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Abstract

The introduction of network coding has the potential to revolutionize the way people
operate networks. For the benefits of network coding to be realized, distributed
solutions are needed for various network problems. In this work, we look at three
aspects of distributed control of coded networks.

The first one is distributed algorithms for establishing minimum-cost multicast
connections in coded networks. The subgraph optimization problem can be viewed
as an linear optimization problem, and we look at algorithms that solve this problem
for both static and dynamic multicasts. For static multicast, we present decentral-
ized dual subgradient algorithms to find the min-cost subgraph. Due to the special
structure of the network coding problem, we can recover a feasible primal solution
after each iteration, and also derive theoretical bounds on the convergence rate in
both the dual and the primal spaces. In addition, we propose heuristics to further
improve our algorithm, and demonstrate through simulations that the distributed
algorithm converges to the optimal subgraph quickly and is robust against network
topology changes. For dynamic multicast, we introduce two types of rearrangements,
link rearrangement and code rearrangement, to characterize disturbances to users.
We present algorithms to solve the online network coding problem, and demonstrate
through simulations that the algorithms can adapt to changing demands of the mul-
ticast group while minimizing disturbances to existing users.

The second part of our work focuses on analysis of COPE, a distributed oppor-
tunistic network coding system for wireless mesh networks. Experiments have shown
that COPE can improve network throughput significantly, but current theoretical
analysis fails to fully explain this performance. We argue that the key factor that
shapes COPE's performance curve is the interaction between COPE and the MAC
protocol. We also propose a simple modification to COPE that can further increase
the network throughput.

Finally, we study network coding for content distribution in peer-to-peer networks.
Such systems can improve the speed of downloads and the robustness of the systems.
However, they are very vulnerable to Byzantine attacks, and we need to have a
signature scheme that allows nodes to check the validity of a packet without decoding.



In this work, we propose such a signature scheme for network coding. Our scheme
makes use of the linearity property of the packets in a coded system, and allows
nodes to check the integrity of the packets received easily. We show that the proposed
scheme is secure, and its overhead is negligible for large files.

Thesis Supervisor: Muriel Medard
Title: Professor, Department of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The concept of network coding, introduced by Ahlswede et al. in their pioneering

work [4], is to allow and encourage mixing of data at intermediate network nodes.

This is in contrast to conventional routing networks, where intermediate nodes only

store and forward packets. A receiver in a coded network sees these mixed data

packets and deduces from them the messages that were originally intended for the

data sink. This shift in paradigm has a deep impact on a wide range of areas such

as reliable delivery, resource sharing, efficient flow control, and security [16]. Due to

this deep impact, network coding has generated a lot of research interest in recent

years, and numerous subsequent papers, e.g., [38, 33, 27, 19, 44], have built upon this

concept.

Much work in network coding has concentrated on a particular form of coding,

random linear network coding (RLNC). RLNC was first introduced by Ho et al. in

[19]. It is a coding method that lets nodes randomly pick their own coding coefficients

from a given field without centralized coordination. It has been shown that as long

as the field size is large enough, the probability that the receiver nodes can decode

successfully is close to 1. This coding method is particularly attractive because it is

completely distributed, and is robust to changes.

Network coding provides benefits along many diverse dimensions of communi-

cation networks, such as throughput, robustness, security, complexity, and wireless

resources [16, 22]:



* Throughput - Ahlswede et al. showed in [4] that network coding can achieve

the maximum multicast rate, which is not achievable by routing alone. In ad-

dition, Li et al. [38] and Koetter and Medard [33] showed that linear network

codes suffice to achieve the capacity of a multicast connection in an error-free

network. Beside increasing throughput for a multicast in a wireline network,

network coding has also been shown to improve throughput in unicast connec-

tions [39] and in wireless networks [28].

* Robustness - Network coding provides robustness to both packet losses and

link failures. In a lossy network, we can code packets across time, i.e., mix

packets from the same flow together, to combat packet losses. This method can

achieve the same sending rate as that when using link-by-link erasure codes.

However, unlike the link-by-link erasure codes, the network coding approach

does not require decoding at the intermediate nodes, thus avoid the delay prob-

lem. As for link failures, since network coding allows sharing of network re-

sources among different flows, it can provide path protection and improve re-

source usage.

" Security - From a security point of view, network coding provides both benefits

and drawbacks. Sending linear combinations of packets instead of the uncoded

packets is a natural way to take advantage of multipath diversity for security

against wiretapping attacks. However, network coding also introduces new se-

curity problems as it is particularly susceptible to Byzantine attacks. We will

discuss this in more detail in Chapter 4.

1.1 Distributed control of coded networks

Distributed solutions are desirable for many network problems, as they are scalable,

robust to network changes, and can take advantage of the distributed resources in

the network, such as CPU, storage, etc.. For example, in conventional networks,

routing is done in a distributed manner using algorithms such as the distributed



Bellman-Ford algorithm and the Dijkstra's shortest path algorithm [5]. Distributed

flow management is available for congestion control. Distributed storage and peer-to-

peer file sharing are also examples of distributed network solutions. When network

coding is introduced, we need to develop new distributed methods or modify existing

ones to adapt to the new paradigm.

In fact, distributed methods appear to have a natural place in network coding.

The generation of network codes can be done in a distributed manner through the

use of RLNC as mentioned previously. Another example is the problem of subgraph

selection for multicasts. In routing networks, the subgraph selection problem is the

Steiner tree problem, which is NP-complete, and hard to solve even in a centralized

manner. However, with network coding, we can formulate the subgraph selection

problem into a linear programming problem, and distributed methods are available

to find the optimal subgraph [44].

To transfer the theoretical benefits of network coding into practical systems, we

still need to develop distributed solutions to a variety of problems in coded networks.

In this work, we focus on three aspects of distributed control of coded networks.

The first one is the minimum-cost subgraph selection for multicasts in coded

networks. Similar to routing for unicast connections, when we need to establish a

multicast connection, we have to first find the subgraph on which the multicast can be

performed. As mentioned previously, this problem is NP-complete in a conventional

routing network. However, in a coded network, distributed algorithms are available

to find the minimum-cost subgraph. We study the algorithm proposed in [44], derive

bounds on its convergence rates, and introduce methods to improve its convergence

performance. In addition, we also study the dynamic multicast problem, where the

members in the multicast group is not constant. We propose distributed algorithms

to cater for the dynamic needs of the users, and at the same time, strive to keep the

cost of the multicast low.

The second aspect we look at is distributed network coding for unicasts in wireless

networks. Specifically, we study the COPE system proposed in [28, 29]. COPE is

a packet-level network coding technique that exploits wireless broadcast to improve



throughput in congested networks. The nodes in COPE performs opportunistic cod-

ing, and decoding is done at the next hop. The coding and decoding are performed

locally, and does not require any centralized control. Experiments demonstrate that

COPE can significantly improve the network throughput with UDP traffic. We an-

alyze the coding structures in COPE to understand the reasons behind these gains,

and also, propose modifications to COPE that can further improve its throughput.

Finally, we study the usage of network coding in content distribution in peer-

to-peer (P2P) networks. Network coding has been shown to improve the speed of

content distribution, however, this system is very susceptible to Byzantine attacks.

This is a major obstacle against practical implementation of network coded content

distribution. We propose a distributed signature system that can efficiently detect

the presence of corrupted data in received packets.

1.2 Main contributions

The main contributions of this work are summarized below:

e For static multicast, we present distributed subgradient algorithms to find the

min-cost subgraph, and derive their convergence rate in both the primal and the

dual domains. We also propose various heuristics for dual variable initialization

and primal solution recovery to further improve the convergence rate, and use

simulations to verify their performance. We also show through simulations that

the algorithm is robust to changes in the network and can converge to new

optimal solutions quickly as long as the rate of change in the network is slow as

compared to the speed of computation and transmission.

* For dynamic multicasts, we propose both nonrearrangeable and rearrangeable

algorithms for the subgraph selection problem, and use simulation results to

show that one of our proposed algorithms, the a-scaled algorithm, can effectively

bound the growth of the multicast cost without causing too many disturbances

to existing users.



* We analyze the performance of COPE and argue that the main reason that

shapes COPE's performance curve is the interaction between COPE and the

MAC protocol used in the wireless network. The local fairness imposed by

the MAC protocol among competing nodes plays an important role here. In

addition, we propose a simple modification to the COPE system that can further

improve the network throughput.

" For network coded content distribution in P2P networks, we propose a new ef-

ficient, packet-based signature scheme, designed specifically for RLNC systems,

to detect Byzantine attacks by checking the membership of a received packet

in the valid vector space. This scheme allows an one-hop containment of the

contamination, and its overhead is very small.

Various parts of the work in this thesis appear in various published and as yet

unpublished papers [58, 59, 30, 60, 57, 61].

1.3 Thesis outline

In Chapter 2, we first introduce the background to the minimum-cost sugbraph prob-

lem in Section 2.1. This problem is then formulated in Section 2.2. In Section 2.3,

we present the decentralized algorithm for subgraph optimization, analyze its conver-

gence rate, propose heuristics to improve the algorithm, and simulate its convergence

performance. In Section 2.4, we propose algorithms to cater for the changing need

of a dynamic multicast group, and demonstrate the effectiveness of our algorithms

through simulations.

In Chapter 3, Section 3.1 provides the background on the COPE system and ex-

isting work on its analysis. We present our new analysis of the COPE performance

in Section 3.2, and propose a modification to COPE to improve its throughput per-

formance in Section 3.3.

In Chapter 4, we give the background on network coding in P2P networks and its

security problems in Section 4.1. We present the network model used in Section 4.2,



and the proposed digital signature scheme in Section 4.3. Section 4.4 discusses the

overhead of the signature scheme.

Finally, the thesis is concluded in Section 5.



Chapter 2

Minimum-cost Subgraph

Algorithms for Static and Dynamic

Multicasts with Network Coding

In this chapter, we study the subgraph optimization problem for both static and

dynamic multicasts in coded networks.

2.1 Background

One of the main advantages of network coding over traditional routed networks is in

the area of multicast, where common information is transmitted from a source node

to a set of terminal nodes. When coding is used to perform multicast, the problem

of establishing a minimum-cost multicast connection is equivalent to two effectively

decoupled problems: one of determining the subgraph to code over, and the other

of determining the code to use over that subgraph. The latter problem has been

studied extensively in [19, 23, 20, 13], and a variety of methods have been proposed,

which include employing simple random linear coding at every node. As mentioned in

Chapter 1, such random linear coding schemes are completely decentralized, requiring

no coordination between nodes, and can operate under dynamic conditions [21]. These

papers, however, all assume the availability of dedicated network resources.



In this chapter, we focus on the former problem, which is to find the min-cost sub-

graph that allows the given multicast connection to be established (with appropriate

coding) over coded packet networks. This problem has been studied in [54], [43]. The

analogous problem for routed network is the Steiner tree problem, which is known

to be NP-complete [7, 52]. When coding is allowed, the min-cost subgraph problem

can be formulated as a linear programming (LP) problem, and in this chapter, we

examine algorithms to solve it for both static and dynamic multicasts.

2.1.1 Min-cost subgraph for static multicasts

By static multicast, we refer to the case where a connection is setup for the user

of a multicast group whose membership stays constant throughout the connection

duration. The network topology, on the other hand, is not necessarily static. Lun

et al. showed in [43] that the min-cost subgraph problem can be solved in a decen-

tralized manner by using the dual subgradient method. In Section 2.3, we give an

overview of this method, and study its convergence performance both theoretically

and numerically.

There has been much work on using subgradient method to solve the Lagrangian

dual of a convex constraint optimization problem. The convergence behavior of the

subgradient method used on the dual problem is well understood under various step

size rules. However, in practice, the main interest is in solving the primal problem,

and recovering, from the dual iterations, feasible or near-feasible primal solutions that

converge to the optimal solution. There are special cases where the primal solutions

computed as a by-product of the dual iterations are feasible, such as in [41], but this

is not the case in general. There are only a few papers studying the recovery of primal

solutions from the dual iterations, for example [50], [36], and [31]. Recently, Nedi6

and Ozdaglar also looked at the convergence rate of the primal solutions in [46].

In Section 2.3, we present two slightly different formulations of the min-cost sub-

graph problem, both of which have the same optimal solutions. These two formu-

lations give rise to two different distributed algorithms. One of them gives us a

theoretical bound on the convergence rate of the primal solution, however, its in-



termediate primal solutions are not always feasible. The second one, on the other

hand, produces a feasible subgraph after each iteration, which allows us to start the

multicast with minimum delay. We would like to point out that this is possible due

to the special structure of the network coding problem, and it is not true in general

for the dual subgradient method. More details on this are presented in Section 2.3.1.

We also introduce heuristics to improve the convergence performance of our al-

gorithm, and through simulations, we show that the algorithm produces significant

reduction in multicast energy as compared to the centralized routing algorithm just

after a few iterations, and it converges to the optimal solution quickly.

One of the challenges of wireless networks, such as ad hoc networks and sensor

networks, is variability of the network topology. Topology changes can be caused

by mobility of users, sleeping or waking up of nodes, or the shadowing effect due to

moving obstacles. Our algorithm is also put to test in a dynamic wireless network

model, and we show that the subgradient method is robust to topology changes, and

nodes are able to adjust their transmission power levels to move smoothly and quickly

to a new optimal subgraph in a distributed manner.

2.1.2 Min-cost subgraph for dynamic multicasts

In applications such as real-time video distribution and teleconferencing, users can

join or leave the multicast group at any time during the session. In such cases, we need

to adjust the multicast subgraph to cater for the needs of this dynamic group. Lun

et. al. gave a dynamic programming formulation of this problem in [42], which aims

to deliver continuous service to the users. However, link and code rearrangement,

which are defined later, can still occur under their formulation.

In the context of traditional routing networks, this problem corresponds to the

the dynamic Steiner tree (DST) problem [25]. In DST, it is important to limit the

number of rearrangements as a connection evolves, because rearranging a large multi-

point connection may be time consuming and may require significant use of network

resources in the form of CPU time. In addition, rearrangement of a connection may

result in the blocking of some parts of the connection as rearrangement proceeds.
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Figure 2-1: (a) Example of an online step that causes link rearrangements to existing
users; (b) Example of an online step that causes code rearrangements to existing
users. The multicast rate from source node s to terminal nodes {t1 , t 2, t 3} is 1. The

thick lines indicate links used in the multicast, and the numbers against them indicate

the rate of flow on them.

Therefore, the DST problem comes in two flavors [25, 48]. One is the nonrearrange-

able version, in which rearrangement of existing routes is not allowed. In the other

version, rearrangement is allowed, but the cost of rearrangements is taken into con-

sideration.

The situation is similar in networks with coding. When the membership of the

multicast group changes, we want to minimize the disturbance to existing users in

the group by limiting both link rearrangements and code rearrangements. A link re-

arrangement occurs when some links in the current multicast subgraph is removed

causing alternate paths to be used to serve existing users (see Fig. 2-1(a) for an

example). Like in the routing networks, owing to the change in the physical con-

nection, this kind of rearrangement causes disruptions to the continuous service to

the multicast group. The second kind of rearrangement, which we call code rear-

rangement, is more subtle. Code rearrangement occurs when new incoming links are

added to existing nodes in the multicast subgraph. Fig. 2-1(b) shows an example



for code rearrangements. Since random coding is used by the intermediate nodes in

the subgraph to perform network coding, when a node has an additional incoming

link, it will have to generate a new set of random parameters to mix the incoming

streams. All receivers downstream, therefore, have to use these new parameters and

recompute the inversion matrix to decode the data streams. This scenario does not

involve any physical switching of paths for the existing terminals, but it still causes a

minor disruption to the continuous service due to this reprocessing of network coding

parameters. Note that the disruptions caused by code rearrangements are generally

smaller than that caused by link rearrangements.

In Section 2.4 we present algorithms that adapt to the changing demand of the

multicast group, and at the same time, minimize disturbances to existing users. We

also compare their performances through simulation.

2.2 Problem formulation

In this section, we present the LP formulation of the min-cost subgraph problem in

both wireline and wireless networks. We also derive the Lagrangian dual of these LP

problems, which will be used in the distributed algorithms presented in Section 2.3.

2.2.1 Wireline network

We look at the problem of single multicast in wireline networks, and model the net-

work with a directed graph G = (N, A), where N is the set of nodes and A is the set

of links in the network. Each link (i, j) E A is associated with a non-negative number

aij, which is the cost per unit flow on this link. We assume that the total cost of

using a link is proportional to the flow, zij, on it. For the multicast, suppose we have

a source node s C N producing data at a positive rate R that it wishes to transmit

to a non-empty set of terminal nodes T in N.

It is shown in [4] that a subgraph z is capable of supporting a multicast connection

of rate R from source s to T if and only if the min-cut from s to any t E T is greater

than or equal to R. Hence, the problem of finding the min-cost subgraph can be



formulated into the following LP problem [44]:

minimize f (z) = ( aijzij
(ij)EA

subject to z y;> x(,

x| Z xj. = 61(,)
{jI(i,j)EA} {jl(j,i)EA}

_ > 0

where x corresponds to the virtual flow on link (i, j)
fi

flow on link (i*, j) in the multicast subgraph, and

6(t = {R,

-R,

0

(2.1)
Vi e Nt E T,

V(i, j) E A, t E T,

for terminal t, zij is the actual

if i= s,

if i=t,

otherwise.

Although the decision variables, zij, are unbounded in the above formulation, it

is easy to see that any optimal solution of (2.1), z*, is bounded, i.e.,

0 <3z". bij, V(i, j) E A,

for any bij > R. Thus, including the additional constraint (2.2) in (2.1) would not

change the optimal solution set. However, it will affect its Lagrangian dual, and

consequently, the algorithm for solving this problem. We will see later in Section

2.3.2 that this additional constraint can help us derive a theoretical bound on the

convergence rate of our distributed algorithm.

The Lagrangian dual problem for (2.1) is given by:

maximize q(p) = S q(t) (p(t))
tET

subject to = ag,
tET

p > 0

(2.3)V(i, j) E A,

V(i, j) E A, t E T,

(2.2)

V(i, j) E A, t E T,



q()(p () = min pi ,
X(-x' (ij)CA

Vt E T, (2.4)

and F,,) is the bounded polyhedron of points x() satisfying the conservation of flow

constraints
X (t) 5

{jl(j,i)EA}

x > 0, V(i, j) E A.

Note that subproblem (2.4) is a standard shortest path problem with link costs

p , which can be solved using a multitude of distributed algorithms (e.g., distributed

Bellman-Ford).

When constraint (2.2) is included in the primal problem, the dual problem becomes

maximize

subject to

q(p)= E q(t)(p(t)) + I rij(pij)
tET (ij)EA

p > 0, V(i, j) A, t E T,

(2.5)

where

rij(pij) = min(aij - p: )zi
tET

and Fz is the bounded region of z given by

V(i, j) E A,

V(i, j) C A.

2.2.2 Wireless network

Under this model, we consider wireless networks where nodes are placed randomly

within a 10 x 10 square with a radius of connectivity r. The energy required to

transmit at unit rate to a distance d is taken to be d2 . Let fig be the cost function

of link (i, j), and in our model, fij(ziy) = asyzij where aij = d is the energy required

to send at unit rate over this link and zij is the rate of flow on this link. We justify

this assumption on the basis that we take energy as the most significant constraint,

so there are, for example, sufficient time or frequency slots to guarantee that no two

where

{jl(i,)eA}

r(t) 6(t) Vi (E N

0 < z'j < bi, I



J2 j2

J3 j3

Area covered by node i when
transmitting at power level a 3

Figure 2-2: The "wireless multicast advantage" associated with omnidirectional an-
tennas. The three destinations ji, j2, and ja can all be reached at the same time with
cost ai,, and this is equivalent to having three unit capacity links from i to ji, j2, and

ja. Here, we also included a virtual unit-capacity link (i, i') to impose the constraint
that information transmitted on the three links must be the same.

transmissions ever interfere. This model is discussed in more depth in [44].

We consider wireless networks in which antennas are omnidirectional. When we

transmit from node i to node j, we get transmission to all nodes whose distance

from i is less than that from i to j "for free" - a phenomenon referred to as the

"wireless multicast advantage" in [53]. If we impose an ordering - on the set of

outgoing links from i, such that (i, k) (i, j) if and only if ak :k a , we can then

assume that we obtain a lossless broadcast link of unit rate from node i to all nodes

k such that (i, k) -< (i, j) for cost as,. Consider the example shown in Fig. 2-2, where

there are three nodes within distance r from node i. If node i transmits with power

a ih to node j3, the two nearer nodes, ji and j2 also receive this information without

additional cost. Thus, the situation here is quite different from the wireline case.

Instead of picking links to transmit on in the wireline networks, the nodes in wireless

networks pick power levels to transmit with, and this in turn determines their radius

of coverage.

Similar to the wireline case, in a wireless network, the min-cost subgraph that

can be used to perform multicast with network coding is given by the following linear



optimization problem:

minimize f (z) = aijzij
(i,j)EA

subject to E
z -M

{jI(i,j)EA}

> 0

(zik - x(0) > 0,

z =t) (t)
X* M M

32 2 i

(2.6)

Vi c Nt c T,
{jil(j,i)EA}

V(ij) E A, t E T,

Here, A' is a subset of A with the property that the constraint

{kI (i,k)EA,(i,k)>-(i,j)}

is unique for all (i, j) E A'.

The subgraph optimization scheme also uses the Lagrangian dual of (2.6) given

below.

maximize q(p) = q(t) (p(t))
tET

subject to E
k (i,k)EA',(i,k)-(ij)

pT > 0,

(2.7)

Pi aij,
tET

V (i, j) c A,

V (i, j) E A', t E T,

where

q(t) (p(t)) = min
X ME Fx (i~j)EA {k(i, k)EA',(i,k)-<(ij)}

(2.8)

and FM is the bounded polyhedron of points z) satisfying the conservation of flow

constraints.

To simplify the constraints in the dual problem (2.7), we can sort the outgoing

links from node i in A' according to their costs. Note that in A', no two outgoing

links from a node i are of the same cost. Consider the example in Fig. 2-2 where there

are three outgoing links from i with (i, ji) -' (i, j2) -N (i, ja), the equality constraints

V(i-, j) E A', it E T,

(zk 0 x ) > 0



in (2.7) with respect to these links become

Z() =ij,
tET

Zd M) +Z.. EPM -a
ij p+ p aij2,ii

tET tET
P p +E( + Z p =a

tET tET tET

These are equivalent to

Z p =i
tET

1p2 = ij2

tET

Z pg =ar
tET

Therefore, if we define

si -= aj max aik,
{kl (i,k)EA',(i,k)-<(i,j)}

the dual problem (2.7) can be simplified to

maximize

subject to

E qM (p) W
tET

XI =sg,
tET

pt) > 0,

V(ij) C A,

V(ij) E A', t E T.

2.3 Decentralized min-cost subgraph algorithm for

static multicast

We focus on static multicasts in this section. Section 3.1 gives an overview of the

dual subgradient method for decentralized subgraph optimization. The convergence

rate of this method is analyzed in Section 2.3.2. Various heuristics to improve the

convergence performance of the canonical algorithm in both static and dynamic wire-

less networks are presented in Section 2.3.3, and Section 2.3.4 gives some numerical

(2.9)

(2.10)

- aiji,

- aij2-



results.

2.3.1 Subgradient method for decentralized subgraph opti-

mization

The subgraph optimization scheme in [44] tries to converge to the optimal primal

solution by using subgradient method on the dual problem. This algorithm is com-

pletely decentralized and each node only has to know the cost of its incoming and

outgoing links, and exchange information with neighboring nodes. We first give an

overview of the algorithm under the wireline network model in Section 2.3.1. Section

2.3.1 describes the extension of this algorithm to the wireless case.

Subgradient method in wireline networks

In the following, we describe the distributed algorithms for solving (2.1) with and

without constraint (2.2). We refer to the algorithm that solves problem (2.1) and its

dual (2.3) as Algorithm A, and the algorithm for solving the primal with constraint

(2.2) and dual (2.5) as Algorithm B. Most of the discussions and simulations in Section

2.3 are based on Algorithm A, since it has better convergence performance in practical

settings. However, in Section 2.3.2, we use Algorithm B to derive a theoretical bound

on the convergence rate of the primal solutions, which is not available for Algorithm

A.

Algorithm A

1. Initialize p[O] - Before the first iteration, each node initializes p[O].

2. Compute x[n] - In the nth iteration, use p[n] as link costs, and run a dis-

tributed shortest path algorithm to determine x[n].

3. Update p[n + 1] - Update p[n + 1] using subgradient obtained through x[n]

values.

p[n + 1] := [p[n] + [n]g)[n],



where g[n] is the subgradient for p[n], O[n] is the step size for the nth iteration,

and [.] denotes the projection onto the constraint set P in (2.3). This projec-

tion can be done in a distributed manner, and specifically, p [n + 1] is given

by

p [n + 1] = max (0, p [n] +[n]z)[n] + dig[n] , (2.11)

where dij[n] < 0 is a number computed based on the p[n], x[n], and O[n] values

[44].

4. Recover zi[n] - At the end of each iteration, nodes recover a primal solution,

z[n], based on the dual computations. Let {p 1[n]}1 _1,...,n be a sequence of convex

combination weights for each non-negative integer n, i.e., E1" 1 11 [n] = 1 and

pu[n] > 0 for all 1 = 1, ..., n. Further, let us define

'Yin = l ,n 7 1, ... n, n = 0, 1, ...,I

and

2 = max {OYn - 'Y(-1)n}.

According to [50], if the step sizes {6[n] } and the convex combination weights

{i [n] } are chosen such that

(a) 71n > 7(1-1)n for all l = 2, ...n, and n = 0, 1, ...,

(b) A-yn" -+ 0 as n -+ oc, and

(c) 1n -+ 0 as n - o and ynn for all n = 0, 1,...,for some 6 > 0,

then we obtain an optimal solution to the primal problem (2.1) from any accu-

mulation point of the sequence of primal iterates {z[n]} given by

]= pZ-ti[n] )[l], n = 0, 1, ...
1=1

An example of a set of parameters that satisfy the above conditions are O[n] =

n-a for n = 0, 1, 2, ... where 0 < o < 1, and pi[n] = 1/n for n = 1, 2,3, ... and



5. Determine '[n] - Each node computes the z[i[n] values from the z)[n]
values. In order to minimize the cost, zij[n] = maxteT z [n).

6. Repeat - Steps 2 to 5 are repeated until the primal solution has converged.

For details of this algorithm and related proofs, please refer to [44].

Since the intermediate {z[n], z[n]} values after each iteration are always feasible

solutions to the primal problem, we do not have to wait till the primal solution

converges to start the multicast. Instead, the multicast can be started after the first

iteration, and we can shift the flows gradually through the iterations to operate on a

more cost effective subgraph. Note that in general, this is not true for dual subgradient

methods, and it works out here due to the unique structure of the network coding

problem. Specifically, the flow variables, zij, are not involved in the flow conservation

constraints, and they do not appear in the dual iterations. This allows us to pick

feasible z values after each dual iteration based on a set of feasible virtual flows x.

If the boundedness constraint (2.2) is included in the primal problem, we have

Algorithm B for solving this new problem and its dual (2.5).

Algorithm B

1. Initialize p[O].

2. Compute x[n] and z[n] - Computation of x[n] is the same as that in Algo-

rithm A. For z[n], we have

0, if p ;aij,

= tET

Zij[ n]b ij , if pE ;t) > a i.
tET

3. Update p[n + 1] - Update p[n + 1] using subgradient obtained through x[n]

and z[n] values.

g [n] = x [n] - zij [n],



p([n + 1] = max (0, p[n] + O[n]g)[n]).

4. Recover z[n] - Recovery of the primal solution z[n] is done by taking a convex

combination of all past z[n] values, similar to the recovery of z[n] in Algorithm

A.
n

[]= Z]pi[n]z, [1], n = 0, 1,...
/=1

5. Repeat - Steps 2 to 4 are repeated until the primal solution has converged.

As we will see in Section 2.3.2, Algorithm B gives us a nice theoretical bound on the

primal convergence rate of the min-cost subgraph problem, which is not available for

Algorithm A. However, a major drawback of Algorithm B as compared to Algorithm A

is that the z[n] values are not always feasible, therefore, we cannot start the multicast

right away as in the case of Algorithm A. This is very undesirable in practice, and is

one of the main reasons why we only focus on Algorithm A in our simulations.

Subgradient method in wireless networks

The main steps in the distributed min-cost subgraph algorithm for wireless networks

are the same as that in Algorithm A of the wireline case, except for steps 3 and 5,

in which some modifications are required. The details of the changes are highlighted

below.

In step 3, when updating p[n + 1], the subgradient for pij [n] in the wireless case

is given by

{k I(i,k) EA, (i,k) :(ij)}I

and again, pij[n + 1] is the Euclidean projection of pij[n] + 6[n]gij[n] onto the feasible

set Pi.

In step 5, we compute z[n] based on the recovered primal solution z[n]. Recall

that in the primal problem (2.6) we have the constraints

(ik -x() ;> 0, V (i, j) c A', t E T. (2.12)
{kl(i,k)EA,(i,k)>-(i~j)}



Assume that the sorted list of outgoing links from node i in A' based on their costs is

{(i, j), ... , (i, jk)}, and start from the most expensive links (i, ik), the above constraint

becomes

it) >i V t ET.

To minimize total cost, the optimal ziJk value should be maxteT z'. In cases where

more than one outgoing links are of the same cost, we just need to make sure that the

sum of the flows on these links satisfy constraint (2.12). The distribution of the total

flow among these links can be done randomly without affecting the total cost. Once

Zijk value is determined, we can move on to the second most expensive link (i, jA-1),

whose constraint now becomes

(iijkl Ilk- 1 )± (niik it)) > 0, V t E T,

and we have Zij_ = maxtErx_ + zt. ) - zijk. By repeating the above process, we

can obtain the optimal primal solution z from z.

2.3.2 Convergence rate analysis

In this section, we study the convergence rates of our dual subgradient method pre-

sented in Section 2.3.1 in both the primal and the dual spaces. For clarity of presen-

tation, we use the wireline model in this section, as its notations are much simpler

than the wireline one. All results here can be easily extended to the wireless case.

Convergence rate for the dual problem

The analysis and results in this subsection apply to both Algorithm A and Algo-

rithm B. Here, we will just present the analysis for Algorithm A, as the extension to

Algorithm B is fairly straight-forward.

With properly chosen stepsizes, the standard subgradient method proposed in

the Section 2.3.1 converges to dual optimal solutions eventually [6], but it is hard

to analyze the convergence rate of the standard method. To this end, we consider



the incremental subgradient method studied in [45]. The incremental subgradient

method can be used here because the objective function in (2.3) is the sum of |TI

convex component functions, and the constraint set is non-empty, closed and convex

(see Chapter 2 of [45]). At each iteration, p is changed incrementally through a

sequence of |T| steps. Each step is a subgradient iteration for a single component

function q(t). Thus, an iteration can be viewed as a cycle of |T| subiterations. Denote

the terminal nodes by {1, 2,.. ., NT}, where NT= |T|. The vector p[n+ 1] is obtained

from p[n] as follows.

Oo[n] P~n],

'#i[n] [4i_1[n] + 9[n]g(i)[n]]+,

p[n + 1] := NT n -

We first prove two propositions that are useful for the convergence rate analysis.

Proposition 1. Problem (2.3) satisfies the subgradient boundedness property, which

means there exists a positive scalar C such that

||g| ; C, Vg E aq(t)(p[n]) U aq(t)(p _,),

Vi = 1, ..., N, Vn.

Proof. This is true because q(t) is the pointwise minimum of a finite number of affine

functions, and in this case, for every p, the set of subgradients 9q(t)(p) is the convex

hull of a finite number of vectors. Thus, the subgradients are bounded. E

Proposition 2. Let the optimal solution set be P*, there exists a positive scalar y

such that

q* - q(p) > p(dist(p, P*)) 2, Vp E P.

Proof. Problem (2.3) can be reformulated into a linear programming problem as fol-



lows.

maximize q'(v6) Z ((r t) R R (<) - r ) (2.13)
tET ieN tET

subject to r( - r)< P p V (i,j) E A, t E T,

p( aj, V (i,j) E A,
tET

p ) 0, V (j)E A, t E T.

The decision vector, v, is a concatenation of vectors p and r, and we denote the

feasible set by V. For any feasible p C P from (2.3), there is a corresponding v in

(2.13) with the same p-component and q'(v) = q(p). Furthermore, for any feasible

V C V, we can extract a p vector from it that gives the same total cost in (2.3).

Therefore, the two formulations (2.3) and (2.13) have the same optimal values, i.e.,

q* = q*

Since the set of solutions for a linear programming problem is a set of weak sharp

minima [9], there exists a positive a such that

q'* - q'(v) > a(dist(v, V*)), Vv E V.

So for any p E P in (2.3), we have

q* - q(p) = q'* - q'(v) > a(dist(v, V*)) > a(dist(p, P*)).

The last inequality comes from the fact that p/P* is the projection of v/V* on P,

and the projection operation is non-expansive. Since P is a bounded polyhedron, the

distance between any two points in P is bounded, i.e., dist(p, p') < B for all p, p' C P

for some positive B. Therefore,

q* - q(p) > -(dist(p, p*)) 2

-B

Let y = a/B, and the proposition is proved. l

With these propositions, we have the following result for constant step size.



Proposition 3. For the sequence {p[n]} generated by the incremental subgradient

method with the step size O[n] fixed to some positive constant 0, where 0 < , we

have

p) 2±0|T|2C2
(dist(p[n + 1], p*)) 2 < (1 - 20p)n+1 (dist (p[0], P*))2 + J

2p
Vn. (2.14)

Proof. The proof for this proposition follows from Proposition 1.2 and the proof of

Proposition 2.3 in [45]. Since the dual problem satisfies Proposition 1 (bounded

subgradient), from Lemma 2.1 in [45], we have

||p[n + 1] - r|| 2 < ||p[n] - r112 - 20(q(r) - q(p[n])) + 021T12C2 ,

Using this relation with r = p* for any optimal p* E P*, we see that

||p[n + 1] - p*|| 2 <2 - 20(q* - q(p[n] )) +02|T|2C2,

and by taking the minimum over all p* E P*, we have

(dist(p[n + 1], p*)) 2

K (1 - 20p)(dist(p[n, p*)) 2 + 02 |T12 C2,

Vr E PVn.

Vr E P,Vn, (2.15)

(2.16)
Vn,

where the last inequality comes from Proposition 2. From this relation, by induction,

we can see that

(dist(p[n + 1], p*)) 2 < (1 - 20p)(n+l (dist(p[O], p*)) 2 + 02 |T12C 2 Z(1 - 20p)i, Vn,

which combined with

(1 - 20pu)i <
o20pt

yields the desired relation (2.14).

In summary, we have shown that the convergence rate for the incremental sub-

gradient method on (2.3) is linear for a sufficiently small stepsize. However, only

< (dist(p[n], p*)) 2 - 20(q* - q(p[n])) + 02 IT12C 2



convergence to a neighborhood of the optimal solution set can be guaranteed, which

is typical for constant step size rules. Moreover, our result also highlights the trade-off

between the error and the convergence rate constant. The smaller the 0 value, the

smaller the size of the neighborhood, but on the other hand, we get slower conver-

gence.

Convergence analysis for the primal problem

As mentioned in Section 2.3.1, it is advantageous to use Algorithm A in practice,

as its primal solution is always feasible through the iterations. Unfortunately, due

to the unboundedness of zij in formulation (2.1), it is very hard to derive its primal

convergence rate. Therefore, in this section, we turn our focus to Algorithm B, for

which we derive a bound on its convergence rate.

We first prove that our primal problem (2.1) with constraint (2.2) satisfies the

Slater condition in Proposition 4, then present the main convergence rate result in

Proposition 5.

Proposition 4. The Slater condition There exists a vector {2, z} E F such that

ij> 2 V(i, j) E A, t E T., (2.17)

where F = {F., F,} is the feasible set for the boundedness constraints for z and the

conservation of flow constraints for x.

Proof. For the virtual flows, P , based on the conservation of flow constrains, there

exists feasible solutions where z < R for all (i, j) E A and t E T. Since the upper

bound on zij is bij > R, we can always find a set of z that is strictly greater than the

corresponding x. Therefore, our primal problem satisfies the Slater condition. L

Proposition 5. Let {, zt} be a Slater vector satisfying (2.17), and C be the subgra-

dient norm bound in Proposition 1, define

* 2 1 C2
B* -( () q* ) + max ||p[0]||1, -y( f )- q* ) +2- + GC ,



where -y = m 2 - 24). If constant stepsize 0 is used in the dual iterations,
{ijjEA,tET i

and simple averaging is used in the primal recovery, i.e., 1 i [n] = 1/n for I = 1, 2, ..., n,

then the primal cost after the nth iteration is bounded by

1 (B* |p[O]|| 2  0C2

f* n- [ 2n0 2

Proof. We first derive the lower bound on f(z[n]) (the left side of (2.18)). Recall that

in Algorithm B, gg [n] = g(zij [n], 4) [n]) = x [n] - zij [n], and

p[n + 1] = max(0, p[n] + Og[n]) > p [n] + Og [n],

we have

Og(z[n], x[n]) < p[n + 1] - p[n] Vn > 0.

(2.18)

n-I

Therefore, >3 Og(z[n], x[n]) < p[n] - p[O] < p[n], where the last inequality follows
imO0

from p[0] > 0. By the convexity of the function g, it follows that

g([n], z[n]) < E g (z[n], x[n]) = Og(z[n], x[n])

i=0

Sp[n]
-nO

Because p[n] > 0, the positive elements in g(z[n], z[n]) satisfy g(i[n], z[n])+ < p[n]/nO

for all n > 0. Let the amount of constraint violation of (i[n], z[n]) be ||g(z[n], z[n])+1,
we have

g([n],z[n])+< p[n]
no

Vn > 1. (2.19)

Given a dual optimal solution p*, we have

q(p*) = q* < f (z) + (p*)'g(z, x)

for any x E F2 and z C Fz. Thus,

= f (%[n]) + (p*)'g(z[n], z[n]) - (p*)'g(z[n], z[n])

> q* - (p*) 'g ([n, J[n]).

f (z[n)) (2.20)

n-1 n-1

i=0



Because p* > 0 and g(zfn], z[n])+ > g (z n], z6[n]), we further have

-(p*)'9(2[n],a[n]) 2 t llows ,t[h])+tn)

From (2.19)(2.20) and (2.21), it follows that

f (z[n]) q -

(2.21)

(2.22)||p[n]||||p*| .

Since our primal problem satisfies the Slater condition and the dual iterates have

bounded subgradients, from Lemma 1 and 3 in [46], we have

|1p*|| 1 -(fQz) - q*) and ||p[n]I| B*

where -y and B* are defined in the above proposition. Substitute these bounds into

(2.22), and we have the lower bound on f ([n])

f(z[n]) > q* - -[f(f) - q*] B*

Next, we derive the upper bound on f (z[n]) (right side of (2.18)). By the convexity

of f(z) and the definition of (z[n], x[n]) as a minimizer of the Lagrangian function

f(z) + p'g(z, x) over x E Fx and z E Fz, we have

n-i

f (zn]) 1f (z n])

i=0
n -1 n-1

(f (z[i]) + p[i]'g(z[i], x[i])) p[i]'g(z[i], x[i])
0 ii=O

n-1n-
- 1 q (p[in]) - p[i]'g(z[], x

i=O i=O
1n-1

i=O

(2.23)

Since p[n + 1] = [p[n] + Og[n]]+, by using the non-expansive property of projection

Vn > 1,



and the fact that 0 is in the feasible region of the dual problem (2.5), we have

||p[i + 1]| 2  2 < lp[i]1' + 20p[i]'g[i] + 2 12g[Z]1 2_

Since g[i] = g(z[i], x[i]), we further obtain

-p[i]||2 _ ||p[i + 1]1| 2 + 2O||g(z[i], x[i])| 2
-p[i) g(z[i], z[i]) <_ , 0 < Z < n - 1.

20

By summing over i = 0,1,..., n - 1, and combining with (2.23), we have

||p[]||22 g n-1

f(i[n]) < q* + + ( |g(z[i],z[i])||2
2n0 2n (2.24)

< q* +1p[01 2 + YC2  Vn > 1.

By combining (2.22) and (2.24), we have the desired relation.

This proposition shows that when using constant stepsize, the primal solutions

converge to a neighborhood of the optimal solution with rate 0(1/n). We are inter-

ested in the constant stepsize rule for dual subgradient algorithms, mainly because

of its practical importance and simplicity for implementations. Note that there is a

trade-off between the size of the neighborhood and the convergence rate. If we want

the primal solution to be close to the optimal one, we need to choose a small stepsize,

but this would make the convergence rate very slow. This is a typical problem with

using constant stepsize, and one way to avoid this situation is to use diminishing

stepsize.

2.3.3 Initialization and primal solution recovery

In order to improve the convergence performance of the subgradient algorithms, we

introduce some heuristics for steps 1 and 4 in the algorithm presented in Section 2.3.1.

Specifically, we propose several methods for initializing the dual vector p[O], and for

recovering primal solutions {z[n]}, for both static and dynamic wireless networks.



Static networks

We start with static networks, where the topology of the network is fixed throughout

the multicast. We first introduce a naive way of initializing the dual variables.

* Averaging method - The simplest way to generate feasible initial values for

the dual variables is to assign p() = s /NT for all t E T and all (i, j) c A. This

method is useful in static networks since no prior information of the multicast

problem is available at the nodes.

For the recovery of primal solution z[n], we have the following two options.

* Original primal recovery - This is the recovery method presented in step

4 in Section 2.3.1 with simple averaging.

" Modified primal recovery - Using the original primal recovery method, we

observed in simulations that the cost of the multicast starts at a high value, and

then converges slowly to the optimal value through iterations. One reason for

the slow convergence is that it is recovered by averaging x[n] values from all the

iterations. The effect of the first few high cost iterations takes a large number

of iterations later to dilute. A heuristic way to improve the convergence rate is

to discard these "bad" primal solutions after some time, and just average over

the most recent Na number of iterations in primal solution recovery.

Dynamic networks

As opposed to the static assumption, many wireless networks have topologies that

are dynamic. Whenever a topology change occurs, we need to restart the distributed

algorithm, as the subgraph used for multicast before the topology change might have

become infeasible. In such cases, all the methods discussed in the previous subsec-

tion for dual variable initialization and primal solution recovery are still applicable.

However, since the difference between the optimal solutions to the multicast problem

before and after the changes are usually small, we should make use of the solutions ±

and P before the topology changes in the new iterations to improve the convergence



rate. We propose additional methods to initialize p and update z, that make use of

this old information.

For dual variable initialization, we present two additional heuristics.

" Scaling method - In this method, each node i scans through its set of out-

going links in A'. If a link (i, j) is an existing link in A' before the topology

change, scale the {ff~) } values so that they satisfy the new dual constraints.

Specifically, denoting EtCT ) = ij, we assign

(t ) - (t) X S8j
Z3 ZJ ij

On the other hand, if link (i, j) is a new link after the topology change, we

simply use

" Projection method - In this method, we use an intermediate P which is

given by

P)f ) if (i, j) is an old link,

0 if (i, j) is a new link.

We can then project this P onto the new feasible region of the dual problem

using (2.11) to obtain an initial point P for the decentralized algorithm.

On the primal side, we observe that as long as no removed link was in the multicast

subgraph used before the topology change, the old {.[n] } values from the previous

iterations are still valid under the new topology. Thus, they can be used in the

recovery of the current primal optimal solution. Based on this observation, we propose

the following heuristics for primal solution recovery.

* Look-back primal recovery - When a topology change occurs, each node

checks if any of its links used in the multicast is removed owing to topology

change. If yes, it sends out a signal to all nodes, and {z[n]} is computed

based only on the new {x[n]} values as in the original primal recovery method



above. On the other hand, if no link is removed, the averaging is done over Na

iterations before and after the topology change. The assumption that nodes can

be informed of the removal of an active link within one iteration is reasonable,

since, in each iteration, distributed Bellman-Ford is used to compute x[n] and

sending such a signal to all nodes should take less time than running distributed

Bellman-Ford.

2.3.4 Simulation results

Static networks

We use the wireless network model presented in Section 2.2.2 for our simulations,

because wireless networks are a primal application for network coding. The random

wireless networks are setup in a 10 x 10 square with a rate of connectivity r = 3.

We run the distributed algorithm to determine the minimum energy subgraphs on

these networks for multicast connections with unit rate. Here, the energy required to

transmit at unit rate to a distance d is taken to be d2 . We assume that there is no

collision or interference in the network. Simulations results showed that the standard

subgradient method has a better convergence time as compared to the incremental

subgradient method, thus, in this section, we only present results for the standard

method for Algorithm A.

Fig. 2-3 shows the average convergence performance for the proposed algorithms

for networks with 30/50 nodes and 4/8 terminals in the multicast. The step sizes

used in the subgradient method are 0[n] = n- with a = 0.8 for n = 0, 1,-- . For the

modified primal recovery method, the parameter Na is set to 30. As we can see, the

two primal cost curves coincide for the first 30 iterations, and after that, the modified

method converges to the optimal value faster than the original method.

To compare the performance of the proposed scheme to the cost of multicast when

network coding is not used, we use the Multicast Incremental Power (MIP) algorithm

described in [531, which is a centralized heuristic algorithm to perform minimum-

energy multicast in wireless networks. For the same setting, the average cost values



for the multicast given by MIP algorithm are also shown in Fig. 2-3. As can be

seen, in both cases, even the initial high cost values from our distributed algorithms

are lower than that from the centralized MIP algorithm. Moreover, in fewer than

50 iterations, the cost of the multicast using modified primal recovery is within 5%

higher than the optimal value. Therefore, in a small number of iterations, the decen-

tralized subgraph optimization algorithms yield solutions to the multicast problem

with energy significantly lower than that for multicast without network coding even

if a centralized scheme is used.

To have a feel of how Algorithm B would have performed in the above scenario, we

observe in Fig. 2(a) that after 200 iterations, the cost difference between Algorithm

A and the optimal value is about 0.5. For algorithm B to arrive at a neighborhood

of the optimal solutions of this size, the stepsize should be smaller than 0.016 even if

we use a very small C = 5. With this stepsize, it would take Algorithm B thousands

of iterations to arrive at where Algorithm B is in 200 steps. Therefore, for all our

simulations, we will use Algorithm A only.

Dynamic networks

To illustrate the performance of our algorithms in dynamic networks, we use ran-

dom networks with mobile nodes. The mobility model used in our simulations is the

Random Direction Mobility Model [10], where each node selects a random direction

between [0, 27] and a random speed between [minspeed, maxspeed]. A node travels

to the border of the simulation area in that direction, then randomly chooses an-

other valid direction and speed, and continues the process. Note that our algorithms

are applicable to all mobility models, and we have chosen this specific one for its

simplicity.

In our studies, we assume that the nodes are traveling at a speed that is slow rel-

ative to the node computation speed and link transmission rate. Under such assump-

tions, we consider the movement of the nodes in small discrete steps, and between

each step, the set of links in the network and their costs are considered constant. We

refer to the period between two discrete steps as a "static period", and let the number
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of subgraph optimization iterations performed within each static period be N,.

We ran simulations for the various methods presented in Section 2.3.1. For dual

variable initialization, we only present results based on the projection method, since

it gives the best performance. Here, each node has a random speed in the interval

[0, 0.1] units/static period. We choose this range because the steps taken by the nodes

with such speeds are relatively small as compared to r, and our assumption that the

network is static between steps is valid. Also, this is a relative speed of the nodes

with respect to the static period, and we can vary N, to simulate different actual

speeds of the nodes.

To illustrate the typical performance of the subgraph optimization scheme in a

mobile wireless network, Fig. 2-4 shows the costs for each iteration for an instance of

the multicast problem. As expected, if we flush the memory of {s[n]} at the end of

each static period, and start accumulation for the primal cost afresh, the cost of the

multicast is very spiky. On the other hand, if old {i[n]} values are used when they

are feasible, the primal cost is usually much smoother. Of course, if node movement

renders the old {r[n]} values infeasible, we have no choice but to start afresh, and

the curves for original primal recovery and look-back primal recovery coincide (as in

the 2nd static period in Fig. 2-4).

In Fig. 2-5, we show simulation results under different network and multicast

settings, and for nodes with different speeds. The parameter Na used in the modified

primal recovery is set to 20. First, we compare the performance of the three options

to recover primal solutions. Under the same settings, look-back primal recovery

gives the lowest average cost, followed by modified and original primal recovery. We

also observe that when the same methods are used, the faster the node moves, the

higher the average primal cost is, owing to the lack of time for the algorithm to

converge. Also, a network with more nodes or a multicast with more terminals makes

convergence of the decentralized algorithm slower, and thus results in higher average

primal cost.

The simulation results have shown that the decentralized subgraph optimization

scheme is robust in mobile wireless networks when the nodes are moving slowly rel-
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method, we used Na = 20 and, for the look-back primal recovery method, we used
Na = 50.



ative to the computation and message exchange rate of the nodes. On average, it

can track the changes in the optimal value closely, and in most cases, requires lower

energy for multicast than MIP even though the nodes are mobile and computation is

done at each node in a distributed manner.

2.4 Min-cost subgraph algorithms for dynamic mul-

ticasts

For the dynamic multicast problem, there are two extreme cases. On the one hand,

we can simply find the new optimal subgraph whenever there is an update to the

multicast group, and replace the existing subgraph with this new one. In this case,

users in the group will experience a lot of disruptions, but the cost of the multicast

is always kept minimal. On the other hand, we can enforce that no link or code

rearrangement is allowed for all existing users throughout the multicast session. In

this case, users enjoy uninterrupted services, but in general, the subgraph used will

deviate further and further away from the optimal one. In this section, we present one

algorithm to solve the nonrearrangeable version of the dynamic multicast problem,

and three algorithms for the rearrangeable version. Simulation results show that one

of the rearrangeable algorithms we propose, the a-scaled algorithm, can be used to

strike a balance between cost and frequency of user disturbances in a distributed

manner. Although we present our algorithms based on wireline networks, they can

be easily extended to wireless networks.

2.4.1 Nonrearrangeable Algorithm

For simplicity, we assume that the rate of the multicast is lower than the capacity

of the links, which is generally the case in current wireline networks. In a multicast

session, a source node s transmits to a group of terminal nodes T, and the group

changes over time. We refer to each change of the membership of the multicast group

(either an addition or a removal of a terminal node) as an online step. The network
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model and problem formulation is the same as that in Section 2.2.1. This LP problem

(2.1 can be solved by a number of methods, both centrally (e.g., Simplex method)

and in a distributed manner (e.g., subgradient method in Section 2.3.1). For the rest

of this chapter, we denote any centralized/distributed algorithm that solves the LP

problem as LPcent/LPdist respectively.

For the dynamic multicast problem, the initial multicast subgraph is set up by

solving (2.1). If we allow complete rearrangement, we can simply solve this problem

again at each online step. However, to solve the nonrearrangeable version of the

dynamic multicast problem, we have to prevent link and code rearrangements from

happening. To meet the no link rearrangement requirement, we basically need to

make sure that the existing users still use the same path(s) for the multicast when

the set T changes over time. This can be achieved by setting the cost of the links in

the current subgraph Gc to zero. If the capacity of a link is larger than the rate used

for the multicast, then the link is split into two virtual links, one with capacity equal

to the rate used for the multicast and cost zero, and the other with the remaining

capacity and cost unchanged. For example, if link (i, j) has capacity ciy = 2 and rate

of flow zij = 1 for the multicast, then nodes i and j treat link (i, j) as two parallel

links with capacities 1 each, and one of them has cost of 0, and the other one has cost

of a12 . After doing this, the current multicast subgraph becomes "free", and doing

optimization on this new cost assignment will always lead to using the same path(s)

to serve the existing users in the new subgraph. Therefore, link rearrangements are

avoided.

One problem with the above method is that some links not necessary for the new

terminal set might be included in the new subgraph after a removal of a terminal.

This is because all link in the old subgraph are free, and some of these links might

still be included in the solution to the LP problem even though they are not necessary

in performing the multicast to the new terminal set. To solve this problem, instead

of setting their costs to 0, we can set the cost of the used links to a small value e, so

that no extra link would be included in the optimal solution, and, at the same time,

the used links are still almost free as compared to the other links.



node i

nodeUsed 0

for all (j,i) E A
if (j, i) E Ge

agi= c
nodeUsed = 1

end

end

if nodeUsed = 1

for all (j,i) E A
if (j,i) E Ge agi = M

end
end

call LPist

Figure 2-6: Nonrearrangeable algorithm.

As for code rearrangements, we want to prevent the usage of new links that go

into existing nodes of the subgraph. To do that, each node in the subgraph can scan

through its incoming links, and sets the cost of those unused links to a very large

value, M. Again, if the capacity of an incoming link is not fully used in the current

subgraph, we can split it into two parallel virtual links as above. These nodes then

send the new costs of its incoming links to their corresponding tail nodes, and the

new high costs can prevent these links from being used.

After making these changes to the link costs, when an online step occurs, we can

simply run LPiSt again with the new costs, and obtain a feasible subgraph for the

new multicast group without any link or code rearrangements. This algorithm is

summarized in Fig. 2-6.

The above algorithm can be complicated due to the splitting of physical links

into parallel virtual links. This requires more processing at the nodes and more

coordination between the end nodes of the links. In addition, in the non-rearrangeable

solution of the dynamic multicast problem, it is inevitable that the subgraph used

would deviate further and further from the optimal subgraph. This is because the

no-rearrangement requirement forces the subgraph we use as close as possible to the

initial subgraph. Thus, when the multicast group changes further and further away



node i

for all (j,i) E A
if (j,i) E Gc

aji = E

end
end
call LPist

Figure 2-7: MLR algorithm.

from the original group over time, our multicast subgraph becomes more and more

suboptimal.

To simplify this algorithm and keep the cost of the multicast low, we may need to

make some compromise and allow some rearrangements. In the next subsection, we

present three such heuristic algorithms.

2.4.2 Rearrangeable algorithms

Algorithm for minimizing link rearrangement (MLR)

One way to simplify the nonrearrangeable algorithm is to focus on eliminating link re-

arrangement only, and ignore code rearrangement. This can be easily done by setting

the used links costs to a very small value c after each online step as in the nonrear-

rangeable algorithm, and call LPi8 t to solve the new LP problem. This algorithm,

which we call the MLR (minimal link rearrangement) algorithm, is shown in Fig. 2-7.

The motivation for this algorithm comes from the observation that the complica-

tion of splitting links into used and unused portions arises when we have a non-tree

subgraph, and things would be much simpler if we only have to deal with trees. This

is because, in trees, each node only has one incoming link, and it has full information

of the multicast. Thus, there is no worry about code rearrangement.

Notice that once the multicast subgraph becomes a tree, it will remain as a tree

through the rest of the online steps. To see this, consider addition of a new node to

the multicast group. Since the original subgraph Gc is considered "free" and each

node in Gc has full information of the multicast, the new terminal node only needs to



find the shortest path from any node in Gc to itself, and attach itself to the subgraph.

As for the removal of a terminal, only a part of the tree may be removed, and the

remaining graph should still be a tree. Since at every step, if Gc is not a tree, there

is some positive probability that it will become a tree, and once it evolves into a tree,

it will stay that way till the end of the multicast. Therefore, if we keep running the

dynamic multicast session, the probability that we are dealing with trees goes to 1.

In addition, simulations on practical networks show that in more than 98% of

cases, we do get the optimum Steiner tree at startup. Therefore, we can focus on link

rearrangements only and use the MRL algorithm. This algorithms still works if the

initial subgraph is not a tree, the only difference is that we cannot guarantee that

there will not be any rearrangements in such cases.

Algorithm for limiting multicast cost (LMC)

If we use the MLR algorithm, it is expected that as time goes on, the subgraph used

for multicast will move further and further away from the actual optimal subgraph

for the current set of terminal nodes. As an alternative, we might want to introduce

occasional rearrangements in order to keep the cost of the multicast close to optimal.

We introduce the LMC algorithm, shown in Fig. 2-8, to do this. In this algorithm,

the nodes run two programs in parallel, one of which generates the subgraph with

no rearrangement using the algorithm presented above. We call this subgraph the

no-change subgraph G,, and the cost of this subgraph C,c. The other program keeps

track of the optimal subgraph, Go0 t, for the current set of multicast terminals, and

the cost of Got is Copt. At each step, the cost of the two subgraphs are compared, and

if the cost of the no-change subgraph is higher than the optimal graph by a certain

factor, #, we switch to the optimal subgraph. Using this method, we can control

the trade off between the frequency of disturbances to the users and the cost of the

subgraph used for the multicast by changing the value of 0. However, this method

requires the nodes to keep track of two subgraphs, and centralized coordination is

needed to compare the costs and make the nodes switch between two subgraphs

simultaneously.



call LPcent to compute Cpt and Gopt
for all (j,i) E A

if (j, i) E Gc
a-i = E

end
end
call LPcent to compute Cnc and Gnc
if Cnc > Copt x (1I+)

use Gopt for the multicast
else

use Gc for the multicast

end

Figure 2-8: LMC algorithm.

node i

for all (j,i) E A
if (j, i) E Gc

aji = a x aji
end

end
call LPdi2 t

Figure 2-9: a-scaled algorithm.

a-scaled algorithm

We now present a simple approximate algorithm that can trigger "auto-switching"

between Gnc and Gopt in a distributed manner. Instead of assigning a very small cost

to the used links as in the MLR algorithm, we can use a scaled value of the original

cost, i.e., for an existing link (i, j) in the subgraph, we use aaij as its cost in the

future computations as long as it stays in the subgraph, where a is a scaling factor

between 0 and 1. If a = 0, it is the same as the MLR algorithm; and if a = 1, we will

be using the optimal subgraph every time. We refer to this algorithm as the a-scaled

algorithm, and it is shown in Fig. 2-9.

To see why this heuristic works and how the constants a and # are related, consider

the case of removal of a terminal node. The LMC algorithm compares the values of

Ca, and (1 + O)COpt, and picks the lower of the two. Since G,t may overlap with the

existing subgraph from before the online step, we assume the cost of this overlapping



part of the subgraph is C 1 and the cost of the rest of the optimal subgraph is Cothers.

Thus, the comparison is equivalent to

1
x Cnc ] Col + Cothers (2.25)

1+/3

On the other hand, in the a-scaled algorithm, we are effectively choosing the lower

cost between these two.

a x Cn c a x Co + Cothers (2.26)

If we set a to 1/(13+), we can see that equations (2.25) and (2.26) are very similar

except the first term on the right hand side. By scaling the existing link costs by a,

we can satisfy the requirement that the cost of the subgraph used never goes over

(1 + #)Copt, but owing to the scaling factor a on C01, the approximate algorithm

switches to the optimal subgraph more often than required by 13. Using similar

analysis, we have the same results for the case of addition of a terminal.

Thus, using an appropriate a to scale the costs of the used links, the optimization

can trigger auto-switching between the two subgraphs, thus keeping the cost of the

multicast low. In addition, we can make a a time-varying variable. In general, when

a link is first added into the subgraph, it is likely that it will remain there for a while.

However, the probability that the link remains in the optimal subgraph decreases with

the online steps. To capture this characteristic, we can use a lower value for a for

the first few online steps after a new link is added, and increase a gradually later on.

Also, in a practical network, it may not be desirable to make back-to-back changes

to the link connections, i.e., addition of a link to the multicast subgraph followed by

an immediately removal of it in the next step. We can reduce the occurrence of such

events by setting the a of new links to 0 for a few steps before raising it to the normal

value of 1/(1 + 3).



2.4.3 Simulation results

We first present simulation results for the MLR algorithm. The network topologies

used in the simulations are obtained from the Rocketfuel project [2]. In each simula-

tion, we start with a multicast from a random source to a set of 10 random terminals.

Subsequently, in each online step, we first randomly decide whether there is an ad-

dition or removal of terminal, and then randomly select a terminal to add/remove

based on that decision. Figs. 2-10 and 2-11 show the average increase of cost of the

no-change subgraph as compared to the cost of the optimal subgraph in terms of per-

centage of Cpt. The network topology used for Figs. 2-10 and 2-11 are backbones for

Exodus (US) and EBONE (Europe), respectively. As expected, the extra cost of the

no-change subgraph grows approximately linearly with the online steps. In addition

to the average curve, we also show the data points for each instance of the simulation

in both Figs. 2-10 and 2-11. Note that there are cases when the cost of the no-change

subgraph is as much as 60% higher than the optimal cost after 20 steps.

This undesirable phenomenon motivates the usage of the a-scaled algorithm. Fig.

2-12 shows the simulation results for using the a-scaled algorithm on the network

used in Fig. 2-10. Here, we aim to control the cost of the sub-graph used to within

1 = 30% away from that of the optimal subgraph, thus, we use a = 0.75. The average

curve in Fig. 2-10 for the MLR algorithm is also shown here for comparison. The

a-scaled algorithm provides lower cost for the multicasts as compared to the MLR

algorithm. More importantly, the cost difference between the subgraph used and Copt

for the a-scaled algorithm is roughly constant after a while, and it does not grow

over time. Of course, there is a price for this gain, which is the occasional switching

from the no-change graph to the optimal graph. In this case, the average switching

probability is 11.7%, which means, out of a hundred online steps, there are about 12

times when the existing users might experience distrubances to their transmissions.

Furthermore, if we look closely at the data points for individual instances, we can

see that, actually, none of the instance has gone over 20% higher than the optimal

one. This is consistent with our discussion in Section III about the values of a and
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13. Therefore, if we want to have # = 30%, we can use a lower value for a.

Finally, Fig. 2-13 shows the simulation results for the same network setup with

different a values. As we can see, the higher the a value, the lower the average cost

of the subgraph. At the same time, higher a values lead to higher switching rate. We

observed that when a is equal to 0.5, the cost of the subgraph used is kept at around

9% higher than the optimal cost, whereas the switching probability is only 2.05%.

Therefore, by selecting the a value properly, we can keep the cost of the multicast

close to optimal during the multicast session while causing few disturbances to the

existing users.
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Figure 2-12: Extra cost of the multicast subgraph generated by the a-scaled algorithm
with a = 0.75 and the MLR algorithm in terms of percentage of Copt, on the Exodus
network. We are also showing the individual data points for each trial for the a-scaled
algorithm.
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Chapter 3

Analysis and Improvement to

COPE

In this chapter, we focus on COPE [28, 29], a new architecture for wireless mesh

networks that employs opportunistic network coding to improve throughput in con-

gested networks. The COPE system, which we will introduce in details in Section 3.1

is a completely distributed system that significantly improves the throughput of ad

hoc wireless networks with UDP traffic. Several attempts have been made to analyze

the COPE performance and explain this big gain, however, they are not completely

satisfactory. In this chapter, we give a new analysis of the COPE system, which

explains all the main characteristics of the COPE performance curves observed in

experiments. Furthermore, based on the analysis, we propose a simple modification

to the COPE system that can further improve the network throughput.

3.1 Background

3.1.1 The COPE system

COPE, introduced by Katti et al. [28, 29], is a new forwarding architecture for

wireless network that inserts a coding shim between the IP and MAC layers, which

identifies coding opportunities and benefits from them by forwarding multiple packets
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Figure 3-1: Example of how COPE increases the throughput in the Alice-and-Bob
wireless network.

in a single transmission. We first explain the basic idea of this scheme by using the

Alice-and-Bob network shown in Fig. 3-1. Here, Alice and Bob want to exchange a

pair of packets via a router, R. In a traditional routing network, Alice and Bob would

first send their packets to R, and then R forwards the two packets to their respective

destinations in two time slots. This process takes 4 transmissions. However, if network

coding is allowed in the router, after R has received the two packets from Alice and

Bob, it can XOR the two packets together and broadcast this new packet. When

Alice and Bob receive the XOR-ed packet, they can obtain each other's packet by

XOR-ing again with their own packet. In this way, we utilize the broadcast nature of

the medium and save one transmission, which can be used to send additional data,

increasing the network throughput.

Even larger coding gain can be obtained when more packets are coded together.

For example, consider the cross network shown in Fig. 3-2. Here, nodes 1, 2, 4, 5 each

has a packet to be sent to the opposite node via node 3 in the middle. In addition,

when node 1 sends, nodes 2 and 4 can overhear the transmission. Same goes for

nodes 2, 4, and 5. It is easy to see that in conventional routing network, it takes 8

transmission for the 4 packets to be delivered. However, in COPE, we can first let

the four source nodes send their packets to 3, and then 3 XOR all of them together

and broadcast the code packet. Since every node has its own packet and the two

packets overheard from the transmissions of their neighbors, it can derive the packet

destined to it from the XOR-ed packet. Therefore, in COPE, the process only takes

5 transmissions, and we save 3/8 of the bandwidth as compared to the routing case.



5O

Figure 3-2: Cross network.

In summary, COPE employs network coding to utilize the broadcast nature of the

wireless channel. The coding here is simple XOR, and the decoding is done at the

next hop, i.e., there is no forwarding of the coded packets. Implementation of the

COPE system involves many practical issues, as explained in [28, 29]. Here, we only

summarize the three main techniques incorporated in COPE:

1. Opportunistic Listening: Since the wireless channel is a broadcast medium,

and the nodes are equipped with omni-directional antennae, COPE makes the

nodes snoop on all communications over the wireless medium and store the

overheard packets for a limited period. In addition, each node broadcasts re-

ception report to its neighbors about which packets it has stored, to enable their

neighbors to find coding opportunities.

2. Opportunistic Coding: Based on its knowledge of what the neighbors have, a

node decides on what packets to code together. The rule it follows is to maximize

the number of native packets delivered in a single transmission, while ensuring

that each intended nexthop has enough information to decode its native packet.

3. Learning Neighbor State: In addition to using the reception reports to

find out what packets a neighbor has, a node may also need to guess whether

a neighbor has a particular packet. This is done intelligently by leveraging

the routing computation. In the absence of deterministic information, COPE



4 - -~0
-

0 2

X 

3

0

0 2 4 6 8 10 12 '14 16 '18 20 22 24

Offered load in Mb/s

Figure 3-3: COPE can provide a several-fold (3-4x) increase in the throughput of
wireless ad hoc networks with UDP flows. This figure is taken from [29].

estimates the probability that a particular neighbor has a packet as the delivery

probability of the link between the packet's previous hop and the neighbor.

COPE has been implemented by Katti et al. [29] in a 20-node wireless mesh

network, and tested with both TCP and UDP traffic. In their tests, TCP does not

show any significant improvement with coding, and this is due to TCP's reaction to

collision-related losses. Due to collisions at the bottleneck nodes, the TCP flows suffer

timeouts and excessive back-off. Thus, the bottleneck nodes never see enough traffic

to make use of coding. Few coding opportunities arise, and hence the throughput

performance is the same with and without coding.

On the other hand, with UDP traffic, COPE can provide a several-fold increase in

the throughput of wireless ad hoc networks. Fig. 3-3, taken from {29), demonstrates

the throughput gain of the COPE system for the 20-node testbed for UDP traffic

with randomly picked source- dest inat ion pairs, Poisson arrivals, and heavy-tail size

distribution.



3.1.2 Existing analysis on COPE

The good performance of COPE with UDP traffic has attracted the attention of many

researchers, and several attempts have been made to model COPE and explain the

huge throughput gain.

Sengupta et al. formulated the throughput computation in a wireless network

coding system into a linear programming (LP) problem [49]. Their formulation only

considers the coding cases involving two packets, the scenario illustrated in Fig. 3-1.

However, from the statistics in [29], we see that coded packets consisting of more

than two native packets plays an important role in the throughput gain. In addition,

the LP formulation does not capture the interaction between COPE and the MAC

protocol very well. The LP problem enforces fairness among the overall flows, whereas

in reality, fairness is enforced by the MAC protocol on a local scale. These differences

lead to discrepancies between the experimental results and that predicted by the

theoretical formulation. Also, the authors suggested that routing be made aware of

network coding opportunities rather than, as in COPE, being oblivious to it. We will

discuss in the following sections that this may not be a good idea.

Le et al. [37] tries to understand COPE by focusing on one coding structure at a

time. A coding structure includes one coding node as well as the one-hop predecessor

nodes and the one-hop successor nodes of the associated coding flows. The networks

in Fig. 3-1 and Fig. 3-2 are both examples of single coding structures. The key

performance measure they use is the encoding number, i.e., the number of packets

that can be encoded by a coding node in each transmission. They upper bound the

throughput gain in COPE by 2n/(n + 1) for a general wireless network, where n is

the maximum encoding number in one of its coding structures. Clearly, this upper

bound is less than 2, which is much smaller than the throughput gain observed in

Fig. 3-3. This is due to the fact that the analysis in [37] only deals with coding gain,

but does not take into consideration the coding+MAC gain.



3.2 COPE performance analysis

The existing analysis of COPE fails to address two important aspects of the perfor-

mance curves.

1. The magnitude of the throughput gain in COPE experiments is much larger

than that predicted by the analysis;

2. As shown in Fig. 3-3, for both the COPE and the non-COPE systems, the

throughput first increases linearly with the offered load. After reaching a peak

point, the throughput decreases with increased load, and finally settles down to

a saturation level. On the contrary, the performance curves derived from the

existing theoretical formulations have a different shape. The throughput rises

with increased load until it reaches a saturation level, and further increase in

load does not affect the total throughput by much.

These discrepancies motivate us to take a closer look at the COPE system. We

find out that the key to explain the COPE performance curves lies in the interaction

between coding and the MAC protocol, and the local fairness enforced by the MAC

protocol when it assigns bandwidth to competing nodes.

To understand this, we first look at the simple Alice-and-Bob network shown in

Fig. 3-1. Here, we assume that the three nodes in the network share the wireless

channel, and the total bandwidth is 1. Flows of size 0.01 are originated from node

A/B, and are to be sent to node B/A, respectively. The relay node, R, does not

generate any traffic. By increasing the number of flows, the total offered load to the

network is increased. Also, the probability that a flow is generated by A or B is equal.

We denote the bandwidth allocated to nodes A, B, and R as BW, BW, and BW,,

respectively. The wireless channel is lossless.

o Routing (non-COPE) case: When the offered load is very small, every node

can get enough bandwidth to transfer what they have, and the total throughput

grows linearly with the offered load. The bandwidth demand for the relay node

is equal to the sum of the sending rates at A and B, and the total throughput



of the system is always equal to B,. The throughput reaches its peak when

the channel bandwidth is completely used up, i.e.,

BWa = 0.25, BW = 0.25, BW = 0.5.

In this case, the total throughput of the system is 0.5.

As the offered load increases beyond 0.5, the system will not be able to handle

all the traffic. Queues at some of the nodes will grow, and packets are going to

be dropped. Consider the saturation case, when the offered load is very large,

all the nodes have backlogs. They are constantly competing for the channel.

In this case, the MAC protocol will allocate the channel fairly among the three

nodes, i.e.,

BWa = BWb = BWr = 1/3.

Note that the total throughput of this system is always equal to BW, thus, the

saturation throughput is 1/3.

Now, we look at the transition stage where the offered load is between 1/2 and

2/3. For simplicity, assume symmetric load for nodes A and B, and we denote

it by 1. If the assigned bandwidth for A and B is less than that required to

clear their queues, they would be constantly requesting for the channel. This

situation is the same as that in the saturation stage, and they will be allocated

1/3 bandwidth each. However, since their demand is less than 1/3, they won't

have a backlog in this case. This is a contradiction, therefore, nodes A and B

will have bandwidths equal to 1, and the bandwidth assigned to R is then equal

to 1 - 21. The complete throughput curve is shown in Fig. 3-4.

* Coding (COPE) case: When coding is allowed at the relay node, if the loads

at A and B are perfectly symmetric, every packet delivered by R generates a

throughput of 2 packets. Similar to the routing case, when the offered load

is small, every node gets its required bandwidth, and the throughput grows



linearly with offered load until the total bandwidth is used up, i.e.,

BWa = BWb = BWr = 1/3.

Since every transmission by R delivers two packets, the peak throughput of

the COPE system is 2/3. When the offered load is increased further, packets

starts to get dropped by A and B, however, the bandwidth allocation remains

the same in the saturation stage, and the total throughput stays at 2/3. This

throughput curve is also plotted in Fig. 3-4.

We next consider the cross network shown in Fig. 3-2. Assume symmetric traffic

is generated at the four side nodes, 1, 2, 4, and 5, and to be delivered to the opposite

nodes. Also, when node 1 transmits, nodes 2 and 4 can overhear the transmission,

and they store the overheard packets for future decoding. Same goes for the three

other nodes. The curves in Fig. 3-5 show the throughput performance for this network

with and without coding.

" Routing (non-COPE) case: Similar to the Alice-and-Bob network, the total

throughput first increases linearly with the offered load until it reaches the peak

where BW 1 = BW 2 = BW 4 = BW = 1/8, BW 3 = 1/2, and total throughput

is 1/2. The throughput then drops when offered load is increased further until

it reaches the saturation stage where each node is allocated a bandwidth of 1/5,

and the total throughput is also equal to 1/5.

" Coding (COPE) case: When the load at the four side nodes are perfectly

symmetric, the relay node 3 can code four packets together every time it trans-

mits. The throughput of this system peaks at 4/5 when the offered load at

each side node is equal to 1/5. The throughput then remains at this level when

offered load is further increased.

As we can see, when more flows are involved in the coding structure, the through-

put gain becomes larger. This gain is not just due to coding, but also due to the
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Figure 3-4: Throughput for COPE and non-COPE systems in an Alice-and-Bob
network with cross traffic only.



fact that the MAC protocol allocates bandwidth among competing node fairly. The

throughput of the system is limited by the bandwidth at the bottleneck node. With

coding, the bottleneck node drains it queue multiple times faster than that in the non-

coding case, thus resulting in the significant throughput gain. Even larger throughput

gain can be obtained if the coding structure involves more than four flows, but they

rarely happen in a practical system.

In the above simple models, we only considered cross traffic and all flows can be

coded together. What happens when there exist unicast flows that cannot be coded

with any other flow? To answer this question, we consider the cross network where

in addition to the traffic generated by the side nodes, there are also flows generated

by the center node, node 3, to be sent to one of the side nodes. The throughput

performance of the COPE and non-COPE systems for this scenario is plotted in

Fig. 3-6. As we can see, in the coded system, the total throughput drops after

reaching the peak. This is because the traffic generated by the center node cannot be

coded with any other packets, and the bandwidth used to send these 'unicast' packets

are less efficiently used as compared to that used for sending the coded packets. As

more and more flows are generated by node 3, these 'unicast' packets take up more

and more bandwidth at the bottleneck node, reducing the total throughput.

The curves in Fig. 3-6 resembles that in Fig. 3-3 both in shape and in the mag-

nitude of gain. As in the experiments, the largest gains are observed when the non-

COPE curve has started dropping from the peak, and the COPE curve has yet to

drop. Although our analysis only focuses on one coding structure, we believe the

performance of COPE in a general network follows the same trend. This is because

in a practical network, the throughput is limited by a few bottleneck nodes (coding

structures). Therefore, by closely examining one coding structure, we can understand

what really causes the COPE system behave in such a way. As mentioned previously,

the key factor here is the interaction between COPE and the MAC and also the the

local fairness enforced by the MAC protocol.
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Queue at the coding node
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Sequence of packets sent
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Figure 3-7: An example of queue status and packets sent in a cross network with
COPE.

3.3 Improvements on COPE

Our observation in the previous section leads to a simple improvement of COPE that

can further increase the network throughput. Recall that in the case when there are

both cross traffic and traffic originated from the center (Fig. 3-6), the reason why the

COPE curve drops is because the center node has to use some of its bandwidth to

take care of the 'unicast' packets, which are less efficient in terms of throughput. To

improve the total throughput, we would like to give higher priority to coded packets,

as they help to drain the queue at the bottleneck node at a faster rate. A simple way

to do this is to have virtual queues for each input-output pair at the coding node,

and packets are sent from these virtual queues in a round-robin manner.

In the current COPE system, only one queue is maintained at a node. Every time

there is a transmission opportunity, the node dequeues the first packet, and checks

if it can be coded with any other packets currently in its queue. If yes, the packets

would be coded together and sent out; otherwise, the native packet will be sent alone.

Fig. 3-7 illustrates the sequence of packets sent by the center node in a cross network

with COPE. Here, Pj denotes the j-th packet from node i. As we can see, in this case,

'coded' and 'uncoded' packets share the bandwidth equally, which is very inefficient

and unfair, as the coded packets serve more users than the uncoded one.

If we keep separate virtual queues for each input-output pair and serve them in

a round robin manner, what would happen in the cross network case is illustrated in



Virtual queues at the coding node
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Figure 3-8: An example of queue status and packets sent in a cross network with
modified COPE.

Fig. 3-8. Here, the uncoded packets take up a much smaller fraction of the bandwidth,

and the total throughput of the system improves.

We simulated the cross network with this simple modification, and the results

are shown in Fig. 3-9. This modification leads to about 50% gain in the network

throughput as compared to the original COPE system.

We would also like to point out that coding-aware routing has been suggested as a

method to improve COPE performance. The main idea is to route traffic in such a way

that generates more coding opportunities. However, doing so would only increase the

'coding gain' of COPE over routing under the same routing choice. What we really

want is not this 'coding gain', but rather the total throughput gain. We should not

sacrifice throughput just to increase coding opportunities. Therefore, coding-aware

routing is not really a good way to improve COPE.
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Chapter 4

Signatures for Content

Distribution with Network Coding

In this chapter, we turn our attention to the content distribution problem in peer-to-

peer (P2P) networks, where network coding can be used to improve the distribution

speed of large files.

4.1 Background

4.1.1 Network coding in P2P networks

After the introduction of network coding, several researchers explored the use of it

in content distribution and distributed storage systems [3, 17]. Traditionally, the

solutions for content distribution are based on a client-server model, where a central

server sends the entire file to each client that requests it. This kind of approach

becomes inefficient when the file size is large or when there are many clients, as it

takes up a large amount of bandwidth and server resources. In recent years, P2P

networks have emerged as an alternative to traditional content distribution solutions

to deliver large files. A P2P network has a fully distributed architecture, and the

peers in the network form a cooperative network that shares the resources, such as

storage, CPU, and bandwidth, of all the computers in the network. This architecture



offers a cost-effective and scalable way to distribute software updates, videos, and

other large files to a large number of users.

The best example of a P2P cooperative architecture is the BitTorrent system [1],
which splits large files into small blocks, and after a node downloads a block from

the original server or from another peer, it becomes a server for that particular block.

Although BitTorrent has become extremely popular for distribution of large files over

the Internet, it may suffer from a number of inefficiencies which decrease its overall

performance. For example, scheduling is a key problem in BitTorrent: it is difficult

to efficiently select which block(s) to download first and from where. If a rare block is

only found on peers with slow connections, this would create a bottleneck for all the

downloaders. Several ad hoc strategies are used in BitTorrent to ensure that different

blocks are equally spread in the system as the system evolves. References [3, 17]

propose the use of network coding to increase the efficiency of content distribution in

a P2P cooperative architecture. The main idea of this approach is the following (see

Fig. 4-1). The server breaks the file to be distributed into small blocks, and whenever

a peer requests a file, the server sends a random linear combination of all the blocks.

As in BitTorrent, a peer acts as a server to the blocks it has obtained. However,

in a linear coding scheme, any output from a peer node is also a random linear

combination of all the blocks it has already received. A peer node can reconstruct the

whole file when it has received enough degrees of freedom to decode all the blocks.

This scheme is completely distributed, and eliminates the need for a scheduler, as

any block transmitted contains partial information of all the blocks that the sender

possesses.

Several authors have evaluated the performance of network coding in P2P net-

works. Gkantsidis et al. [17] propose a scheme for content distribution of large files

in which nodes make forwarding decisions solely based on local information. This

scheme improves the expected file download time and the robustness of the system.

Reference [3] compare the performance of network coding with traditional coding

measures in a distributed storage setting with very limited storage space with the

goal of minimizing the number of storage locations a file-downloader connects to, to
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Figure 4-1: Content distribution with network coding. Assume the file being dis-
tributed is broken into three blocks, P1, P2, and P3. Any packet being transmitted
is a random linear combination of all the blocks the sender has. For example, the
packet sent from the source to peer A is a combination of P1, P2, and P3, whereas
the packet sent from peer A to D is a combination of blocks Al and A2. A peer is
able to decode the whole file when it receives 3 linearly independent blocks.

retrieve a file. They show that RLNC performs well without the need for a large

amount of additional storage space. Dimakis et al. [15] introduce a graph-theoretic

framework for P2P distributed system, and show that RLNC minimizes the required

bandwidth to maintain the distributed storage architectures.

A major concern for any network coding system is the protection against malicious

nodes. Take the above content distribution system for example.

Despite their desirable properties, network coded P2P systems are particularly

susceptible to Byzantine attacks [47, 11, 35] - the injection of corrupted packets

into the information flow. Since network coding relies on mixing of packets, a single

corrupted packet may easily corrupt the entire information flow [26, 18]. Furthermore,

in P2P networks, there is typically no security control over the nodes that join the

network and the blocks that they redistribute. If a node in the P2P network behaves

maliciously, it can create a polluted block with valid coding coefficients, and then

sends it out. Here, coding coefficients refer to the random linear coefficients used

to generate this block. If there is no mechanism for a peer to check the integrity

of a received block, a receiver of this polluted block would not be able to decode

anything for the file at all, even if all the other blocks it has received are valid.



To make things worse, the receiver would mix this polluted block with other blocks

and send them out to other peers, and the pollution can quickly propagate to the

whole network. This makes coding based content distribution even more vulnerable

than the traditional P2P networks, such as BitTorrent. Similar security problems

arise in all systems that use network coding, such as multicast networks. Several

attempts were made to address this problem. Several authors address these problems

in network coded P2P networks, which we shall discuss in detail in Section 4.1. Most

of the countermeasures can be divided into two main categories: (i) end-to-end error

correction, and (ii) misbehavior detection, which can be carried out either packet by

packet or in generation based fashion.

Motivated by these observations, we propose a new signature scheme that is not

based on elliptic curves, and is designed specifically for random linear coded systems.

In this scheme, we view all blocks of the file as vectors, as in any network coding

scheme, and make use of the fact that all valid vectors transmitted in the network

should belong to the subspace spanned by the original set of vectors from the file.

We design a signature that can be used to easily check the membership of a received

vector in the given subspace, and at the same time, it is hard for a node to generate

a vector that is not in that subspace but passes the signature test. We show that

this signature scheme is secure, and that the overhead for the scheme is negligible for

large files.

4.1.2 Byzantine detection scheme for network coded systems

End-to-end error correction scheme

Several papers address the problem of Byzantine adversaries in network coded sys-

tems. One approach is to correct the injected errors using network error correction

[55]. Reference [55] bounds the maximum achievable rate in an adversarial setting,

and generalizes the Hamming, Gilbert-Varshamov, and Singleton bounds. Jaggi et

al. [26] introduce the first distributed polynomial-time rate-optimal network codes

that work in the presence of Byzantine nodes and is information-theoretically secure.



The adversarial nodes are viewed as a secondary source. The source judiciously adds

redundancy to help the receivers distill out the source information from the received

mixtures. Given an adversary who can eavesdrop on all links and jam z links, their

algorithm achieves a rate of C - 2z, where C is the network capacity; given an adver-

sary who can observe only ze links and jam z links where ze < C - 2z, the algorithm

achieves a rate of C - z. These rates are the maximum achievable rate given the

power of the adversary. This work is generalized in [32, 51].

Generation-based Byzantine detection scheme

Ho et al. [24] introduce an information-theoretic approach for detecting Byzantine

adversaries, which only assumes that the adversary did not see all linear combinations

received by the destinations. Their detection probability varies with the length of

the hash, field size, and the amount of information unknown to the adversary. A

polynomial hash is added to each packet in the generation. Once the destination

node receives enough packets to decode a generation, it can probabilistically detect

errors. The intuition behind this scheme is that if a packet is valid, then its data

and hash are consistent with its coding vector; and a linear combination of valid

packets is also valid. This generation based scheme is very cheap and sensitive. For

example, with 2% overhead (k = 50), log q = 7, s = 5, the detection probability is

at least 98.9%. Furthermore, this scheme does not require Public Key Infrastructure

(PKI). However, this is a block code; therefore, will require a priori decision on the

rate. In addition, the detection can only occur at a node with enough packets from

a generation - thus, can incur large delays.

Packet-based Byzantine detection scheme

There are several signature schemes that have been presented in the literature. For

instance, [3, 34, 56] use homomorphic hash functions to detect contaminateds packets.

Reference [18] suggests the use of a Secure Random Checksum (SRC) which requires

less computation than the homomorphic hash function, but requires a secure channel

to transmit the SRCs. In addition, [12] proposes a signature scheme for network



coding based on Weil pairing on elliptic curves. The signature scheme that we propose

in this chapter is a packet-based detection scheme.

4.2 Problem Setup

In this section, we introduce the framework for a random linear coding based content

distribution system. This framework can also be easily modified to be used for dis-

tributed storage systems. We model the network by a directed graph Gd = (N, A),

where N is the set of nodes, and A is the set of communication links. A source node

s E N wishes to send a large file to a set of client nodes, T C N. In this chapter, we

refer to all the clients as peers. The large file is divided into m blocks, and any peer

receives different blocks from the source node or from other peers. In this framework,

a peer is also a server to blocks it has downloaded, and always sends out random

linear combinations of all the blocks it has obtained so far to other peers. When a

peer has received enough degrees of freedom to decode the data, i.e., it has received

m linearly independent blocks, it can re-construct the whole file.

Specifically, we view the m blocks of the file, Vi, ..., vm, as elements in n-dimensional

vector space F, where p is a prime. The source node augments these vectors to create

vectors vi, ... , vm, given by

Vi = (0,,1 ... , -- 0,;il , --- iin),I

where the first m elements are zero except that the ith one is 1, and jij E F, is

the jth element in Vi. Packets received by the peers are linear combinations of the

augmented vectors,
m

w O !iVi,
i=1

where #i is the weight of vi in w. We see that the additional m elements in the front

of the augmented vector keeps track of the 3 values of the corresponding packet, i.e.,

= (i31, ... I O3 m i 71L'j1 ... ,i1Vn



where (zDj 1 , ..., 'i) is the payload part of the packet, and (#1, ., #m) is the code vector

that is used to decode the packets.

As mentioned in the previous section, this kind of network coding scheme is vul-

nerable to pollution attacks by malicious nodes [14, 40], and the pollution can quickly

spread to other parts of the network if the peer just unwittingly mixes this polluted

packet into its outgoing packets. Unlike uncoded systems where the source knows all

the blocks being transmitted in the network, and therefore, can sign each one of them,

in a coded system, each peer produces "new" packets, and standard digital signature

schemes do not apply here. In the next section, we introduce a novel signature scheme

for the coded system.

4.3 Signature scheme for network coding

We note that the vectors vi, . vm span a subspace V of ]Fm+", and a received vector

w is a valid linear combination of vectors vi, ..., vm if and only if it belongs to the

subspace V. This is the key observation for our signature scheme. In the scheme

described below, we present a system that is based upon standard modulo arithmetic

(in particular the hardness of the Discrete Logarithm problem) and upon an invariant

signature o-(V) for the linear span V. Each node verifies the integrity of a received

vector w by checking the membership of w in V based on the signature U(V).

Our signature scheme is defined by the following ingredients, which are indepen-

dent of the file(s) to be distributed:

" q: a large prime number such that p is a divisor of q - 1. Note that standard

techniques, such as that used in Digital Signature Algorithm (DSA), apply to

find such q.

" g: a generator of the group G of order p in Fq. Since the order of the multiplica-

tive group F* is q - 1, which is a multiple of p, we can always find a subgroup,

G, with order p in F*.

" Private key: Kpr = {a}_i,...,m+n, a random set of elements in F*. Kp, is only



known to the source.

* Public key: KU = {hj = gai}ii,...,m+n. KpP is signed by some standard signa-

ture scheme, e.g., DSA, and published by the source.

To distribute a file in a secure manner, the signature scheme works as follows.

1. Using the vectors vi, ... , vm from the file, the source finds a vector u = (ui, ..., Um+n) E

lFnm+n orthogonal to all vectors in V. Specifically, the source finds a non-zero

solution, u, to the equations

vi - U = 0, i' = M,..m

2. The source computes vector x = (U1/a1, u 2/a 2, ... ,

Um+n/am+n).

3. The source signs x with some standard signature scheme and publishes x. We

refer to the vector x as the signature, o(V), of the file being distributed.

4. The client node verifies that x is signed by the source.

5. When a node receives a vector w and wants to verify that w is in V, it computes

m+n

d = fJhiwi,

and verifies that d = 1.



To see that d is equal to 1 for any valid w, we have

m+n

d =U hiWi

m+n

= J (g i)"tW/aj

i=1
m+n

= R gUiWi

i=1

= 1,

where the last equality comes from the fact that u is orthogonal to all vectors in V.

Next, we show that the system described above is secure. In essence, the theorem

below shows that given a set of vectors that satisfy the signature verification criterion,

it is provably as hard as the Discrete Logarithm problem to find new vectors that

also satisfy the verification criterion other than those that are in the linear span of

the vectors already known.

Definition 1. Let p be a prime number and G be a multiplicative cyclic group of

order p. Let k and n be two integers such that k < n, and F = {hi, ..., hn } be a set

of generators of G. Given a linear subspace, V, of rank k in IF" such that for every

v E V, the equality TV A [" h i= =1 holds, we define the (p, k, n)-Diffie-Hellman

problem as the problem of finding a vector w C F," with rW = 1 but w V V.

By this definition, the problem of finding an invalid vector that satisfies our sig-

nature verification criterion is a (p, m, m + n)-Diffie-Hellman problem. Note that in

general, the (p, n - 1, n)-Diffie-Hellman problem has no solution. This is because if

V has rank n - l and a w' exists such that fw' = l and w' ( V, then w' + V spans

the whole space, and any vector w E IF, would satisfy fW = 1. This is clearly not

true, therefore, no such w' exists.

Theorem 1. For any k < n - 1, the (p, k, n)-Diffie-Hellman problem is at least as

hard as the Discrete Logarithm problem.

Proof. Assume that we have an efficient algorithm to solve the (p, k, n)-Diffie-Hellman



problem, and we wish to compute the discrete algorithm logg(z) for some z = g-,

where g is a generator of a cyclic group G with order p. We can choose two random

vectors r = (ri. ... , rn) and s = (Si, ..., s) in F, and construct F = {hi, ... ,

where hi = zrigs, for i = 1, ... , n. We then find k linearly independent (and otherwise

random) solution vectors v 1 , ... , Vk to the equations

v r =0 and v- s = 0.

Note that there exist n -2 linearly independent solutions to the above equations. Let

V be the linear span of {vi, ... , Vk}, it is clear that any vector v E V satisfies I" = 1.

Now, if we have an algorithm for the (p, k, n)-Diffie-Hellman problem, we can find a

vector w ( V such that 7"' = 1. This vector would satisfy w - (xr + s) = 0. Since r

is statistically independent from (xr + s), with probability greater than 1 - l/p, we

have w -r # 0. In this case, we can compute

w- S
logg(z) = x = .

This means the ability to solve the (p, k, n)-Diffie-Hellman problem implies the ability

to solve the Discrete Logarithm problem. LI

This proof is an adaptation of a proof that appeared in an earlier publication by

Boneh et. al [8].

4.4 Discussion

Our signature scheme nicely makes use of the linearity property of random linear

network coding, and enables the peers to check the integrity of packets without the

requirement for a secure channel, as in the case of hash function or SRC schemes

[3, 18, 34]. Also, the computation involved in the signature generation and verification

processes is very simple.

Next, we examine the overhead incurred by this signature scheme. Let the file



size be M and let the file be divided into m blocks, each one of which is a vector in

F,. The size of each block is B = n log(p) and we have M = mn log(p). The size

of each augmented vector (with coding vectors in the front) is Ba = (m + n) log(p),

and thus, the overhead of the coding vector is m/n times the file size. Note that this

is the overhead pertaining to the linear coding scheme, not to our signature scheme,

and any practical network coding system would make m < n. The initial setup of

our signature scheme involves the publishing of the public key, KPu, which has size

(m + n) log(q). In typical cryptographic applications, the size of p is 20 bytes (160

bits), and the size of q is 128 bytes (1024 bits), thus, the size of KPU is approximately

equal to 6(m + n)/mn times the file size.

For distribution of each file, the incremental overhead of our scheme consists of

two parts: the public data, KP,, and the signature vector, x.

For the public key, KP,, we note that it cannot be fully reused for multiple files, as

it is possible for a malicious node to generate a invalid vector that satisfies the check

d = 1 using information obtained from previously downloaded files. Specifically, let

xi be the signature of File 1, and wi be a valid received vector for File 1, we have

m+n

d = J hx"i = 1.

If the source then distribute File 2 using the same public key, KPU, and a different

signature, x2, a malicious node can construct a vector w 2 , where w2e = z iX2i,

which satisfies the signature check

m+n m+n

d = J7 h2iW2i = ]7 hx"" = 1.
i=1 i=1

However, w 2 is not a valid linear combination of the vectors of File 2. To prevent

this from happening, we can publish a public key for each file, and as mentioned

above, the overhead is about 6(m + n)/mn times the file size, which is small as long

as 6 < m < n. Note that if we republish K,2 for every new file, we can reuse the

signature vector x. Let u 2 be a vector that is orthogonal to all vectors in File 2, the



source can compute a new private key, Kp, = {ai, ... , am+n}, given by

ai = U2i/zi, i = 1, m + n.

The source then publishes the new public key, K,2 = {hi = g..i.i......,m+n. In this

way, we do not need to publish new x vectors for the subsequent files.

Alternatively, for every new file, we can randomly pick an integer i between 1

and m + n, select a new random value for a in the private key, and publish the new

hi = gai. The overhead for this method is (m + n) times smaller than that described

in the previous paragraph, i.e., this overhead is only 6/mn times the file size. As an

example, if we have a file of size 10MB, divided into m = 100 blocks, the value of

n would be in the order of thousands, and thus, this overhead is less than 0.01% of

the file size. This method should provide good security except in the case where we

expect the vector w to have low variability, for example, has many zeros. Security

can be increased by changing more elements in the private key for each new file.

However, if we only change one element in the public key, for each new file dis-

tributed, we also have to publish a new signature x, which is computed from a vector

u that is orthogonal to the subspace V spanned by the file. Since the V has dimension

m, it is sufficient to only replace m elements in u to generate a vector orthogonal to

the new file. Since the first m elements in the vectors vi, ..., vm are always linearly

independent (they are the code vectors), it suffices to just modify the entries ui to

Urn. Assume that the ith element in the private key is the only one that has been

changed for the distribution of the new file, and that i is between 1 and m, then we

only need to publish x1 to xm for the new signature vector. This part of the overhead

has size m log(p), and the ratio between this overhead and the original file size N is

1/n. Again, take a 10MB file for example, this overhead is less than 0.1% of the file

size.

Therefore, after the initial setup, each additional file distributed only incurs a

negligible amount of overhead using our signature scheme.

Reference [30] analyzes the overhead in terms of bandwidth associated with our



signature scheme, and compare it to that of various Byzantine detection schemes. It

is shown that our scheme is the most bandwidth efficient if the probability of attack

is high.

Finally, we would like to point out that, under our assumptions that there is no

secure side channel from the source to all the peers and that the public key is available

to all the peers, our signature scheme has to be used on the original file vectors not

on hash functions. This is because to maintain the security of the system, we need

to use a one-way hash function that is homomorphic, however, we are not aware of

any such hash function. Although [3] and [18] suggested usage of homomorphic hash

functions for network coding, [3] assumed that the intermediate nodes do not know

the parameters used for generating the hash function, and [18] assumed that a secure

channel is available to transmit the hash values of all the blocks from the source node

to the peers. Under our more relaxed assumptions, these hash functions would not

work.
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Chapter 5

Conclusion and Future Work

This chapter summarizes the work presented in this thesis. Network coding offers a

new paradigm for network communications, and at the same time, leads to many new

networking problems that require distributed solutions. In this thesis, we focused on

three aspects of distributed control of coded networks:

9 Subgraph optimization for multicast in coded networks

Subgraph optimization is an important problem in performing multicast with

network coding. We studied the algorithms that solve this optimization problem

for both static and dynamic multicasts. For static multicast, we presented two

distributed subgradient algorithms, Algorithms A and B, to find the min-cost

subgraph, and examined their convergence rate. Using the special structure of

the network coding problem, we showed that with appropriately chosen step

sizes, the dual problem converges to a neighborhood of the optimal solution

linearly. For Algorithm B, we showed that the convergence rate of the primal

solutions is 0(1/n). On the other hand, for Algorithm A, since the physical flow

variables are decoupled from the dual iterations, we can obtain a feasible primal

solution in each iteration. We also proposed various heuristics for dual variable

initialization and primal solution recovery to further improve the convergence

performance. Simulation results show that the subgradient method produces

significant reductions in multicast energy as compared to centralized routing



algorithms after just a few iterations. Moreover, the algorithm is robust to

changes in the network and can converge to new optimal solutions quickly as

long as the rate of change in the network is slow as compared to the speed of

computation and transmission.

For dynamic multicasts, in order to characterize the disturbances to users caused

by the changes in the multicast subgraph, we introduced the concepts of link

rearrangement and code rearrangement. We proposed both nonrearrangeable

and rearrangeable algorithms for the dynamic multicast problem, and used sim-

ulation results to show that the a-scaled algorithm can effectively bound the

growth of the multicast cost without causing too many disturbances to existing

users.

" Analysis and improvement to COPE

The second problem we studied is network coding for multiple unicast in mesh

wireless networks. Specifically, we examined the COPE system that employs

opportunistic coding to improve the network throughput. We showed that the

outstanding performance of COPE stems from the interaction between network

coding and the MAC protocol. A key factor here is the local fairness enforced

by the MAC protocol among competing nodes. Based on these observations,

we also proposed a simple modification to the COPE system that can further

improve the throughput performance.

" Signature scheme for content distribution

Finally, we studied the content distribution system in P2P networks using net-

work coding. Security problem is a main obstacle in the implementation of con-

tent distribution networks using random linear network coding. To tackle this

problem, instead of trying to fit an existing signature scheme to network coding

based systems, we proposed a new signature scheme that is made specifically

for such systems. We introduced a signature vector for each file distributed,

and the signature can be used to easily check the integrity of all the packets

received for this file. We have shown that the proposed scheme is as hard as



the Discrete Logarithm problem, and the overhead of this scheme is negligible

for a large file.

5.1 Future work

For future work, we would like to continue working on some of the above-mentioned

problems. For instance, it would be interesting to implement our modification to

COPE to see its effect in a real system. Also, we can extend our analysis method to

other COPE-like systems, and provide theoretical analysis of their performances.

In addition, there are many other distributed network coding problems that are

yet to be solved. One example is the multi-resolution multicast problem. Multi-

resolution codes enable multicast at different rates to different receivers, a setup that

is often desirable for graphics or video streaming. In a network coded system, we

need a distributed algorithm to let the intermediate nodes know which layers they

can code together such that the receivers can successfully decode. We propose a

simple, distributed, two-stage message passing algorithm to generate network codes

for single-source multicast of multi-resolution codes. Initial simulation results are

promising, and directions for future work include introducing an additional stage in

the algorithms to further improve the performance and modifying this algorithm to

work in multi-source multicast.
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