

JMNE = arg rr}]in IRJ|3 (2.22)

where the M x M diagonal weight matrix R identifies locations with hemodynamic
activity. We can employ the approach used by the MNE estimator (Eq. (2.15)) to solve
for the fMNE estimate, obtaining

IMNE = RAT (ARA™ 4+ X20) ' y(#). (2.23)

Following [Liu et al., 1998], the fMNE weighting parameters are conventionally set to 1
and 0.1 for active and inactive fMRI locations, respectively. The weights depend on
arbitrary choices of the threshold and of the weighting parameters. Moreover, these
weights are assumed to be identical for all time points in the EEG/MEG source esti-

mation, causing excessive bias in the estimated source time courses.
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Sato et al. [Sato et al., 2004b] combined the automatic relevance determination (ARD)
framework [Tipping, 2001] and fMNE to achieve more focal estimates. In this method,
which we will subsequently refer to as fARD, the parameters of a hyper-prior are set
based on the thresholded SPM. Similar to fMNE, fARD computes the source estimates
for each time point separately and depends on the arbitrary choice of thresholds ap-
plied to the SPMs. fARD can be viewed as a “soft” variant of fMNE from the modeling
perspective, and its inference procedure often leads to spatially sparse solutions, as
shown in [Wipf & Rao, 2004]. The main limitation of fARD is that the estimates may

be temporally unstable, often reflected in “spiky” estimated time courses.

Spatio-Temporal Solvers Since the relationship between the dynamics of the evoked
neural and the evoked vascular signals is largely unknown, Daunizeau et al. only model
the similarity of spatial patterns in the two processes. They symmetrically infer brain
activities visible in either EEG or fMRI data [Daunizeau et al.,2007]. The confidence
of the estimated brain activation is reduced when there are discrepancies between the
EEG and the fMRI measurements. In [Deneux & Faugeras, 2006], the temporal re-
lationship between neural and vascular dynamics is approximated using the Balloon
model [Buxton et al., 1998, Friston et al., 2000] and the current sources are estimated
using the Kalman filter. Due to the complexity of this model, the estimation is limited
to a coarse source space, effectively underutilizing the high spatial resolution provided

by fMRI measurements.

B 2.7 Summary

The physics of EEG/MEG implies ill-posed nature of the corresponding source estima-
tion problem. In this chapter, we presented the limitations of several existing source
estimation methods, including the diffuse character of the #s-norm solution and the
noise sensitivity of the point-wise MCE (¢1-norm). In the next chapter, we discuss a
modified #1-norm method that incorporates temporal dynamics of the source signals
into the estimation procedure to help mitigate this instability.

Moreover, recent findings in neurovascular coupling provide promising directions for
leveraging good spatial resolution fMRI signals to improve EEG/MEG source estima-
tion. In Chapters4 and 5, we discuss our recent study of neurovascular coupling and
introduce a new method for joint EEG/MEG-fMRI analysis.



Chapter 3

The /1¢5>-norm Inverse Solver

As discussed in Chapter 2, the minimum current estimator (MCE) (minimum ¢;-norm)
is the most popular distributed method to model focal activation patterns. However, it
is sensitive to noise present in the data, leading to “spiky” estimates. In this work, we
aim to improve upon the robustness of MCE.

Similar to MCE, we employ the ¢;-norm regularizer to encourage spatial sparsity.
We reduce MCE’s sensitivity to noise by incorporating information about the tem-
poral characteristics of the source signals. Specifically, we assume that the source
signals are linear combinations of multiple temporal basis functions, and apply the
distributed inverse solver to the coefficients of all basis functions simultaneously. We
utilize the conventional definition of amplitude, the #3-norm, to summarize the activa-
tion strength at each location. Since the £3-norm does not encourage sparsity, many
coeflicients for an active location are usually non-zero in the inverse solution. This
integrated spatio-temporal regularizer is at the core of our #;¢s-norm inverse solver.
The ¢1fo-norm regularizer was also suggested in farfield narrowband sensor array ap-
plications [Malioutov et al., 2005] to model the diffuse temporal structure of the source
signals. .

In contrast to the vector-based spatio-temporal minimum ¢;-norm solver (VESTAL)
[Huang et al.. 2006], which uses the spatial and the temporal models separately in a two-
step estimation procedure, our solver unifies the two models into a single regularizer
in order to avoid error propagation from the first estimation step to the second one.
Performing source estimation in the signal subspace while jointly considering the coef-
ficients for all selected basis functions leads to stable estimates with a smaller number
of false positives as confirmed by our experiments using simulated and human MEG
data. The work presented in this chapter was published in [Ou et al., 2009a].

The remainder of this chapter is organized as follows. Section 3.1 describes the £1¢5-
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norm inverse solver. Section 3.2 briefly addresses implementation issues. Section 3.3
presents experimental results using simulated and human MEG data, followed by a

discussion and summary.

B 3.1 Method

The quasi-static assumption allows us to conduct inverse estimation for each time in-
stant independently. However, this often results in highly variable source time courses.
The large variability is particularly prominent in the focal solvers, such as the MCE,
due to their non-linear nature. To mitigate this problem, we utilize the knowledge of
the temporal properties of the source signals to further constrain the solution. To this

end, we express the data model
y(t) = AJ(t) + e(t) (3.1)
for all time instants as:
Y=AJ+X (3.2)

where Y = [y(1),y(2),--- ,y(Ty)] is an M x Ty matrix that contains EEG/MEG mea-
surements for all Ty temporal samples, and J is an N x Ty matrix that represents the
source signals. Here, we assume that noise ¥ is temporally white, i.e., E [ET2] =L
Time-dependent noise models as those suggested in [Huizenga et al., 2002, Bijma et al., 2005]
can be in principle incorporated into the estimation procedure as well.

The underlying sources of EEG/MEG measurements, closely related to the postsy-
naptic potentials [Hamaélédinen et al., 1993], are relatively smooth with occasional deflec-
tions. For example, a typical response from the contralateral primary somatosensory
area has relatively strong deflections immediately after the stimulus (20-40 msec) fol-
lowed by a smoother time course [Weerd & Kap, 1981]. Hence, the activation signals are
neither sparse nor diffuse in time. Direct temporal regularization using the ¢;-norm or
the £9-norm is therefore not appropriate. To model the time-varying frequency content
of the signals, we assume that the source signals are linear combinations of multiple
orthonormal temporal basis functions, ¥ = [1;1, JQ, cee 1/71(], that collectively capture
the temporal properties of the source signals. Jrk, Ty x 1, denotes the k' basis function.
In Section 3.1.2, we will discuss how to obtain the basis appropriate for the source es-
timation. We assume that the basis functions are orthonormal; if they are not, minor

modifications of the remaining derivations are needed, as addressed in Section 3.4.
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Projecting both the sensor recordings and the source signals onto the basis functions,
the new variables Y = YU and J = JU are the corresponding projection coefficients.
Y and J are of size M x K and N x K, respectively. The (n,k) element of j, ;nk,
indicates the k' coefficient for the source signal at location n. We can rewrite the

original data model in Eq. (3.2) in the transformed domain:

Y=AJ+% (3.3)

where £ = X0. We use & to denote the k™ column of 3. The temporal independence
assumption on ¥ and orthonormality of ¥ imply that €, and €, are independent for
k # k' and that €&, ~ N (0,I). Eq.(3.3) is still under-determined, containing MK
equations with N K variables.

To compute inverse solutions for all K basis functions simultaneously, we extend
the existing regularizers to use the signal magnitude in the subspace spanned by ¥,
m, as an indicator of the activation status at location n. In other words, we
apply £o-norm regularization to the K coefficients for each source location. Because we
choose to work with orthonormal basis functions, the £o-norm of the estimated source
signal in the temporal domain is equal to the #y-norm in the transformed domain.
However, we find it more intuitive to present the model in the transformed domain.

In addition, we assume that the source distribution is spatially sparse. This assump-
tion represents the relatively compact source regions typically activated in the sensory
areas. To obtain a focal inverse solution, we should ideally employ the ¢yp-norm as the
spatial regularizer. However, the £y-norm regularization leads to an NP-hard optimiza-
tion problem. In practice, under some regularity conditions [Donoho & Elad, 2003], the
¢1-norm regularizer leads to solutions identical to those produced by the fy-norm regu-
larizer. Even when the solution obtained through the ¢;-norm regularization is different
from the one produced by the £p-norm regularization, it is still more sparse than that
obtained with the ¢o-norm regularizer.

The ¢1-norm regularizer in the spatial domain and the #3-norm regularizer in the

temporal domain translate into an integrated spatio-temporal £1¢5-norm regularizer

_ N
e =

n=1

(3.4)

Combining Eq. (3.4) with the standard data fit term, the estimation problem thus be-
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comes:
~ ~ ~ 2 ~
J* = argmin [|Y — AJ || + AJJ[22 (3.5)
J
K o B
=argmin ) [[§x = Ajelly, + AVIE] (36)
k=1
where j; and ¥ are the k™ column vectors in J and Y. | - [r and || - |le, (i-e.,

Ix]le, = VxTx) denote the Frobenius norm of a matrix and the standard £,-norm of
a vector, respectively. A controls the regularization strength. We will discuss how to
select this parameter in Section 3.3.1. After we obtain the optimal coefficients J * the

estimated source signals are linear combinations of the temporal basis functions:
J*=Jul (3.7)

In this work, we formulate the inverse problem as a regularized optimization. It also has
an equivalent Bayesian interpretation. The first term in Eq.(3.5) can be considered as
the negative log likelihood under white Gaussian noise. The second term corresponds
to the negative log prior of the source signals, which in our case is Laplacian in space

and Gaussian in time.

M 3.1.1 From the /,/,-Norm Regularizer to Second-Order Cone Program-
ming (SOCP)

We cannot directly apply gradient based methods to the optimization problem specified
by Eq. (3.6) since the #1f3-norm penalty term is not differentiable at zero. However,
Eq. (3.6) can be reduced to the SOCP problem by converting the original unconstrained

optimization problem to a constrained one:

< J* ¢, ", whrt > = arg min_j oo (g+ As) (3.8)
s.t. Hyk - AIkH%Z Swp Vk=1,--- K (3'9)

(3.10)

N (3.11)

(3.12)
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New variables, g, s, {wg }H< ,, and {ry }N_,, are introduced in the conversion procedure.
wy, is an upper bound on the discrepancy between the measurements and the signals
predicted by the estimated sources in the projection onto . ¢ is an upper bound on
all wy’s. r,, is an upper bound on the activation strength for location n. s is an upper
bound on the f1-norm of the activation strength of all N locations. At the minimum,
the values of the constraints in Eq. (3.9)-(3.12) are satisfied with equality; otherwise,
the objective function can be further reduced.

Mathematically, a second-order cone of dimension D is defined as
Qp = {x = (z0, X) € R” : 29 > |IX]l¢, } (3.13)

where zg and X denote the first element and the remaining elements of vector x, re-
spectively. We can see that Eq. (3.11) matches with the second-order cone definition.
As shown in [Alizadeh & Goldfarb, 2001], a wide range of constrained formulations, in-
cluding the quadratic constraint in Eq. (3.9), can be reduced to the canonical form of
a second-order cone. For completeness, we provide the corresponding derivations in
Appendix A.

An SOCP problem can be expressed in the canonical form that contains a linear
objective function and the feasible set specified as an intersection of an affine linear
manifold and the Cartesian product of second-order cones. Since the second-order
cone defines a convex set, the feasible set of SOCP is convex. Therefore, SOCP is a
convex optimization problem and its local minimum is the global minimum. In fact,
for one-dimensional and two-dimensional cones, the second-order cone constraint in
Eq. (3.13) can be reduced to linear constraints. As a result, the corresponding SOCP
problem is reduced to a linear programming problem. It is also straightforward to
show that the quadratically constrained quadratic programs are a subset of the SOCP
problems. Furthermore, the SOCP problem is a special case of a semi-definite pro-
gram. Therefore, SOCP can be solved efficiently using the primal-dual interior-point
method [Alizadeh & Goldfarb, 2001], where Newton’s method is employed to reduce the
duality gap. Appendix B reviews the primal-dual interior-point method in application
to SOCP. Recent work in [Gramfort, 2009] proposed an alternative optimalization pro-

cedure, proximal iterations, to solve for SOCP problems.
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B 3.1.2 Temporal Basis Selection

The formulation of our inverse solver is independent of the selected basis ¥, but a
compact representation of the signals can significantly reduce computation. We estimate
the basis using the singular-value decomposition (SVD) of the measurements, which is
often able to capture the time-varying frequency content and significant differences
in source signals between different regions with a small number of basis functions.
Another advantage of using data-adaptive temporal basis functions is that it avoids the
difficulty of setting a set of basis functions to accommodate highly variable source signals
in different experimental tasks and subject-to-subject variations. Since according to
Eq. (3.2) the sensor signals are linear combinations of the source signals, the temporal
patterns of the source signals are present in the sensor signals as well. In fact, the
standard dipole fitting procedure [Mosher et al., 1992] also performs fitting of the K
largest SVD components of the measurements that “adequately” describe the data.

The singular-value decomposition of data Y is expressed as

Y = dyAy UYL (3.14)
where each column in ®y = [¢1, @2, -- -, da] denotes the electromagnetic field pattern;
each column in Uy = [1,;1, 7,[72, e JM] denotes the temporal pattern. Ay is a diagonal

matrix of the singular values in descending order. We assume more temporal samples
than EEG/MEG sensors, which is usually true in practice due to fast sampling rates.
As mentioned before, we further assume that activation signals only lie in the
subspace spanned by ¥ = [1171, 7,52, R 1171(], but not in the subspace spanned by
vl = [1/_;K+17 JK+27 cee JM]. Performing source estimation in the signal subspace
helps to stabilize the estimated source signals since they are constructed as linear com-
binations of relatively smooth temporal basis functions. In our experiments, the number
of basis functions K is fixed. We examine the performance of the proposed solver with
varying K in Section 3.3.1 and discuss alternative approaches to basis function selection

in Section 3.4.

W 3.1.3 /,/5-norm Estimator for the Free-Orientation Source Model

The free-orientation source model has been used both with volumetric source spaces cov-
ering the entire brain and with source locations restricted to the cortex only [Dale & Sereno, 1993,
Pascual-Marqui et al., 1994]. The results of the direct application of the #;-norm regu-

larizer to the three dipole moment coordinates depend on the parameterization of the
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local coordinates.

To extend our solver to free-orientation sources, we model the current dipole mo-
ment magnitude as the f>-norm of the current dipole moments along the three coordi-
nates. This model agrees with the conventional definition of magnitude. The resulting
inverse problem is independent of the local coordinate system since the f¢y-norm is
invariant to rotations of orthogonal coordinates. In other words, our method mod-
els the spatially sparse activation pattern, but does not enforce sparsity on individual
components of the dipole moments. This idea is analogous to the sensor array appli-
cation [Malioutov et al., 2005] where signals are complex numbers; it was also indepen-
dently developed and thoroughly evaluated by Ding and He for EEG source localiza-
tion [Ding & He, 2007].

Extending our formulation in Eq. (3.4), an is replaced by a three-dimensional vector,
denoting the current dipole moments in the three coordinates ;znk, Eynk7 and ;anc The
optimization problem in Eq.(3.8)-(3.12) remains the same except that Eq.(3.11) is

replaced by a constraint on the three coordinates:

K

S (Bt ) S VYn=1:N (3.15)

k=1
In the original problem, each cone specified in Eq.(3.11) lies in a K + 1-dimensional
subspace; in the free-orientation case, the corresponding cone is extended to a 3K + 1-
dimensional subspace. Since the feasible region is an intersection of hyper-cones and

hyper-planes, the new formulation is still consistent with the SOCP structure.

B 3.1.4 Statistical Significance Testing

The non-linear nature of the #1-norm related inverse operators, including the ¢;fs-norm
inverse solver, presents a challenge in obtaining a sufficient statistic for hypothesis
testing. Since there is no closed-form solution for the ¢;fs-norm solver, we employ a
permutation test. We construct the null distribution by permuting equal-length pre-
stimulus and post-stimulus single-trial recordings. Under the null hypothesis defined
as the absence of activation, the pre-stimulus and the post-stimulus recordings are
equivalent. As described in [Pantazis et al.,2005], in each permutation, we randomly
select trials; for each selected trial, we swap its pre-stimulus and post-stimulus labels.
Then we apply the inverse solver to the average data. This procedure preserves the

noise covariance structure.
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All the results presented in this chapter are based on 5000 permutations. In this
work, we control the false discovery rate (FDR) [Genovese et al., 2002, Efron & Tibshirani, 2002,
over an amplitude-normalized source space. We first convert the source estimates into
p-values, the ratio of permutations whose corresponding amplitude exceeds the original
estimate, for each vertex and for each time instant separately. We then compute the
FDR threshold [Genovese et al., 2002]. We choose to use the p-values instead of the esti-
mated amplitudes since source strength varies among activation regions and varies over
time. For instance, the contralateral primary somatosensory (cSI) response is usually
substantially larger than that in the ipsilateral secondary somatosensory (iSII) region.
In addition, the N20 deflection is often weaker than the later deflections from the ¢SI
area.

We cannot directly compare the activation maps created based on the permutation
method with the corresponding statistics for MNE, the dynamic statistical parametric
map (dSPM) [Dale & Sereno, 1993], because dSPM typically exhibits higher statistical
power due to the quite restrictive Gaussian distribution assumption. On the other hand,
the permutation method can capture activations for which the Gaussian assumption is
not valid. Since dSPM is one of the most popular estimates in the EEG/MEG inverse
community, we visually compare our results with dSPM side-by-side in the experimental

section.

B 3.2 Implementations

B 3.2.1 Source Space and Lead-Field Matrix

For the computation of the lead-field matrix, we need a specification of the con-
ductivity structure of the head, i.e., the forward model and the source space. In
the forward computations for MEG, we employ the single-compartment boundary-
element model [Hamaldinen & Sarvas, 1989, Oostendorp & Van Oosterom, 1989]. For
the source space, we restrict the locations of the sources to the cortical surface, which,
in this work, is extracted using Freesurfer [Dale et al.. 1999b, Fischl et al., 1999]. Due
to the organization of the cortex, we can further constrain the source orientation to be
perpendicular to the cortical surface. Independent of the choice of source space res-
olution, the orientation at each vertex is computed from the original triangulation of
the cortical surface with a 0.65-mm grid spacing. Similar to other inverse solvers with

orientation constraint, the sparse spacing of the source space may result in localiza-
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tion errors [Lin et al., 2006] which could be avoided by denser sampling. Moreover, it
is straightforward to allivate this effect in our method by applying the free-orientation
model presented in Section 3.1.3.

In practise, the lead-field matrix A is often ill-conditioned. That means some of its
M singular values are close to zero. It is common to improve the conditional number
of A by employing the truncated SVD regularization. We use A a rank-m ap-
proximation of A [Kaipio & Somersalo, 2004]. In our experience, the inverse solutions
obtained using A and A(™ are almost identical, which reflects the robustness of our
solver. Working with A™ further reduces the number of variables in the optimization
problem by reducing M to m and significantly accelerates computations. Therefore, all
the results reported in this thesis are based on A(™) with m = 100. On the other hand,
to obtain realistic simulated data, the forward calculations of the simulated signals are

based on the full matrix A.

W 3.2.2 Pre-processing for Temporal Basis Function Construction

Due to different types of sensors, gradiometers and magnetometers in MEG and elec-
trodes in EEG, the measurements have different units and different ranges of recordings.
To construct a set of temporal basis functions, we must first whiten the measurements
in the sensor space according to the estimated noise covariance matrix. Without this
whitening procedure, some subsets of the sensor recordings, such as the magnetometers,
would have been ignored in the construction of basis functions. In addition, we need
to exclude eventual stimulus artifacts when computing the SVD of Y; otherwise, most
of the basis functions in Vy would mainly explain the artifacts. For example, in our
analysis of median-nerve experiments, measurements from the first 5 msec after the

stimulus onset are excluded in the basis function construction.

B 3.2.3 Multi-Resolution Approach

In this work, the estimates of the source locations are confined to a mesh. In order
to reduce computational complexity, we employ a multi-resolution scheme. We first
perform source estimation on a coarse mesh, then we adaptively refine the mesh around
the activation regions. In other words, the forward model at a high resolution level
includes all the vertices at one level below and the newly introduced vertices around
the detected regions.

The ¢1-norm regularization often produces focal estimates, which is more appropri-
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ate to model activations in the sensory regions. However, for a spatially extended source,
the corresponding source estimates may appear as several activated vertices in the ex-
tended patch if the estimation is conducted on a much finer mesh [Uutela et al., 1999].
In most of our experiments, we used a double resolution scheme, 20- and 10-mm spacing
between vertices. Our source estimation results for the median-nerve experiments show
that the activations in the primary sensory cortex can be accurately represented using
this multi-resolution scheme. For auditory experiments, where the sources are slightly

more diffuse, our solver detects several adjacent vertices in the auditory areas.

W 3.2.4 Computation Requirements

Compared with the MCE, which solves Ty linear programming problems with N vari-
ables each, our solver performs a single SOCP optimization over NK variables. As
described in Eq.(3.8) and Appendix A, we increase the number of variables to ap-
proximately (N + M)K in order to convert the ¢;fs-norm solver into the SOCP for-
mulation. In this work, we use the Self-Dual-Minimization software package (Se-
DuMi) [Sturm et al., 2001] that implements the primal-dual interior-point method with
logarithm barrier functions, to solve for the SOCP problem. The primal-dual interior-
point method, employed in SeDuMi, has run time O(((N + M)K)3) per iteration. It
converges within thirty iterations in most of our experiments. For Al = 100 (with
the truncated SVD-regularized lead-field matrix), K = 3, and N ~ 500, our current
implementation takes about 10 seconds with a standard PC (2.8 GHz CPU and 8 GB
RAM) to compute the inverse solution. When N ~ 2000, it takes about 100 seconds.
Combining with a two-level multi-resolution scheme, with N = 500 for the first level
and N = 700 for the second level, it takes 25 seconds. When K increases to 6, the

multi-resolution scheme takes about 100 seconds.

H 3.3 Results

Due to a lack of ground truth in human EEG/MEG experiments, we first study the
behavior of the method and its sensitivity to parameter settings and to noise using
simulated data. We then compare the method to standard inverse solvers using human

MEG data from somatosensory and auditory studies.
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M 3.3.1 Simulation Studies

To simulate MEG measurements, we chose active vertices A, B, and C (Fig. 3.1, top)
on the cortical sheet at source spacing of 20 mm, with current source orientation along
the normal to the cortical surface. In all experiments in this thesis, we scaled the re-
constructed surfaces to 10°>-mm? surface area per hemisphere. Vertex A is located in
the lateral frontal region, Vertex B is located at the pre-central gyrus, and Vertex C
is located at the Sylvian fissure. The time courses of these three vertices are shown in
Fig. 3.2a-c (black solid curves). We chose the signals to have similar temporal charac-
teristics to those of the auditory evoked responses, but with temporal translation and
scaling. The source signals of vertices B and C show activation during overlapping time
intervals, which makes the inverse problem difficult.

For the forward calculations, we employed the sensor configuration of the 306-
channel Neuromag VectorView MEG system (204 gradiometers and 102 magnetometers)
used in our experimental studies. The location of the array with respect to the head and
the noise covariance matrix were obtained from human MEG experiments. A single-
compartment homogeneous forward model was employed. With Gaussian noise added,
the resulting signals have an SNR = 3 dB, where the SNR is defined as 10log;, ”FAT’-]JJ;%,
where ¢ is the noise variance. The resolution of the source space is relatively coarse;
nevertheless, this example serves as a good illustration for the method.

In the inverse estimation, we fixed the orientation of the estimated currents to be
perpendicular to the cortical mesh. Fig. 3.1b depicts the inverse solutions at three time
frames obtained from the ¢1fs-norm solver using three basis functions and A = 107.
The parameter values were selected based on our validation experiments presented in
Section 3.3.1 and 3.3.1. Curves marked with ‘0’ in Fig. 3.2a-c correspond to the source
signals estimated by the method. The resulting spatial maps and source time courses

match well with the ground truth.

£145-norm vs. {1-per-coefficient

To further explore the behavior of the £1¢3-norm regularizer, we compared its estimates
with those obtained by applying the #;-norm regularizer to the coefficients of each basis
function separately. We will refer to this solver as ¢;-per-coefficient. This comparison re-
veals the effect of the £5-norm regularization for all coefficients. For each basis function,

¢1-per-coeflicient computes the least ¢;-norm solution for the coefficients independent
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(a) Ground Truth

(b) £1€2-norm

30 msec 65 msec 72 msec

Figure 3.1. Activation maps at different time frames. (a) Ground truth activation maps at peak
response time for three sources. (b) The spatial maps estimated using the £1£>-norm solver. (c) The
spatial maps estimated using the ¢,-per-coefficient solver. The color codes in (a) do not indicate current
directions. Hot/cold colors in (b,c) correspond to outward/inward current flow. The most active areas

in the solutions are highlighted, and their estimated time courses are shown in Fig. 3.2a-c.

of other basis functions. It also achieves stable estimates due to the use of temporal
basis functions. We applied £;-per-coefficient, also employing the interior-point method
implemented in [Sturm et al.,2001], to the data described above. Fig.3.1c depicts the
estimation results, and the corresponding time courses of the three active vertices are
presented in Fig. 3.2a-c (marked with ‘+’). Both £;¢3-norm and ¢;-per-coefficient detect
activations in the three vertices (Fig. 3.1), but the £;#3-norm solution contains fewer false
positive activations than that obtained through the ¢;-per-coefficient method. More-
over, the estimated time courses of the £;£5-norm solution match the ground truth time

courses slightly better than those of the ¢1-per-coefficient solution.
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Figure 3.2. Estimated source signals, the three basis functions, and the estimated coefficients i B
The top row illustrates the simulated (black solid curves) and the estimated source time courses (¢142-
norm marked as ‘0" and {;-per-coeflicient marked as ‘+') for the three active vertices; the middle row
presents the selected basis functions (d) and the projection coefficients of the simulated source time
courses onto the top ten basis functions (e). () Projection coefficients of the simulated data onto the
three basis functions, corresponding to the top three singular components. (g) Estimated coefficients

from #1£2-norm. (h) Estimated coefficients from ¢;-per-coefficient.

The three selected basis functions are illustrated in Fig. 3.2d, and the estimated coef-
ficients from these two algorithms are shown in Fig. 3.2(g,h). The projection coeflicients
of the simulated signals are also presented for comparison purpose (Fig. 3.2f). Although
the spatial pattern of the projection coefficients are similar for the two methods, the spa-

tial pattern for all three coefficients is more sparse in the ¢1¢2-norm solution (Fig. 3.2g)
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Figure 3.3. Estimated source signals from MNE, MCE, and VESTAL. Each panel illustrates the
simulated (black solid curves, same as Fig. 3.2a-c) and the estimated source time courses: MNE (solid),
MCE (dashed), and VESTAL (marked as ‘A’).

than in the ¢;-per-coefficient solution (Fig.3.2h). Since #;-per-coefficient models the
coefficients of each basis function separately, vertex with large coefficient for one ba-
sis function may have zero coefficient for another basis function. On the other hand,
£1£9-norm considers all coefficients jointly in sparsity determination. This method is
particularly helpful for basis functions which have a smaller SNR, such as 1,52 and Jg.
That is illustrated by a more sparse distribution of the coefficients in Fig. 3.2g than that
in Fig. 3.2h, a missing 'QEQ component for Vertex A (Fig.3.2h), and a false detection for
a vertex close to Vertex B (Fig. 3.2h). The f3-norm regularizer essentially helps bundle
basis functions v and 13 with those that are aligned well with the signal subspace,
such as Jl, to jointly determine an activation map. Therefore, we can see that sparsity
defined by all coefficients is more suitable for the current basis construction method in
conjunction with complex neural signals.

Fig. 3.2e presents the projection coefficients of the simulated source signals onto the
temporal basis functions. The coefficients that correspond to basis functions {JA k>
4} are close to zero. We only displayed the coefficients corresponding to the first ten
basis functions. For this simple example, Fig. 3.2e verifies that the selected basis well

approximates the signal subspace of the simulated signals.

Comparison with MNE, MCE, and VESTAL

We also compared the proposed method with the standard MNE, MCE, and VESTAL
(Fig. 3.6). The estimates from the standard MNE are smaller than the simulated sig-
nals, and it is caused by the diffuse property of the Zo-norm regularization. The es-

timated time courses from MCE exhibit substantially “spiky” discontinuities due to
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30 msec 65 msec 72 msec

Figure 3.4. Activation maps for MCE and VESTAL at different time frames. (a) The spatial maps
estimated using MCE. (b) The spatial maps estimated using VESTAL. Hot/cold colors correspond to

outward/inward current flow. The ground truth activation maps are shown in Fig. 3.1(a).

the solver’s sensitivity to noise. Projecting MCE results to a set of basis functions,
VESTAL removes the discontinuities; however, the amplitude of the estimated time
courses is smaller than the true activation signals since the two-step procedure cannot
fully compensate for the errors in the original MCE solutions. Therefore, in the rest
of the stimulated experiments, we focus on the performance of ¢1/5-norm and ¢;-per-
coefficient.

We also compare the estimated source maps from MCE and VESTAL (Fig.3.4)
with those from the ¢;¢y-norm estimator (Fig. 3.4(b)). Due to the unstable estimates
in MCE and the error propagation in the two-step procedure of VESTAL, MCE’s and
VESTAL’s estimated activation maps have more false positves around the simulated

sources compared to £1fs-norm results.

Sensitivity to Noise and Basis Selection

To examine the sensitivity of the methods to noise and basis selection, we computed in-
verse solutions for 100 independently generated data sets for each noise setting (varying
from SNR 1 dB to 8 dB) and basis selection cutoff (K varying from 1 to 6). The relative

mean squares error (MSE) for the three active vertices and for all vertices of the ¢;-per-
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Figure 3.5. Relative MSE for different number of selected basis functions. (a,b) present the percent-
age relative MSE of the estimation results using the £1€2-norm (solid curves) and the £;-per-coefficient
(dashed curves) for all vertices and the three active vertices under three different SNR settings, respec-
tively. Note that the error bars close to the bottom of the figures appear large due to the logarithmic

scale.

coefficient and the £;fs-norm inverse solutions are shown in Fig.3.5. We define the rel-

ative MSE as ||estimated signals — ground truth signals ?ﬂ / ||ground truth signalsH%.

The £1£s-norm outperforms £;-per-coefficient under all SNR settings and basis selec-
tion cutoffs we examined. The improvement of the relative MSE varies from 4% to 10%,
with larger improvement for noisier data. The large improvement in the low SNR. cases
again demonstrates the importance of the f>-norm regularization on the coefficients of
the representation. The standard deviation of the estimates over the 100 simulated
data sets is similar for the two solvers. It varies between 0.3% and 2.5% for K > 2 and
all three selected SNR settings. For K = 1, the standard deviation is between 5% and
10% due to more variability in representing the signals using a single temporal basis
function.

In general, both solvers achieve the best performance for K = 3 basis functions. If
the chosen number of basis functions is too high, some basis functions represent noise,
resulting in slight degradation of the £1¢s-norm result quality as reflected by the gentle
slope on the logarithmic scale. On the other hand, the #;-per-coefficient’s performance
is not affected by including too many basis functions, because its estimated sources
from the noisy basis functions are usually small. Including too few basis functions leads

to a significant loss of signals; both solvers fail to recover the missing signals.



Sec. 3.3. Results 55

70 : : A 70t
SOF- |\ fe i 50t
20} - s it g -o 201
10t
519 : 18
& sk - ) : - ; g 5 [
ES 7 = H 2 i
2 - . J
2 4 Slog,uﬂ-) 8 10 2 4 alngmm 8 10 _8 dB
(a) All Vertices (b) Active Vertices

% Emor

10 8 10

8

9 9
l0g, () 10g5(A)

(c) All Vertices (Zoomed-in) (d) Active Vertices (Zoomed-in)
Figure 3.6. Relative MSE for varying A. (a,b) present the relative MSE of the estimation results from
£165-norm for all vertices and for the three active vertices under three SNR settings as the regularization
strength, A, varies between 10? and 10'2. (c,d) are the corresponding zoomed-in versions. Note that

the error bars close to the bottom of the figures appear large due to the logarithmic scale.

Sensitivity to Regularization Strength

We also investigated the methods’ sensitivity to the value of the regularization param-
eter A. Large A corresponds to a high penalty on the strength of the current sources, in
terms of the £1fs-norm; small X\ emphasizes the data fidelity term. Due to whitening,
the first term in Eq. (3.5) is on the order of MK, where M is on the order of 10?. For an
activated vertex in our experiments, jnt is on the order of 10~%. Hence, |j]§f is approx-
imately 10~7K. Therefore, A = 10 roughly balances between the data fidelity and the
regularization terms in Eq.(3.5). In the experiments using human MEG data, we set
A = 10°. Since the values in the data fidelity and regularization terms are both linearly
proportional to K, the regularization strength should be independent of the number of
basis functions participating in the inverse calculation. That means the sensitivity of
¢1-per-coefficient and #1/5-norm to A should be the same. Hence, we only present the
relative MSE obtained using ¢1£s-norm for all vertices and for the three active vertices

for various values of A (Fig.3.6). As we can see, A around 10° provides accurate es-
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timation results. The regularization shows no effect for A < 10%; when A > 1010, the
data fidelity term is effectively ignored in the optimization process. For A = 10° the
standard deviation of the MSE estimated from the 100 data sets is less than 1%.

Different Spatial Resolutions

To further examine the £1f5-norm inverse solutions at different spatial resolutions, we
extended the simulated sources at vertices A, B, and C, described in Section 3.3.1, to
three patches at 0.65 mm tessellation resolution. The patches have spatial extent of ap-
proximately 15-mm in diameter (200 to 500 vertices at a 0.65 mm resolution), indicated
by the colored patches in the first row of Fig.3.7. The ground truth source signals are
identical to those employed in Section 3.3.1, shown as solid curves in Fig. 3.7a. To gener-
ate the sensor signals, we added Gaussian noise with covariance matrix estimated from
the pre-stimulus recordings of a human MEG data set, with a resulting SNR = 3 dB.
The inverse solutions were calculated at the resolution lower than the resolution used
in the simulations, including a single-level mesh at 20 mm, a two-level multi-resolution
scheme at 20 and 10 mm, and a three-level multi-resolution scheme at 20, 10, and 5
mm. This experimental setting avoids the “inverse crime,” which is defined as that the
same forward model are employed to synthesize as well as to invert data in an inverse
problem. Furthermore, we set A = 10° and K = 3 in this experiment.

Fig. 3.7 shows the inverse solution from each of the three multi-resolution schemes
at 30, 65, and 72 msec, corresponding to the peaks of the three simulated source signals.
The detected areas are either in blue-cyan or red-yellow corresponding to current flowing
inward or outward with respect to the cortex. Each source estimate was thresholded
such that all three areas were detected at their peak times. Good performance is
indicated by fewer false positives. A smaller amplitude in the dipole fitted time course
for patch C (Fig. 3.7a row one) indicates that some of the vertices in this patch have
current orientations silent with respect to the MEG sensors. Smaller amplitudes in
the estimated time courses from our solver are expected due to the magnetically silent
sources, as well as the distributed nature of the model where some nearby vertices
are detected despite the regularization promoting spatial sparsity. We scaled all the
estimated time courses by a factor of four for illustration purposes.

We observe that 20 mm resolution is too coarse for estimation, as reflected by more
ambiguity in the source locations. The estimates results at the 5 mm resolution are

too focal. At this resolution, the vertices in a simulated patch are close, and some
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Figure 3.7. Source estimates obtained using the {1f2-norm solver with different multi-resolution
schemes. The top row presents the three simulated activation patches (color is used to label patches
and does not indicate current directions). The detected results (row two to four) are shown in hot or
cold colors corresponding to current flowing outward and inward, respectively. The time courses of the
highlighted areas are shown in column (a). Solid curves in (a) are the simulated time courses. The
dashed curves in row one are the dipole fitting results. The dashed curves in row two to four are the

estimated time courses from ¢;£2-norm, which are scaled by a factor of four for illustration purposes.

of them have similar orientation. Mathematically speaking, the signal distribution
corresponding to those vertices, indicated by the column vectors in the lead-field matrix,

are almost linearly dependent. The #;-norm encourages spatial sparsity, and it usually
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Figure 3.8. Six selected basis functions. The basis functions were obtained from SVD of the MEG

measurements between 6 msec and 200 msec after stimulus onset.

allocates all source current to one of those vertices. Estimation at the 10 mm resolution
achieves the most accurate results: fewer false positives and a better representation
of the spatial extent of the simulated patches. Therefore, we employed the two-level

multi-resolution scheme in the experiments using human MEG data.

W 3.3.2 Human MEG Data

Experiments with synthetic data reveal the potential of the ¢;fs-norm solver to provide
accurate and stable solutions when handling focal and correlated sources, even in a
noisy environment. Next, we compare the performance of the solver to the MNE and
dipole fitting using two human MEG data sets from median-nerve and auditory exper-
iments. Both experiments were acquired using a 306-channel Neuromag VectorView
system. The anatomical images were collected with a Siemens Avanto 1.5 T scan-
ner with a T1-weighted sagittal MPRAGE protocol, which were employed for cortical
surface reconstruction [Dale et al,1999b, Fischl et al.,1999]. A multi-echo 3D Flash
acquisition was performed to extract the inner skull surface for the boundary-element
model [Haméldinen & Sarvas, 1989, Oostendorp & Van Oosterom, 1989, Himaldinen, 2005].
Informed consent in accordance with the Massachusetts General Hospital ethical com-

mittee was obtained from subjects prior to participation.

Median-Nerve Experiments

We present results for one subject, a 40-years old male, in the study. The median nerve

was stimulated at the left wrist according to an event-related protocol, with a random
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inter-stimulus-interval ranging from 1.5 to 2 seconds. Data were acquired at sampling
rate of 2 KHz; a 200-msec baseline before the stimulus was used to estimate the noise
covariance matrix. Approximately 300 trials remained after rejecting trials with eye-
movements and other artifacts', from which we computed the average signal used as
the input to the inverse solvers. We first applied baseline correction and whitened the
data spatially based on the pre-stimulus measurements. For the ¢1¢s-norm solver, we
used six basis functions shown in Fig. 3.8, and they explain 80% variance of the data.
SVD was performed on signals between 6 msec and 200 msec after stimulus onset to
avoid post-stimulus artifacts.

It has been shown that the median nerve stimulus activates a complex cortical net-
work [Hari & Forss, 1999]. The first activation of the contralateral primary somatosen-
sory cortex (cSI) peaks around 20 msec and continues over 100 msec; then the sec-
ondary somatosensory cortex (SII) activates bilaterally around 70 msec and lasts up
to 200 msec. Whether SI and SII form a sequential or parallel architecture is still a
topic of active debate [Kass et al., 1979, Rowe et al., 1996]. The posterior parietal cor-
tex (PPC), medial and posterior to the SI cortex hand area, activates around 70-110
msec. This area, also known as the parietal association area, most probably functions as
an integrator between sensory and motor processing. Although the SI-SIT network ex-
hibits robust activation, there is significant variation from subject to subject especially
in the time courses of SII activations.

In this experiment, we controlled FDR at 0.05, computed from 5000 permutations as
described in Section 3.1.4. We also compared our results with the MNE computed using
a standard software package [Hamaéldinen, 2005]. In practice, experts often interpret
MNE through its statistics, dSPM, with manually adjusted thresholds. For the purpose
of comparison, we selected the threshold for dSPM so that all four regions of interest,
¢SI, ¢SII, iSII, and PPC, were included.

Fig. 3.9 presents the activation maps obtained using #¢;£o-norm and MNE. At 20
msec, £1£s-norm pinpoints ¢SI on the postal wall of the central sulcus. MNE produces
a more diffuse solution leading to false positives in the post-central sulcus. The £;¢5-
norm clearly demonstrates change of polarity in ¢SI, reflected by the change of current

direction between 20 and 35 msec. The polarities estimated using the ¢;£3-norm solver

'Trials with peak-to-peak amplitude of the EOG signals exceeding 150 uV, gradiometer signals
exceeding 3000 T /cm, or magnetometer signals exceeding 3.5 pT were rejected. These rejection criteria

are the same for the auditory experiment.
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Figure 3.9. Source estimates. Top panel: significance statistics of the ¢;£2-norm solver and MNE for
the median-nerve experiment. Hot/cold color corresponds to outward/inward current flow. The most
active areas in the ¢1f2-norm solutions are highlighted, and their estimated time courses are shown
in Fig.3.11. Bottom panel: dipole fitting results with three sources. Compared to MNE, £;£2-norm
pinponts the four regions of interest. Dipole fitting fails to correctly localize PPC since PPC is very

close to cSI.

agree with the literature [Wikstrom et al., 1996]: outwards intra-cellular current at 20
msec associated with N20 and inwards intra-cellular current at 35 msec associated
with P35. At 75 msec, both MNE and ¢1f5-norm capture signals from cSII. ¢;¢5-
norm successfully localizes PPC at the post-central sulcus, but the location of PPC is

ambiguous in the MNE results. According to the findings reported in [Forss et al., 1994,



Sec. 3.3. Results 61

B e . R L
(a) ¢1€2-norm (b) dipole fitting (¢) £1€z-norm (zoomed-in)  (d) dipole fitting (zoomed-in)

Figure 3.10. Coronal slices for the detected iSII activations from £1f{2-norm and from dipole fitting.

Subfigures (c,d) are the corresponding zoomed-in versions.

Hari & Forss, 1999)], the signals from iSII is weaker than those from cSII. By controlling
FDR at 0.05, the £;/>-norm solver detects iSII activation at 85 msec, but places it
at the superior temporal lobe instead of the inferior parietal lobe. As shown in the
volumetric display (Fig.3.10), these two regions are very close, making the inverse
problem challenging. MNE also presents weak iSII signals; the location is ambiguously
spread between the iSII region and the superior temporal lobe.

We estimated the current source dipoles and their corresponding time courses through
the standard dipole fitting procedure [Nelder & Mead, 1965, xfit software]. Dipole fit-
ting was performed using the corresponding channels at 20-38 msec, 75 msec, and 85
msec after the stimulus onset. The source estimates are summarized in one map as
illustrated in Fig.3.9(bottom), and the corresponding time courses are presented in
Fig.3.11(b). Dipole fitting does not correctly localize PPC from these data because
PPC is very close to ¢SI. The locations for ¢SI and cSII identified by our solver match
with the dipole fitting results. The correct localization of iSII using dipole fitting
required manual intervention in selecting appropriate channels in contrast to the au-
tomatic £1/y-norm solver. The highly folded cortical pattern along the Sylvian fissure
presents a significant challenge for most inverse solvers, including both distributed and
discrete parametrization approaches (Fig.3.10). One way to resolve this problem is
to utilize measurements from other modalities, such as fMRI, to further constrain the
solution [Liu et al., 1998]. We defer such extensions to a future study.

Fig. 3.11 shows the time courses of the activated regions detected by our solver. The
general shape of these time courses agrees with the neuroscience literature [Forss et al., 1994,
Hari & Forss, 1999]. Our method yields stable time courses that capture the main de-

flections precisely. The first deflection in ¢SI occurs at 20 msec. ¢SI soon changes its
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Figure 3.11. Estimated time courses obtained from the £;f>-norm solver and dipole fitting. The

corresponding activation maps are reported in Fig. 3.9.

polarity and reaches its maximum at 35 msec. Although c¢SII has stronger signal than
iSII, they have similar temporal signature: onset at 60 msec and peak at 82-85 msec.
The time courses are quite similar to those estimated through dipole fitting (Fig. 3.11
(b)), except for the cSI activation between 70 and 150 msec. This is most likely because
the PPC activation was missed by the dipole fitting and its time course incorporated
into the estimate of ¢SI. Even though the magnitude of the time courses obtained from
the two solvers are not directly comparable, this comparison demonstrates the ability
of the ¢1fy-norm regularization to achieve high-quality estimations of source signals.

Furthermore, £1£2-norm does not restrict itself to a fixed number of dipole sources.

Auditory Experiments

In the auditory experiments, 500 Hz tone bursts were presented to either the right ear
or the left ear of the subject according to an event-related paradigm, with a random
inter-stimulus-interval between 1.2 and 1.5 seconds. Temporal sampling rate of these
MEG data was 1.25 KHz. As before, a 200 msec baseline period was used for noise
estimation.

After standard pre-processing, described in the last section, we applied #1¢3-norm,
MNE, and dipole fitting to the average data. Fig.3.12 illustrates one frame of the
estimated signals, at 110 msec after the stimulus onset. The statistics and the thresholds
for ¢1£5-norm were computed using the same permutation method as before. Both the

£143-norm and the dSPM detected auditory activations in both hemispheres. Due to
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Figure 3.12. Significance statistics of the £;{z-norm solver and MNE, and dipole fitting at 110 msec
after left and right auditory stimulus onset. Hot/cold color corresponds to outward/inward current

flow. The most active areas are highlighted, and their estimated time courses are shown in Fig. 3.13.

close distance between the inferior parietal and the superior temporal regions, all three
solvers have false positives in the parietal lobe. The false positives are weaker in the
{1f5-norm solutions than in the MNE solutions. Given the MNE results, it is more
ambiguous whether the sources originate from the auditory region or from the SII
region. We also examined the polarities of the estimated sources (results not shown),
and they all agree with the findings reported in the literature [Tuomisto et al., 1983].
The corresponding estimated source signals from the ¢ £5-norm solver and dipole fit-
ting are depicted in Fig. 3.13. Both methods detected that the early auditory response
occurs around 60 msec and that the contralateral auditory region activates slightly
stronger than the ipsilateral region. Compared with the £;f3-norm solution, the dipole
fitting solution captures the temporal details slightly more accurately, as reflected by
the 6-8 msec difference between the contralateral and the ipsilateral activations. Never-
theless, the ¢1/3-norm solver is more flexible than dipole fitting in capturing the spatial

extent of the activation regions.
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Figure 3.13. Estimated time courses from #£;£2-norm and dipole fitting.

H 3.4 Discussion

The proposed inverse solver utilizes an £1-norm regularizer to encourage spatial sparsity
of the activations and an £e-norm regularizer on the projection coeflicients in the signal
subspace to model the time-varying frequency content in the activation signals. While
considering all vertices in the brain as candidate activation sources, our solver can
still obtain focal activation maps and capture activation signals with precise deflection
signatures. The £1£>-norm inverse solutions share some similar characteristics with
dipole fitting results; however, the number of dipole sources is not required to be known
a priori for £1f2-norm. As demonstrated in the simulations, the performance of the £,£5-
norm solver is robust to the chosen number of basis functions. This feature makes the
method particularly suitable for neuroscience applications where the number of dipole
sources is usually unknown.

We model the activation signals as linear combinations of multiple temporal basis
functions. There are various approaches to obtain the basis functions such as the
Fourier and wavelet decompositions. If the Fourier decomposition is employed, the
selected basis functions must capture the frequency components of the neural signals.
If wavelets are used, we need to choose a wavelet family appropriately. If the temporal
structure of the source signals at a particular region were known, we would incorporate
it as one of the temporal basis functions. In this case, the assumption of the linear
combinations of multiple basis functions would need to be modified. Furthermore,

we chose to work with orthonormal basis functions. If the basis functions are not
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orthonormal, the general idea of this work is still valid, but the £3-norm would have to
be replaced with the Mahalanobis distance.

Obtaining a compact representation of the signals can significantly reduce the com-
putational requirements. Because of the time-varying frequency content and substantial
variability in the signals across activation regions, subjects, and tasks, data-independent
basis sets such as Fourier and wavelets may not be the best choice to compactly repre-
sent the signals. In this work, we constructed the temporal basis functions through the
SVD decomposition of the data. We chose a set of basis functions that correspond to
the largest singular values. The cutoff was determined by our knowledge of the source
signals and the temporal structure of the singular vectors. Fixing the cutoff may lead
to a loss of signals that lie in the orthogonal subspace spanned by V+. A possible
improvement is to alternate between modifying the basis functions and estimating the
source signals.

Existing ¢1-norm related solvers also lack a consensus in handling the free-orientation
source estimation. In the conventional MCE [Uutela et al., 1999] and its cortically-
constrained variant [Lin et al,2006], the orientations of the sources are determined
prior to invoking the £;-norm minimizer. Uutela et al. estimated the orientations from
an initial MNE solution, while Lin et al. utilized both the MNE solution and anatomical
information. The method proposed in [Matsuura & Okabe, 1999] alternates between
computing the inverse solution and estimating the source orientation, but it suffers from
convergence issues and requires intensive computations. VESTAL [Huang et al., 2006]
applies the /1-norm to each source component via a bias-reduction scheme in the free-
orientation case. Since the fo-norm is invariant with respect to rotations of the local
coordinate system at each source, it is straightforward to extend our method to include
free orientations, as we demonstrate in Section 3.1.3.

Accurate estimation of the spatial extent of the sources is one of the main chal-
lenges for any source modeling approach. Compared with dipole fitting, the £;¢3-norm
solver demonstrated a better ability to capture the auditory activations as shown in Sec-
tion 3.3.2. To further improve the £;£3-norm solver performance for extended sources,
we can apply the £;-norm regularizer to model the difference among neighboring ver-
tices, rather than the vertices directly. Thus, the new model would favor a piece-
wise constant activation pattern. This idea combined with an MNE estimator is at
the core of the LORETA estimation method [Pascual-Marqui et al., 1994]. The work of

[Auranen et al., 2007, Nummenmaa et al., 2007] proposed a Bayesian approach in which
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the measurements and the hyper-prior determine the spatial extent of the activations
through estimating the joint posterior distribution of the inverse solution and the expo-
nent in the regularizer. Alternatively, the activation pattern could be expressed using
a set of spatial basis functions [Limpiti et al.,2006] or the current multipolar expan-
sions [Cottereau et al., 2007].

B 3.5 Summary

The proposed inverse solver takes advantage of the relatively smooth nature of the
underlying EEG/MEG source signals through performing inverse operation for all tem-
poral samples simultaneously. To address the problem of the overly diffuse inverse
solutions, the ¢;¢y-norm captures spatial sparsity through ¢;-norm regularization. It
also applies an #9-norm regularizer to the projection coefficients of the temporal basis
functions spanning the signal subspace. Performing estimation in the signal subspace
while jointly considering the coefficients for all selected basis functions leads to stable
estimates and reduces the number of false positives as confirmed by our experiments
using simulated and human MEG data. The ¢1£5-norm solver is formulated as an SOCP
problem. The fast optimization method enables us to perform statistical significance
testing for the £1fo-norm inverse solutions via a permutation method. The ¢;¢3-norm
can be straightforwardly applied with and without orientation constraints. Its flexible
formulation should also allow incorporation of fMRI information as a constraint.

Due to the limited spatial resolution of EEG/MEG, it is difficult to distinguish
activations on two sides of a sulcal wall, as shown in Section3.3.2. To improve the
source estimation accuracy, in Chapter5 we introduce a source estimator that takes
into account fMRI information which has a better spatial resolution. Since EEG/MEG
and fMRI have different physiological origins, we first study the neurovascular coupling

relation in Chapter 4.



Chapter 4

Neurovascular Coupling

Since EEG/MEG and fMRI are induced by neural and vascular activities in the brain,
we need a neurovascular coupling model to enable joint EEG/MEG-fMRI analysis.
To study the neurovascular coupling, we employ recent advances in MEG and diffuse
optical image (DOI) to simultaneously record neural and hemodynamic responses. With
DOI we recover both oxy- and deoxy-hemoglobin (HbO and HbR) evoked responses in
cSI for different stimulus train durations. From MEG data, we estimate the sites of
neural activity and extract the ¢SI current dipole time course. By co-registering the
two measurements with respect to each subject’s structural MRI, we verified that there
is spatial co-localization between neural and vascular activations. We then analyze
the neurovascular coupling relationship using standard regression analysis. The work
presented in this chapter was published in [Ou et al., 2009b].

This chapter is organized as follows: we present the experimental details including
stimulus selection in Section 4.1, MEG-DOI acquisition technique in Section4.2, and
data analysis in Section 4.3. Section 4.4 presents our experimental results in the spatial

and the temporal domains, followed by a discussion and summary.

B 4.1 Somatosensory Stimuli

Trains of median-nerve stimuli (slightly above motor threshold, current < 10 mA, 0.2-
msec pulse duration, 4-Hz repetition rate) were presented at the right wrist according to
an event-related protocol, with a random inter stimulus interval (ISI) varying between
2 and 18 s (mean 12 s). The train durations were 1, 2, 3, and 4 s, corresponding
to 4, 8, 12, and 16 stimuli, respectively. These four conditions were presented in a
pseudo-random order [Dale, 1999a] in each of the six runs (six minutes per run), with a

minimum of 2-minute rest period between consecutive runs depending on the subject’s

67
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Figure 4.1. Subject Si’s estimated neural responses to a median-nerve stimulus. The stimulus onset

and the detected peaks are marked.

condition. Ideally, we would like to explore a larger range of stimulus train durations;
however, we have observed that the MEG response to stimulus trains beyond 4 s is
often contaminated by eye-movements and blinks.

We chose median-nerve electrical stimulation because the corresponding somatosen-
sory responses have been thoroughly studied in intra-cranial electrophysiological ex-
periments in animals. Therefore, our results can be directly compared with, for ex-
ample, the many forepaw stimulation studies in rats. In addition, the electrical re-
sponse to median-nerve stimulation has been extensively studied in human with EEG
and MEG [Brenner et al., 1978, Goff et al., 1978, Kaufman et al, 1981, Hari et al., 1984,
Tiihonen et al., 1989, Allison, 1992, Mauguiere et al.,1997]. It has been shown that a
median-nerve stimulus activates a complex somatosensory cortical network [Hari & Forss, 1999],
including the contralateral primary sensory cortex (cSI), the bilateral secondary sensory
cortex (SII), and other associated areas such as the posterior parietal cortex (PP}
Unlike SII, which lies in the inferior parietal region, deep in the highly folded cortex, the
SI hand area, located on the posterior wall of the central sulcus, is relatively superficial
and is easily studied with both MEG and DOI. PPC, located on the wall of the post-
central sulcus, medial and posterior to the SI hand area, is also relatively superficial to

the cortex compared with SIL
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As shown in Fig.4.1, the neural response to median nerve stimulation typically
contains four main peaks: N20, P35, N45, and P60. The first peak N20, occurs
at 20 msec after stimulus onset, corresponds to intra-cellular currents towards the
surface of the cortex, induced by the early excitatory postsynaptic potentials (EP-
SPs) [Wikstrom et al., 1996]. The cSI response then changes its polarity and reaches
a maximum at 35 msec (P35), corresponding to intra-cellular currents flowing inward
from superficial layers into the cortex. This peak has been suggested to be due to the
early inhibitory postsynaptic potentials (IPSPs). P35 is followed by a narrow negative
peak N45, corresponding to secondary EPSPs, and a broader positive peak P60. N20
and P60 are known to be robust with respect to stimulus repetition rate. Instead,
P35 and N45 are highly sensitive to stimulus repetition rate. For instance, several
studies have reported that N45 is enhanced with increase in the stimulus repetition
rate [Wikstrom et al.,, 1996]. In our case, using a stimulus repetition rate of 4 Hz, we

observed a strong habituation of these two peaks during the stimulation trains.

B 4.2 Acquisition

We studied 6 healthy, right-handed subjects (5 males, 1 female). The subjects were
24-61 years old (mean 37 4+ 14). Informed consent was obtained from subjects in accor-
dance with the Massachusetts General Hospital ethical committee prior to participation.
Measurements were conducted in a magnetically shielded room, on subjects laying on
a non-magnetic bed. During the measurements, subjects were alone in the room with
the lights dimmed.

The DOI data were acquired with a multi-channel continuous-wave optical im-
ager (CW4 system, TechEn Inc.) as described in [Franceschini et al., 2003]. The CW4
instrument was kept in the control room and we used 10-m long fibers to deliver
and collect light to and from the subjects in the magnetically shielded room. The
source and detector fiber bundles were attached to three black rubber stripes and ar-
ranged in two rows of eight detectors separated by a row of nine sources, for a to-
tal of 32 source-detector combinations with 3-cm separation constituting the probe
array (see Fig.4.2a). In each of the nine sources, two laser diodes emitted light at
690 nm and 830 nm wavelength, respectively. The laser wavelengths were chosen to
maximize the SNR of the measurements, while minimizing the cross-talk error be-
tween HbO and HbR [Yamashita et al., 2001, Strangman et al., 2003, Sato et al., 2004a,



70 CHAPTER 4. NEUROVASCULAR COUPLING

@ Sources (690 and 830nm) @® Detectors
e © & o o o o
3cm
® & & & 6 o o »
® & o o o o o o

(a) (b) ()

Figure 4.2. DOI probe. (a) Planar view of the DOI source/detector arrangement. (b) The DOI probe
mounted on a subject’s head. (c) Schematics of a custom made plug (1 cm thickness) that houses one

fiber optic bundle.

Uludag et al.,2004]. The sources were frequency-encoded by steps of approximately
200 Hz between 4.0 kHz and 7.4 kHz, and their signals were acquired simultaneously
by the sixteen avalanche photo-diode detectors. The output from each detector was
digitized at 40 kHz. The demodulation of the source signals was performed off-line by
using an infinite-impulse-response filter, and finally the signals were converted to 10 Hz
time series for analysis.

The optical probe covered an area of 6x16 cm? and was positioned to extend from
left frontal to the left parietal areas with the center approximately above Brodmann
area c3 (Fig.4.2b). The fiber tips terminated with a 90 deg bend and were mounted
to the probe by means of low-profile custom-made plugs (1 cm thickness) in order to
fit the probe in the limited space between the head of the subject and the MEG dewar
(Fig. 4.2c). All materials used in the optical probe were tested in the MEG environment,
and special fiber jackets and epoxy, different from those typically used for optical alone
or the optical-MRI measurements, were used.

The MEG data were acquired simultaneously with the optical data using a 306-
channel Neuromag VectorView MEG device (Elekta-Neuromag Oy, Helsinki, Finland),
in a magnetically shielded room (Imedco AG, Switzerland) equipped with adjustable
lighting, an intercom, and a video camera. The VectorView sensor array consists of 204
planar gradiometers and 102 magnetometer detectors. Eye movements and blinks were

monitored with electrooculogram (EOG). The MEG signals were recorded continuously
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with a 1-kHz sampling rate and minimally filtered (0.01 to 250 Hz). There was no special
setting adjustment needed for MEG recording in a simultaneous MEG-DOI acquisition,
but the SNR of MEG signals suffers slightly from the additional distance between the
sensors and the head introduced by the optical probe. The positions of the optical
probes and the four head-position indicator coils for MEG were digitized before the
measurement with a 3D magnetic digitizer (Polhemus).

In a separate session, MRI anatomical images were collected with a Siemens Avanto
1.5 T scanner with the T1-weighted sagittal MPRAGE protocol and the fast low an-
gle shot (FLASH) protocol at 5 and 30 degrees flip angles. We segmented the head
surface and the gray matter cortex from the T1-weighted images [Dale et al.1999b,
Fischl et al.,1999]. The head surface was then co-registered with the digitized points
obtained in the joint MEG-DOI session. From the FLASH images, we extracted the
inner skull surface to construct the MEG forward matrix using a single-compartment

boundary-element model [Hamaéladinen & Sarvas, 1989, Oostendorp & Van Oosterom. 1989].

B 4.3 Analysis

In this section, we first identify the neural and vascular activation areas. We then
extract the corresponding activation signals for neurovascular coupling analysis in time

domain.

M 4.3.1 Pre-processing

The optical data were temporally co-registered with the MEG signals by collecting the
stimulation triggers with the two systems. The optical raw data were processed off-line
using HomER (http://www.nmr.mgh.harvard.edu/DOT /resources/homer/home.htm),
an in-house graphical user interface for visualization and analysis of NIRS data imple-
mented in MATLAB (Mathworks Inc., Sherborn, MA). Data were band-pass filtered
between 0.02 and 0.5 Hz to reduce the effect of slow drifts and heartbeat, and the
temporal changes in the intensity were translated into temporal changes in absorption
coefficients using the modified Beer-Lambert law. Concentration of HbO and HbR were
derived from the absorption changes at the two wavelengths using hemoglobin extinc-
tion coefficients reported in [Wray et al., 1988]. To reduce motion artifacts and systemic
oscillation, principal component analysis (PCA) was applied by removing 1-3 compo-

nents, as described in [Zhang et al., 2005b]. Finally, the hemodynamic responses to each
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stimulus train condition were calculated using an ordinary least squares linear deconvo-
lution. The deconvolved hemoglobin responses were averaged over the measured runs
to improve the SNR with respect to single-run responses.

Due to the sparse distribution of our source-detector pairs, we limited our analysis to
a simple back-projection reconstruction method to identify the vascular activation area.
From the 32 source-detector combinations, we identified the source-detector pair with
the most statistically significant deoxy-hemoglobin activation (p-value for the selected
source-detector pairs across six subjects < 0.05), and used the data of this combina-
tion to investigate the neurovascular coupling relation. For the chosen source-detector
pair, we computed the hemoglobin time courses for each subject and each condition.
Compared to HbO, HbR is known to be less sensitive to systemic oscillations, such
as respiration and arterial pulsation [Obrig et al., 2000, Franceschini et al.,2003]. We
performed identical analysis for HbR and HbO; however, due to the larger contamina-
tion to HbO, and hence a worse SNR, we only display the figures related to HbR in
Section 4.4.

For MEG data, we first performed baseline correction and spatial whitening based on
a noise covariance matrix computed from signals in a 200-msec window before the stim-
ulus onset. With the MEG forward model and source space constructed as described in
Section 3.2, we can estimate the neural response from the MEG measurements by solv-
ing the inverse problem [Baillet et al., 2001]. In this work, we employed both dipole fit-
ting [Mosher et al., 1992] and the minimum-norm estimate (MNE) [Hamaéldinen & Ilmoniemi,1984],
constrained to the cortical gray matter [Dale & Sereno. 1993, Dale et al., 2000]. Our
study of the neurovascular coupling in the spatial domain is based on the MNE results.
The analysis in the temporal domain is based on the estimated time courses from a
standard dipole fitting procedure [Nelder & Mead. 1965, xfit software].

In dipole fitting, we separately fitted the evoked responses of each of the four du-
ration conditions, using a selection of MEG channels (about 45 channels) covering an
area above the left SI cortex, at 20-38 msec after the onset of the first stimulus in the
train. Subsequently, the time course of this source over the whole epoch was determined
with a linear least squares fit. In our single-dipole model, the estimated SI dipole time
course usually includes contribution from nearby regions such as PPC. It may also in-
clude later activations which often have a more distributed spatial pattern. We believe
the neurovascular coupling analysis is still valid despite the fact that the estimates may

contain both SI and PPC activations. That is because the hemodynamic optical signals
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often reflect a larger spatial pattern, which may very likely contain integrated effects
including SI and PPC.

For each subject, after averaging runs for a particular duration condition, we iden-
tified N20, P35, N45, and P60 train response as indicated in Fig. 4.5 for condition one
in Subject 1. For each subject and each condition, we determined the amplitudes of
N20, P35, and P60 responses to each stimulus in the train (i.e., amplitude responses
to 4 stimuli for condition one, 8 stimuli for condition two, and so on) by calculating
the maximum (or minimum) in a narrow time window. Since the signals were baseline-
corrected prior to dipole fitting, the amplitudes of the peaks were set relative to the
zero baseline.While several studies have reported that N45 strengthens with reduced
stimulus repetition rate, for the 250-msec setting in our experiments, N45 is relatively
weak and its amplitude is further affected by P35 due to temporal proximity. Hence,

we omitted this peak from the remaining analysis.

B 4.3.2 Neurovascular Coupling Analysis

To confirm the non-linearity of the vascular responses when the stimulus duration
was varied as shown in previous fMRI studies [Birn et al., 2001, Bandettini et al.. 2002,
Birn & Bandettini, 2005], we applied a linear model to the optical data to predict the
responses to long stimulus train duration using the response to short stimulus train.
For instance, to linearly predict the response to a 2-s stimulus train, we added the
response to a 1-s train and its 1-s delayed version. To linearly predict the response to
3-s stimulus train, the 1-s response was replicated three times, shifted by 0, 1, and 2
s, and then summed. We performed similar linear predictions for the response to a 4-s
train using the 1-s and the 2-s responses.

To evaluate the correlation between the hemoglobin and neural response, we followed
two data analysis approaches. In the first approach, we evaluated the linearity of
the responses by plotting the response amplitudes versus the number of stimuli and
calculated the coefficient of determination (R?) to compare results. In particular, for
the hemodynamic response and for each subject, we calculated the area under the HbR
and HbO responses for each condition and normalized them with respect to the largest
response area. This normalization removes artifacts due to subject variability in head
size and in probe location with respect to center of activation. For each condition, we
then averaged the responses of the six subjects together and evaluated linearity with

zero crossing imposed for HbO and HbR, as shown in Fig. 4.6.
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To remove artifacts in MEG responses due to subject variability in source depth
and head size, we normalized the peaks amplitudes with respect to the amplitude of
the largest P35 in response to the first stimulus in the train among the four conditions.
We then averaged the cumulative MEG responses to each stimulus across subjects,
deriving the first 4 responses from condition one, the second 4 responses from condition
two, responses to stimuli 9 to 12 from condition three, and finally responses to stimuli
13 to 16 from condition four, and we calculated R? and zero intersection of the three
peaks, N20, P35, and P60.

In addition to the peak amplitudes, we also considered the sum of the peak am-
plitudes in absolute value, including P35-N20, P60-N20, and P35+P60-N20, and the
root mean square (RMS) value of the dipole amplitude in the time window after N20
and before the response returning to baseline (see Fig.4.5). For subject 2 and 5, the
window is set as 30-160 msec after each stimulus onset in a train; for the rest of the
subjects, the window is set as 30-140 msec. The chosen time window covers the early
activations such as SI and PPC [Hari & Forss, 1999]. We also performed calculations
including different time windows and did not see statistical differences on the results
with respect to the chosen one.

In the second more rigorous approach, for each subject we estimated the linear
convolution model between the measured hemoglobin time series to each condition
and the measured neural response time series, including N20, P35, P60, sum of peak
amplitudes in absolution values, and the RMS value, as described above.

For all experiments, the temporal length of the impulse response function (h) was set
to 10 s, which corresponded to 100 time samples for the hemoglobin responses. We esti-
mate a separate impulse response function for HbO (huno(t)) and HbR (hgpr(t)). This
convolution model, also used in[Logothetis & Wandell, 2004, Martindale et al., 2005],

assumes that the neuronal activity and hemoglobin responses are related by

fubr(t) = hupr(t) * j(t) + enbr(t), (4.1)
fiwo(t) = hubo(t) * j(t) + emo(t)

where j(t) is the time course of neuronal activity represented by a MEG component for
each stimulus pulse in the pulse train. For example, when we compute the regression
between peak N20 and the hemoglobin signals, j(t) is a set of delta functions whose
amplitudes equal to the corresponding N20 peak amplitudes to different stimuli in the

stimulus train. Function fipo(t) and fipr(t) are the time courses of the hemoglobin
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signals, and hypo(t) and hArpr(t) are the hemoglobin response functions. The time win-
dows of fuho(t) and fupr(t) for the linear convolution analysis are separately selected
based on the zero crossing of the corresponding responses with respect to the baseline
for each condition and each subject. In Eq.(4.1), * indicates the convolution of two
time series. exgpo(t) and egpr(¢) include background physiology and measurement noise,
which we assume to be white noise. The impulse responses hppo(t) and hgpr(t) are
estimated for all stimulus conditions using least squares linear deconvolution for each
subject separately, and we denote the corresponding estimates as BHbO(t) and EHbR(t).
Predicting the variation in HbO and HbR responses to the different stimulus conditions
is then possible using a linear transformation. Results for each subject are shown in
Fig. 4.7.

A good linear fit is reflected by a good match between the predicted and mea-
sured hemoglobin response, which is mathematically evaluated using the coeflicients of

determination (R?). For example, in the analysis of HbR, the corresponding R? is
var (beR(t) — i (t) * j(t))

2 _1_
=l var(fubr(t)) (42)

We then convert the R? value into the Fisher’s z-score:

1 1+ R
— (i .
z 2n(1_ ) (4.3)

A two-sample t-test based on the Fisher’s z-scores between the linear predictions from
two types of neural components were calculated to assess the statistical significance

(p-values < 0.05 between different components).

M 4.4 Results

In this section, we first study the spatial relationship between neural and vascular

activities. We then focus on the temporal relationship at the primary sensory area.

B 4.4.1 Co-localization of MEG Sources and DOI Signals

The median-nerve stimulus employed in this work is known to robustly activate cSI
(Brodmann area 3) [Hari & Forss, 1999]. To verify the co-localization of the neural
and the vascular activations, we present the estimated activation maps from MEG data

(yellow area) using the MNE software [Hamal&dinen, 2005] and the contour levels of HbR
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Figure 4.3. Activation maps for six subjects. Neural activation estimated from MEG measurements
at 35 msec after the onset of the first stimulus in the stimulus train is depicted in yellow. The contour
plot correspond to 90%, 75%, and 50% thresholds of maximum signal decrease in HbR estimated from
the DOI measurements in the interval 3-5 s after stimulation onset. Three rows of DOI source-detector
pairs are shown as red and blue circles. For each subject, the blue circles indicate the source-detector
pair that detect the strongest vascular responses. For subject 6, the digitized points for the optical
probes were lost. While the optical response concentrates in a small area similar to the one of the other
subjects, localization of HbR with respect to the brain and MEG sources is not possible. Hence, we

cannot show the overlaid HbR contour plot for this subject.

signal changes overlaid on the corresponding MRI cortices (Fig. 4.3). The reconstructed
HbR map for each subject was obtained in HomER using a standard back-projection
method. The contour levels represent the 90%, 75%, and 50% thresholds of maximum
signal decrease between 3 — 5 s post-stimulation onset with respect to -2 — 0 s before
stimulation onset for the 4-s stimulus train duration condition. The optode positions
recovered with the 3D digitizer are depicted as red and blue circles in Fig. 4.3. For each
subject, the source-detector pair with the most statistically significant HbR changes are
shown in blue. In one subject (Sg), the digitization of the optical probe was lost due
to repositioning of the probe after digitization, and only the MEG source location is

shown. In the other five subjects with digitized optode positions, the vascular responses,
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Figure 4.4. Linear predicted HbR from measured HbR to short stimulus duration. Solid curves
show the grand-average HbR measured with DOI, and dashed curves are the corresponding predictions
assuming a linear model. Top: linear prediction of responses to 2-, 3-, and 4-s stimulus train duration
conditions based on the response to a 1-s train. Bottom: linear prediction of response to a 4-s stimulus

train duration condition based on the response to a 2-s train.

reflected by the largest signal decreases in HbR, are spatially co-localized with the
estimated neural activations from the MEG measurements. The results for HbO, not

shown, are consistent with the ones for HbR.

B 4.4.2 Non-Linear DOI Responses

The grand-averaged HbRs over all six subjects obtained from the selected source-
detector pairs for 2-, 3-, and 4-s train durations are presented in Fig. 4.4 (solid curves).
We used the HbR responses corresponding to 1- and 2-s trains separately to linearly
predict the responses to longer stimulus train duration as described in Section 4.3.2.
The linear predictions (dashed curves) are overlayed with the corresponding measured
HbR.

We can see that the HbR response to a 1-s train overestimates the responses to

longer train durations using a linear model, reflecting an over-shoot of vascular sup-
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Figure 4.5. Subject S;’s estimated neural responses to the 1-s stimulus train duration condition (four
stimuli). The stimulus onsets and the detected peaks are marked. For the neurovascular coupling
analysis, we considered each individual peak amplitude, the difference of peak amplitudes, the sum of
the peak amplitudes, and the RMS value of the current dipole amplitude in a time window between 30
and 140 msec after each stimulus onset for each of the stimulus train durations.

ply to short stimulus trains. In contrast, the HbR response to a 2-s train provides a
good linear fit to the response to the 4-s train. Qur DOI results confirm that the re-
sponses to short stimulus train duration are larger than those estimated using a linear
model [Bandettini et al., 2002, Birn et al., 2001, Birn & Bandettini, 2005].

W 4.4.3 Linear MEG Responses

Fig. 4.5 shows the evoked ¢SI response to the 1-s stimulus train in a subject (S;), with
the major peaks highlighted. The evoked responses to stimulus 5 through stimulus 16
in the other duration conditions are similar to the response to the fourth stimulus in
the 1-s condition, but slightly noisier.

For most of the subjects, the amplitudes of N20 and P60 are similar in all stimuli
in a train. On the other hand, P35’s amplitude drops significantly in response to the
second to the last stimuli in a train. If the vascular response were linearly related
to either N20 or P60, the vascular response would have been linearly related to the
stimulus train duration for the four conditions that we examined. In contrast, if the

vascular response were linearly related to P35, the vascular response would have a
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Figure 4.6. Average normalized responses of HbR (area) and average normalized amplitudes of the

three peaks in the neural responses across subjects under the four stimulus duration conditions.

similar amplitude across the four conditions. Therefore, the linear relationship between
HbR and any single peak is not adequate.

Fig.4.6 shows the cumulated sum of the amplitudes of each of the three peaks
averaged over the 6 subjects for each train duration. In contrast to the hemodynamic
responses (also shown in Fig.4.6 as the grand average of the areas under the HbR
responses for each condition) which is not linear with respect to train duration (R? =
0.96), both N20 and P60 are linear with respect to stimulus train duration (R? > 0.99).
On the other hand, P35 exhibits habituation effect in response to the second and later
stimuli in a train, reflected by the smallest R? value (R? = 0.93) and the largest zero

intersection (0.26).

M 4.4.4 Hemodynamic Predictions

Fig.4.7 and Fig. 4.8 illustrate the measured HbR, fupr(t), and the linear prediction,
B}Ib}{(t) * j(t), using peak amplitudes, sum of the peak amplitudes in absolute value,
and the RMS value of the neural response for the six subjects and the four stimulus
train durations. It reveals that none of the peaks can individually explain the HbR
response with a linear convolution model. It also reveals that the sum of three peaks
(red dashed curves) provides relatively better linear fit to HbR consistently across all

six subjects.
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Figure 4.7. Linear convolution analysis. For the four stimulus train duration conditions and for
each of the six subjects, the measured HbR using DOI (black curve) and the predicted HbR, ‘EHbR(t),
based on the linear convolution model with different components in the neural responses are displayed
above. The predictions are computed using N20 (pink curve), P35 (green curve), P60 (blue curve), and
P35+P60—N20 (red dashed curve).

We evaluated the quality of the predictions based on differences in the coefficients
of determination (R?) between the predicted and the measured time courses of the

hemodynamic responses, as shown in Fig.4.9. Table4.1 summarizes the results of a
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Figure 4.8. Linear convolution analysis. For the four stimulus train duration conditions and for each
of the six subjects, the measured HbR using DOI (black curve) and the predicted HbR, E}{bR(t), based
on the linear convolution model with different components in the neural responses are displayed above.
The predictions are computed using the stimulus onset (pink curve), P35—N20 (green dashed curve),
P60—N20 (blue dashed curve), and the RMS value (red dashed curve).

two-sample t-test. In particular, Table4.1 (top) shows a cross-reference of p-values for
statistically significant differences in R? values corresponding to different components

in predicting HbR. Table4.1 (bottom) shows the corresponding results for HbO. The
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Figure 4.9. R® values of linear convolution analysis for different components in the neural responses.

The corresponding results of two-sample t-test are reported in Table4.1.

average R? across six subjects is presented in the right-most column. The sum of peak
amplitudes and the RMS value of the neural response provide the best linear prediction
compared to any single component, reflected by the largest R? values. All of them are
statistically better than the input stimuli in predicting HbR, and the sum of the three
peaks also achieves statistically better prediction than N20.

Since HbO is more sensitive to systemic physiological effects than HbR, the SNR is
lower than that for HbR. Although the results for HbO are similar to those for HbR,
the R? values of the HbO predictions are smaller than the corresponding ones for HbR
prediction, and statistically significant better prediction is established for the sum of
three peaks and the RMS value with respect to N20.

B 4.5 Discussion

Previous studies using combination of MEG and DOI have employed direct current (DC)
MEG measurement techniques to study DC or near-DC changes in the magnetic fields
in a block-design finger-movement paradigm with 30-s blocks of finger movements alter-
nating with rest periods [Mackert et al., 2004, Sander et al., 2007, Mackert et al., 2008].
Limited to one type of stimulus (stimulus frequency and duration), these studies could
not explore the linear /non-linear neurovascular coupling relationship. In contrast, here
we investigated the relationship of the DOI vascular signals with the detailed time

course of MEG current sources. The use of an event-related rather than a block design
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Statistical Significance of better Linear Predictions in terms of R? between Measured and Predicted HbR

Stimulus | N20 | P35 | P60 | P354P60-N20 | RMS | P35-N20 | P60-N20 | | Mean R? |

Stimulus N/A 0.78
N20 042 | N/A 0.75
P35 048 | 058 | N/A 0.77
P60 052 | 033 | 0.42 | N/A 0.79
P35+P60-N20 | 0.01 | 0.05 | 0.10 | 0.08 N/A 0.83
RMS 0.01 | 0.08 | 0.12 | 0.12 0.37 N/A 0.83
P35-N20 0.05 | 0.04 | 0.16 | 0.05 0.31 044 | NJ/A 0.83
P60-N20 0.02 | 0.05 | 0.15 | 0.11 0.10 0.38 0.56 N/A 0.83

Statistical Significance of better Linear Predictions in terms of R? between Measured and Predicted HbO

Stimulus  N20 P35 P60 P35+P60-N20 RMS P35-N20 P60-N20 Mean R?

Stimulus N/A 0.78
N20 0.10 N/A 0.72

P35 0.36 0.53 N/A 0.74

P60 0.39 0.35 0.48 N/A 0.76
P35+P60-N20 0.03 0.03 0.17 0.08 N/A 0.80
RMS 0.13 0.05 024 0.12 0.27 N/A 0.79
P35-N20 0.08 0.02 0.19 0.09 0.56 0.47 N/A 0.80
P60-N20 0.07 0.04 022 0.14 0.02 0.56 0.44 N/A 0.80

Table 4.1. Cross-reference of p-values for significant differences in R? values for each subject and
each component used to predict HbR (top) and HbO (bottom). p-values < 0.05 (bold font) indicate
statistically significantly better prediction of the component with a higher R? with respect to the
corresponding component with a lower R?. The average coefficients of determination, R?, between the

measured and the predicted HbR (or HbO) responses are reported in the last column.

allows us to employ shorter stimulation periods (1-4 s vs. 30 s) and to evaluate the
contribution of single neural component to the hemodynamic responses. Our approach
enables a direct comparison between our results and the vast number of neurovascular
coupling findings in animals using invasive electric and vascular recordings.

The choice of limiting the study to four conditions is dictated by scanning time
and subject’s condition. In order to examine more duration conditions, it is necessary
to extend the scanning time to ensure a sufficient SNR in the average signals for the
neurovascular coupling analysis. The choice of 1 s as the shortest condition is due to the
fact that hemoglobin response for shorter stimuli is too noisy; the choice of 4 s as the
longest duration is due to the fact that MEG signal for longer stimuli become noisier
because of eye blinks and muscle contractions. In any case, the 1 to 4 s duration chosen

are within the range of non-linearity previously observed in the hemodynamic response
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with BOLD fMRI [Bandettini et al., 2002].

We observed a good spatial agreement between the activation areas determined by
the two imaging modalities. The neural source location determined using MNE in five
subjects is in good proximity with the maximum hemoglobin evoked changes measured
with DOI. This result reveals the benefit of integrating other vascular measurements
such as fMRI, which has a good spatial resolution, to help solve the ill-posed MEG in-
verse problem. Our result also indicates that a combined MEG-DOI inverse formulation
may provide additional information for the two ill-posed inverse problems.

We verified that the hemodynamic response is non-linear with respect to stimulus
train duration (R? = 0.96 without zero intersection constraint and R? = 0.22 with zero
intersection constraint). Our result shows that the hemodynamic responses to short
stimulus trains (< 2 s) measured with NIRS are larger than those predicted by a linear
model, and it is in agreement with fMRI results in humans [Bandettini & Ungerleider, 2001,
Birn et al.,2001]. With the simultaneous MEG measurements, we tested whether the
hemodynamic non-linearity can be justified by a habituation effect in the neural re-
sponses. For the tested stimulus train durations, we found that N20 and P60 show a
linear relationship with train duration, achieving R? value above 0.99. On the other
hand, due the strong habituation effect in P35, the R? value for P35 is 0.93; however,
this habituation effect is too strong to explain the habituation effect in the hemody-
namic response.

The initial hemoglobin overshoot observed in human is not supported by the findings
in small animals, for which the habituation effect in hemoglobin response appears for
longer stimulus trains (8 — 20 s) [Martindale et al., 2005, Franceschini et al.. 2008]. This
discrepancy may be due to differences between species (humans vs. rats) or anticipation
effects, which are suppressed by anesthesia in rats.

In addition to linearity /non-linearity of the responses, we performed a convolution
analysis to test whether individual components of the current amplitude can predict
the hemodynamic response time courses better than input stimulus. To do so, we used
either a current amplitude component or the input stimulus as an input in the linear
convolution model to predict the hemodynamic responses and determined statistically
which factor shows better predictive power. With the stimulus tested, we found that
there is no significant difference between the predictions of HbR using N20, P35 or P60
versus using the input stimulus. Instead, the sum of the peak amplitudes and the RMS

value can predict HbR response consistently better than the input stimulus. Further-
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more, subtracting N20 helps remove possible hyperpolarising DC shift of the membrane
potential [Hellweg et al., 1977], both P35—N20 and P60—N20 achieve statistically better
prediction of HbR than the stimulus. ‘

The fact that the sum of three peaks and the RMS value of the current dipole am-
plitude are the best and N20 is the worst in predicting the hemodynamic responses is
in agreement with recent findings in rat neurovascular coupling using EEG and DOI in
rats [Franceschini et al., 2008]. Similar to the human study, the animal study shows that
the later peaks (N1 and P2) of the somatosensory evoked potentials are able to predict
hemodynamic responses better than the first peak, P1. The EEG evoked potential peak
P1 in rats is equivalent to MEG N20 deflection in humans. This initial peak constitutes
the primary cortical response which is generated by synaptic excitation of middle lay-
ers by thalamocortical inputs [Li et al., 1956, Mitzdorf, 1985, Di et al.,1990]. In most
invasive animal studies, this earliest peak is typically used to predict the hemodynamic
response [Caesar et al., 2003, Jones et al.. 2004, Sheth et al., 2004, Tadecola, 2004]. His-
torically, the greater focus on P1 may be partially due to the fact that this peak is very
stable and persists with deep anesthesia, while subsequent cortical activity is abolished
with deep anesthesia. The later cortical activity is more spread both spatially and tem-
porally, and it is less stable with changes in stimulus parameters [Cauller & Kulics, 1991].
Our findings that the hemodynamic responses correlate better with later peaks than
with the primary cortical response suggest that the cortical hemodynamic response is
largely controlled by synaptic activity related to intra-cortical processing rather than
direct thalamic input. This is probably due to the majority of the synapses are triggered
with column inputs from other neurons in the cortex, and the hemodynamic response
is mostly sensitive to the level of synaptic activity [Mathiesen et al., 1998]. Thus, our
results indicate that later components need to be considered to correctly understand
the neurovascular coupling.

Despite the better predictions of hemoglobin response by the sum of two or three
peaks and the RMS value of the current dipole amplitude, the habituation effects exhib-
ited in the hemodynamic response are not totally accounted for with these parameters.
This suggests that the hemodynamic response cannot be described by a single compo-
nent, but by a weighted combination of multiple components or some later components
in the neural signals. A more complex experimental design which provides more vari-
ability in the neuronal responses will be necessary to obtain sufficient power in the

statistical analysis of the different neurovascular coupling models.
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M 4.6 Summary

By combining DOI and MEG, we investigated neurovascular coupling non-invasively in
human subjects using median-nerve stimulation. Previous fMRI studies have shown a
habituation effect in the hemodynamic BOLD response for stimulation periods longer
than 2s. With DOI and MEG we can test whether this effect in hemodynamic response
can be accounted for by a habituation effect in the neural response. Our experimental
results show that the habituation effect in the hemodynamic response is stronger than
that in the earliest cortical neural response (N20). Using a linear convolution model
to predict hemodynamic responses, we found that including late neural components
(> 30ms) improves the prediction of the hemoglobin response. This finding suggests
that in addition to the initial evoked-response deflections related to the thalamic afferent
input, later cortical activity is needed to predict the hemodynamic response.

Our results indicate that neural activity and hemodynamic responses are approx-
imately aligned in space, motivating the joint EEG/MEG-fMRI analysis method pre-

sented in the next chapter.



Chapter 5

fMRI-Informed Regional EEG/MEG
Source Estimation (FIRE)

Due to the limited spatial resolution of EEG/MEG data, it is challenging to distinguish
sources at close by locations in the brain. In this chapter, we focus on incorporating
fMRI information to improve the EEG/MEG source estimation accuracy. Our model
is motivated by findings of the neurovascular coupling discussed in Chapter 4. The re-
sulting estimator, fMRI-informed regional EEG/MEG source estimation (FIRE) takes
advantage of the spatial alignment between the neural and the vascular activities, while
allowing for substantial differences in their dynamics. The work presented in this chap-
ter was published in [Ou et al.,2009c]. In addition, we have submitted an extended
version of this work to Neurolmage journal.

In the following, we first discuss the model underlying FIRE, the inference proce-
dure, and the implementation details in Section 5.1. We then present the experimental
comparisons between FIRE and prior methods for joint E/MEG-fMRI analysis using

both simulated and human data in Section 5.2, followed by a discussion and summary.

MW 5.1 Method

We first present the model assumptions in FIRE by dissecting its graphical model
shown in Fig. 5.1. We then discuss the priors, the parameter setting, and the inference
procedure to estimate the current source distribution.

B 5.1.1 Neurovascular Coupling and Data Models

We assume that the source space comprises NV discrete locations on the cortex parcelled

into K brain regions. We denote the set indexing the discrete locations in region k
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Gl o)
)

Figure 5.1. Graphical interpretation of FIRE. Circular nodes indicate random variables and square

nodes indicate model parameters. The hidden activity z models the neurovascular coupling relationship.
The hidden current source distribution J is measured by E/MEG, producing observation Y. F denotes
fMRI measurements. Vectors u and v are the unknown region-specific neural and vascular waveforms,
respectively. The inner plate represents Ny vertices in region k; the outer plate represents K regions.
The bottom left and right plates represent T3 and T¥ time points in the neural and the vascular

measurements, respectively.

by P and the cardinality of P by Ny. Hence, the outer plate in Fig. 5.1 describes K
regions, and the inner plate captures Ny locations in region k.

The shapes of the source timecourses are identical within a region but may vary
across regions. Specifically, we let u; and vi be the unknown waveforms in region
k, associated with the neural and vascular activities, respectively. Examples ug and
vi in two separate brain regions are illustrated as the black timecourses in Fig.1.3.
We model the strengths of neural and the vascular activities as being depended on a
hidden vector variable Z = [21, 29, - - - ,zN]T, where z, indicates the activation strength
at location n on the cortical surface. Thus, the probabilistic model for the neural
activation timecourse j, and the vascular activation timecourse f,, at location n in

region k condition on the activation strength z, can be expressed as

P (ns Ful2ns Wi, Vi, 12, €2) = P (inl 205 i ) P (£2]203 Vi €3) (5.1)
=N (jni 2ap RO N (5 20 v, 1) (5.2)

where ng and 5,% are noise variances. The blue and green timecourses in Fig. 1.3 represent
examples of j, and f,, for two locations within each region. Note that our neurovascular
coupling model captures only the spatial alignment between the two types of activities;
it does not impose temporal similarity of the signals. The neural timecourses j, and

the vascular signals f;, are conditionally independent given the hidden variable for brain
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activity z,. Although the parcellation is optimal when each parcel includes one type of
neural and vascular waveform, our experimental results show that FIRE’s performance
is comparable to other methods when multiple waveforms are present within a parcel.

In the model description below, we construct all matrices such that rows represent
locations or sensors and columns represent time points. Thus, we let N x Ty matrix
J = [j1,j2, -+ ,jn|T be the hidden neural current on the cortex for all T time points.
We assume that the vascular signal f,, at location n is directly observable via fMRI. We
let N x Tg matrix F = [f}, f5, - ,fN]T be the IMRI measurements on the cortex at all
TF time points.

The neural currents j, detected with E/MEG are characterized by the standard
observation model. We let M x Ty matrix Y = [y(1),y(2),---,y(Ty)] be the E/MEG
measurements at all Ty time points. Column ¢ of matrix J, j(¢), denotes the neural
current distribution at time ¢. The quasi-static approximation of Maxwell’s equations
states that E/MEG signals at time ¢ are instantaneous linear combinations of the cur-

rents at different locations in the source space:

y(t) = Aj(t) +e(t) Vt=1,2--- Ty, (5.3)

where e(t) is the measurement noise at time . The M x N forward matrix A captures
the electromagnetic properties of the head, the geometry of the sensors, and the loca-
tions of the sources. Similar to other source estimation methods, the forward matrix
A is assumed to be known. We assume spatial whitening in the measurement (sensor)
space so that e(t) ~ N (0,I). The number of sources N (~ 10%) is much larger than
the number of measurements M (~ 10%), leading to an infinite number of solutions
satisfying Eq. (5.3) even for e(t) = 0. The plate at the bottom left corner of Fig. 5.1
corresponds to Ty temporal samples. In general, j, should be modeled as three time-
courses corresponding to the three Cartesian components of the current. However, due
to the columnar organization of the cortex, we can further constrain the current orien-
tation to be perpendicular to the cortical surface and consider a scalar current value at

each location.

H 5.1.2 Priors and Parameter Settings

To encourage the activation patterns to vary smoothly in space within a region, we
impose a prior on the modulating variables Z. Specifically, we define z;, = {2, }nep,

and assume
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K K
p(Z; {nhiy) = [T pzsw) = [[V (0,%T%), (5.4)
k=1 k=1
where the variance fy,% indirectly models the strength of the activation magnitude z,
in region k, and T’y is a fixed matrix that acts as a regularizer by penalizing the sum
of squared differences between neighboring locations. This spatial prior is particularly
important for the brain regions where vascular activity is too weak to measure, but the
neural activity can be detected by E/MEG. Without this prior, the estimated current
source may have an unrealistic spatial distribution due to the ill-posed nature of the
E/MEG inverse problem.

Our I'y, is similar to the regularizer used in the Low Resolution Brain Electromag-
netic Tomography (LORETA) [Pascual-Marqui et al., 1994], except that we apply Iy
to individual brain regions while LORETA’s spatial regularizer is applied to the whole
brain. We assume separate variance 7,% for different brain regions since the strength
of the currents is expected to vary significantly between regions with and without ac-
tive sources. This choice is similar to the recent work in the application of ARD to
E/MEG reconstruction [Sato et al., 2004b, Wipf & Nagarajan, 2009], except that their
work assumes independent variance 42 for each location in the brain.

Since the forward matrix A is underdetermined, the current distribution J produced
by our neurovascular coupling model can fully explain the E/MEG data. In other words,
without the noise term 77,% (i.e., jn = znui), the IMRI data can exert too much influence
on the reconstruction results. Although we can estimate the noise variance of the current
source timecourses 77 by extending the inference procedure, we find the corresponding
estimate unstable without a prior. Based on the preliminary empirical testing, we fix
77,% = 1. With proper temporal whitening of the fMRI data, we can also assume that
&2 = nf. Fixing 1 = &} helps to significantly reduce the computational burden of the
estimation.

To summarize, our model can be mathematically expressed as
p(F,Y.J,Z;0) = p(Y|J)p(J,F|Z; ©)p(Z; ©), (5.5)

where © = [0,605,- - - , 0] is the combined set of parameters, and 0 = [uk,vg,77] is the
set of parameters for region k. p(Y|J) is the E/MEG data model in Eq. (5.3). As shown
in Fig.5.1, the E/MEG observation Y is conditionally independent of other variables
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given the hidden source currents J. p(J,F|Z; ®) is our neurovascular coupling model
in Eq. (5.1), and p(Z;©) is the prior on Z in Eq.(5.4). Combining these elements of

the joint likelihood model, we obtain
logp(Y,J,F,Z; ©) = log p(Y|J) + log p(J, F|Z; ©) + log p(Z; ©) (5.6)

Ty
=Y log N (y(t); Aj(t),T)

t=1
K Ng

+ Z Z {log/\/(jn; Zn Uk, I) + logN(fn; Zn Vi, I)]
k=1n=1
K

+ ) log N (z4;0,%Tx)

k=1

Ty
My log (2m) + 3 Iy (t) — Aj(t)l\z]
t=1

2

1
— o2 [MiTylog(2m) + 3 lfa — zavil®
k=1 TLGP;C

+ NiTw log(2m) + Z lljn — znuk”ﬂ

ne Py
K Tp-1
1 'z,
-5 Z [Nk log(27) + Ny log(v2) + log(det(T'y)) + “k 7"2 Z’”]
k=1 k

where det(-) denotes matrix determinant. Note that although the latent activation
strength Z is independent across regions a priori, the posterior estimates for J, Z, and

© are spatially dependent due to the measurements Y.

B 5.1.3 Inference

Our goal is to estimate the current source J and the timecourses u and v. A stan-
dard inference procedure is to compute the maximum likelihood (ML) estimate of ®
while jointly considering the current source distribution J and the activation strength
Z as hidden variables, followed by a maximum a posteriori (MAP) estimation of J.
However, this leads to a computationally intractable algorithm, as we discuss in Sec-
tion 5.3. Instead, we alternate the optimization between estimating J and estimating ©.

While estimating ©, we treat the activation strength Z as an auxiliary variable, and
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marginalize it out in the analysis. Our inference procedure can be thus formulated as

{J*, @} = ar§rréwlogp(F,Y,J;®) (5.7)
— argmaxlog | p(Y|I)p(F,J12: ©)p(2:©) iz (5:8)
J, ® Z
= arg maxlog p(Y|J) + log p(F, J; ®). (5.9)
J, e

In Eq. (5.9), p(F,J;®) acts as the prior for J. Since both J and F are linear functions
of Z, p(F,J;®) is a continuous Gaussian mixture model.

The difficulty in estimating the proposed model from the data is caused by the
interactions between space and time variables, as reflected by the intersection of the
temporal plates and the spatial plates in Fig.5.1. It is easy to see from Eq. (5.3) that
the output of a given E/MEG sensor is a mixture of signals from the entire source
space. Moreover, F, J, and Y are jointly Gaussian. The correlation between different
time points (i.e., between two E/MEG time points, between two fMRI time points, and
between E/MEG and fMRI time points) is generally not zero. Hence, the inference
must be performed for all time points and all locations simultaneously. FIRE is thus
substantially more computationally demanding than the standard temporally indepen-
dent E/MEG estimation or voxel-wise fMRI analysis that ignore these dependencies in
modeling the observed signals. The benefit of this increased computational burden is
more accurate inference across time points.

Due to the special structure of our model, we can derive an efficient gradient descent
method with two alternating steps. In the first step, we fix ® and derive a closed-form
solution for J. In the second step, we fix J and show that ® can be efficiently estimated
via the EM algorithm [Dempster et al., 1977].

For a fixed ® = O, p(F, Y, J; (:j) is a jointly-Gaussian distribution. As shown in

Appendix A, the estimate of J is therefore equal to its conditional mean:

vec (j) = arg max logp(F,Y,J; (:)) =F [J]F,Y; é] = F%’JI‘;‘}W, (5.10)
J

where WT = [ (vec FENT (vec (Y))" ] includes both E/MEG and fMRI measurements.
Operator vec (-) concatenates the columns of a matrix into a vector. I'w is the covari-
ance matrix of W, and I'w j is the cross-covariance matrix between W and vec (J).
Appendix A presents the detailed derivations for I'w and I'w j. Eq. (5.10) implies that
E/MEG and fMRI measurements jointly determine the estimate of the neural activity.
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This equation is similar to the standard MNE solution [Haméldinen et al., 1993], but
also includes the correlation between the observations Y and F and the correlation
among different time points of the neural current J.

For a fixed J = j, we estimate the parameters ©:

K
0= arg max log p(F, J; ®) = arg 1naXZlogp({fn,3n}nepk; Or). (5.11)
(O] (]
k=1
It is easy to see that this optimization can be done for each region separately:
6, = arg maxlog p({fn, ju}nep; ) Yh=1,-- K. (5.12)

O

As can be seen in Fig. 5.1, when the current distribution J is fixed, the E/MEG mea-
surement Y does not provide additional information for the parameter estimation.
Furthermore, each set of parameters 8, can be efficiently estimated using the EM al-
gorithm [Dempster et al.,1977] by re-introducing the latent variable z; that describes
activation strength of vertices within region k. This method can be thought of as an
extension of the EM algorithm for probabilistic PCA [Tipping & Bishop, 1999] to two
sets of data [Bach & Jordan, 2005].

Specifically, the parameter estimates ék for region k& can be obtained by optimizing
the lower bound of the log-probability:
logp({fnﬁn}nems 9k) > / q(z.) logp({fnﬁn}nepk:zk;Hk)dzk - / q(zy) log p(q(z4))dzy,

2z

Zy

(5.13)

where q(z;,) = p (gk|{fn,3n}nepk; §k) is the posterior probability computed in the E-
step, and §k is the estimate from the last EM iteration. Since {fn,,}n}nepk and z;
are jointly-Gaussian, q(z,) is also a Gaussian distribution, and the M-step update
depends only on the first- and the second-order statistics of z;. Due to this special
structure, we first derive the M-step, followed by the E-step. To simplify notation, we
use (-)4 to denote the expectation with respect to the posterior distribution ¢(z,), i.e.,
(g 2 B [-HEwJn}nen,i 00

In the M-step, we fix ¢(z;) and optimize the right-hand side of Eq. (5.13), and get

é\k = arggmax/ Q(Zk) logp({fm:]:n}nePk’Zn; Hk)de (5'14)
k Zy

T3 Ny, 1(z} T, 'z,
= arggmax N (ngn + u{]n) (2n)q — o (ngk + u;fuk) (22), — §£-—k-—k——k>—q
k
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The detailed derivations of Eq. (5.15) are shown in Appendix B. Setting the derivatives
of Eq. (5.15) with respect to the model parameter vector 8;, = [uk,vk,*y,%] to zero, we

arrive at the update rules:

L\ T - Tp—1
oo Seenbnds o Seenla o 6w,
tr((zxzy )q) tr(@l&k )q) Ny,

Since the M-step depends only on quantities (z,z) )4, (zy)q, and (gEI‘;ngq, we

(5.16)

only need to evaluate those quantities in the E-step:

1 B —1
(2,28 q — [?rk U (vivi +uluy) I} (5.17)
k
T
(2)q — (zazl)e | (ViR +ulTt) o (v, + uldv, )] (5.18)
(Zr Ty 2r)g — (2)q T (2a)g + tr (T {2z )g) - (5.19)

We iterate the EM algorithm until convergence which usually takes less than ten
iterations. We then re-estimate J according to Eq. (5.10).

To summarize, the FIRE inference algorithm proceeds as follows:

(i) Initialize J as the MNE estimate: JMNE) = AT (AAT + )21) 'Y, where

A? is the regularization parameter related to the SNR of the data.
(ii) Repeat until convergence:

1. Compute ) using the EM algorithm:
(a) E-step: construct {q(gk)}kkzl (Eq. (5.17-5.19))
(b) M-step: estimate parameters ® (Eq. (5.16))
2. Update J for ©® = © (Eq. (5.10)).

We also examine FIRE with different initializations. In particular, we use the IMNE
estimate to initialize the algorithm and refer to this method as fFIRE. The IMNE esti-
mate can be expressed as JMNE) = RAT (ARAT + /\21)71 Y, where R is a diagonal
matrix of size N whose values depend on the thresholded fMRI-SPMs of the correspond-
ing locations. A standard choice, as proposed in [Liu et al., 1998], is 1 for locations with
fMRI activation above a preselected threshold and 0.1 for those below the threshold.
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B 5.2 Results

We first compare FIRE and fFIRE to MNE, fMNE, and fARD using simulated data,
including three scenarios closely related to those typically observed in human experi-
ments. We employ a Monte Carlo procedure to estimate performance statistics for each
method. We then proceed to a comparison of the methods using human E/MEG-fMRI

data from a somatosensory study and an attention-shift auditory study.

B 5.2.1 Simulation studies

To simulate MEG measurements, we created two patches on the cortical surface, with
current source orientation along the outward normal to the cortical surface. Shown in
the lateral-occipital view of the right hemisphere (Fig. 5.2), Patch A contains 20 vertices
and is located in the inferior parietal region. Patch B contains 32 vertices and is located
in the superior parietal region. The selection of the source patches is independent of
the anatomical parcellation used in the source estimation. The anatomical parcels are
used in the inference only. We simulated neural and vascular timecourses in these two
patches for three different scenarios: no silent activity, silent vascular activity, and silent
neural activity. In the two cases with silent activities, we kept the activity of patch B
unchanged while silencing neural or vascular activity in patch A. The simulated neural
signals are shown as solid black lines in the rightmost column of Fig. 5.2. The activation
maps corresponding to the peaks of the two simulated neural signals are shown in the
first column.

For the forward calculations, we employed the sensor configuration of the 306-
channel Neuromag VectorView MEG system used in our human studies and added
Gaussian noise to the signals. The resulting signals have a SNR of 3 dB, within the
typical SNR range of real MEG data. Since the two patches are close to each other
in the highly folded cortex and they exhibit neural activity during overlapping time
intervals, it is particularly difficult to obtain accurate current source estimates for this
configuration.

Columns two to five in Fig. 5.2 depict the current source estimates J* obtained via
different methods for the two time points corresponding to the peaks of activity. Fol-
lowing [Liu et al., 1998], the fMNE weighting parameters are set to 1 and 0.1 for active
and inactive fMRI locations, respectively. The hyper-parameters for fARD are selected
according to [Sato et al., 2004b]. The results from FIRE and fFIRE are quite similar in



96 CHAPTER 5. FMRI-INFORMED REGIONAL EEG/MEG SOURCE ESTIMATION (FIRE)

Currents MNE fMNE fARD FIRE Time courses

No silent activity e

32 ms

38 ms

= es b 2 10 20 30 40 50

S angler i

o Time / ms
nt vascular activity in patch A
o} A
20
2 o MWWV
ol -20
o -40
10 20 30 40 50
Time / ms
a0} B
w 20
E o
(==}
o -20
-40
b e ol o e i 10 20 30 40 50
. g G Time /ms

Silent neural activity in ptch A
Figure 5.2. Current source estimates in three scenarios. Lateral-occipital view of the right hemisphere
is shown. Patch A and patch B are highlighted in the top left panel; the rest of the figures follow the same
convention. (Top) Neither neural nor vascular activity is silent. (Middle) Vascular activity in patch
A is silent. (Bottom) Neural activity in patch A is silent. The first column illustrates the simulated
current distributions with a selected threshold at the peak activations. The next four columns show
the estimates from MNE, fMNE, fARD, and FIRE, respectively, for the time of peak activation for
each patch. Hot/cold colors correspond to outward/inward current flow. The rightmost column shows
the simulated (black solid) and the estimated (dashed) timecourses from the most active vertices in
patches A and B. The color of the time course matches with those used for the name of the corresponding

method.
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this simulation setting. We therefore defer the evaluation of fFIRE to the Monte Carlo
procedure presented later this session. Since the estimates from different methods are
not directly comparable in amplitude, the threshold for each method is chosen to be
1/6 of the maximum absolute value of the corresponding current source estimates. The
rightmost column in Fig. 5.2 presents the estimated timecourses (dashed) of the most
active vertex, in terms of energy, in both patches.

No silent activity. As shown in Fig. 5.2(top), the MNE estimates extend across
adjacent gyri. fMNE, fARD, and FIRE correctly localize the two patches at the peak
activation, but FIRE provides a better estimate of the spatial extent of the activations.
The fARD estimate is unstable, as reflected by the large fluctuations in the estimated
timecourses, especially in patch B (Fig.5.2(top), rightmost column, green).

Silent vascular activity. When the vascular activity in patch A is silent, {MNE
shows excessive bias towards patch B. Without a large weight, the amplitude of the
estimated timecourses (Fig. 5.2(middle), rightmost column, blue) in patch A is signif-
icantly lower than the corresponding estimates in patch B. It would be therefore easy
to miss neural activation in patch A when interpreting the results (column three in
Fig. 5.2(middle)). In contrast, by combining neural and vascular information in the
re-weighted scheme, FIRE avoids such a bias. Its estimate in patch A (column five) is
similar to that obtained via MNE (column one). Since the weight for patch B increases
and the weight for patch A decreases during the fARD updates, the estimate in patch
B explains the activation in patch A. As shown in the timecourse panel, the estimated
timecourse in patch B (green) is similar in shape to the simulated timecourse in patch
A (black solid). The change of sign is due to the fact that the outward normals for
patch A and patch B are in approximately opposite directions.

Silent neural activity. As shown in Fig. 5.2(bottom), all methods correctly localize
the neural activity in patch B, except for the small false positive in patch A for fARD.
By assigning identical weights to patches A and B, fMNE estimates a timecourse for
patch A (blue) that is noisier than the corresponding one produced by FIRE (red).
FIRE suppresses the weights for patch A since the current estimates in that patch are
close to zero; its results are closer to the simulations.

Monte Carlo simulation. We repeated the above experiments 100 times for each
of the three scenarios. For each run, the locations of the simulated patches were ran-
domly selected on the right hemisphere. Due to their spatial extent, the selected patches

are likely to span portions of multiple anatomical parcels obtained from FreeSurfer: a
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patch on average spans 3.5 anatomical parcels. Furthermore, in 30% of the trials in the
simulation, the two selected patches cover the same anatomical parcel.

When comparing different estimation methods, we evaluated both the temporal
and the spatial properties of the results. We used the correlation coefficient between
the estimated timecourses and the ground truth ones, in the two patches separately,
to evaluate the ability of the methods to reproduce the timecourses of the activity
(Fig. 5.3, left column). To compare spatial accuracy of the methods, we computed the
receiver operating characteristic (ROC) curve (Fig. 5.3, middle column) and the average
distance between the simulated patches and the falsely detected locations (Fig. 5.3, right
column). To compute the ROC curve, we selected the current estimates J* at two time
points corresponding to the peak activation. For each time point, we then separately
varied the threshold and compared it with the ground truth to compute the true positive
and false positive rates. To compute the distance to false positives, we varied the false
positive rate, and computed the average distance between the falsely detected vertices
and the ground truth activation patches.

We first focus on the temporal correlation (Fig.5.3, left column). For the three
scenarios, FIRE and fFIRE achieve the highest temporal correlation (approximately
0.65), for patches exhibiting both neural and vascular activities (rows 1-3 and 5). The
combination of static fMRI-SPM and the shrinkage prior in the ARD framework causes
unstable timecourse estimates, reflected in low temporal correlation for fARD. When
the patch exhibits neural activity, but no vascular activity, the temporal correlations
are similar across all source estimation algorithms we examined (approximately 0.55).

The ROC curves (Fig.5.3, middle column) demonstrate that fARD, fMNE, and
fFIRE achieve similar detection accuracy for patches exhibiting both neural and vascular
activities. When a patch shows neural activity, but no vascular activity, all algorithms
have similar detection accuracy. As shown in the right column of Fig. 5.3, the falsely
detected locations obtained from MNE, FIRE, and fFIRE tend to be close to the ground
truth patches. In contrast, the falsely detected locations for fARD are relatively far
away from the simulated patches, 5 to 6 cm on average. The standard error decreases
as the false positive rate increases as there are more false positives involved in the
computation of the average distance. Among all algorithms that we examined, fFIRE
provides the best trade-off between the spatial and the temporal accuracy.

We analyzed separately the performance of the 30% of the trials where the two

source patches are located within the same anatomical parcel. Since the two activations
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Figure 5.3. Performance statistics in three scenarios. Left: the correlation coefficient between the

estimated timecourses and the ground truth ones in patch A (top) and patch B (bottom). Middle: the

ROC curves evaluated at the peak activation of the two patches. Right: the average distance from the

simulated patches to the falsely detected locations.
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are close to each other in space, the current estimation is particularly challenging in
this case. We see significant reduction in performance across all methods, and their
performance becomes more similar: the temporal correlation coefficients are 0.16 for
MNE and fMNE, and 0.18 for FIRE and fFIRE; at false positive rate 0.005, the true
positive rates are 0.20 for fMNE and fFIRE, 0.13 for FIRE, and 0.06 for MNE. We
observe that the results for FIRE and fFIRE are quite robust with respect to the
choice of anatomical parcellations. Although FIRE and fFIRE use a less-than-optimal
parcellation in these 30% trials, the performance is equivalent to that of MNE and
fMNE.

B 5.2.2 Human Experiments

We also tested the method using human experimental data. E/MEG and fMRI measure-
ments were obtained in separate sessions. The MEG data were acquired simultaneously
using a 306-channel Neuromag VectorView MEG system; the EEG data were acquired
with a 70-channel MEG-compatible EEG system. A 200 ms baseline before the stim-
ulus was used to estimate the noise covariance matrix of the MEG sensors and EEG
electrodes. fMRI data were obtained with a 3T Siemens TimTrio scanner. Anatomical
images, from a 37T scanner, were used to construct the source space and the forward
model. Informed consent in accordance with the Massachusetts General Hospital ethical

committee was obtained from subjects prior to participation.

Median-nerve experiments

The median nerve at the right wrist was stimulated according to an event-related proto-
col, with a random inter-stimulus-interval ranging from 3 to 14 seconds. This stimulus
activates a complex cortical network [Hari & Forss, 1999], including the contralateral
primary somatosensory cortex (cSI) and bilateral secondary somatosensory cortices
(cSII and iSII).

An average MEG signal, computed from approximately 100 trials, was used as the
input to each method. In this experiment, EEG data were not acquired. The fMRI
images were acquired using a Siemens 3T scanner (TR=1.5s, 64x64x24, 3x3x6 mm3,
single channel head coil).

In the leftmost column in Fig.5.4, the approximate locations for ¢SI (solid), ¢SII
(dashed), and iSII (dashed) are highlighted on the fMRI activation maps (p < 0.005

uncorrected). Given the expected activations, we partitioned the contralateral activa-
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Figure 5.4. Human median-nerve experiments. In the first column, approximate locations for
¢SI (solid), ¢SII (dashed), and iSIT (dashed) are highlighted on the fMRI activation maps (p < 0.005).
Columns two to five show the current estimates obtained via MNE, fMNE, fARD, FIRE, and fFIRE

respectively, at 75 ms after the stimulus onset. Hot/cold colors indicate outward/inward current flow.

tion into two regions, separately covering cSI and cSII. Note that in the noisy SPM,
the sites of fMRI activations do not exactly agree with the locations of the expected
current sources.

Columns two to five in Fig. 5.4 present the estimates at 75 ms after stimulus onset.
At this time, ¢SI, ¢SII, and iSII should be activated. The threshold was set separately
for each hemisphere since the activation in iSII is much weaker than that in ¢SI and
¢SII. For each method, the threshold is set to be 1/6 of the maximum absolute value
of the corresponding current estimates. MNE produces a diffuse estimate, including
physiologically unlikely activations at the gyrus anterior to the cSI area. In contrast,
FIRE and fFIRE p.inpoint cSI to the post-central gyrus. With the prior knowledge from
fMRI, the detected cSII and iSII activations using fMNE, fARD, FIRE, and fFIRE are
within the expected areas. The fMNE and fARD show stronger weighting toward
the fMRI, reflected by the activations in the temporal lobes. fFIRE further detects
activation in the visual area, the middle temporal area (MT) of the left hemisphere. This
false detection is primarily caused by the strong activation in this area present in the
initialization for fFIRE. Due to the highly folded nature of the cortex and uncertainties
in MRI-fMRI registration, fMRI cannot distinguish between the walls of the central
sulcus and the post-central sulcus, causing both walls to show strong vascular activity
after mapping of the fMRI volume onto the cortex. Hence, fMNE, fARD, FIRE, and

fFIRE



102 CHAPTER 5. FMRI-INFORMED REGIONAL EEG/MEG SOURCE ESTIMATION (FIRE)

fFIRE estimates extend to both sulcal walls.

Attention-Shift Auditory Experiments

An auditory attention task was utilized to investigate activations elicited by occasional
attention shifting cues during dichotic stimulation. These activations were presumed to
spread from the primary auditory cortex (Heschl’s gyrus, HG) to surrounding associa-
tion areas within the superior temporal plane (superior temporal gyrus, STG; planum
temporale, PT) [Ahveninen et al., 2006, Hart et al., 2002, Rauschecker, 1998] and the su-
perior temporal sulcus (STS) [Altmann et al., 2008, Lu et al., 1992]

[Williamson et al.. 1991] before extending to higher-order parieto-frontal areas associ-
ated with attention shifting. Functional characterization of different subregions of the
auditory cortex has been difficult in humans. In this experiment, we focus on the perfor-
mance of each source estimation method in characterizing different activation patterns
in the auditory cortex.

Three subjects were recruited for this study, and their task was to press a button
upon hearing a target stimulus (quarter-tone or semitone deviants among standard
tones) in the designated ear and to ignore sounds in the opposite ear. The stimulus
of interest was an occasional “novel” buzzer sound that instructed the subject to shift
attention to the cued ear. During E/MEG acquisition, the cue was presented after every
30 seconds. During fMRI acquisition, attention shifting cues were presented between
clustered EPI acquisitions, after every other TR.

An average MEG signal, computed from approximately 40 trials, was used as the
input to each method. In a separate session, sparse-sampling [Hall et al.. 1999] audi-
tory fMRI data was acquired with a block design (3T Siemens TimTrio, TR=11.7s,
TE=30ms; 48 axial slices 2.25 mm thick, 0.75 mm gap, 3x3 mm? in-plane). Each run
was composed of three blocks, and each block consisted of two active stimulation periods
(11.7 s each) interleaved with one silent baseline period (11.7s).

The top panel in Fig. 5.5 shows the fMRI activation maps (p < 0.0005 uncorrected),
with approximate locations for HG and STS areas highlighted. In this noisy SPM, some
strong vascular activity appears in unexpected locations.

The bottom panel of Fig. 5.5 presents the current source estimates at 92, 125, and
225 ms after stimulus onset for different methods. The threshold is set to be 1/6 of
the maximum absolute value of the corresponding current estimates, similar to other

experiments presented in this section. Similar to the previous experiments, the results
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Figure 5.5. Human attention-shift auditory experiments. The top panel shows the fMRI activation
maps associated with the attention left-shifting task (p < 0.0005). The bottom panel shows the current,
estimates obtained via MNE, fMNE, fARD, FIRE, and fFIRE at 92, 125, and 225 ms after stimulus

onset, respectively. Hot/cold colors indicate outward /inward current flow.

obtained from MNE are too diffuse, especially for the late time frames. The detected
areas using fARD are spatially sparse. fMNE, FIRE, and fFIRE produce physiologically
sound estimates. Compared to fMRI, FIRE and fFIRE remove several diffuse activation
areas in MNE results; the resulting estimates are more similar to fMRI-SPM. Both FIRE
and fFIRE consistently retain the anterior-frontal area, which is present in MNE but
not in fMRI-SPM, indicating that the vascular activation in this area is too weak for
the IMRI measurements.

We further analyzed the estimated timecourses in Heschl’'s gyrus (HG) and the
STS (Fig. 5.6). The neural timecourses in the auditory cortex estimated using different
methods are similar, with the peak time at 92 ms (Fig. 5.6(a)). However, MNE, fMNE,
and fARD cannot distinguish the later activity in STS from the early activity in HG,

reflected in a strong estimated activation before 100 ms in the STS timecourses. In
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Figure 5.6. Estimated neural activity timecourses at the auditory cortex and STS using different

methods.

contrast, FIRE and fFIRE differentiate activations in these two areas, detecting the
activation in STS that peaks at approximately 120 ms. The results for the other two
subjects we analyzed are similar to those presented here. Their early auditory activation
in HG peaks at 93 and 97 ms, and STS peaks at 120 and 111 ms, respectively.

H 5.3 Discussion

The computation for source space and lead-field matrix A is discussed in Section 3.2.1.
The cortical regions for modeling purposes are defined by parceling the cortical surface
using the FreeSurfer software, resulting in 35 parcels per hemisphere [Fischl et al., 2002].
The boundaries of adjacent parcels are defined along sulci. We merge adjacent parcels
that contain fewer than 30 vertices. We also tried another parcellation provided by
FreeSurfer with 85 parcels per hemisphere. The results for this parcellation tend to
be less stable, especially for parcels with few vertices. FIRE is also compatible with
a data-driven parcellation. However, this approach may create a undesirable bias due
to the use of the data in both parcel generation and current estimation. This bias
can be avoided if the data-driven parcellation is obtained using a separate independent
functional data set.

Under the orientation constrains, most forward models A follow a local orientation
convention: the currents flowing outward of the cortex are considered positive, the

currents flowing inward are viewed as negative. That means if a region includes two
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sides of a gyrus, the positive on the two sulcal walls corresponds to currents flowing in
opposite directions. Hence, the local time courses will have opposite signals violating
the assumption of a single time course. In this work, we set the regional orientation
reference to be the largest left singular vector of the matrix formed by the outward
cortical normals within a region. We then modify the sign of the columns in the forward
matrix A corresponding to vertices based on the angle between their normal vectors and
the reference vector. We reverse the sign of a column if the angle between the normal
and the reference vector is greater than 90 deg. To display the estimated current J*, we
reverse the sign alternation and display results using the local orientation convention
mentioned above.

We apply the standard preprocessing to fMRI data, then estimate the hemodynamic
response function (HRF) at each voxel with a finite impulse response regressor covering
a 20-s time window using the FS-FAST software (MGH, Boston, MA). The estimated
HRF is used as the hemodynamic data f,, in our model.

For a source space of N ~ 10,000 vertices and timecourses of Ty ~ 100 and Tg ~
10 samples, FIRE takes less than 20 iterations until the energy function is reduced
by less than 0.1% in the next iteration. In each iteration of the coordinate descent
algorithm, the estimation of ® takes 30 seconds; the estimation of J takes 4 minutes
on a standard PC (2.8 GHz CPU and 8 GB RAM), leading to the total run time of
approximately 1.5 hours. Estimating J involves an inversion of an (MTj + NTfg) x
(MTy5 + NTg) dense symmetric matrix I'w, which is too large to store in memory.
Instead, we employ the conjugate gradient descent method to solve the corresponding
system of linear equations. It usually takes 100 iterations until convergence. Using
the same computational resources, the run time for fARD is shorter since it estimates
the current source distribution at each time point separately, ignoring the dependencies
in the signal across time. The total run time for fARD with 10 iterations is about 5
minutes.

The coupling between the spatial and temporal domains in the joint E/MEG-fMRI
analysis has restricted many previous models to operate on a coarse source space. The
use of a regional neurovascular coupling model proposed in this work reduces the com-
putational burden, leading to a tractable reconstruction on a densely sampled source
space, similar to that typically used in MNE.

In practice, it is often necessary to use different fMRI vs. MEG stimulation sched-

ules. In this work, we used two types of experiments to test FIRE: (a) a somatosen-
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sory experiment with identical MEG and fMRI paradigms and (b) an auditory experi-
ment, which provides an example of a situation where exact matching fMRI vs. MEG
paradigms may be suboptimal. Specifically, in the auditory experiment we used a
blocked sparse-sampling fMRI design to mitigate acoustical scanner noise; adding sim-
ilar interleaved EPI noise/silent baseline periods would have made the corresponding
MEG measurement simply too long for the subjects. These experimental designs were
based on previous studies [Ahveninen et al., 2006, Jaaskelainen et al., 2004]. Although
the general activation patterns are the same across different modalities, we expect that
minor discrepancies remain. Thus, the question on how well we can deal with such
differences using FIRE depends on the underlying theoretical neurophysiological as-
sumptions. One of the major advantages of FIRE is that its underlying generative
model does not force perfect match in activations (Eq. (5.1)), avoiding excessive bias
toward fMRI information.

As mentioned earlier, a more standard inference procedure for our graphical model
would jointly consider J and Z as latent variables in the EM framework, while maxi-
mizing the log likelihood with respect to the model parameters ®. Since [J, Z] and the
measurement are jointly Gaussian given the model parameters @, the posterior proba-
bility distribution of the latent variables [J, Z] is also Gaussian, leading to a closed-form
update. Similar to the derivations in Eq. (5.16), the M-step updates depend on the first-
and second-order statistics of the latent variables, computed in the E-step. Since J is
not fixed in this EM procedure, the estimate at each location depends on the estimate
at all other locations in the source space, as opposed to the region-based estimation
in Eq. (5.12) when J is fixed. Computing the second-order statistics involves solving
NTy + N systems of linear equations, each of which is of size NTg + MTy. In other
words, we need to apply the conjugate gradient solver NTjy + N times, exacerbating
the memory and runtime requirements for the procedure similar to the bottleneck step
in our coordinate descent approach (Step ii-2 in the algorithm summary). Therefore,
treating both J and Z as hidden variables is infeasible except for an extremely coarse
discretization of the source space. Similarly, it is currently computationally infeasible
to compute the variance of vec (j ), since it requires applying the conjugate gradient
solver NTy times. Instead of the variance of the estimate, we provide an alternative
way to study the sensitivity of the solver through Monte-Carlo simulations.

The estimation of u, and vy is closely related to the Canonical Correlation Analy-

sis (CCA), which seeks vectors for projecting two high dimensional data sets ({In}ne Py
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and {f, }nep, in our case) to a low dimensional space so as to maximize the correlation
coefficient between the resulting projection coordinates. The probabilistic interpreta-
tion of CCA, established in [Bach & Jordan,2005], offers a generative perspective on
the method. Moreover, the probabilistic interpretation also helps to naturally extend
the CCA model by incorporating prior information such as prior distributions on the
waveforms U and V.

Since the cost function is not convex, our method depends on the initialization.
MNE estimate is a reasonable choice for initialization since it is unbiased while fMNE
is a good alternative as MNE estimates may be too diffuse in certain brain regions.
Moreover, maximizing the cost function does not necessarily correspond to the best
ROC performance. For the Monte Carlo simulation trials where value of the likelihood
achieved by fFIRE is greater than that of FIRE, the ROC performance of {fFIRE is often
better than that of FIRE. A good ROC performance indicates the results are close to
the ground truth, but it is not perfectly correlated with the likelihood values, which are
based on an approximate model inference.

Our neurovascular coupling model is designed for fixed-orientation current estimates,
since the latent-variable model assumes that the spatial concordance of neural and vas-
cular activities is characterized by a scalar. For free-orientation current estimates, the
neurovascular coupling model would have to be adjusted to handle the correspondence
between the current flow in three directions and a single vascular activation timecourse
at a certain location. Moreover, FIRE assumes a single activation waveform pair, u and
v, in a region. The validity of this assumption depends on the size of the region and
the distance between two activation sources. We cannot easily extend FIRE to multiple
activation waveform pairs per region, since such an extension does not capture the fact
that the shape of the vascular activation timecourses from two distinct sources is often
highly similar but the neural processes are different. In the situation where there are
two distinct current sources in one region, our preliminary results demonstrate that
FIRE can localize the two current sources, but the estimated timecourses are combina-
tions of the true timecourses. We defer the extension for free-orientation estimate and

the extension for multiple activation sources per region to future work.
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B 5.4 Summary

In contrast to most joint E/MEG-fMRI models, we explicitly take into account the
inherent differences in the data measured by E/MEG and fMRI, allowing for common
situations in real experiments where either neural or vascular activity is silent. The
current source estimates can be computed efficiently with an iterative procedure which
bears similarity with re-weighted MNE methods, except that the weights are based on
both the current estimates in the last iteration and the fMRI data via the proposed
spatial neurovascular coupling model. This construction of the weights reduces the
excessive sensitivity to fMRI present in many joint E/MEG-fMRI analysis methods
and leads to more accurate current estimates as demonstrated by our experimental

results of both simulated and human data.
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Conclusions and Future Work

In this thesis, we proposed two novel EEG/MEG inverse solvers: the ¢1fs-norm esti-
mator and FIRE.

To overcome the noise sensitivity of most focal source estimators, such as MCE, we
took advantage of the relatively smooth nature of the underlying EEG/MEG source
signals and computed the current sources for all temporal samples simultaneously. The
resulting ¢14s-norm estimator maintains the focal spatial pattern via £;-norm regular-
ization in space and encourages smooth temporal dynamics through the use of temporal
basis functions and fo-norm regularization. The £1¢5-norm estimator is efficient as it
can be formulated as an SOCP problem and solved using the interior-point method.
Our experiments using both simulated and real EEG/MEG data demonstrate that the
method achieves more accurate source estimation than the traditional approaches.

Despite improvements in estimation accuracy, the ¢1¢s-norm estimator still experi-
ences challenge in differentiating activations on two sides of a sulcal wall due to limited
spatial resolution of EEG/MEG measurements. We incorporated fMRI information,
which has better spatial resolution, into the EEG/MEG source estimation to further
improve the accuracy. Our method FIRE, in general, encourages spatial similarity be-
tween neural and hemodynamic activities. Moreover, it explicitly takes into account
the inherent differences in the data measured by EEG/MEG and fMRI, allowing for
either the neural or the vascular activity to be silent in the EEG/MEG and fMRI
measurements, respectively.

The modeling assumptions underlying FIRE are based on the findings from our
neurovascular coupling experiments using median-nerve stimulation in human subjects
using simultaneous MEG and DOI recordings. Our results show that the neural and
hemodynamic activities generally match in space. Furthermore, temporal analysis of

these two types of activities reveals that the habituation effect in the hemodynamic
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response is stronger than that in the earliest neural response.

Allowing for the different physiological origins of EEG/MEG and fMRI signals,
FIRE avoids excessive bias toward fMRI information exhibited by many EEG/MEG-
fMRI analysis methods. It can further distinguish sources at close spatial locations as
shown in both simulated and real data.

This thesis focuses on subject-specific EEG/MEG source estimation. Looking for-
ward, there are two main avenues for future exploration: group analysis of EEG/MEG
data and source estimation for other image modalities such as DOI.

There is still a wealth of untapped information that could be used for group analysis
in spatial domain, temporal domain, frequency domain, or all. We categorize group
analysis into two main approaches: statistical modeling of the estimated sources across
subjects and a joint source estimation by combining data from multiple subjects.

For the former approach, Oken et al. studied the relationship between inter-subject
EEG spectrum variability and disease therapy [Oken & Chiappa, 1988]. Work by Maesti
et al. compared spatio-temporal differences in current sources between a group of pa-
tients with the Alzheimer’s disease and a group of control subjects using MEG record-
ings [Maestu et al., 2001]. We studied the temporal variation across subjects and across
MEG systems using variance component analysis [Ou et al., 2007]. Our analysis shows
that inter-subject differences are the biggest factor in the signal variability. We demon-
strated that the timing of the peaks is consistent in the early somatosensory response,
which justifies a direct comparison of peak times acquired from different visits, subjects,
and systems. Compared with peak times, peak magnitudes vary substantially across
sites; modeling of this variability is necessary for data pooling.

To the best of our knowledge, no joint EEG/MEG source estimation method has
been demonstrated so far that combines data from multiple subjects. This type of
analysis is commonly seen in fMRI studies, for example, via random effect analy-
sis [Worsley et al.,2002]. Adopting random effect analysis in EEG/MEG source lo-
calization, one can estimate the common spatio-temporal source distribution across
subjects while allowing for inter-subject variability.

Although the ¢1£5-norm estimator is designed for the EEG/MEG source estimation,
we believe that its general concept is applicable to DOI source estimation [Graber et al., 1995,
O’Leary, 1996, Arridge et al..1999]. As mentioned in Section 2.4.2, DOI records near-
infrared light reaching each detector from a light source. One can use the data to infer

scattering and absorption as a function of position in the tissue. Furthermore, the DOI
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scattering/absorption inference share the ill-posed nature similar to the EEG/MEG
source estimation problem.

We expect that the spatial extent of the hemodynamic activity underlying DOI
signals is larger than the neural activity measured by EEG/MEG, so the ¢;-norm reg-
ularization in space may not be optimal. Instead, one can encourage spatial continuity
by applying the ¢1-norm regularization to the spatial derivatives in order to make the
method more suitable to the DOI source estimation. The underlying hemodynamic
source signal of DOI measurements is expected to be smoother than its neural counter-
part. Hence, the use of temporal basis functions and ¢5-norm regularization are directly
applicable.

EEG/MEG and DOI measure neural and hemodynamic activities, respectively.
Moreover, the spatial resolution of EEG/MEG is generally higher than that of DOI
data. By combining EEG/MEG and DOI, we expect to produce more consistent source
estimates, especially for DOI source estimates. To achieve joint EEG/MEG-DOTI anal-
ysis, we can extend the neurovascular coupling model in FIRE to help bridge the gap
between these two types of measurements.

To summarize, the methods proposed and demonstrated in this thesis improve the
accuracy of source estimation from EEG/MEG data and promise benefits for recon-

struction methods in other fields of imaging.
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Appendix A

Second-Order Cone Programming

B A.1 From Quadratic Constraint to Second-Order Cone Constraint

A quadratic inequality constraint can be revised into the canonical form of a second-

order cone. We start with the standard form of a quadratic inequality constraint:
ly — Ajl7, <w (A.1)

With straightforward derivations including expanding the £5-norm and completing squares,

we can show that Eq. (A.1) is equivalent to

<

1—2yTAj+yTy—w)2
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Eq. (A.1) also implies 1 + 2y T Aj — yTy + w > 0. Therefore, setting x¢ = 142y AJQ—y ytw

Aj

T , we arrive at the equivalent second-order cone constraint
12y Aj+y y—w
2

and X =

xo > ||X]||e,- As we can see that the conversion introduces a set of new variables x, of

size M + 2.

B A.2 Second-Order Cone Programming

Second-order cone programming (SOCP) problems are defined by: (1) a linear objective
function, (2) a feasible set that is an intersection of an affine linear manifold with
the Cartesian product of second-order cones. Since the linear objective function and

the feasible set are convex, SOCP problems can be solved by convex optimization
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techniques. The canonical primal form of SOCP is as follows:

min ¢’'x (A.3)
st.Ax=Db (A4)
x€Q (A.5)

where Q = {x : x9 > ||X|l¢,}. Q is also referred to as the Lorentz cone; it is self-dual.
The dual cone Q€ is defined as

QY ={y:vxe Qy"x >0} (A.6)

It is straightforward to prove that the self-dual property, @ = Q€ using proof by
contradiction.

Similar to linear programming, SOCP problems can be solved using the interior-
point method with the logarithmic barrier function for the constraints. Even though
the primal or dual interior-point methods developed for linear programming can be
directly extended to SOCP, as described
in [Nesterov & Nemirovski, 1994), the primal-dual interior-point method is preferred
due to its numerical robustness.

The dual form of Eq. (A.3)-(A.5) is defined as follows:

max bTy (A.7)
st. Aly+z=c (A.8)
zc Q¢ =0Q (A.9)

The general procedure of the primal-dual interior-point algorithm combines the

primal and dual feasibility and the complementarity conditions and yields

Ax=b x€Q (A.10)
Aly+z=c z€Q (A.11)
x'z =0 (A.12)

The above system of linear equations is almost identical to the corresponding one for
linear programming, except for the extra conic constraints in the primal and dual fea-
sibility equations in Eq. (A.10) and Eq. (A.11). In fact, one can combine the two conic

constraints and the complementary slackness condition in Eq. (A.12), and reduce them
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to a more suitable form (Eq. (A.15)) for numerical solvers. The revised system of linear

equations becomes

Ax=Db (A.13)
Aty +z=c (A.14)
xoz=0 (A.15)
x'z
where xoz:= _XTZ | = st + o (A.16)
oz + z2pX :

Tozn + ZoTn

We refer readers to [Alizadeh & Goldfarb, 2001] for detailed derivations.

The primal-dual interior-point method solves this system of linear equations (Eq. (A.13)-
(A.15)) using Newton’s method. The optimization begins with a relaxed version of the
complementary condition (Eq. (A.15)), and slowly strengthens this condition as itera-

tions proceed. Iterations stop once the residual is less than a pre-selected threshold.
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Appendix B

FIRE Inference Details

H B.1 Estimating J

In this Appendix, we describe the estimation procedure for J based on the standard
jointly Gaussian distribution. As mentioned before, W and J are jointly Gaussian. For
fixed @, if we define

T
W= fT(1)7 afT(TF)vyT(1)7"' 7yr(TJ) ) (Bl)
then
r r
W~N(©O,Tw)=A [0, | F ~FY (B.2)

where I'x y are the covariance matrix of the corresponding random variables X and
Y. Furthermore,

I'w T'wy

[ W7t it@), - ,j7(1y) ]T ~N|o0, (B.3)

T
Here, we only show the derivations of the covariance matrices for a single region
(K =1). The extension to multiple regions is straightforward. Based on the definition

of covariance, we obtain

Tr= (v +&1I7) ® Iy

Ty = (uu’ +7’Iy) @ AA" + Iz, (B.4)
Try = (vuT) @ AT
T'wy=[(vu")®Iy, (uu'+2’Iy)®A]
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where Iy indicates identify matrix of size N. Eq. (B.4) assumes a normalized E/MEG
sensory noise with unit variance. Matrix Kronecker product ® stems from the interac-
tions between space and time in the model.

We can then express the conditional distribution p(J|W) using the Bayes’ rule:

p(W,vec (J))

plvee (3)[W) = P2

=N (T s TwW.Ty - T ;Twlwy) .

B B.2 The M-step

In this Appendix, we derive the M-step for estimating ©. When Jis fixed, we employ

the EM algorithm to optimize the model parameters 6, = [ug, vx, ] for each region

separately:
0y = arg mas / 0(2) 108 p({E, 30 Inc e 2n: 01y (B.5)
k Z

= arg max / q(zy) log p({£n, Jn tnep, [2n; Wk, Vi )P(Zk; Vi) A2y,
k Zy

= arg max / q(zi) D (logp(fn!zn;vk) +logp(3nlzn;uk)) dzy, + / q(zy,) log p(zy; vk )dzy,
Zj

ok TlEPk Zy
1 2 1 n 2 1 <Z§fl“zlzk>q 2
= argmax | =5 Z (I — 2nviel“)g — 5 Z (lin — znugl]")q — 37 A~z Ny log i
Ok nepy, nePy Tk
(B.6)
[ N '~ N
= argomax Nkv;{fn (zn)q — Tkvgvk<z,2,>q + Nku;{J,L(zn)q — -;—uguk(z,%)q
N L
1 <Z;fl“zilzk>q 2
2 'y}%
T ™ Ni /o T 2 1(ziT} 'z)q 2
= arggmax Nk; (Vk’ fn + ukJn) (le>q - 7 (Vk Vi + u Uk) (Zn>q - —2“'—‘72‘—““ - Nk log’yk .
k k
(B.7)

Eq. (B.6) is obtained with parameter setting n,% = 513 = 1 as discussed in Section 5.1.2.
Therefore, we only need to update (z,)q, (22)4, and <Z;£I‘;]Zk>q in the E-step. By
equating the derivatives of Eq. (B.7) with respect to ug, vi, and fy,% to zero, we obtain
the M-step update in Eq. (5.16).
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