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Nomenclature

a(A) camera sensitivity to a given wavelength

C effective two dye molar concentration

C, dye one molar concentration

C2 dye two molar concentration

dV differential volume of fluid

dI differential element fluorescence

E(A) molar absorption coefficient for a given dye and wavelength

Je excitation illumination intensity

Io excitation illumination intensity constant (intensity at x=O)

A wavelength of light

Armin smallest wavelength that passes through red filter of rgb camera

Armax largest wavelength that passes through red filter of rgb camera

Agmin smallest wavelength that passes through green filter of rgb camera

Agmax largest wavelength that passes through green filter of rgb camera

rq dye's relative emission at give wavelength

monitoring efficiency

0 quantum efficiency

R intensity of red/green

x fluid film thickness
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1. Introduction

This paper seeks to resolve the biggest problem with hearing aids, their physical fit. By

digitally scanning the ear canal and taking the dynamics of the ear into account the

performance and comfort of a hearing aid can be greatly improved. Current optical

techniques for 3-D imaging are too expensive to be implemented in the ear canal for the

purpose of custom fitted hearing aids. A new absorption based optical technique is

introduced, which is capable of generating three dimensional maps of an ear subjected

to a varying pressure. It is possible to capture the dynamics of the ear in 3-D video and

design a hearing aid that takes them into account. Specifically a hearing aid can be

constructed with allowances for the compliance of the ear and the distortions

associated with jaw movement. Additionally the development of a balloon fabrication

methodology, which is necessary to implement the optical technique, is described as

well as a simple method for measuring the bulk compliance of an ear. It is shown that

the information that can be captured with this new technique will be of value toward

improving hearing aids, and that the hearing aid industry is ready to take advantage of a

digital scanner.

1.1 Motivation

Unlike glasses and contact lenses hearing aids have a social stigma attached to them.

The problem with hearing aids is that they do not provide as robust a solution to hearing

problems as exists for vision problems. Contacts, glasses, and laser eye surgery can

restore almost perfect sight to all but the most visually impaired. These solutions have

comfort, aesthetic, convenience, and cost tradeoffs that can fulfill the most demanding



of customers. Future fighter pilots, embarrassed teenagers, and aging retirees can all be

satisfied by existing vision correction options.

In contrast hearing aids do not restore perfect hearing, run out of batteries, are

considered unsightly, can be uncomfortable, fall out, and have a multitude of other

issues. They are not main stream enough to be covered by most insurance even though

hearing trouble is more prevalent than vision trouble. According to the National Center

for Health Statistics [1], the percentage of American adults with hearing trouble, 17%, is

significantly more than that than the percentage of adults with vision trouble, 11%. This

percentage is likely to continue to rise because of noise induced hearing loss and an

aging population.

In his "Hearing Aid Physical Fit: The Next Revolution," David Fabry [2] outlines the

potential benefit of a digital scanner.

The most obvious way that digital technology may shift the paradigm is by ultimately eliminating

the need for earmold impressions via direct ear scanning. The use of the 3D scanner may permit

earmold/shell characteristics to be transmitted electronically to the manufacturer. Digital

mechanics may be used to quantify and compensate for dynamic properties of the cartilaginous

portion of the ear canal; this, in turn, will improve user comfort and reduce hearing aid feedback.

Direct ear scanning may eliminate the need for earmold impressions. Digital mechanics may

permit hearing aid acoustic characteristics to be assessed, modified, and optimized for individual

ears. [2]

Other professionals are making similar hopeful statements, such as the editor of the

Hearing Journal, David H. Kirkwood [3], in his article, "The Bright Promise of Direct Ear

Scanning." Professionals in the hearing aid industry are eager to replace impression

with direct ear scanning.



1.2 Current Problems with Hearing Aids

In order to ensure that a digital scanner could improve hearing aids it is necessary to

examine the current issues with hearing aids. The various issues with hearing aids, most

importantly performance, comfort, and background noise, have led to an all time low

market penetration of 20.4% [4]. This low number arises from the fact that hearing aids

are not effectively meeting the needs of the hearing impaired, and have not gained

enough status to be widely covered by insurance. Kochkin's survey of 2720 hearing aid

owners seeks the answer to the problem why "hearing aids are in the drawer." [4] His

content analysis of the 348 letters received from owners of hearing aids who do not use

them is shown in table 1.1.

1 Nos heeflitfren, he.a 1 nics 103 29.6% 261,510

2 lodgrouneJ b/cisy110UenM to 25.3% 229,401
S it crforl i5 181% 169,448
4 egvstiWe effectof A 30 10.9% 99,062
5 ?ri &11tW of repain 36 10.3% 93,848
d lnt edJ lp 28 1.0% 72,993
7 isloing dih brAkt 27 7.8% 70,306
I Sud qualbtyis poor 22 .3% 57,352
I JMimi -o 1W w 21 1.0% 54745
10 mwne ameind ieumrI 17 4.9% 44,317

11 Whiliqmg dAk 15 4.3% 39,103
12 WIOtWSWau/iam lng 14 4.0% 36,497
13 Pa sWnike [raM isMW l 5.2% 2,676

14 liig-freiwqe h rat lped 10 2.9% 26,06?
15 Siga f wig hwlgls 10 2.9% 26,069
16 Worin imied diwagm 9 24% 23,462
17 Promd hewng lo ne hulped 9 2.6% 23,462
13 Tooloud 8 2.3% 20,155
1 I soWryfeueshort 7 2.0% 18,246
20 Forgu t e 4 1.1% 10,428
21 aes notwok ols peus 4 1.1% 10,420
22 Monotrd dels joa 3 C.9% 7,821
23 Ovesaidegettdonm 3 C.9% 7,821
24 lave inidu 3 C.9% 7,821
25 Fmly pressered topurdum I 3 .9% 7,821
26 OMaimaetery 2 C.6% 5,214
27 tort sodul user 2 C.6% 5,214
23 Welkeerglug; I G.3% 2,60
2? Poa inchviy 1 .3% 2,6W
30 Gms iso hW 1 C.3% 2,60
31 Cn sifiedthm 1 1.3% 2,6W
32 Er wvaxproken 1 .3% 2,601



Table 1.1: Tabulated content analysis of the 348 letters received from owners of hearing aids who do

not use them. Most complaints can divided up into poor performance, comfort, and increased

background noise. [4]

A majority of complaints are related to performance or comfort. The most common

complaint given is that the hearing aid has little benefit (29.6%). Additional

performance related complaints included poor sound quality (6.3%) and feedback

(4.3%). The second most prevalent issue for consumers, comfort, is the chief complaint

for over a quarter of the population: 18.7% of consumers said fit and comfort

specifically is their biggest issue with their hearing aid, and 10.9% cited negative side

effects including blisters, rashes, itching, headaches, infections, problems chewing or

swallowing, too much pressure. [4] It is not hard to see why hearing aid owners

discontinue use given either poor performance of discomfort.

Comfort and performance are coupled are coupled by physical fit. To prevent leaking

and feedback hearing aids need to create a seal in the ear canal. The correct amount of

uniform pressure needs to be put on the surrounding tissues to create a seal and anchor

the hearing aid to the ear without causing discomfort. A bad seal allows sound to leak

past the hearing aid and mix out of phase, which degrades sound quality. Degrading

sound quality requires higher amplification which requires more power and can

decrease the efficacy of the hearing aid in background noise. The two most egregious

problems consumers have with hearing aids ultimately are the result of a poorly fitting

physical shell.

Complaints of increased background noise (25.3%), which are largely dependent on the

users cognitive processing of sound, cannot be solved completely by improving fit. [4]

Without a very large improvement in signal processing, hearing aids cannot hope to

replace the brain's sound signal processing abilities. This problem is very frustrating for

the hearing impaired, as the hearing aid amplifies both the signal and the background

noise leaving them unable to hear in noisy environments.



This noteworthy difficulty is not addressed by the methods developed in this paper, but

much progress can be made in improving hearing aids before this more complex

problem is resolved. The most important problem with hearing aids is physical fit, which

the new scanning technique is capable of solving. The next section explores the size and

the makeup of the hearing loss problem.

1.3 Demographics and Market

In order to understand the magnitude and composition of the hearing loss problem a

brief study of demographics of hearing loss and the hearing aid market will be made in

this section. In this study the following information will be considered: demographics,

noise induced hearing loss, hearing aid adoption rates, hearing aid costs, number of

hearing aids sold annually, growth, severity distribution, and types of hearing aids. A

breakdown of hearing loss by sex, age, marital status, and education take from the

National Center for Health Statistics is given in the table 1.2.

Total 16.8 Sex Male 19.4
Income Less than $20,000 20.9 Female 14.6

$20,000 or more 16 Age 18-44 7.6
$20,000-$34,999 18.7 45-64 19.4
$35,000-$54,999 17.5 65-74 31.9
$55,000-$74,999 16 over 75 50.4
$75,000 or more 14.2 Marital Status Married 17.8

Education Less than a high school diploma 22 Widowed 39
High school diploma or GED 19.3 Diwrced Or Separated 18.7
Some college 19.6 Never Married 8.3
Bachelors degree or higher 14.7 Living With a Partner 12.3

Table 2.2: 2006 hearing loss statistics by sex, age, marital status, and education taken from NCHS

(National Center for Health Statistics). [1]

Many are aware that hearing worsens with age, but are unaware that over 50% percent

of those over seventy five suffer from hearing loss. The effects of marital status can

most likely be explained by correlation with age. For example, the group of widowed

people is made up of older people on average than the married group. The effects of

14



sex, income, and education are smaller, but not negligible. Males with a poor

education, and low income are the most prone to hearing loss.

The trends that are independent of age can be explained in part by noise induced

hearing loss. According to the National Institute of Deafness and other Communication

Disorders [5], NIDCD, "15 percent of Americans between the ages of 20 and 69 or 26

million Americans have high frequency hearing loss that may have been caused by

exposure to loud sounds or noise at work or in leisure activities." Industrial hearing loss

and lack of education concerning recreational noise is likely to be responsible for the

trends of increased hearing loss in males and those with lower income or poor

education. Many jobs that involved operating heavy noisy industrial equipment are held

by poorly educated males. Noise induced hearing loss has gained more notoriety, which

has recently led industry to respond to it with increased hearing protection. According

to David H. Kirkwood [6], the military is associated with a large portion of hearing loss,

with the Department of Veterans Affairs (VA) purchasing 16% of hearing aids in 2008.

Additionally the number of VA purchased hearing aids went up by 9.2% between the

third quarter of 2008 and 2007, while total hearing aid purchases declined 1.2%.

A very important characteristic of the hearing aid market is the market penetration, or

the adoption rates. The overall adoption rate of approximately one fifth is indicative of

hearing aids providing a poor solution to hearing impairment. Historical data for

hearing instrument adoption rates broken down by sex, age, education, household

income, employment status, metro size, and life stage is shown in the table below taken

from Sergei Kochkin's [7] "MarkeTrak VII report. : Hearing Loss Population Tops 31

Million."
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Table 3.3: Hearing aid adoption rate statistics from MarkeTrak VII. [7] Overall adoption rates have held

steady at approximately one fifth of the impaired population.

The overall adoption rate has held steady over this time span at approximately twenty

percent of the hearing impaired population. Adoption rates increase dramatically with

age. This trend is most likely a result of the severity of the hearing loss. Besides age

related effects life stage and employment status appear to have little effect on adoption

rates. Adoption rates also appear independent of the size of the metro area. The effect

of income and education are becoming less important factors in hearing aid adoption.

However the adoption rates among the poorest and worst educated have fallen from

16



over 30% to only slightly higher than average at approximately 25%. Higher than

average past adoption rates among the poor and uneducated and are not normal for a

well functioning expensive medical device. This oddity might be explained by changes in

hearing aid benefit coverage, increased hearing aid cost, or improved access to hearing

testing.

Given the lack of widely available insurance coverage for hearing aids, cost might be

expected to be more of an issue. The wealthy could be more sensitive to the social

stigma associated with hearing aids. If current hearing aids were a good solution to the

hearing loss problem one would expect significantly more overall market penetration,

especially for those whom money was not an issue. Even though the price of a hearing

aid does not seem central to adoption rates, it is important in characterizing the hearing

aid market. The out of pocket expense of hearing aids as well as the percent covered by

third parties is shown in the table 1.4, taken from Kochkin's report.
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TId-party psmits M -"M'bVA 222% 1194% 17.1% 20,8% 247% 24A% 21.
Tird-pry pasUnts (%) w VA 23.5% 21.7% 26.6% 30.2% 34.% 17.3

AWire aut-o-peS prftemwwnur #01 Qs23 3S $736 W17 $1 A7 31
(EAiag VA gfl)

STE S"? M5 SM7 565 SUM1 51,514
FTC $742 saw0 F71 $1,04 PAU $161
IE M4 $W1 73 $742 $1,97 $114

Mna lrn trunt ustuin ("4291 (350 M=493 (nM (653 (53 (n513 (=w5U3

ey rhWId pbaWt
A.ildogst 221% 4UAf 48.1% 4.3% 32.% 651% 6.0%
He*g aki eCIAM 6A% 48.6% 40% 44.7% 43.4% 2826% 35.9%
Mdtidacw 4.% 13% i2% 1% 1% .1% 10%
cow 6.9% 3.8% 2.9% 4.1% 1.7% 4.1% 7.1%

By $"No or wmU ---
Huartig aM al atme 40.7% 30A% 36.5% 31.1% 30.5% 222% 37
Aiingrs le 21.3% 35.5% 36.5% 40.3% 41.3% 47.2% 24.
aft 52% 14% 1 % 2.0% 31% .
Hepial 21% 22% 2.2% 2.5% 1.5% 14
Er c* 9's1i" 6A% 141% 1M% 7.0% 7,1% 7Ii.
Fam(ydoc's ohflc 0.3% 13% 02% 0,6% 40% 02% 0.6%
Venus AMIbisaoM 1.W% 24b 3A 41% 1% 14.f
Mil ~i*e 2.1% 3.0% 0.% 2.5% 0.0% 3S% 54%
Depurnet sm 2A% 32% 4.7% 22% 2A% 2^% %
Home 6.3% .4% 7.3% 4.4% 3.7% 2.0% 0.%
M2- % 14% '.1% 1.% 1.%
Vfmle cub 2.0%
Olhe 15.0% 1.7% 2.0% 1.0% 3.4% 15% IA%

MENOW-



Table 4.4: The out of pocket price per hearing aid and point of purchase from 1984-2004 The price has

been rising steadily. [7]

The out of pocket price of a hearing aid has been on the rise. While the percent paid for

by third parties excluding veterans' affairs has been steady, the percent Veteran's

Affairs (VA) has been responsible for has had a dramatic increase. VA is now responsible

for 14.9% of the hearing aids distributed. Most hearing aids are purchased from

audiologists and hearing aid specialists, but new sources such as whole sale clubs have

begun to distribute them.

Another important piece of the hearing aid market is the number of units sold. The size

of the hearing aid market in terms of units is shown in the figure 1.1 that comes from

David H. Kirkwood's [6] report, "Economic turmoil threatens to reverse recent growth

in the hearing aid market."

2,500,000 F-

2,000,000 -1,8777 3
+ 3.9Ui

2199?,78
2145,378 +2 5<

2 30.114
4 715

2,425,2I9 Z*Na,4i
133- 4.18%

10 9 5 1 1594. -
±20% 07; -1-.2 1 1

1,500,000 |-

1,000,000 F

500,000 F

199 1 I eI 20I 20I 20I 20I 20I I I 2

1 998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Figure 1.1: The units of hearing aids sold per year. [6]



The number sold was fairly steady from 1998 through 2003 at approximately 1.9 million

units. From 2004-2008 this number grew to 2.4 million units. Current hearing aid

market projections include significant growth, because the number of people affected

by hearing loss is expected to rise. Projections for the growth of the incidence of hearing

loss are shown in figure 1.2, taken from Kochkin's report.

60

C

20 - -

Figure 1.2: Number of hearing impaired, includes future projection based on US census population

projections coupled with hearing loss by age group. [7]

The US census projects a steadily aging population. The hearing aid market is expected

to grow significantly, because of this projection combined with the correlation between

healing loss and age. The expected growth of the problem makes improving hearing

aids even more important. As the population ages, severe hearing loss will also

increase.

The severity of hearing impairment determines the reduction in quality of life, and the

likelihood that an individual will seek out a solution. In the table below taken from Karl

E. Strom's [9] "HR 2006 Dispenser Survey" statistics concerning hearing aid clients' level

of hearing loss are shown.



Mild (<40 dBHL) 14% (12%) 18% (15%) 16% (14%)
Moderate (40-70 dBHL) 52% (50%) 54% (55%) 53% (52%)
Severe (70-90 dBHL) 25% (30%) 21% (23%) 23% (26%)
Profound (>90 dIBHL) 9% (8%) 7 (7%) 804(8%)

Table 1.5: Hearing loss levels from Hearing Instrument Specialists (HIS) and Dispensing Audiologists

(DA) clients in 2005 and (2004). [8]

People with severe and profound hearing loss are the most likely to seek out a solution,

and make up approximately 30% of the hearing impaired. Mild and moderate hearing

loss is often coped with, because of the current utility of hearing aids. Given a level of

hearing loss different types of hearing aids are appropriate. Breaking the market down

by hearing aid type gives insight into the needs of the hearing impaired. The main types

are shown in the figure below, taken from National Institute on Deafness and Other

Communication Disorders NIDCD [9].

Types of Hearing Aids

A, oir~ in -r a

Behind-thE-ear (BTE}
omplee Iy-in-cara

(CIC

Figure 1.3: 5 main types of Hearing Aids [9].

Behind the ear hearing aids are best suited for those with severe hearing loss or low

price needs, as they can provide large batteries and gains or economic electronics. In

general as the hearing aids become smaller and deeper in the canal, they become more

expensive, as the electronics need to be higher end. However, these hearing aids can

have more problems with feedback because they have a shorter distance and as such

time delay between input and output. In addition, the deeper impressions and shells go

"Mini" RTE In-the-ear (ITE) in-th, _ana10 T C}

0
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into the sensitive bony region of the ear, which requires tighter tolerances to assure

comfort without allowing sound to leak. An improved fitting technique could make

deeper fitting impressions higher performance and more comfortable. Deeper in the

canal sound transmission can be done more efficiently, reducing power requirements.

Studies like "The Hearing Aid Effect 2005: A Rigorous Test of the Visibility of New

Hearing Aid Styles" by Johnson et all, [10] have studied the stigma against hearing aids

in depth. The more noticeable the hearing aid the worse the stigma attached to it. The

low visibility of smaller deeper fitting hearing aids is valuable to consumers. As hearing

aid technology improves it is expected that the footprint of the electronics will continue

to decrease. However, the progression to smaller deeper fitting hearing aids could be

held up by the current impression based fitting process

An alternative to these four types of custom fit hearing aids, all of which require a

custom impression, is the "mini" BTE or open fit hearing aid. The open fit hearing aids

have been gaining popularity. In a survey by Earl E. Johnson [11] of 418 audiologists,

41.6% of hearing aids sold were mini open fit behind the ear devices. Customers like

open fit hearing aids because they can walk out of the audiologist's office with one after

their first visit, and they mitigate problems like occlusion, jaw movement, and poor

retention (problems which will be explained further later). Additionally, open fit hearing

aids save audiologist times by not requiring an impression, but are only suitable for

minor and moderate hearing loss (less than 65 DB), because of the open path for

feedback. The demand for hearing aids by type is taken from Kirkwood [6] and shown in

table 1.6.



% OF ALL INSTRUMENTS SOI
2008 2008

(Jan.-Sept.)

Completely-In-the-canal (CIC) analog 4053
CIC digital signal processing (DSP) 158.784
All CIC 162837

hn-the-canal analog 7905
In-the-canal DSP 186,842
All In-the-canal 194,747

Half-shell In-the-ear (ITE) analog 3221
Half-shell ITE DSP 132,318
All half-shell ITE 135,539
Full-shell analog ITE 23,671
Full-shell DSP ITE 266,342
All full-shell ITE 290,013

Other ITE analog 5073
Other ITE DSP 14,362
All other ITE 19,435
Total ITE analog 43,923
Total ITE DSP 758,648
All ITEs 802,571

Behind-tfe-ear (BTE) analog 21,213
BTE DSP 1,021,084
Total BTE 1,042,297

Total all styles analog 65,136
Total all styles digital 1,779,732
Total all styles 1,844,868
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10.%

0.2%
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0.3%
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2.4%
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100.0%

2007

0.9%
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9.8%
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11.3%
12.4%

0.5%
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15.0%
17.4%

0.7%
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5.6%
43.0/
48.6%

2.5%
48.9%
51.4%

8.1%
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2006

0.6%
10.2%
10%

1.1%
13.3%
14.4%

0.3%
8.4%
8.7%

2.4%
17.9%
20.3%

0.8%
1.1%
1.9%

5.2%
50.9%
56.1%

3.1%
40.8%
43.%

8.3%
91.7%
100%

Table 1.6: Relative demand for various types of hearing aids 2006 -2008. [6]

The most important trend illustrated in the figure above is a rise in BTE demand, which

comes mostly from growth in the market for open fit hearing aids. The number of open

fit versus regular fit can be tracked by evaluating the batteries the BTE's were equipped

with. In 2007 they made up 37.2% of the BTE hearing aids sold, and in Q1-Q3 of 2008

they made up 42.2% of the BTE hearing aids. [6] Open fit hearing aids were responsible

for 2.5% growth in the total market on their own. They have lead to a reduction in the

market share of all the other hearing aids. The hearing aid that has lost the most

ground is the ITE, in the trend towards miniaturization. Hearing aids are also becoming

increasing digital, with analog devices down by more than a 50% is just a single year.

UNITS SOLDTYPE



To help finish quantifying the market presence of these different styles the average

price of low end, middle end, and high end BTE (behind the ear), mBTE(mini behind the

ear), ITE (in the ear), ITC (in the canal), and CIC (completely in the canal) are shown in

the figure below taken from Earl E. Johnson's [12] dispenser survey report, "Despite

having more advanced features, hearing aids hold line on retail price."

$0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 $3,500

Analog $857

LE D BTE $1,149

LE D mBTE $1,318

LE D ITE $1,204

LE D ITC $1,309

LE D CIC $1,364

ML D BTE $1,843

ML D nmBTE $1,861

ML D ITE Si ,840

ML D ITC $2,147

ML D CIC $2,023

HE D BTE S2,609

IIE D mBTE S2,672

HE D ITE $2,686

HE D ITC $2,744

HE D CIC $2,860

Figure 1.4: 2007 average reported prices of BTE (behind the ear), mBTE(mini behind the ear), ITE (in the

ear), ITC (in the canal), and CIC (completely in the canal) by low end (LED), middle end (MLD) and high

end (HED) with 95% confidence intervals. [12]



In general as shown above smaller hearing aids are more expensive, with CIC being the

smallest and most expensive and the BTE being the largest and cheapest. The gap

between low and high end is nearly a factor of 3 for a given type of hearing aid.

The most important point to take away from this section is that the hearing loss

problem is big and growing. The existing solutions are unsatisfactory to a larger

percentage of the affected population. Open fit hearing aids provide a good solution for

many who have moderate hearing loss and their introduction has caused a lot growth.

An improvement to fitted hearing aids would most likely lead to similar growth, and

pave the way towards less visible, more comfortable, better performing hearing aids.

Those who have purchased open fitted hearing aids will eventually need a custom fitted

one that is just as functional. It is not just Fabry [2] and Kirkwood [3] calling for an

improvement in fitting techniques, the market is as well. Now that the market has been

characterized and shown favorable to the proposed technology, the next section will

turn its attention to the traditional fitting technique of hearing aids.

1.4 Traditional Manufacturing Procedure

The current approach to fitting for both traditional and digital manufacture is based on

injecting a deformable setting substance, often silicone based into the ear. It is a

process that requires significant skill, thirty minutes of an audiologist's time, can cause

significant discomfort to the patient, and is shown below in figure 1.5.



Figure 1.5: The injection of impression material into an ear, and the removal of the impression.

Before the silicone can be injected any excess hair must be removed and the ear must

be cleaned of wax. A foam plug is then placed deep in canal to protect ear drum. The

impression material is mixed and put in large syringe. The syringe is used to skillfully fill

the ear with resin in order to make a good impression. Ten minutes later, after the

material has hardened the impression is popped out, sometimes painfully. The whole

process is sometimes uncomfortable for the patient. Every audiologist has their own

methodology, concerning what type of silicone to use, how to fill the ear with resin, and

what position to put the patient's mouth in.

This complicated manual procedure has a poor track record with quality control. In

discussions with manufacturers it was learned that as many as 30% of hearing aids need

to be remade, because they do not fit the user properly. The impression process is

variable, but even when the impression is made well the hearing aid can fit poorly

because of un-captured dynamics. Too tight of a fit can be painful, while too loose of a

fit will lead the hearing aid to fall out and add undesired acoustic effects.

Creating a hearing aid from this impression traditionally requires significant post

processing. The impression is coated with wax to reduce surface imperfection and to

give the extra material needed for a seal, a reverse mold is produced (investment



casting) and in this mold the final shell material is poured. The detailed steps in

traditional manufacture are outlined by Richard Corte et all, [13] in figure 1.6.

Figures 1.6a-i. The 9 steps in making a conventional hearing aid shell (prior to assembling electronic

components): a) A cast of the impression is made; b) The ear impression is trimmed to the model size;

c) The impression is dipped in wax; d) A hydrocolloid cast of the impression; e) Acrylic resin is poured

into the hydrocolloid cast; f) Excess acrylic resin is drained from the hydrocolloid cast; g) The faceplate

end of the shell is trimmed; h) The vent is laid into the shell; i) The finished shell is ready for electronics.

[13]

The majority of shells are made by this fully manual process, and as a result the quality

of the fit depends largely on the skill of the technician who acts almost as an artisan.

This process is time, labor and therefore cost intensive.

Hearing aids often include vents to allow moisture to escape the ear and reduce low

frequency booming. A loose fit acts as a vent, but of an uncontrolled, sometimes very

large size. In an 8mm canal an uncontrolled vent can be quite large compared to a

normal vent, 1-2 mm in diameter. The frequency response of different size vents in

figure 1.7 illustrates the effect an uncontrolled vent could have, taken from Stuart et all,

26



[14] "The effect of venting on in-the-ear, in-the-canal, and completely in-the-canal

hearing aid shell frequency responses: real-ear measures."

Mean Response of CIC hearing aids with given vent diameter
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Figure 1.7 The mean response of a sample of 12 CIC hearing aids with a given vent diameter is shown

above. [14]

As shown above, increasing the area of the vent in an uncontrolled manner due to poor

fit can have a dramatic effect of the frequency response of the hearing aid. The expense

of the remakes led the hearing aid industry to respond to the fit problem with a new

technology. Laser scanning of the impressions has been introduced which will be

discussed in the next section.

1.5 Laser Scanning

The hearing aid industry has begun regularly using what are called laser shell or digital

shell technologies. The process begins by taking a scan of the impression using a

desktop machine shown in figure 1.8 in the images taken from Sullivan's [15] paper,

"Scan/print vs. invest/pour shell-making technologies for CIC hearing aid fitting"



Figure 1.8: Desktop Laser Scanners [15]

Selected Laser Sintering (SLS), Stereo Lithographic Apparatus (SLA), and Digital Light

Processing (DLP) are the three technologies used for producing hearing aids. The

scanning is highly accurate and can measure the impression to 50 micron accuracy.

They are expensive to produce and are often provided to audiologists by hearing aid

companies, such as Siemens. The scanner generates a point cloud such as the one

shown below from the impression also taken from Sullivan's paper.

Figure 1.9: Point cloud (right) generated from this impression (left). [15]

When laser scanning began, the hearing aids created were the exact replicas of the

impression. The manufacturers were confused because at first more remakes were

necessary than have been previously by the traditional method of manufacture. As a

result, manufacturers brought parts of the manual process in to the digital one to

improve it. Wax of slightly varying thickness was replaced with a perfect digital offset.

Trimming of the impression was replaced with virtual trimming. However, after these



steps the gains in the quality of hearing aids coming out of digital methods in terms of

physical fit were not as large as the manufactures had hoped.

The recent trend towards scanning and printing of hearing aids has led the industry to

be ready to print hearing aids from digital data. 3-D systems made a press release on

May 14, 2009, announcing a new hearing aid manufacturing system the V-Flash HA 230

Manufacturing System. The V-Flash platform is the first commercially available 3-D

printer under $10,000. The existence of a cheap desktop platform for making hearing

aid from digital data was a crucial step in making the market ready to benefit from a

direct ear scanner.

Now that the digital scan/print process has reached a plateau, it is safe to say that while

it may have improved repeatability, lead times, and cost, it has not drastically improved

physical fit though there was room for radical improvement. The laser scan's tolerances

are very good, but it is probably much more accurate than the ear impression.

Measuring the ear impression in a highly accurate fashion is not worthwhile if the

impression itself is inaccurate. If this was the only problem a more accurate single

digital in ear scan might be sufficient to solve the physical fit problem. However, there

are two other important issues, jaw induced canal distortion and ear compliance. No

single 3-D model or impression can capture the data needed to make a hearing aid that

accounts for these phenomena.

1.6 Jaw Movement and Compliance

The process of capturing jaw movement and compliance is similar in that both require

multiple sets of three dimensional data to be fully captured. Currently, the only way

that such data has been captured experimentally is by taking two impressions with the

mouth opened and closed (for jaw movement) and with high-viscosity and low-viscosity
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silicone (for compliance). The high-viscosity silicone pushes harder against the ear and

makes a slightly larger impression.

This multiple impression technique is reasonable to carry out experimentally, but not in

general practice because of the added cost of the extra impressions. The study by

Chester Pirzanski [16] titled "Ear canal dynamics: Facts versus perception," shows that

both jaw movement and compliance can lead to large distortions of the ear, up to 2

mm, (ear canals are on the order of 10mm), and that the size of the effects cannot be

predicted accurately by trained audiologist. In figure 1.10 the growth in the canal

associated with the jaw's temporomandibular joint (TMJ) is shown.

2.0 TMJ dassrcarn Savre TMJ
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Figure 1.10: The increase in canal diameter between an open mouth low viscosity silicone and a closed

mouth high viscosity silicone. [16]

Approximately 80% of ears have less than a .5 mm increase in canal diameter, but other

20% are likely to have problems with fit if there TMJ activity isn't accounted for. 1 mm

of growth on a ten millimeter canal can easily cause an uncontrolled vent or a loose

fitting hearing aid. Either one of these issues will probably lead to a remake of the

hearing aid or discontinued use. One question addressed in Pirzanski's paper was

whether or not audiologists could categorize the mouth dynamics without additional



impressions. This solution would be cost effective, but audiologists could only correctly

categorize the mouth dynamics into these three categories 48% of the time. Data for

an equally important hearing aid fit problem, compliance, is shown in figure 11, taken

from Pirzanski [16].

1.5

1.0

0.5

10 20 30 40 50 60 70 0 90 100

Total number of ears 1488 % of ears

Figure 1.11: The increase in canal diameter between a closed mouth high viscosity silicone and a closed

mouth low viscosity silicone. [16]

If the compliance of the ear is not taken into account, serious problems with fit may

arise. A soft ear could easily lead to a loose fit and bad seal, and a firm ear can easily

lead to pain and discomfort, especially when combined with TMJ activity. Audiologists

could only correctly categorize the compliance into these three categories 34% of the

time.

Given these two data sets, it becomes clear why the impression/scan and traditional

manufacturing methods often lead to problems with fit. Hearing aids will regularly be

too tight on some people with very firm ears, too loose on some people with very soft

ears, or lose performance or comfort while opening the mouth to talk or chew. An

important goal of this paper is to introduce a method of scanning ears that would cost



effectively allow for the manufacturers to gain access to information about the

compliance and TMJ distortions of an ear. It may not be immediately clear how to use

the additional 3-D data to improve hearing aid fit, but when it can be effectively utilized

it should put an end to the issues with hearing aid fit that laser scan/print has failed to

solve. A recently introduced hearing aid technology that attempts to address some of

these problems with fit, compliant tipped hearing aids; the limitations of this solution

are discussed in the next section.

1.7 New Types of Hearing Aids

Compliant tipped hearing aids are quite new and have only recently come into the

literature in February 2008. Compliant tipped hearing aids make use of slow recovery

foam with the goal of mitigating fit problems like jaw movement, poor retention, and

comfort. Compliant tipped hearing aids have done well in studies, but are subject to the

limitation of being for moderate hearing loss. As a result they only solve a problem that

for the most part has been solved by open fit hearing aids.

The tips need to be changed every 10-14 days, but may still be cost effective since they

have a low initial cost and reduce the time needed for fitting with an audiologist. They

are currently manufactured by one manufacturer, Hearing Components Inc, and have

only published data for one small trial with 30 patients. The user-factor results are

promising and are shown in figure 1.7 taken from Smith et all [17] paper, "Study finds

compliant eartips can be used instead of custom earmolds."



Benefit 56.7. (12.5) 55.0, (11.6)

disal 26.3, (10.1) 26.5, (10.8)

Satisfaction 57.3, (12.2) 58.1, (10.2)

Table 1.7: In the figure above it is clear that in their small trial compliant tipped hearing aids did quite

well in terms of user-factors. [17]

They are similar to open fit hearing aids in that they save audiologist times by not

needing an impression, and are only suitable for moderate hearing loss. However, open

fit hearing aids are already providing a good solution for this subset of the hearing

impaired. Given their performance limitations compliant tipped hearing aids do not

reduce the need to improve the physical fit of custom hearing aids.

1.8 Existing 3-D Approaches

3-D imaging is a vast and varied field. For the most part 3-D imaging solutions are very

expensive. Good literature reviews of the work in 3-D imaging can be found in the

following three papers. [18, 19, 20] Despite the vast amount of research devoted to

machine vision, not very much work has been put into measuring objects dimensionally

similar to the ear canal from the inside. The earliest 3-D measuring instruments

required contact with the surface. However, physical measurement is impractical with

certain fragile materials. The two standard non-contact approaches rely on either

triangulation or time of flight.

Use 82.2, (22.3) 83.0, (24.0)



Non-contact optical scanners fall into the categories of passive and active. Passive

scanners use triangulation between two or more cameras, resolving depth in the same

manner as the human visual system [18]. The biggest technical hurdle of stereo and

multi-view systems is the correspondence problem. Daniel Scharstein evaluates several

algorithms performance in this field [21]. Another major goal for a 3-D system is to be

able to measure in real time. Recently real time stereo correlation has been

implemented on ATI Radeon 9800 GPU [22]. Correspondence algorithms make use of

local and global matching of textures, shapes, and shadows. Stereo systems need too

much space to fit in the ear canal, because a stereo system requires two cameras

separated by an appropriate distance.

Active non-contact scanners can bypass the correspondence problem by using active

illumination. Active methods, like passive methods, rely on triangulation. The first

active scanner used a camera to track a moving single laser point. This process mirrored

the physical coordinate measuring machine by building up the model one point at a

time. A similar but faster approach was invented that relied on a plane of laser light.

This technique removed a dimension of the scan and is widely used today. Another

method that makes use of lasers is interferometry, which combines two lasers offset by

a distance.

The newest non-contact method uses a digital projector instead of a laser and is known

as structured light. Digital projectors can make complex depth dependant patterns that

can be picked up on the camera. A lot of work has been put into the problem of

optimizing the projected patterns. [23] Like passive methods, active methods require

more space than is available in the ear canal because of the need for a light source,

camera, and triangulation. Additionally active methods are currently too expensive for

fabricating custom fit hearing aids.



The time of flight method is based on measuring the time it takes for the emitted pulse

to be reflected back to the sensor. The accuracy is limited by how well time can be

resolved. For example an accuracy of one centimeter requires a time resolution of 66

picoseconds. [19] Time of flight is typically used to measure large objects like buildings

because it is inexpensive and is relatively inaccurate.

None of the current 3-D imaging methods are appropriate for measuring the ear canal.

Triangulation methods take up too much space and are too expensive. Time of flight is

not accurate enough. MRI's were used by Olivera [24] scan ear canals, but are too

expensive to be suitable for making hearing aids. Given the goal of making a cheap,

robust system that could scan an ear canal, none of the existing technologies were

suitable.

1.9 Approach

In order to push development forward the problem of taking three dimensional data on

the ear, it was decomposed into two main problems: measuring the compliance of an

ear and developing a technique capable of imaging the ear. These two issues are

discussed in their own sections. They were split up in order to allow concurrent work on

the two, with the hope that both solutions could eventually be combined. Another sub

problem is the stitching of 3-D data, which is also treated on its own briefly in the

imaging section. In the subsequent imaging section ERLIF (emission reabsorbtion laser

induced fluorescence) and an absorption based imaging technique inspired by it will be

introduced and described mathematically.



2. Imaging with ERLIF and Absorption

When the goal of 3-dimensionally scanning the ear was first being pursued, the planned

technique was ERLIF (emission reabsorption laser induced fluorescence), which can be

used to measure a film thickness. This technique was introduced by Coppeta, J., et. al.

[25] in 1998 under the name of DELIF (dual emission laser induced fluorescence) and

expanded upon by Carlos Hidrovo and Doug Hart in a series of papers between 2000

and 2004. This section will develop the equations to explain ERLIF and the absorption

based imaging technique it inspired, as well as show the resulting calibration curves.

The fundamentals of this technique are explained in the next section.

2.1 ERLIF Fundamentals

ERLIF is an extension of Laser Induced Fluorescence (LIF). In LIF a light source is used to

excite fluorescent tracers. LIF has been used as a qualitative tool used to visualize

particles of interest by Ayala et al [26] and Joffe et al [27], and as a flow tracer by

Georgiev and Alden [28], Kovacs [29], and Thirouard and Hart [30]. It is difficult to use

as a quantitive tool, because of variation in illumination, surface reflectivity, color, and

translucency as well as vignetting effects from tracer emission. The core idea behind

ERLIF is to cancel out these variations taking a ratio of measured intensities between

two fluorescent frequencies. The mathematics that show it to be a variation free

approach are developed in Hidrovo and Hart's papers, and will be treated briefly in this

section. Hidrovo [31] begins with the differential fluid element shown in figure 2.1.
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Figure 2.1: A differential fluorescent element. [25]

Given this fluid element of concentration C, volume dV, molar absorption coefficient

EF(A), quantum efficiency , illuminated by a uniform intensity e, the amount of light

captured by a camera pixel with monitoring efficiency, , from this differential volume,

dh; is given by:

dI = (Ie(A)C(PdV. (1)

Monitoring efficiency, the percentage of light that is captured by the camera, remains

essentially constant over the area of interest. The first modification that needs to be

made is to consider the absorption of light by other elements of fluid, by including the

Beer-Lambert's Law of Absorption [32]. e is modeled to exponentially decay with, x,

with A, as the strength or illumination at x=O,

I, = IeA[-e(A)Cx]. (2)

This modification is critical to the success of the ratiometric approach as it used

absorbance to make the intensity seen at the CCD depend of the depth of the fluid in a

predictable manner. If a pair of dyes is used in which the absorption spectrum of dye 2

overlaps the emission spectrum of dye one, a thickness dependent behavior between
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the ratio of the intensities of their emissions will emerge. The expected intensity at the

peak fluorescence for dye 1 and 2 needs to take into account absorption of the laser

frequency by dye one and dye two and the emission of the first dye by the second dye

Once these modifications have been made the expected intensity for both peaks is the

result of integrating modified versions of equation (1) with respect to x. This process

leads to the following equations developed in Hidrovo and Harts [31] on DELIF film

measurement, with an addition in nomenclature qdye, (dye's relative emission at give

wavelength)

i I Vo Ei(AC1@1191(Af ilteri)(1-eXp[-[ E(Alaser)C+E(Afilter1 02]X)(3
E(Alaser)C+E(Afilter1)C2

if 2 = (IoE2(A)C29 2I7 2 (Afilter 2 )(1-exp{-[ E(Alaser)C] (}
E (Alaser) C

The ratio of the two intensities is calculated below and can be seen to be thickness

dependent, but not excitation dependent

R = E1(A) C15 1 771 (Afilter) (1-exp(-[ E(Alaser)C+E(Afilterl)C2]X}
E2 (A)C 2 ( 2 2 (filter 2 )(1-eXP{-[ E(Aaser)C]X}

It is hard to predict the behavior of this ratio by inspection. The quantities in equations

3-5 were graphed as a function of film thickness in figure 2.1 taken from Hidrovo and

Hart's [33] paper on ERLIF in 2001.
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Figure 2.2: Graph shows the intensity of the fluorescent emission of dye 1 and 2, as well as the ratio

between them. [26]

The first flat region on the graph is the area where there the film is too thin for

reabsorption to make a quantitative difference in the ratio. In the second flat region the

majority of the excitation light has been absorbed. Additional fluid is shielded and as

such cannot contribute to the behavior of the system. This approach was verified

experimentally by Hidrovo and Hart. They used the following optical setup in order to

measure the output fluorescence in two distinct bands.



incomling laser
fluorescence I (567 nm)
fluorescence 2 (650 nm)

camera 1

600 ni
camera 2 dichroic

sample

570 nmiii
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Figure 2.3: Experimental setup that can separate light into two small bands of wavelengths of interest.

[25]

The exciting light is reflected off of the first dicroic mirror into the sample. Two

frequencies of fluorescence are excited and can pass through the first dicroic mirror.

The second dicroic mirror splits the two fluorescence frequencies between the two

CCD's allowing there intensities to be measured separately. Utilizing this setup they

took 3-D measurements of the coin shown in figure 2.4 taken from Hidrovo's Ph.D thesis

[33] to validate the approach.
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Figure 2.4: 3-D of coin scanned with ERLIF methods, and ERLIF calibration curve.

One problem with the above data is that it was generated with a pair of very toxic dyes.

The first step to modifying the approach to be appropriate to scanning ears was to find a

non-toxic fluorescent dye pair or a single self reabsorbing dye.

After an extended search the best option that was found was Fluorescein. Fluorescein is

a very safe self-reabsorbing fluorescent dye. It is regularly used to dye the Chicago River

on St. Patrick's Day. The same dye is also FDA approved to stain people eyes in

Fluorescein Angiography. In order to validate self reabsorbing emission/absorption

profile found in the literature two fluorimeters were used to take this data show in the

figure 2.5.
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Figure 2.5: Quantitative absorption/emission profiles of Fluorescein as measured by two distinct

fluorimeter instruments.

The self-reabsorbing nature of Fluorescein was validated by these results. Some

preliminary data 3-D was taken with Fluorescein, but it was found that a self
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reabsorbing dye is not ideal. In a two dye pair there is an additional degree of freedom,

the amount of reabsorbance, available to tune the system. Another approach that

required a fluorescent surface instead of a dye was invented by a colleague Federico

Frigerio, which could use a single color camera. That approach is the subject of the next

section.

2.2 Extension to Absorption Methods

ERLIF has some important weaknesses when applied to scanning ears. ERLIF requires

quite a lot of hardware, two cameras, filters, dicroic mirrors, alignment, and as a result

might be too expensive for the hearing aid application. Additionally, for ERLIF, there

was only a single non-toxic self-reabsorbing dye, Fluorescein. While ERLIF is possible

with a single self-reabsorbing fluorescent dye such as Fluorescein, it is not optimal. In a

solution with just Fluorescein the amount of reabsorbtion is coupled to the amount of

fluorescence. The question that arose was could a single RGB camera be used to do

something similar to ERLIF. The basic idea behind absorption based methods is

illustrated in figure 2.6.



RGB Camera

Blue low pass filter

Excitation light fromblue led's 1
Light fluoresced
from orange -
fluorescent surface

Blue dye

Orange or yellow fluorescent surface

Figure 2.6: A representation of an absorption based depth scan setup. Blue excitation light passes

through blue food coloring where it hits an orange or yellow fluorescent surface. When it hits the

fluorescent surface orange or yellow fluorescence is given off. This light passes through a blue low pass

filter into the camera.

The figure above shows the basic setup for an absorption based depth scan. Blue

excitation light passes through blue food coloring where it hits an orange or yellow

fluorescent surface. As the light travels through the medium more and the more of the

excitation light is absorbed. When it hits the fluorescent surface orange or yellow

fluorescence is given off, and the remaining excitation light is reflected. The reflected

blue light can be ignored, because there is a blue low pass filter downstream. The

medium continues to absorb light on the return path where it hits a blue low pass filter,

allowing lower frequency light through. This filtered light goes to an RGB camera where

the red and green components used to make ratio that is related to depth in a

quantifiable way. The red to green ratio decreases with depth as will be developed in

the set of equations to follow.



The math needed for absorption based techniques is very similar to that for ERLIF. The

Intensity of the excitation light at the fluorescent surface, Iefs, is given by the Beer-

Lambert Law of Absorption [32]

Iefs =10 e A[-E(Aexcitation)CX]. (6)

This excitation light will cause fluorescence, generating a light profile proportional to

this intensity. The spectrum of light generated needs to be taken into account, because

the red and green camera filters are not are not as narrow as the filters used to isolate

the fluorescent peaks in ERLIF methods. The intensity of light generated at a given

wavelength, /(A), is given by the following relation

Iemmitted (A) = cD1Iefs(A)- (7)

The emitted light will be subject to absorption as it travels back up through the optical

medium. The light at the filter will have the following intensity

'filter (4Aemmitted) = 7( LAemmitted)Io A HE(Aexcitation) + E(lemmission))CX. (8)

At this stage the systems fluorescence, absorption, and monitoring efficiency have been

taken into account. The final step is to integrate intensity seen by the red and green

pixels of the camera and take their ratio, R. These red and green intensity integrals will

integrated over the wavelengths of interest Rrmin- Armax for red and Agmin- Agmax for

green. In order to take into account the camera sensitivity to a given wavelength the

new parameter, a(), has been introduced into the ratio equation below.

R = fZ," fca(2Aemmitted)n(Aemmitted)ioeA [-E ( Aexcitation)+E((emmitted))cx~d Aemmitted

Agmax a(Aemmitte)n(Aemmittea)ioe^[-(,(excitation)+E(Aemmittea))cx]dkemmittea



The ratio of interest should be related to depth and independent of lighting conditions

when simplified by canceling equal constants.

f Armaxa(Aemmitted) (Aemmitted)e^(-E(Aemmitted)Cx1]dAemmitted
R = Armin (10)

fmax a(Aemmitted)(Aemmitted)e^A-E(Aemmitted)CX|ldAemmitted

This ratio is the heart of absorption based imaging methods. It is not immediately

obvious how this ratio should vary with depth. The most intuitive way to approach it is

to consider two representative frequencies. These frequencies will have different molar

absorption coefficients, e, and so they will decay at different rates. In this simplification

the ratio, R, will decay exponentially. The overall ratio will consist of the sum of a

continuum of exponential decaying functions divided by the sum of another continuum

of functions.

2.3 1-D Absorption Calibration

Given good quality data on the emission spectrum of the dye, the absorption spectrum

of the food coloring, the behavior of the filters, and the camera sensitivity the

dependence of the ratio on film thickness could be modeled analytically. However,

pieces of this data are of insufficient accuracy for an analytical model to be more useful

than an experimental calibration given the purpose of measuring an ear. For simplicity

a 1-D calibration setup was used, and is shown in figure 2.7.



Figure 2.7: 1-D depth calibration experimental setup.

A micrometer was used to change the distance between the fluorescent surface and the

probe. An AVT Stingray F-033c color CCD camera was used to take the optical data. A

set of powerful blue LEDs was used as the excitation light and was triggered by the

camera. A 500 nm long pass filter was used to prevent the blue excitation light from

entering the camera. Preliminary data was taken with the orange fluorescent paint in

which depth was varied at an unknown concentration of blue food coloring number one

to investigate the basic behavior of the system. This calibration curve is shown in figure

2.8.
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Figure 2.8: Preliminary 1-D depth calibration with flat, orange fluorescent target.

This data was very encouraging as it is reasonably well behaved. There are some kinks

in it that look like noise, but could be small non linearities. As the depth increases the

signal to noise ratio decreases, decreasing the effective resolution. The next step was to

do another 1-D calibration with a known concentration and a fluorescent membrane.

Since orange fluorescent paint could not be used on a balloon Coumarin 153 was put

into a urethane membrane and used to provide the fluorescent surface for this

calibration. This calibration curve is shown in figure 2.9.
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Figure 2.9: 1-D depth calibration with flat, Coumarin 153 impregnated membrane.



The main differences between the calibration curves with Coumarin and the paint are a

more pronounced kink and the magnitude of the ratio. The data is still well behaved,

but the ratio is reduced by approximately a factor of 4. Using the same setup the

concentration was also varied, the resultant calibration curve is shown in figure 2.10.
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Figure 2.10: 1-D concentration calibration with flat, Coumarin 153 impregnated membrane.

The behavior of the concentration calibration curve is as expected. Increasing

concentration for a given depth is equivalent to increasing the depth. Lighting may be

different, but that should be canceled out by the ratiometric nature of absorption based

imaging. In the ratio equation, (10) it is the product of concentration and depth that

determines the amount of light absorbed. The potential of this imaging system is

discussed in the next section.

2.4 Discussion of Imaging Potential

For absorption methods to improve the physical fit of hearing aids, they will need to

meet certain specifications. Currently effects from compliance and TMJ motion as large

as 2 mm in a 10 mm canal are not captured by current methods. Capturing these effects

alone with the same accuracy as impressions could provide great improvement. On a 10
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mm canal an accuracy of 100 microns would be good, and 50 microns might be near the

bleeding edge of accuracy's utility. By tailoring the concentration to the film thickness

range of interest these types of accuracies can be attained with ERLIF and absorption

methods. One way to achieve high accuracy is to use different concentration of dye in

different parts of the ear. A concept solid modeled in figure 2.11 has regions with

different concentrations.

Medium Density Semi- \ Low Density Semi-
Trarsiparent Foam Transparent Foam

Low Dersity Semnii-
Transparent Foam \

St~ope Channel

Protective Plasti Pnna
Foam Cap Disc

Re novab
Plastic Sheath Merane

Figure 2.10: Solid model of foam assisted multiple region balloon concept.

Different regions of the ear would be measured with different dye concentrations.

Appropriate pressures could be applied regionally by varying the density of the foam.

The idea behind utilizing foam was make applying pressure to the ear simple and safe

for the audiologist.

Another way to improve accuracy is to compare take multiple sets of data stitched

together. In this manner the model can be assured to be of good quality, and the noise

can be canceled out. A brief 3-D stitching simulation was done with ear data to assure

the feasibility of this approach.



2.5 3-D Stitching Simulation

One problem that arises in machine vision and 3-D techniques is the problem of

stitching. In this paper stitching will be treated briefly in this section to demonstrate

that the stitching needs of this project are easily within the capabilities of existing

techniques. If the requirements were near the maximum potential of stitching

techniques a lot of engineering work would be required to get that last bit of

performance out of current standards. The specifications that an algorithm would need

to meet: stitch together three to ten 3-D shapes in the presence of a low level of noise

and aberrations.

An ICP (iterative closest point) algorithm based on a paper by [34] Paul J. Bed was tested

in simulation and found to be suitable for the needs of absorption based imaging of the

ear. The algorithm minimizes the least squares distance between each point from one

section and the closest point in the other section in an iterative manner. The result is a

matrix that translates and rotates the sections so that the overlapping parts are stitched

back together. For the simulation the data from a real 3-D ear impression laser scan

were provided courtesy of 3-Shape Inc. The point cloud was divided into six sections

along one axis, and those sections were modified by translation, rotation, and noise. The

original and the divided up ear are shown in the figure below.



Figure 2.11: 3-D point cloud of ear (left). Same 3-D point cloud cut up into six sections and then

rotated, translated, and with xyz noise (right). The restitched point cloud is visually indistinguishable

from the original and as such is not shown. The error between the two is shown in the next figure.

In order to put the cut up ear back together with minimal knowledge of its original

shape an ICP algorithm was used. In order to put the ear back together the second

section was stitched to the first, and the third to the first two, and the fourth to the first

three and so on. The only knowledge of the shape that was used was which sections fit

together. In a more rigorous simulation even this would not have been necessary. All of

the combinations could have been tried and the combination that produced the best

results would almost certainly be the correct one. The performance of the algorithm in

the simulation is shown in the figure below.
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Figure 2.12: Original 3-D point cloud minus stitched 3-D point cloud. Characteristic length was 40 mm,

xyz noise was .05 mm. Stitching was as success, as residual differences were concentrated in the same

magnitude as the noise a (.05 mm) sphere.



The simulation validated the assumption that current techniques were sufficient. The

residual distances were small and on the order of the noise. Given an appropriate

system for imaging the ear, the next problem to be discussed is that of fabricating the

balloon.



3. Balloon Fabrication

The need for a balloon arose from a desire to measure compliance. In order to measure

compliance, an adjustable uniform pressure needs to be placed on the ear, for which a

balloon is ideally suited. Additionally, for the optical scan the balloon serves two critical

functions: it allows the device to retain the optical fluid and provides a fluorescent

surface. Both ERLIF and absorption based methods require optical fluids, but absorption

methods have the additional requirement of a fluorescent surface. In this chapter the

main problems associated with making the balloon and the steps taken to get to a

successful prototype will be discussed. In the next section the requirements for the

balloon needed will be discussed.

3.1 Requirements

A balloon suitable for imaging the ear must fulfill certain constraints: it must be

appropriately compliant, conform well to the ear, and have the appropriate ports. In

order to measure bulk compliance the additional constraint that the balloon cannot

expand freely anywhere must also be met.

The balloon's compliance will need to lie in a certain range. The upper bound comes

from the amount of pressure that is safe and comfortable in the ear. The lower bound

arises from the need to get a good amount of signal to noise in the bulk compliance

measuring experimental setup. After a significant number of satisfactory balloons were

made and tested, this range was determined experimentally as to require the balloon to

be fully inflated at between 1 and 4 psig.



The conformity of a balloon to the ear canal is also important. A gap between the

balloon and the ear will introduce error into the measurement. The conformity

requirement makes the uniformity of the balloon important. Additionally, unmeasured

variations in the thickness of the balloon will be measured as changes in the profile of

the ear canal, adding noise to the optical data. Thick parts of the balloon will conform

poorly and thin parts limit the strength of the balloon. For all of the above reasons the

balloon will need to have a uniform appropriate thickness. A compliant cylindrical

balloon was unlikely to conform sufficiently, which is why an ear shaped balloon is

desired. It may be that in order to conform to the variety of ear canals to be measured,

a plurality of balloon shapes will eventually be needed. It was thus expected that

eventually the balloon would need to be more ear shaped, and so a variety of hearing

aid shells were acquired to be used as molds.

The experiments that follow have their own set of additional requirements. The bulk

compliance of an ear measurement requires that the portions of the balloon that are

not up against the ear are stiff. These stiff portions will improve the accuracy of a

simple model of the system, springs in parallel, by removing areas where the balloon

can freely expand while not touching the ear. A pressure tap will be the only port

needed for the bulk compliance measurements. The optical measurements will require

a port for the otoscope as well as a pressure tap.

A final requirement for the balloon comes from cost. Despite the technical complexity

of the custom balloons available from the medical balloon industry as shown in figure

3.1 below, for this research's purposes the balloon will need to be fabricated in the

laboratory.



Figure 3.1: Sample producible balloon geometries from Advanced Polymers [29].

The cost to purchase existing medical balloons for experimentation would be been in

the hundreds of dollars. For bulk compliance testing an ear-shaped balloon was

needed. No ear-shaped balloons are being made as stock balloons, and moreover for

optical scanning a set of custom ear-shaped, fluorescent inside coating, was needed.

This set would have had a setup cost upwards of ten thousand dollars. As such, the

balloon needs to be made in the laboratory to make costs reasonable. The next section

deals with what material to use, and how to manufacture the balloon.

3.2 Material and Manufacturing Method Selection

The first question to be answered was concerning from what material to make the

balloon. The majority of balloons are traditionally made out of latex. While the material

properties would be acceptable for the balloons needed, its allergenic properties may

eventually pose a serious problem. In a paper, Tilak M. Shaw [36] discusses, the

allergenic issues concerning latex, which affect approximately 7% of the US population,

as well as the medical device industries response of switching to urethanes and

silicones.

A search of the materials used by large medical balloon manufacturing firms, including

Advanced Polymers Incorporated, showed that many of the compliant balloons were

56



urethane based. Urethane can be used to make balloons in a low volume laboratory

setting with a two part mix and dip molding. Other possible materials include silicone

and nylon. Nylon based balloons were typically used for non compliant balloons, and

therefore were not suitable. Silicone based balloons would be a reasonable alternative.

They can be harder to seal, but if the urethane manufacturing path had proved

unsuccessful, silicone would have been explored.

Once it had been decided to make use of urethane, the production method needed to

be decided. For mass production, blow molding is currently being used by the medical

balloon industry. The basic steps of blow molding are illustrated in figure 3.2.

I
(D A Balloon

Of Material Is
Injected Between

Mold Halves

Mold Closes (
Air Forced In

Pushes Material
Into Mold Cavities

'Mold Opens
Hollow Part
Is Removed

And Trimmed

Figure 3.2: Steps involved in blow molding. [37]

Blow molding begins with a balloon of material and makes use of pressurized air to push

the material up against the mold. Blow molding offers high accuracies, low cost per

balloon, and complex geometries and the basics of it are shown in figure 3.1. However

blow molding like injection molding has a large setup cost and as such is less suited to



prototypes than dip molding. Dip molding is also suited for mass production as shown

in the figure below.

Figure 3.3: Sample images of dip molding manufacturing [38] left [39] right.

The manufacturing of balloons and condoms is shown above. Dip molding is a

manufacturing process most commonly used with latex and plastisol. It is used for the

manufacture of various simple geometry everyday objects such as gloves, balloons, and

condoms. A mold is dipped into the liquid form of the final material and is dried.

Viscosity of the mix and dip speed govern thickness, and thickness can be built up by

dipping multiple times after it mixture has been given time to dry.

Two-part urethane mixes are commercially available in small quantities with a variety of

durometers, set times, and viscosities. A number of these mixes were tested, and given

the thickness and compliance of the desired balloons, the urethane that worked best

was Polytek 74-30, mixed viscosity 2000 cP, Durometer 30 shore A. The early attempts

of making a balloon with this urethane are discussed in the next section.



3.3 Early Attempts

In the beginning, to determine feasibility a very geometrically simple mold was used, a

glass rod. Polished glass is suitable as a mold, because it is more difficult for the

urethane to stick to then other surfaces like metals and plastics. The two-part polytek

30 was combined and mixed, and the glass rod was dipped into it and slowly pulled up.

The rod was then hung up and allowed to drip. An illustrative early balloon is shown in

figure 3.4

Figure 3.4: Early attempt at producing urethane balloons. Air bubbles are circled in black.

This balloon was somewhat encouraging, but it does have obvious defects. Regions of it

were of an appropriate thickness for the desired compliance. It has air bubbles

throughout the balloon some of which are pin holes that destroy the integrity of the

balloon, and there are large gradients in wall thickness. Another type of defect, a nub, is

shown in figure 3.5.



Figure 3.5: Early attempt at producing urethane balloons. Nub is circled in black.

This defect is the result of the slow dripping of excess urethane downwards from the

vertical drying position. Approaches for eliminating the mentioned defects are

explained in the following section.

3.4 Balloon Improvement

The balloons manufactured had several issues. Balloons are fragile and could tear

during the removal process. They had air bubbles, which in thin balloons could become

pin holes. The balloons average thickness was too large, and thickness gradients were

present in addition to nubs.

The first problem that was solved concerned urethane binding strongly to its mold. The

removal process was very delicate, as the balloon could easily tear. The use of a release

agent was expedited removal and prevented the balloon from sticking to the mold and

tearing.



The most critical defect to eliminate was air bubbles. Air bubbles reduce the integrity of

the balloon and can cause pinholes which render the balloon useless. Given the

sensitivity of the balloon quality to pin holes, air bubbles were more of a concern then in

most applications of this urethane mix. This defect was the easiest to decouple from

other defects.

A vacuum oven was used to remove some of the air bubbles. When the urethane is

subject to a vacuum the air bubbles trapped inside expand, causing the mix to foam up.

The mixture slowly expands until 29 inHg are reached during which it rapidly expands to

5-10 times its initial size. The 29 inHg is critical to ensure that the bubbles collapse

instead of simply expanding and worsening the problem [40]. At the height of the rapid

expansion bubbles quickly pop and the mixture settles back down to its original height.

However, all of the bubbles have not yet been eliminated. The number of air bubbles

has been significantly reduced, but all of the remaining bubbles are at the top of

mixture.

These lingering bubbles pose a serious problem as they will definitely be picked up by

dipping. To further reduce these bubbles an additional two cycles of vacuum between

25 and 29 inHg were utilized. These extra cycles are not as effective as the initial cycle,

as there is not enough air trapped in the mixture for another episode of foaming and

collapsing. The additional cycles proved to be more helpful than merely subjecting the

mixture to a constant high vacuum. At this point the number of bubbles is still too great

to achieve a good yield for dipped cylindrical balloons, and the bubbles are still all on

the top of the mixture where they would be picked up by the mold. The final step taken

to eliminate air bubbles was to scrape the top of the urethane mixture. After all of

these steps were taken a thinly dipped balloon had an approximately 50% chance of

being free of a pinhole defect. A simple cylindrical balloon free of air bubbles is shown

in figure 3.6



Figure 3.6: Air bubble free urethane balloon.

In order to eliminate the other types of defects, an understanding of the relevant forces

on the urethane was required. The urethane is under gravitational, viscous, and surface

tension forces. Surface tension is very helpful for balloon production purposes; it

pushes the balloon thickness to a constant. Viscous forces are more neutral, they inhibit

the flow of material. The gravitational force hinders balloon production as it causes

nubs and thickness gradients. In order to make high quality ear-shaped balloons, the

disruptive effect of the gravitational force needs to be mitigated. An ear shaped mold

used for making balloons is shown in figure 3.7.

Figure 3.7: Hard plastic hearing aid shell to be used for mold as balloon.



For the purpose of balloon making the expense of achieving zero-g or reduced-g is not

feasible. The first solution attempted was repeated flipping of the balloons during the

drying phase. Through this manual mechanism the balloon thickness was made more

even, and the nubs were reduced in size. The idea of using rotation to counteract

gravity was attempted, and was found to be reasonable for cylindrical shaped balloons.

However for ear-shaped balloons, the eventual goal, rotation caused additional surface

gradients.

After the flipping steps was implemented the surface gradients were still unacceptably

high, and the balloons were too thick. The traditional ways to decrease thickness in dip

molding are to increase dipping speed and decrease viscosity. A good way to get an

intuitive feel for this is to imagine dipping something in honey and water. The honey is

very viscous, and a lot of honey can be gathered on a rod, especially when dipped

slowly. The viscosity of the urethane mix being used can be reduced up to some limit by

changing the ratio of the two part mix, but the manual dipping process cannot be sped

up without losing repeatability.

A non traditional method that proved to be very helpful was to pull extra material off of

the nub by spinning a glass cylinder. Before this technique was utilized the excess

urethane would slowly drip off in an uncontrolled manner. Controlled removal of excess

material it afforded much better regulation over the average thickness and further

reduced nubs. A nub-free balloon produced utilizing this technique is shown in figure

3.8.



Figure 3.8: A nub free balloon is shown in the picture above.

In addition to improving control over and reducing average thickness, it illustrated that a

more uniform thickness could be achieved with thinner balloons. The reduction in the

mass of urethane decreased the force of gravity, while not affecting the strength of

surface tension forces. This improved the ratio of helpful forces to disruptive forces,

reducing thickness gradients and nubs. This knowledge also led to subsequent

improvements by switching from dipped balloons to brushed-on balloons.

At first the brush was used simply as a tool to even out the balloon as it dried.

Eventually it replaced dipping entirely, as it provided more control. Brushed on balloons

could be made to be thinner than was needed. A very thin brushed on ear shaped

balloon in which nubs were not mitigated is shown in figure 3.9.



Figure 3.9: Thin brushed on balloon.

This balloon is very uniform aside from the edge effects at the top of the balloon and

the nub at the bottom. Additionally there was very good uniformity, that would be

sacrificed if a thicker coat was painted on. At this thickness a single reasonable sized

bubble would cause a pinhole, so to increase the reliability while retaining the uniform

thickness; it was decided to attempt to build up a balloon in 2-4 layers of very thin

urethane. These balloons had very good properties and could be accurately make

uniform balloons on complex ear shaped molds as show below. These balloons were

also resilient to air bubbles, as a pinhole in a single layer would be covered up by the

additional layers. A defect-free brushed-on balloon is shown in figure



Figure 3.10: Successful, multiple brushed on layer, uniform ear shaped balloon.

This balloon is brushed-on, defect-free, ear-shaped balloon with a urethane base and an

inflation port. In the next section it will be discussed how to finish the balloons that

come off of the ear mold by adding ports, seals, and plastic backings.

3.5 Adding Seals, Ports, and Rigid Plastic Backings

Dipping and painting balloons onto molds leaves an opening, which requires additional

work in order to produce a usable balloon for imaging or compliance testing. A variety

of methods were used to try and create robust ports with seals. Early attempts using 0-

rings and cyanoacrylate are shown in figure 3.11 . The caps of the first balloons

produced were not satisfactory, so they were cut off. The remaining cylindrical balloon

was placed between the O-rings and the ports and glued in place. Extra O-rings were

added in an attempt to create better seals.



Figure 3.11: Balloons sealed with O-rings and super glue.

In the top image of figure 3.11 a balloon was constructed for use in a model ear. This

balloon made use of the fact that a better seal could be made when only one port was

needed per side. The seals were more robust because they had smaller gaps to fill.

Even the more viscous gel forms of cyanoacrylate contract upon dying, filling gaps

poorly. The balloon in the middle of the figure 3.11 was made with two ports on one



side, and had a somewhat satisfactory cap. The O-rings were small enough to fit in an

ear canal, and they were also safe and soft as they prevented the balloon from going

past a certain distance in the canal. They were still unappealing when compared to a

balloon with a urethane cap that could eventually be made with brush on methods and

an improved mold, such as the one at the bottom of figure 3.11. This balloon was only

suitable for compliance testing, as it had no pressure tap. Another problem with these

O-ring and glue ports is that they cannot be extended to non cylindrical balloons.

The first attempt at adding a port and base to an ear shaped balloon involved gluing a

fitted piece of urethane cut out from a thin sheet. A sample sheet and base cutout are

shown in figure 3.12.

Figure 3.12 Sheet of orange urethane for making balloon bases (left), and sample cutout base (right).

Silicone and cyanoacrylate glues were both tested. The base needs to be attached to

the existing balloon. An image of an assembled balloon in which silicone sealant was

used is shown in figure 3.13.



Figure 3.13: Base attached with silicone and removed

The seal made with silicone was for the most part a failure. The seal is not elegant, and

it does not stick to the urethane well. The base could be easily removed from the

balloon as show on the right image of figure 3.13

Cyanoacrylate based seals worked considerably better. They were worse at gap filling

but, adhered well to the urethane. A cutaway of a seal between a clear base and an

orange balloon is shown in figure 3.14.

Figure 3.14: Cyanoacrylate based method of adding base. Full balloon is shown on left,

balloon is cutaway to show seal on right.



The cyanoacrylate seals were functional. The main issue with the cyanoacrylate was

that once it dried it became totally inflexible. A large improvement in functionality and

appearance of the added bases wash achieved through the use of completely urethane-

based approach was used. To make a urethane base, an entire coat of urethane needed

to be painted on the existing balloon and it was allowed to dry sitting on top of a wet

layer of urethane on a glass dish. This solution was seamless and robust. Ports could be

added by cutting small holes in the urethane base to insert the tubes and seals could be

made with cyanoacrylate based glue. The balloon shown in figure 3.15 was made in this

manner.

Figure 3.15: Balloon base attached entirely with urethane

The last modification that was made to this method to produce a balloon suited for

compliance testing was to glue a rigid plastic base to the bottom before adding the final

coat of urethane. A balloon with a rigid plastic base is shown in figure 3.16.



Figure 3.16: Balloon base with rigid plastic base.

The rigid base prevents free-expansion of the base of the balloon, so that the

compliance of the balloon can be more accurately measured. At this stage all of the

physical aspects of the balloon have been finalized and all that is left is to add

fluorescence.
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3.6 Adding Fluorescence

The process of adding fluorescence to a balloon to meet our imaging needs was more

difficult then it first appeared to be. For calibration and other experiments a fluorescent

paint was used to provide the fluorescent surface needed for absorption based imaging.

Simply painting the outside of the balloon was not an option, because the paint would

crack subject to strain, as shown below.

Figure 3.17: Paint flaking off of a painted balloon

When it became obvious that the balloon could not be painted an attempt was made at

adding paint to the urethane mix, but it caused severe amounts of bubble nucleation.

Air bubbles were still unacceptable, so another method of adding fluorescence was

needed.

One potential solution to the problem of paint drying was be to capture paint between

two layers of urethane and have the paint never dry. By adding linseed oil balloons

could be created that had a shelf life of about two weeks, before they dried out and

became less suitable for use. What had been accomplished was delaying the onset of

the drying out. Such a balloon is shown in figure 3.18.



Figure 3.18: Balloon made with layer of fluorescent paint trapped between two layers of urethane

This was a great improvement, but was still not a robust solution. A closer inspection of

the balloon under load reveals a zebra stripe pattern.

Figure 3.19: Zebra striped pattern on stretched balloon made up of two layers of urethane with layer of

fluorescent paint in between.
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The final attempt to make use of this orange fluorescent paint involved grinding up

dried paint. A mortar and pestle was used to produce orange fluorescent powder,

which was put into the urethane mix. The results are shown in figure 3.20.

Figure 3.20: Balloon mad with ground

without flash (right)

up fluorescent paint. Photographed with flash (left), and

These results were quite promising. The ground paint had little effect on the production

of the balloons. These results lead to further inquiry into industrial balloon

manufacturing techniques, during which it was found that balloons were often colored

with pigments rather than dyes. A search for a supplier of fluorescent pigment powder

quickly lead to acquiring a selection of finely ground uniform powders. Such powders

were available cheaply and could be easily integrated into the existing balloon

production framework. A balloon made with orange fluorescent powder is shown

below.



Figure 3.21: Balloon made with fluorescent orange powder.

At first it seemed like this was the final solution to adding fluorescence to the balloon.

However, when balloons like this were used for imaging they produced a lot of

unexpected noise, because they were self-reabsorbing. Their fluorescent emissions

were reabsorbed by neighboring regions leading to cross-talk and noise. The self

reabsorbtion made uniformity of balloon thickness very critical from an optical

standpoint. The tolerances necessary for surface conformity were much easier to attain

in the laboratory. To solve this final problem, a more expensive well behaved

fluorescent powder was used, Coumarin 153. With the techniques described earlier and

this powder, the problem of adding fluorescence to the balloon was solved.

3.7 Step by Step Procedures

A system by which acceptable quality balloons could be manufactured in the laboratory

was developed. In order that others may be able to do the same a list of the procedure

used to manufacture the balloons is given below.
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Supplies

1.

2.

3.

4.

5.

6.

7.

8.

9.

and Equipment needed:

Polytek 74-30 Urethane Rubber two part mixture

Mold Release

Vacuum Oven or Vacuum Degasser

Small flat paint brush

Plastic or glass mixing receptacle

Balloon Mold

Work area where balloons can be hung to dry

Flat glass sheet, slide, or dish

Gloves

Figure 3.22: Equipment needed.



Steps for making multi layer balloon with plastic base:

Painting the First Coat

1. Prepare all molds by cleaning and spraying with mold release.

2. Mix equal parts 74-30 Polytek Urethane Rubber in plastic or glass receptacle.

Do not fill above 20% the height of the container to allow for expansion

during the vacuum oven. Add fluorescent pigment if desired.

3. Use vacuum oven or degasser to subject mixture to 29 in Hg

4. Cycle between 25 and 29 in Hg two additional times, and remove mixture

from vacuum oven after 15 total minutes.

5. Use spoon to scoop off top of mix where remaining air bubbles are.

6. Paint mixture on evenly with paint brush.

7. Continue to handle mold, moving around making additional brush strokes as

necessary for the next 15 minutes until right before mixture becomes tacky

and stroke do more harm than good. Can test tackiness of mixture still in

receptacle.

8. Hang up to dry. If possible to flip vertically after 15 minutes.

Adding a base layer of urethane

9. Add an additional layer repeat steps 2-8.

10. After two layers have been made, remove balloon carefully from mold. Cut

to desired shape.

11. Repeat steps 2-5 to prepare another batch of urethane.

12. Spray glass sheet, slide, or dish with urethane.

13. Paint urethane layer on glass.

14. Paint thin urethane layer on balloon



15. Stick balloon into urethane layer on glass

16. Allow to dry

17. Remove balloon from glass slide and clean off mold release

Adding a rigid plastic base and ports

18. Prepare rigid plastic base by tracing balloon base on it, cutting, and punching

holes for ports.

19. Use cyanoacrylate based glue to attach rigid plastic base to balloon base

20. Poke holes in urethane and put in tubing where desired.

21. Slide tubing in and make seal with glue.

22. Allow to dry

23. Repeat steps 2-8 to finish balloon.



4. Compliance

Compliance is a critical factor in hearing aid fit that is the entirely left out of the current

impression methodology. In order for a hearing aid to fit comfortably the amount of

pressure it is exuding needs to be appropriate in all the areas in which it makes contact

with the ear. A simple over sizing of the hearing aid will only satisfy some subset of

people's who by chance have ears suited to the current method.

The compliance of the ear as a mechanical system is pretty complex. It is made up of

bones, cartilage, and skin, assembled into a compound system. Each ear is unique in its

shape and the properties of its components. The 3-D compliance of the ear, which is

the eventual goal of this work, can be forwarded by a simpler measurement, the bulk

compliance. In order to inform the data from bulk compliance measurements, a simple

model for the compliance of an ear is needed, to give some basis of comparison to

existing data. This model is developed in the next section.

4.1 Infinite Cylinder of Skin Model of the Ear

A mechanical model of the ear as a compound system made up of bones, cartilage, and

skin is too complex to be fitted to data from bulk compliance measurements. It might

be reasonable to make such a model with 3-D compliance measurements, or bulk

compliance measurements aided by X-rays or MRI's. A company using 3-D compliance

measurements to manufacture hearing aids would certainly need a model that takes

into account the three different tissues. For the purpose of comparing bulk compliance

measurements to existing measurements there will be no knowledge of the boundaries

or relative composition of the different tissues. These characteristics are unique for



each ear. Therefore the ear will be modeled as one tissue, the one that is the most

compliant and therefore is responsible for much of the ear's compliance, skin. The

skin's mechanical behavior has been measured in vivo in the medical literature. These

properties can be used later on to validate the bulk compliance measurements.

Now that the model of the ear has been simplified from three materials to one, an

appropriate geometry must be chosen. An ear canal varies in cross section, is

asymmetric, and has bends. Figure 4.1 shows an ear, including the ear canal very

clearly, and it can be seen that if the canal needs to be modeled as a simple shape it is

most similar to a cylinder.

Pinna
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canals

StapesIncus SVestibule
Mai us Auditory

nerve

Cochlea
Base

Apex
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canal

Eardrum Oval
window

Round
window

Figure 4.1: Diagram of ear, taken from NIDCD fact sheet [5]. It can be seen that the ear canal is

approximately cylindrical.



The last simplification to be made to complete are model is in dimensioning this

cylinder. The thickness of it will change the expected compliance dramatically if small.

However, as the thickness of the cylinder grows the changes in compliance will become

smaller and smaller. It will be shown that a cylinder of a couple inches of skin behaves

almost as an infinite cylinder of skin.

The equations for a thick-walled cylinder are well understood and will be developed as

presented in Ugarul's Advanced Strength and Applied Elasticity [42]. A differential

element in an axisymmetric coordinate system shown in figure 4.2

d1  b

Figure 4.2: Differential element in an axisymmetric coordinate system.

In this polar coordinate system in the absence of axial loading (uz=O), and body forces

the equation of equilibrium, given by stresses ar and os.

d + r- 0, (11)dr r

In this equation it is also assumed that the shearing stress, rd, must be zero by

symmetry arguments. There will be radial displacement, u, caused by the internal

pressure, and there can be no tangential displacement, v, again because of symmetry.

Taking into account the behavior of both displacements the strains of interest are given

by



du u
Er = -, EO = -,dr r Ye = 0.

A compatibility equation can derived by substituting u=rEo, into equation 12

Er = - (r EO)dr - Er = 0.

Using the product rule and rearranging the result can be simplified to

r + Eg
dr - Er 0-

The last relation needed to constrain the system of equations is given by Hooke's Law,

du

dr = - (Ur - VO).E
(17)

(18)
U 1- = - (UO - var).
r E

When these equations can be solved for Ur and ad, and the results are substituted into

equation (11) the following 2 " order equidimensional

generated,

d 2 U 1du u
dr 2  r dr r 2

The general solution to this differential equation is given by

du

dr

(12-14)

(15)

(16)

differential equation

(19)



u = cir + C2  (19)
r

When the boundary condition of the stress at the inner, a, and outer radius, b, is equal

to the internal, pi, and external pressure, po, respectively is enforced the following

expression is the result.

1-v (a2 pib 2po)r + 1+v (pipo)a2 b2  (20)
E (b2 -a 2 ) E (b 2 -a 2)r

This expression was first derived by G. Lame. For the purposes of this paper this result

can be simplified by noting that, po=0, and that the outer radius approaches infinity.

U = pi-po) (21)
E r

This linear model is of the appropriate complexity given the use it will be put to. The

assumption of an infinite outer radius can be justified by investigating stabilization of

this formula as the outer radius grows. The graph in figure 4.3 shows the displacement

at the site of the inner radius with the following values substituted into equation (20),

r=a=1, po=O, pi=1, E=1, and v=1.
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Figure 4.3: Dimensionless graph shows tendency of displacement divided by inner radius to stabilize as

ratio of thickness divided by inner radius grows.

When the ratio of thickness over inner radius reaches 10, the infinite cylinder

simplification is justified. For example, modeling a 10 mm ear canal as infinite is

equivalent to modeling it as 10 cm thick cylinder of skin. The thick walled cylinder

model was also used to evaluate some preliminary data in which balloons were used to

measure the young's modulus of latex tubing, which is the subject of the next section.

4.2 Early Latex Cylinder Compliance Data and

Modeling

In order to validate the technique of inflating a balloon inside of an object to measure its

compliance, the compliance of a similar, simple object with known properties, latex

tubing will be measured. if a reasonable measurement of the young's modulus of the

tubing can made, the ear data can be treated with more confidence. The same thick-

walled cylinder model shown in equation (20) initially developed for the ear canal can

be used to predict theoretically how much volume the tube will expand at a given

pressure.



A latex tube sleeve the length of a balloon was cut. The balloon was put inside the

sleeve and inflated with water while measuring the pressure. An image of the balloon

inside the sleeve is shown in figure 4.4.

Figure 4.4: Balloon inside of latex tubing sleeve.

The balloons used for this experiment were longer than the ear canal. In these

measurements this extra length would improve the data. The compliance of the balloon

and sleeve, which is expected to be less than the compliance of either individually, was

treated with the following model.

1 = + 1 (22)
Ctotal CsLeeve Cballoon

This model assumes that the volume increase in the balloon and the sleeve is equal.

One of the inaccuracies of this model was that there is a cap at the end of the balloon

that can expand without interference from the sleeve. That inaccuracy is mitigated later

on in the ear compliance measurements, but not in these measurements. The

theoretical compliance of the sleeve was calculated by utilizing measurements of its

geometry, Durometer, and the model in equation (20). The Durometer needed to be

converted to a Young's modulus, which was done by making use of a table in Gent's



"Engineering with Rubber" [42]. The compliance model for the latex sleeve is linear as

shown in the figure 4.5.

0.05 0.1 0.15 0.2

Increase in volume, ml

0.25 0.3

Figure 4.5: Modeled compliance of latex sleeve. Model is very linear over range of interest.

The model is very linear over this region. However, it is linear in

volume, so over a large displacement more non linear behavior would

compliance of the balloon and the balloon in the latex sleeve is also

region of interest, as shown in figure 4.6.
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Figure 4.6: Compliance graphs for balloon in free expansion and constrained by latex sleeve.
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The slope changes abruptly when the balloon comes in contact with the sleeve, which

along with the linearity was encouraging. However, the compliance of the sleeve that

the model gives for these measurements (0.12 psi/mL) was significantly higher than the

theoretical (.047 psi/mL). It was hypothesized that this difference was from areas of the

balloon that were allowed to freely expand. In order to test this hypothesis two other

experiments were done where the balloon was inflated inside of a steel tube and inside

of a latex sleeve with a hard stop at the end.
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Water injected, mL

Figure 4.7: Compliance graphs for balloon in free expansion and constrained by steel tube

The compliance of the balloon inside the steel tube was not negligible (.066 mL/psi).

The hard stop had a small effect on the compliance .12 versus .11 ml/psi. The

compliance of the balloon cap was on the order of the compliance of latex tubing. To

successfully measure the compliance of the ear, this effect must be controlled for data

taken in the ear.



4.3 Compliance Experimental Setup

The experimental setup used for measuring the bulk compliance of the ear was very

simple. The apparatus consisted of an ear-shaped balloon that could be filled with

water by a syringe connected to a pressure sensor. This setup in a model ear is shown

in figure 4.8.

Balloon in

model ear

Syringe

Pressure

sensor

Figure 4.8: Bulk compliance measurement experimental setup. The balloon, model ear, syringe, and

pressure sensor are labeled above. The multimeter and power supply are not shown.

The balloon needed to be modified in order to be used to measure bulk compliance. As

noted in section 4.2 the free expansion of the cap can add an undesired compliance into

the system. In order to eliminate this compliance a layer of cyanoacrylate was

deposited between layers of urethane in the cap of the balloon. A balloon with this

feature as well as a hard plastic base is shown in figure 4.9



Figure 4.9: Balloon with hard plastic base and cap.

This simple modification in conjunction with a rigid plastic base eliminates areas of the

balloon that can freely expand, improving the measurement of the compliance of the

ear.

A simple but difficult problem that arose when assembling the system was the need to

eliminate air bubbles. Air bubbles would add an additional undesired compliance and a

safety concern. The highest pressure the balloon needs to be inflated to 4psi is less than

the pressure an ear is exposed to 10 ft underneath the surface of a pool. Even if the

balloon were to burst, the water could only store very little energy. Air on the other

hand would store a significant amount of energy and could create unsafe pressures in

the ear if the balloon popped. Air bubbles were present in the syringe, pressure sensor,

the balloon. Each of these components required a unique solution in order to remove

the air bubbles.

The air bubble in the syringe was the first dealt with and most easily eliminated. The

setup for eliminating this air bubble is shown in figure 4.10.



Figure 4.10: Large syringe is used to fill the small syringe to eliminate air bubbles.

The plunger of the syringe to be used was removed, and another larger syringe was

used to fill the experimental syringe up, after which the plunger was replaced.

The air bubble in the balloon was also eliminated by making use of a syringe. A syringe

with a long thin tube was used to fill the balloon, so that a coaxial flow could be

established. The setup for eliminating this air bubble is shown in figure 4.11.



Figure 4.11: Large syringe with long probe tube is used to fill the balloon in order to eliminate air

bubbles.

Water can flow into the balloon through the center channel and push the air through

the outer channel. To further eliminate bubbles the balloon was compressed and then

filled back up slowly with the syringe.

Finally the bubble in the pressure sensor needed to be eliminated. This bubble required

a different approach because it was actually protecting the sensor from water which is

conductive enough to short circuit a capacitive pressure sensor. A non conductive

incompressible fluid bubble was needed to replace the air bubble. For this need a 10 cst

silicone oil was used. This silicone oil was inserted into the pressure sensor with a

syringe. In the next section that data generated with this approach is presented.
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4.4 Compliance and Jaw Movement Data

The first compliance data is taken with a balloon without a hard cap. Three runs were

taken inside and outside of a human ear. The balloon was prevented from moving

axially by hand. The rigid plastic base was manually held flat with respect to features of

my ear by my thumb and index finger. The pressure volume plot for the data take in

vitro for the ear is shown in figure 4.12.

Internal pressure
of balloon inflated

in ear, psi
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0 Series2

A Series3

0 0.2 0.4

Water injected, mL
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Figure 4.12: Internal pressure plotted as a function of volume of water injected for a balloon without

hard cap in ear. (Average slope 4.73 psi/mL)

The data is very repeatable and linear, as is the data for the balloon inflated outside of

the ear shown in figure 4.13.



0.8 1
Internal pressure 0.6 -

Series1

of balloon outside 0 Series2
of ear, psi 0.4

A Series3
0.2 4

0

0 0.1 0.2 0.3 0.4 0.5

Water injected, mL

Figure 4.13: Internal pressure plotted as a function of volume of water injected for a balloon without

hard cap outside of ear. (Average slope 1.9 psi/mL)

Equation (22) was used to calculate the compliance of the ear as 0.35 mL/psi. It was

suspected that significant error was introduced by the unrestricted expansion of the cap

of the balloon. In order to investigate the significance of this extra compliance, another

set of tests was done with a balloon that had a layer cyanoacrylate between two layers

of urethane.

Another modification needed to be made to the experimental procedure in order to

take the next generation of data. One issue with taking the first set of measurements

was popped balloons. The balloons took a long time to make, and could easily pop at

pressures between 2.5 and 4 psi when repeatedly loaded. In order to ensure balloons

were not popped as often in future experiments in which a lower compliance was

expected the water was injected in .05 mL increments instead of .1 mL increments and

the number of data points was reduced to 5 from 6. This kept the maximum pressure in

near 2.7 psi. The same data for the tests with the improved balloon and procedure is

shown in figure 4.14 below.
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Figure 4.14: Internal pressure plotted as a function of volume of water injected

hard cap in ear. (Average slope 7.8 psi/mL)

for a balloon with a

Again both the in and out of ear data is very repeatable and linear. And the hard cap

decreased the compliance measured of both data sets as expected. The out of ear data

is shown in figure 4.15 below.
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Figure 4.15: Internal pressure plotted as a function of volume of water injected for a balloon with hard

cap outside of ear. (Average slope 3.0 psi/mL)

Equation (22) was used to calculate the compliance of the ear as 0.21 mL/psi. The

expectation that significant compliance was introduced by the unrestricted expansion of

the cap of the balloon proved true.

A final set of data that was gathered was the change in pressure when the jaw was

closed from an open position at a starting pressure of 1.875 psi. For the balloon with

and without a hard cap an average drop of 0.175 and 0.225 psi respectively was seen for

five data points. These values for pressure translate into 0.22 and 0.52 mL. Given

Pirazanski's data [16], it is expected that the TMJ associated change in canal shape

would vary widely between individuals. In the next section the data will be non-

dimensionalized and compared to literature values.



4.5 Non-Dimensionalization and Comparison to

Existing Data

In order to compare the compliance measurements to literature values a model of the

ear as thick walled cylinder of skin developed in section 4.1 is used. Using this model

the compliance measurement can be used to calculate a Young's modulus. The data for

the balloon with and without a hard cap gave a value for 0.88 and 0.53 MPa,

respectively, for the young's modulus of skin. Diridollou [43] compiled a table of values

in shown in figure 4.16.

Reference Sites Order of magni:ude (MPa) Device

Grahame & Holt (1969) [201 Forearm 18-57 Suctian
Sanders (1973) [41] Dorsal side frearm 0.02 Thrsion
Alexander & Cook (197() [13] Upper back-mae 14] lN0 Suctian

LUppei baLk-f'ewlc~l 1 81-200 Sutihui
Foreann ma'.e 32:) 420 Suctian
Forear-t'enialc 51 -5 40 Suctin

Ac-ache et a!. (1980) Dorsal sit: o the
Lev&que er c/. (1983. 1984) [-5-7 reari 0.420.85 Trsion
Escotlier ( 989) [28] Forearm anterior
Barel et al, (1998) [35] nart 1.1-1,32 Tarsion

I-otearni--mae 0. 14 Suction
Forearmi-ferniale 0. 16 Suctih-n
Forchcad-nizlc 0.23 Suction
Forehead-femiale 0.27 Suctic~n

Agache (1992): Panisset Forearm anterior
(1992) [30. 40] iart 0.25 Suctbn
Our study Forearm-mae 0.11 Suctian

Forearm-lersi ale 0.12 Suctn
Forehead male 0.21 Suctin
Forehead-female Suctian

Figure 4.16: Table of Young's modulus taken from Diridollou's paper [43].

The values for Young's modulus for skin in the literature vary by a couple of orders of

magnitude from 0.1 to 540 MPa, depending on type of test and test location. The older

values are much higher than recent values taken with improved techniques. Diridollou's

data is shown in figure 4.17 below.
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Figure 4.17: Data from Diridollou's paper on young's modulus of skin for men and women with

standard deviation shown by error bar taken [43].

Given the approximate nature of the model used to calculate the Young's modulus for

the ear from the compliance data and the variation in the literature value for the

Young's modulus of skin, value of 0.88 MPa is very reasonable.

Another way to non-dimensionalize the compliance that does not rely on the

assumption of a thick walled cylinder of skin, would be to make a lesser assumption

that the compliance is proportional to surface area. This approach does not generate

values that can be compared to the literature, but may form a basis of comparison for 3-

D compliance imaging and other methods. The calculated bulk compliances divided by

an approximate surface area for the ear with and without a hard cap are 0.82 and 1.4

mm/psi respectively.



5. Summary and Conclusions

5.1 Accomplishments

The problems with impression based hearing aids have been presented. In particular,

the inability of current methods to routinely manufacture hearing aid shells that are

comfortable and perform well have been investigated. Specifically, attention is paid to

the inability of current methodology to take compliance and jaw movement into

account.

A potential cost effective technique for scanning the ear canal, absorption based

imaging has been presented. A one dimensional calibration was made, and qualitative

3-D data is shown. The imaging technique was implemented with much lower cost

equipment then would be needed by other 3-D techniques such as interferometry.

A stitching simulation was done to show that stitching together six to ten 3-D models of

the ear was well within the ability of current methodology. A technique for the

laboratory manufacture of brushed on fluorescent balloons was presented that are

suitable to be used by this imaging technique to measure the dynamics of the ear. The

bulk compliance of a human ear in vitro was measured with a laboratory fabricated

balloon.

5.2 Future Work

An FDA approved fluorescent urethane mixture was fabricated in a laboratory setting.

For a consumer product the material would need to be used in an industrial setting and

approved by the FDA. It has been shown that a simple 3-D shape can be measured with



this technique but for final product the imaging technique needs to establish that it can

capture a complex 3-D canal geometry in a balloon.

The largest uncertainty that has not been dealt with is taking the dynamic data from

ears and translating it into an improved hearing aid. Eventually this data needs to be

taken in a trial of 5 to 50 people to show that this additional information can be used to

improve hearing aid fit and performance.
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