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Abstract

This paper seeks to resolve the biggest problem with hearing aids, their physical fit. By
digitally scanning the ear canal and taking the dynamics of the ear into account the
performance and comfort of a hearing aid can be greatly improved. Current optical
techniques for 3-D imaging are too expensive to be implemented in the ear canal for the
purpose of custom fitted hearing aids. A new absorption based optical technique is
introduced, which is capable of generating three dimensional maps of an ear subjected
to a varying pressure. Specifically a hearing aid can be constructed with allowances for
the compliance of the ear and the distortions associated with jaw movement. It is
shown that the information that can be captured with this new technique will be of
value toward improving hearing aids, and that the hearing aid industry is ready to take
advantage of a digital scanner. A one dimensional calibration was made, and qualitative
3-D data is shown. The imaging technique was implemented with much lower cost
equipment then would be needed by other 3-D techniques such as interferometry. A
technique for the laboratory manufacture of brushed on fluorescent balloons was
presented that are suitable to be used by this imaging technique to measure the
dynamics of the ear. The bulk compliance of a human ear in vitro was measured with a
laboratory fabricated balloon.
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1. Introduction

This paper seeks to resolve the biggest problem with hearing aids, their physical fit. By
digitally scanning the ear canal and taking the dynamics of the ear into account the
performance and comfort of a hearing aid can be greatly improved. Current optical
techniques for 3-D imaging are too expensive to be implemented in the ear canal for the
purpose of custom fitted hearing aids. A new absorption based optical technique is
introduced, which is capable of generating three dimensional maps of an ear subjected
to a varying pressure. It is possible to capture the dynamics of the ear in 3-D video and
design a hearing aid that takes them into account. Specifically a hearing aid can be
constructed with allowances for the compliance of the ear and the distortions
associated with jaw movement. Additionally the development of a balloon fabrication
methodology, which is necessary to implement the optical technique, is described as
well as a simple method for measuring the bulk compliance of an ear. It is shown that
the information that can be captured with this new technique will be of value toward
improving hearing aids, and that the hearing aid industry is ready to take advantage of a

digital scanner.

1.1 Motivation

Unlike glasses and contact lenses hearing aids have a social stigma attached to them.
The problem with hearing aids is that they do not provide as robust a solution to hearing
problems as exists for vision problems. Contacts, glasses, and laser eye surgery can
restore almost perfect sight to all but the most visually impaired. These solutions have

comfort, aesthetic, convenience, and cost tradeoffs that can fulfill the most demanding
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of customers. Future fighter pilots, embarrassed teenagers, and aging retirees can all be

satisfied by existing vision correction options.

In contrast hearing aids do not restore perfect hearing, run out of batteries, are
considered unsightly, can be uncomfortable, fall out, and have a multitude of other
issues. They are not main stream enough to be covered by most insurance even though
hearing trouble is more prevalent than vision trouble. According to the National Center
for Health Statistics [1], the percentage of American adults with hearing trouble, 17%, is
significantly more than that than the percentage of adults with vision trouble, 11%. This
percentage is likely to continue to rise because of noise induced hearing loss and an

aging population.

In his “Hearing Aid Physical Fit: The Next Revolution,” David Fabry [2] outlines the

potential benefit of a digital scanner.

The most obvious way that digital technology may shift the paradigm is by ultimately eliminating
the need for earmold impressions via direct ear scanning. The use of the 3D scanner may permit

earmold/shell characteristics to be transmitted electronically to the manufacturer. Digital
mechanics may be used to quantify and compensate for dynamic properties of the cartilaginous
portion of the ear canal; this, in turn, will improve user comfort and reduce hearing aid feedback.
Direct ear scanning may eliminate the need for earmold impressions. Digital mechanics may
permit hearing aid acoustic characteristics to be assessed, modified, and optimized for individual

ears. [2]

Other professionals are making similar hopeful statements, such as the editor of the
Hearing Journal, David H. Kirkwood [3], in his article, “The Bright Promise of Direct Ear
Scanning.” Professionals in the hearing aid industry are eager to replace impression

with direct ear scanning.
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1.2 Current Problems with Hearing Aids

In order to ensure that a digital scanner could improve hearing aids it is necessary to
examine the current issues with hearing aids. The various issues with hearing aids, most
importantly performance, comfort, and background noise, have led to an all time low
market penetration of 20.4% [4]. This low number arises from the fact that hearing aids
are not effectively meeting the needs of the hearing impaired, and have not gained
enough status to be widely covered by insurance. Kochkin’s survey of 2720 hearing aid
owners seeks the answer to the problem why “hearing aids are in the drawer.” [4] His
content analysis of the 348 letters received from owners of hearing aids who do not use

them is shown in table 1.1.

Yoot berefitfron hearing aics 103 20.6% 268,510

1

1 Background noise/ncisy stuafions 1} 25.3% 229407
2 fit 8 comforl o5 187% 169,446
i Hegafive side effects of LA kL] 10.9% 99,068
5 Price & cost of repain 3 10.3% 92,84¢
(] Don'1 need help 1 £.0% 72993
7 Hewing uid & broker b 1.8% 70,386
L} Sound quality is poor ” £.3% 57,351
§ Juspesified - du nol wear N £.0% 54745
10 Yolume wnlrol edjusmer 7 49% 44317
11 Whistling ond [eedback 15 43% 39,108
12| ulsance/hosse/annoying 14 40% 34497
13 Puon seriice [rom dispemser n 32% 28,674
14 | High-frequercy bss rot belped 10 9% 26,06¢
15 | Srigma of wearing hearing s '. 29% 26,06¢
16 | Worin imied sutons 9 26% 23460
17| robound hesting los not heled 9 6% 13462
13 Too loud 8 1.3% 20,855
k) 3atiary life 1o srort 7 0% 18,248
0 Forget 1c use 4 1.1% 10,426
21 Does notwork on phene L 11% 10,428
2 Monaurel aics inadecuane 3 0.9% 7821
13 Dversold expectotion; 3 0.9% 7821
bi] Aave tinaitus 3 0.%% 1821
25 family pressure led 1 purchase 3 0.9% 7821
25 | Mool dexterity 2 0.6% 5214
7 tare socal wser 2 0.6% 5214
bl feel like earplugs 1 0.3% 2,601
i) P00t directivity 1 0.3% 2601
30| Gairis foo low 1 3% 2,607
31| Cannotiind then | 3% 2600
3N gar wax protlem 1 03% 2,607
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Table 1.1: Tabulated content analysis of the 348 letters received from owners of hearing aids who do
not use them. Most complaints can divided up into poor performance, comfort, and increased

background noise. [4]

A majority of complaints are related to performance or comfort. The most common
complaint given is that the hearing aid has little benefit (29.6%). Additional
performance related complaints included poor sound quality (6.3%) and feedback
(4.3%). The second most prevalent issue for consumers, comfort, is the chief complaint
for over a quarter of the population: 18.7% of consumers said fit and comfort
specifically is their biggest issue with their hearing aid, and 10.9% cited negative side
effects including blisters, rashes, itching, headaches, infections, problems chewing or
swallowing, too much pressure. [4] It is not hard to see why hearing aid owners

discontinue use given either poor performance of discomfort.

Comfort and performance are coupled are coupled by physical fit. To prevent leaking
and feedback hearing aids need to create a seal in the ear canal. The correct amount of
uniform pressure needs to be put on the surrounding tissues to create a seal and anchor
the hearing aid to the ear without causing discomfort. A bad seal allows sound to leak
past the hearing aid and mix out of phase, which degrades sound quality. Degrading
sound quality requires higher amplification which requires more power and can
decrease the efficacy of the hearing aid in background noise. The two most egregious
problems consumers have with hearing aids ultimately are the result of a poorly fitting

physical shell.

Complaints of increased background noise (25.3%), which are largely dependent on the
users cognitive processing of sound, cannot be solved completely by improving fit. [4]
Without a very large improvement in signal processing, hearing aids cannot hope to
replace the brain’s sound signal processing abilities. This problem is very frustrating for
the hearing impaired, as the hearing aid amplifies both the signal and the background

noise leaving them unable to hear in noisy environments.
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This noteworthy difficulty is not addressed by the methods developed in this paper, but
much progress can be made in improving hearing aids before this more complex
problem is resolved. The most important problem with hearing aids is physical fit, which
the new scanning technique is capable of solving. The next section explores the size and

the makeup of the hearing loss problem.

1.3 Demographics and Market

In order to understand the magnitude and composition of the hearing loss problem a
brief study of demographics of hearing loss and the hearing aid market will be made in
this section. In this study the following information will be considered: demographics,
noise induced hearing loss, hearing aid adoption rates, hearing aid costs, number of
hearing aids sold annually, growth, severity distribution, and types of hearing aids. A
breakdown of hearing loss by sex, age, marital status, and education take from the

National Center for Health Statistics is given in the table 1.2.

Total 16.8|Sex Male 19.4
Income Less than $20,000 20.9 Female 14.6
$20,000 or more 16|Age 1844 7.6
$20,000-$34,999 18.7 45-64 19.4
$35,000-$54,999 17.5 65-74 31.9
$55,000-$74,999 16 over 75 50.4
$75,000 or more 14.2|Marital Status |Married 17.8
Education |Less than a high school diploma 22 Widowed 39
High school diploma or GED 19.3 Divorced Or Separated 18.7
Some college 19.6 Newer Married 8.3
Bachelor's degree or higher 14.7 Living With a Partner 12.3

Table 2.2: 2006 hearing loss statistics by sex, age, marital status, and education taken from NCHS

(National Center for Health Statistics). [1]

Many are aware that hearing worsens with age, but are unaware that over 50% percent
of those over seventy five suffer from hearing loss. The effects of marital status can
most likely be explained by correlation with age. For example, the group of widowed
people is made up of older people on average than the married group. The effects of
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sex, income, and education are smaller, but not negligible. @ Males with a poor

education, and low income are the most prone to hearing loss.

The trends that are independent of age can be explained in part by noise induced
hearing loss. According to the National Institute of Deafness and other Communication
Disorders [5], NIDCD, “15 percent of Americans between the ages of 20 and 69 or 26
million Americans have high frequency hearing loss that may have been caused by
exposure to loud sounds or noise at work or in leisure activities.” Industrial hearing loss
and lack of education concerning recreational noise is likely to be responsible for the
trends of increased hearing loss in males and those with lower income or poor
education. Many jobs that involved operating heavy noisy industrial equipment are held
by poorly educated males. Noise induced hearing loss has gained more notoriety, which
has recently led industry to respond to it with increased hearing protection. According
to David H. Kirkwood [6], the military is associated with a large portion of hearing loss,
with the Department of Veterans Affairs (VA) purchasing 16% of hearing aids in 2008.
Additionally the number of VA purchased hearing aids went up by 9.2% between the
third quarter of 2008 and 2007, while total hearing aid purchases declined 1.2%.

A very important characteristic of the hearing aid market is the market penetration, or
the adoption rates. The overall adoption rate of approximately one fifth is indicative of
hearing aids providing a poor solution to hearing impairment. Historical data for
hearing instrument adoption rates broken down by sex, age, education, household
income, employment status, metro size, and life stage is shown in the table below taken
from Sergei Kochkin’s [7] “MarkeTrak VIl report. : Hearing Loss Population Tops 31

Million.”
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Table 3.3: Hearing aid adoption rate statistics from MarkeTrak VII. [7] Overall adoption rates have held

steady at approximately one fifth of the impaired population.

The overall adoption rate has held steady over this time span at approximately twenty
percent of the hearing impaired population. Adoption rates increase dramatically with
age. This trend is most likely a result of the severity of the hearing loss. Besides age
related effects life stage and employment status appear to have little effect on adoption
rates. Adoption rates also appear independent of the size of the metro area. The effect
of income and education are becoming less important factors in hearing aid adoption.
However the adoption rates among the poorest and worst educated have fallen from
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over 30% to only slightly higher than average at approximately 25%. Higher than
average past adoption rates among the poor and uneducated and are not normal for a
well functioning expensive medical device. This oddity might be explained by changes in
hearing aid benefit coverage, increased hearing aid cost, or improved access to hearing

testing.

Given the lack of widely available insurance coverage for hearing aids, cost might be
expected to be more of an issue. The wealthy could be more sensitive to the social
stigma associated with hearing aids. If current hearing aids were a good solution to the
hearing loss problem one would expect significantly more overall market penetration,
especially for those whom money was not an issue. Even though the price of a hearing
aid does not seem central to adoption rates, it is important in characterizing the hearing
aid market. The out of pocket expense of hearing aids as well as the percent covered by

third parties is shown in the table 1.4, taken from Kochkin’s report.

1584 1589 1581 1984 1997 2000 mal
Price of hearing aids (retail) {rr=428) {r=417) {r=483) {n=557) (=408  (r=581) (w=S18)
Third-party payments (%) - wio VA 22% 19.4% 17.™% 20.8% 24.7T% 24.8% 21.9%|
Third-party payments (%) - wilh VA 235% 21.7% 25.6% WM MO0% 3TN
Average oul-of-pocket price to consumer S50 3823 $680 $735 17 51276 31.30*
{Extuding VA Rtings)
Ly ——
BTE $557 50 $7me $as2 1215 $1.514
mc 742 10 780 51,040 31434 $1.381
ITE 521 $531 $AT3 $768  S1007  $1,
Hearing Instrament distribution {n=428) {n=356) {n=483) (=853} {(=337) (593  {n=503)
|iPurchases this period)
By percoived profession
Audiologst 2 0% 43.4% 45 1% 49.3% 828% B850% 55 0%
Hearing akd speciaing 86.4% 45.0% 9.5% “4.T% 434% 288% 3%
Madical doctor 4.5% 1.5% 1.2% 1.59% 1.3% 21% 2.0%
Othed 85.9% 3.6% gﬂ 4.1% 1.7% 4_.15 ?.1'&
By Source of distribulion ==
Haaring aid specialsl office” 4B5.7% 30.0% B5% A% 0.5% 22% IT0%
Audiclogst’s office 21.3% 35.6% 35.5% 40.0% 41.3% AT 2% 24 9%
Cinic 52% 1.4% 1.9% 2.0% 30 1.0%
Hoapdal 2.1% 2.7% 2.% 2.56% 1.5% 14%
Ear docor's offica 50% 145% 5.5% 7.5% 7.1% T1% !.GVJ
Farmiy docter's office 0.3% 1.3% 0.7% 0.6% 4 0% 0% 06%
Velarans Aoministrstion 1.5% 24% 34% 4.5% A% 14.9%
Mail order 21% 3.0% 0.5% 2.5% 0.9% 35% 54%
Dapament store 24% 3% 4.7T% 2% 2.4% 24% 0.6%
Home 8.3% 4% 1.3% 4.4% 3T 20% 0.
MisRary installation 2.45% 1.4% 1.4% 1.1% 1.0% 5.
VWholesale club 2.0%
_thef 15__ 1. 7% 2.0% 1.6% 4% 15% 14%
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Table 4.4: The out of pocket price per hearing aid and point of purchase from 1984-2004 The price has

been rising steadily. [7]

The out of pocket price of a hearing aid has been on the rise. While the percent paid for
by third parties excluding veterans’ affairs has been steady, the percent Veteran’s
Affairs (VA) has been responsible for has had a dramatic increase. VA is now responsible
for 14.9% of the hearing aids distributed. Most hearing aids are purchased from
audiologists and hearing aid specialists, but new sources such as whole sale clubs have

begun to distribute them.

Another important piece of the hearing aid market is the number of units sold. The size
of the hearing aid market in terms of units is shown in the figure 1.1 that comes from
David H. Kirkwood’s [6] report, “Economic turmoil threatens to reverse recent growth

in the hearing aid market.”
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Figure 1.1: The units of hearing aids sold per year. [6]
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The number sold was fairly steady from 1998 through 2003 at approximately 1.9 million
units. From 2004-2008 this number grew to 2.4 million units. Current hearing aid
market projections include significant growth, because the number of people affected
by hearing loss is expected to rise. Projections for the growth of the incidence of hearing

loss are shown in figure 1.2, taken from Kochkin’s report.
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Figure 1.2: Number of hearing impaired, includes future projection based on US census population

projections coupled with hearing loss by age group. [7]

The US census projects a steadily aging population. The hearing aid market is expected
to grow significantly, because of this projection combined with the correlation between
healing loss and age. The expected growth of the problem makes improving hearing
aids even more important. As the population ages, severe hearing loss will also

increase.

The severity of hearing impairment determines the reduction in quality of life, and the
likelihood that an individual will seek out a solution. In the table below taken from Karl
E. Strom’s [9] “HR 2006 Dispenser Survey” statistics concerning hearing aid clients’ level

of hearing loss are shown.
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Mild {<40 dBHL) 14% (12%)  18% (15%) 16% (14%)
Moderate {(40-70 dBHL}  52% (50%)  54% (35%) 93% (52%)
Severe (70-90 dBHL) 25% (30%)  21% (23%) 23% (26%)
Profound (>80 dBHL) 9% (8%) 7% (7%) 8% (8%)

Table 1.5: Hearing loss levels from Hearing Instrument Specialists (HIS) and Dispensing Audiologists

(DA) clients in 2005 and (2004). [8]

People with severe and profound hearing loss are the most likely to seek out a solution,
and make up approximately 30% of the hearing impaired. Mild and moderate hearing
loss is often coped with, because of the current utility of hearing aids. Given a level of
hearing loss different types of hearing aids are appropriate. Breaking the market down
by hearing aid type gives insight into the needs of the hearing impaired. The main types
are shown in the figure below, taken from National Institute on Deafness and Other

Communication Disorders NIDCD [9].

Types of Hearing Aids

'
&

o AR
ﬁ ; .:s; 1,

Completely-in-canal

Behind-theaar (ETE} “Wini” BTE In-the-gar {ITE) In-thecanal {ITC) (1)

Figure 1.3: 5 main types of Hearing Aids [9].

Behind the ear hearing aids are best suited for those with severe hearing loss or low
price needs, as they can provide large batteries and gains or economic electronics. In
general as the hearing aids become smaller and deeper in the canal, they become more
expensive, as the electronics need to be higher end. However, these hearing aids can
have more problems with feedback because they have a shorter distance and as such

time delay between input and output. In addition, the deeper impressions and shells go
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into the sensitive bony region of the ear, which requires tighter tolerances to assure
comfort without allowing sound to leak. An improved fitting technique could make
deeper fitting impressions higher performance and more comfortable. Deeper in the

canal sound transmission can be done more efficiently, reducing power requirements.

Studies like “The Hearing Aid Effect 2005: A Rigorous Test of the Visibility of New
Hearing Aid Styles” by Johnson et all, [10] have studied the stigma against hearing aids
in depth. The more noticeable the hearing aid the worse the stigma attached to it. The
low visibility of smaller deeper fitting hearing aids is valuable to consumers. As hearing
aid technology improves it is expected that the footprint of the electronics will continue
to decrease. However, the progression to smaller deeper fitting hearing aids could be

held up by the current impression based fitting process

An alternative to these four types of custom fit hearing aids, all of which require a
custom impression, is the “mini” BTE or open fit hearing aid. The open fit hearing aids
have been gaining popularity. In a survey by Earl E. Johnson [11] of 418 audiologists,
41.6% of hearing aids sold were mini open fit behind the ear devices. Customers like
open fit hearing aids because they can walk out of the audiologist’s office with one after
their first visit, and they mitigate problems like occlusion, jaw movement, and poor
retention (problems which will be explained further later). Additionally, open fit hearing
aids save audiologist times by not requiring an impression, but are only suitable for
minor and moderate hearing loss (less than 65 DB), because of the open path for
feedback. The demand for hearing aids by type is taken from Kirkwood [6] and shown in

table 1.6.
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TYPE UNITS SOLD % OF ALL INSTRUMENTS SOLIL
2008 2008 2007 2006
(Jan.-Sept.)

Completely-in-the-canal (CIC) analog 4053 0.2% 0.9% 0.8%
CIC digital signal processing (DSP) 158,784 8.6% 8.9% 10.2%

All CIC 162,837 8.8% 9.8% 10.8%
In-the-canal analog 7905 0.4% 1.1% 1.1%
In-the-canal DSP 186,842 10.1% 11.3% 13.3%
All In-the-canal 194,747 10.6% 12.4% 14.4%
Half-shell in-the-ear (ITE) analog 3221 0.2% 0.5% 0.3%
Half-shell ITE DSP 132,318 7.2% 7.0% 8.4%
All half-shell ITE 135,539 7.3% 7.5% 8.7%
Full-shell analog ITE 23,671 1.3% 2.4% 2.4%
Full-shell DSP ITE 266,342 14.4% 15.0% 17.9%
All full-shell ITE 290,013 15.7% 17.4% 20.3%
Other ITE analog 5073 0.3% 0.7% 0.8%
Other ITE DSP 14,362 0.8% 0.8% 1.1%
All other ITE 19,435 1.1% 1.5% 1.9%
Total ITE analog 43,923 2.4% 5.6% 5.2%
Total ITEDSP 758,648 41.0% 43.0% 50.9%
All ITEs 802,571 43.5% 48.6% 56.1%
Behind-the-ear (BTE) analog 21,213 1.1% 2.5% 3.1%
BTE DSP 1,021,084 55.3% 48.9% 40.8%
Total BTE 1,042,297 56.5% 51.4% 43.8%
Total all styles analog 65,136 3.5% 8.1% 8.3%
Total all styles digital 1,779,732 96.5% 91.9% 91.7%
Total all styles 1,844,868 100.0% 100.0% 100%

Table 1.6: Relative demand for various types of hearing aids 2006 -2008. [6]

The most important trend illustrated in the figure above is a rise in BTE demand, which
comes mostly from growth in the market for open fit hearing aids. The number of open
fit versus regular fit can be tracked by evaluating the batteries the BTE’s were equipped
with. In 2007 they made up 37.2% of the BTE hearing aids sold, and in Q1-Q3 of 2008
they made up 42.2% of the BTE hearing aids. [6] Open fit hearing aids were responsible
for 2.5% growth in the total market on their own. They have lead to a reduction in the
market share of all the other hearing aids. The hearing aid that has lost the most
ground is the ITE, in the trend towards miniaturization. Hearing aids are also becoming

increasing digital, with analog devices down by more than a 50% is just a single year.
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To help finish quantifying the market presence of these different styles the average
price of low end, middle end, and high end BTE (behind the ear), mBTE(mini behind the
ear), ITE (in the ear), ITC (in the canal), and CIC (completely in the canal) are shown in
the figure below taken from Earl E. Johnson’s [12] dispenser survey report, “Despite

having more advanced features, hearing aids hold line on retail price.”

$0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 $3,500

Analog $857
LE D BTE $1.149
LE D mBTE | $1.318
LEDITE $1.204
LEDITC $1,309
LEDCIC $1,364
ML D BTE - $1,843
ML D mBTE $1,861
ML DITE - $1,840
ML DITC | $2,147
ML D CIC $2,023
HE D BTE §2.609
[IC D mBTE $2,672
HEDITE $2.686
HEDITC $2,744

HED CIC $2,860

Figure 1.4: 2007 average reported prices of BTE (behind the ear), mBTE(mini behind the ear), ITE (in the
ear), ITC (in the canal), and CIC (completely in the canal) by low end (LED), middle end (MLD) and high

end (HED) with 95% confidence intervals. [12]
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In general as shown above smaller hearing aids are more expensive, with CIC being the
smallest and most expensive and the BTE being the largest and cheapest. The gap

between low and high end is nearly a factor of 3 for a given type of hearing aid.

The most important point to take away from this section is that the hearing loss
problem is big and growing. The existing solutions are unsatisfactory to a larger
percentage of the affected population. Open fit hearing aids provide a good solution for
many who have moderate hearing loss and their introduction has caused a lot growth.
An improvement to fitted hearing aids would most likely lead to similar growth, and
pave the way towards less visible, more comfortable, better performing hearing aids.
Those who have purchased open fitted hearing aids will eventually need a custom fitted
one that is just as functional. Itis not just Fabry [2] and Kirkwood [3] calling for an
improvement in fitting techniques, the market is as well. Now that the market has been
characterized and shown favorable to the proposed technology, the next section will

turn its attention to the traditional fitting technique of hearing aids.

1.4 Traditional Manufacturing Procedure

The current approach to fitting for both traditional and digital manufacture is based on
injecting a deformable setting substance, often silicone based into the ear. It is a
process that requires significant skill, thirty minutes of an audiologist’s time, can cause

significant discomfort to the patient, and is shown below in figure 1.5.
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Figure 1.5: The injection of impression material into an ear, and the removal of the impression.

Before the silicone can be injected any excess hair must be removed and the ear must
be cleaned of wax. A foam plug is then placed deep in canal to protect ear drum. The
impression material is mixed and put in large syringe. The syringe is used to skillfully fill
the ear with resin in order to make a good impression. Ten minutes later, after the
material has hardened the impression is popped out, sometimes painfully. The whole
process is sometimes uncomfortable for the patient. Every audiologist has their own
methodology, concerning what type of silicone to use, how to fill the ear with resin, and

what position to put the patient’s mouth in.

This complicated manual procedure has a poor track record with quality control. In
discussions with manufacturers it was learned that as many as 30% of hearing aids need
to be remade, because they do not fit the user properly. The impression process is
variable, but even when the impression is made well the hearing aid can fit poorly
because of un-captured dynamics. Too tight of a fit can be painful, while too loose of a

fit will lead the hearing aid to fall out and add undesired acoustic effects.

Creating a hearing aid from this impression traditionally requires significant post
processing. The impression is coated with wax to reduce surface imperfection and to

give the extra material needed for a seal, a reverse mold is produced (investment
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casting) and in this mold the final shell material is poured. The detailed steps in

traditional manufacture are outlined by Richard Corte et all, [13] in figure 1.6.

Figures 1.6a-i. The 9 steps in making a conventional hearing aid shell (prior to assembling electronic
components): a) A cast of the impression is made; b) The ear impression is trimmed to the model size;
¢) The impression is dipped in wax; d) A hydrocolloid cast of the impression; e) Acrylic resin is poured
into the hydrocolloid cast; f) Excess acrylic resin is drained from the hydrocolloid cast; g) The faceplate
end of the shell is trimmed; h) The vent is laid into the shell; i) The finished shell is ready for electronics.

[13]

The majority of shells are made by this fully manual process, and as a result the quality
of the fit depends largely on the skill of the technician who acts almost as an artisan.

This process is time, labor and therefore cost intensive.

Hearing aids often include vents to allow moisture to escape the ear and reduce low
frequency booming. A loose fit acts as a vent, but of an uncontrolled, sometimes very
large size. In an 8mm canal an uncontrolled vent can be quite large compared to a
normal vent, 1-2 mm in diameter. The frequency response of different size vents in

figure 1.7 illustrates the effect an uncontrolled vent could have, taken from Stuart et all,
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[14] “The effect of venting on in-the-ear, in-the-canal, and completely in-the-canal

hearing aid shell frequency responses: real-ear measures.”

Mean Response of CIC hearing aids with given vent diameter

5 -

0- //D /r/ S-EHE5ET
'5—- //{ —o— 1 mm

0 _10-
o .
15 g,//i/ —o— 2mm
-20 - / —a—— 3 mm
-25 - T g S A A
100 1000 10000

Frequency (Hz)

Figure 1.7 The mean response of a sample of 12 CIC hearing aids with a given vent diameter is shown

above. [14]

As shown above, increasing the area of the vent in an uncontrolled manner due to poor
fit can have a dramatic effect of the frequency response of the hearing aid. The expense
of the remakes led the hearing aid industry to respond to the fit problem with a new
technology. Laser scanning of the impressions has been introduced which will be

discussed in the next section.

1.5 Laser Scanning

The hearing aid industry has begun regularly using what are called laser shell or digital
shell technologies. The process begins by taking a scan of the impression using a
desktop machine shown in figure 1.8 in the images taken from Sullivan’s [15] paper,

“Scan/print vs. invest/pour shell-making technologies for CIC hearing aid fitting”
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Figure 1.8: Desktop Laser Scanners [15]

Selected Laser Sintering (SLS), Stereo Lithographic Apparatus (SLA), and Digital Light
Processing (DLP) are the three technologies used for producing hearing aids. The
scanning is highly accurate and can measure the impression to 50 micron accuracy.
They are expensive to produce and are often provided to audiologists by hearing aid
companies, such as Siemens. The scanner generates a point cloud such as the one

shown below from the impression also taken from Sullivan’s paper.
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Figure 1.9: Point cloud (right) generated from this impression (left). [15]

When laser scanning began, the hearing aids created were the exact replicas of the
impression. The manufacturers were confused because at first more remakes were
necessary than have been previously by the traditional method of manufacture. As a
result, manufacturers brought parts of the manual process in to the digital one to
improve it. Wax of slightly varying thickness was replaced with a perfect digital offset.

Trimming of the impression was replaced with virtual trimming. However, after these
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steps the gains in the quality of hearing aids coming out of digital methods in terms of

physical fit were not as large as the manufactures had hoped.

The recent trend towards scanning and printing of hearing aids has led the industry to
be ready to print hearing aids from digital data. 3-D systems made a press release on
May 14, 2009, announcing a new hearing aid manufacturing system the V-Flash HA 230
Manufacturing System. The V-Flash platform is the first commercially available 3-D
printer under $10,000. The existence of a cheap desktop platform for making hearing
aid from digital data was a crucial step in making the market ready to benefit from a

direct ear scanner.

Now that the digital scan/print process has reached a plateau, it is safe to say that while
it may have improved repeatability, lead times, and cost, it has not drastically improved
physical fit though there was room for radical improvement. The laser scan’s tolerances
are very good, but it is probably much more accurate than the ear impression.
Measuring the ear impression in a highly accurate fashion is not worthwhile if the
impression itself is inaccurate. If this was the only problem a more accurate single
digital in ear scan might be sufficient to solve the physical fit problem. However, there
are two other important issues, jaw induced canal distortion and ear compliance. No
single 3-D model or impression can capture the data needed to make a hearing aid that

accounts for these phenomena.

1.6 Jaw Movement and Compliance

The process of capturing jaw movement and compliance is similar in that both require
multiple sets of three dimensional data to be fully captured. Currently, the only way
that such data has been captured experimentally is by taking two impressions with the
mouth opened and closed (for jaw movement) and with high-viscosity and low-viscosity
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silicone (for compliance). The high-viscosity silicone pushes harder against the ear and

makes a slightly larger impression.

This multiple impression technique is reasonable to carry out experimentally, but not in
general practice because of the added cost of the extra impressions. The study by
Chester Pirzanski [16] titled “Ear canal dynamics: Facts versus perception,” shows that
both jaw movement and compliance can lead to large distortions of the ear, up to 2
mm, (ear canals are on the order of 10mm), and that the size of the effects cannot be
predicted accurately by trained audiologist. In figure 1.10 the growth in the canal

associated with the jaw’s temporomandibular joint (TMJ) is shown.
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Figure 1.10: The increase in canal diameter between an open mouth low viscosity silicone and a closed

mouth high viscosity silicone. [16]

Approximately 80% of ears have less than a .5 mm increase in canal diameter, but other
20% are likely to have problems with fit if there TMJ activity isn’t accounted for. 1 mm
of growth on a ten millimeter canal can easily cause an uncontrolled vent or a loose
fitting hearing aid. Either one of these issues will probably lead to a remake of the
hearing aid or discontinued use. One question addressed in Pirzanski’s paper was

whether or not audiologists could categorize the mouth dynamics without additional
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impressions. This solution would be cost effective, but audiologists could only correctly
categorize the mouth dynamics into these three categories 48% of the time. Data for
an equally important hearing aid fit problem, compliance, is shown in figure 11, taken

from Pirzanski [16].
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Figure 1.11: The increase in canal diameter between a closed mouth high viscosity silicone and a closed

mouth low viscosity silicone. [16]

If the compliance of the ear is not taken into account, serious problems with fit may
arise. A soft ear could easily lead to a loose fit and bad seal, and a firm ear can easily
lead to pain and discomfort, especially when combined with TMJ activity. Audiologists
could only correctly categorize the compliance into these three categories 34% of the

time.

Given these two data sets, it becomes clear why the impression/scan and traditional
manufacturing methods often lead to problems with fit. Hearing aids will regularly be
too tight on some people with very firm ears, too loose on some people with very soft
ears, or lose performance or comfort while opening the mouth to talk or chew. An

important goal of this paper is to introduce a method of scanning ears that would cost
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effectively allow for the manufacturers to gain access to information about the
compliance and TMJ distortions of an ear. It may not be immediately clear how to use
the additional 3-D data to improve hearing aid fit, but when it can be effectively utilized
it should put an end to the issues with hearing aid fit that laser scan/print has failed to
solve. A recently introduced hearing aid technology that attempts to address some of
these problems with fit, compliant tipped hearing aids; the limitations of this solution

are discussed in the next section.

1.7 New Types of Hearing Aids

Compliant tipped hearing aids are quite new and have only recently come into the
literature in February 2008. Compliant tipped hearing aids make use of slow recovery
foam with the goal of mitigating fit problems like jaw movement, poor retention, and
comfort. Compliant tipped hearing aids have done well in studies, but are subject to the
limitation of being for moderate hearing loss. As a result they only solve a problem that

for the most part has been solved by open fit hearing aids.

The tips need to be changed every 10-14 days, but may still be cost effective since they
have a low initial cost and reduce the time needed for fitting with an audiologist. They
are currently manufactured by one manufacturer, Hearing Components Inc, and have
only published data for one small trial with 30 patients. The user-factor results are
promising and are shown in figure 1.7 taken from Smith et all [17] paper, “Study finds

compliant eartips can be used instead of custom earmolds.”
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Use 82.2, (22.3) | 83.0, (24.0)
Benefit 56.7,(12.5) | 55.0, (11.8)
Residual

disability 26.3, (10.1) | 26.5. (10.8)
Satisfaction | 57.3,(12.2) | 58.1, (10.2)

Table 1.7: In the figure above it is clear that in their small trial compliant tipped hearing aids did quite

well in terms of user-factors. [17]

They are similar to open fit hearing aids in that they save audiologist times by not
needing an impression, and are only suitable for moderate hearing loss. However, open
fit hearing aids are already providing a good solution for this subset of the hearing
impaired. Given their performance limitations compliant tipped hearing aids do not

reduce the need to improve the physical fit of custom hearing aids.

1.8 Existing 3-D Approaches

3-D imaging is a vast and varied field. For the most part 3-D imaging solutions are very
expensive. Good literature reviews of the work in 3-D imaging can be found in the
following three papers. [18, 19, 20] Despite the vast amount of research devoted to
machine vision, not very much work has been put into measuring objects dimensionally
similar to the ear canal from the inside. The earliest 3-D measuring instruments
required contact with the surface. However, physical measurement is impractical with
certain fragile materials. The two standard non-contact approaches rely on either

triangulation or time of flight.
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Non-contact optical scanners fall into the categories of passive and active. Passive
scanners use triangulation between two or more cameras, resolving depth in the same
manner as the human visual system [18]. The biggest technical hurdle of stereo and
multi-view systems is the correspondence problem. Daniel Scharstein evaluates several
algorithms performance in this field [21]. Another major goal for a 3-D system is to be
able to measure in real time. Recently real time stereo correlation has been
implemented on ATI Radeon 9800 GPU [22]. Correspondence algorithms make use of
local and global matching of textures, shapes, and shadows. Stereo systems need too
much space to fit in the ear canal, because a stereo system requires two cameras

separated by an appropriate distance.

Active non-contact scanners can bypass the correspondence problem by using active
illumination. Active methods, like passive methods, rely on triangulation. The first
active scanner used a camera to track a moving single laser point. This process mirrored
the physical coordinate measuring machine by building up the model one point at a
time. A similar but faster approach was invented that relied on a plane of laser light.
This technique removed a dimension of the scan and is widely used today. Another
method that makes use of lasers is interferometry, which combines two lasers offset by

a distance.

The newest non-éontact method uses a digital projector instead of a laser and is known
as structured light. Digital projectors can make complex depth dependant patterns that
can be picked up on the camera. A lot of work has been put into the problem of
optimizing the projected patterns. [23] Like passive methods, active methods require
more space than is available in the ear canal because of the need for a light source,
camera, and triangulation. Additionally active methods are currently too expensive for

fabricating custom fit hearing aids.
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The time of flight method is based on measuring the time it takes for the emitted pulse
to be reflected back to the sensor. The accuracy is limited by how well time can be
resolved. For example an accuracy of one centimeter requires a time resolution of 66
picoseconds. [19] Time of flight is typically used to measure large objects like buildings

because it is inexpensive and is relatively inaccurate.

None of the current 3-D imaging methods are appropriate for measuring the ear canal.
Triangulation methods take up too much space and are too expensive. Time of flight is
not accurate enough. MRI’s were used by Olivera [24] scan ear canals, but are too
expensive to be suitable for making hearing aids. Given the goal of making a cheap,
robust system that could scan an ear canal, none of the existing technologies were

suitable.

1.9 Approach

In order to push development forward the problem of taking three dimensional data on
the ear, it was decomposed into two main problems: measuring the compliance of an
ear and developing a technique capable of imaging the ear. These two issues are
discussed in their own sections. They were split up in order to allow concurrent work on
the two, with the hope that both solutions could eventually be combined. Another sub
problem is the stitching of 3-D data, which is also treated on its own briefly in the
imaging section. In the subsequent imaging section ERLIF (emission reabsorbtion laser
induced fluorescence) and an absorption based imaging technique inspired by it will be

introduced and described mathematically.
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2. Imaging with ERLIF and Absorption

When the goal of 3-dimensionally scanning the ear was first being pursued, the planned
technique was ERLIF (emission reabsorption laser induced fluorescence), which can be
used to measure a film thickness. This technique was introduced by Coppeta, J., et. al.
[25] in 1998 under the name of DELIF (dual emission laser induced fluorescence) and
expanded upon by Carlos Hidrovo and Doug Hart in a series of papers between 2000
and 2004. This section will develop the equations to explain ERLIF and the absorption
based imaging technique it inspired, as well as show the resulting calibration curves.

The fundamentals of this technique are explained in the next section.

2.1 ERLIF Fundamentals

ERLIF is an extension of Laser Induced Fluorescence (LIF). In LIF a light source is used to
excite fluorescent tracers. LIF has been used as a qualitative tool used to visualize
particles of interest by Ayala et al [26] and Joffe et al [27], and as a flow tracer by
Georgiev and Alden [28], Kovacs [29], and Thirouard and Hart [30]. It is difficult to use
as a quantitive tool, because of variation in illumination, surface reflectivity, color, and
translucency as well as vignetting effects from tracer emission. The core idea behind
ERLIF is to cancel out these variations taking a ratio of measured intensities between
two fluorescent frequencies. The mathematics that show it to be a variation free
approach are developed in Hidrovo and Hart’s papers, and will be treated briefly in this

section. Hidrovo [31] begins with the differential fluid element shown in figure 2.1.
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Figure 2.1: A differential fluorescent element. [25]

Given this fluid element of concentration ¢ volume dV, molar absorption coefficient
£(A), quantum efficiency @, illuminated by a uniform intensity /., the amount of light
captured by a camera pixel with monitoring efficiency, & from this differential volume,

dly is given by:
dly = §l,e(A)CPAV. (1)

Monitoring efficiency, the percentage of light that is captured by the camera, remains
essentially constant over the area of interest. The first modification that needs to be
made is to consider the absorption of light by other elements of fluid, by including the
Beer-Lambert’s Law of Absorption [32]. /. is modeled to exponentially decay with, x,

with /, as the strength or illumination at x=0,
Io = I,e*[—&(A)Cx]. (2)

This modification is critical to the success of the ratiometric approach as it used
absorbance to make the intensity seen at the CCD depend of the depth of the fluid in a
predictable manner. If a pair of dyes is used in which the absorption spectrum of dye 2

overlaps the emission spectrum of dye one, a thickness dependent behavior between
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the ratio of the intensities of their emissions will emerge. The expected intensity at the
peak fluorescence for dye 1 and 2 needs to take into account absorption of the laser
frequency by dye one and dye two and the emission of the first dye by the second dye
Once these modifications have been made the expected intensity for both peaks is the
result of integrating modified versions of equation (1) with respect to x. This process
leads to the following equations developed in Hidrovo and Harts [31] on DELIF film
measurement, with an addition in nomenclature 74y, (dye’s relative emission at give

wavelength)

Eloe1(A)C1 P11 (Afiter1)(1- exp{-[ g(llaser)C"'E(/lleten)czlx}
&(Alaser)C+E(Afiiter1)C2

Iy = 3)

‘floez(A)Czq)znz()lftlterz)(l exp{— [E(Alaser)clt}
&(A1aser)C

I, = (4)

The ratio of the two intensities is calculated below and can be seen to be thickness

dependent, but not excitation dependent

R = 81(/1)C1¢1771(Afilter1)(1_eXp{_[E(Alaser)C+£()-filter1)C2]x}
&2 (A)Czq)zrlz(Afilterz)(l_ex]){—[ &(Alaser)Clx}

(5)

It is hard to predict the behavior of this ratio by inspection. The quantities in equations
3-5 were graphed as a function of film thickness in figure 2.1 taken from Hidrovo and

Hart’s [33] paper on ERLIF in 2001.
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Figure 2.2: Graph shows the intensity of the fluorescent emission of dye 1 and 2, as well as the ratio

between them. [26]

The first flat region on the graph is the area where there the film is too thin for
reabsorption to make a quantitative difference in the ratio. In the second flat region the
majority of the excitation light has been absorbed. Additional fluid is shielded and as
such cannot contribute to the behavior of the system. This approach was verified
experimentally by Hidrovo and Hart. They used the following optical setup in order to

measure the output fluorescence in two distinct bands.
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Figure 2.3: Experimental setup that can separate light into two small bands of wavelengths of interest.

[25]

The exciting light is reflected off of the first dicroic mirror into the sample.

Two

frequencies of fluorescence are excited and can pass through the first dicroic mirror.

The second dicroic mirror splits the two fluorescence frequencies between the two

CCD’s allowing there intensities to be measured separately. Utilizing this setup they

took 3-D measurements of the coin shown in figure 2.4 taken from Hidrovo’s Ph.D thesis

[33] to validate the approach.
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Figure 2.4: 3-D of coin scanned with ERLIF methods, and ERLIF calibration curve.

One problem with the above data is that it was generated with a pair of very toxic dyes.
The first step to modifying the approach to be appropriate to scanning ears was to find a

non-toxic fluorescent dye pair or a single self reabsorbing dye.

After an extended search the best option that was found was Fluorescein. Fluorescein is
a very safe self-reabsorbing fluorescent dye. It is regularly used to dye the Chicago River
on St. Patrick’'s Day. The same dye is also FDA approved to stain people eyes in
Fluorescein Angiography. In order to validate self reabsorbing emission/absorption
profile found in the literature two fluorimeters were used to take this data show in the

figure 2.5.
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Figure 2.5: Quantitative absorption/emission profiles of Fluorescein as measured by two distinct

fluorimeter instruments.

The self-reabsorbing nature of Fluorescein was validated by these results.

Some

preliminary data 3-D was taken with Fluorescein, but it was found that a self
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reabsorbing dye is not ideal. In a two dye pair there is an additional degree of freedom,
the amount of reabsorbance, available to tune the system. Another approach that
required a fluorescent surface instead of a dye was invented by a colleague Federico
Frigerio, which could use a single color camera. That approach is the subject of the next

section.

2.2 Extension to Absorption Methods

ERLIF has some important weaknesses when applied to scanning ears. ERLIF requires
quite a lot of hardware, two cameras, filters, dicroic mirrors, alignment, and as a result
might be too expensive for the hearing aid application. Additionally, for ERLIF, there
was only a single non-toxic self-reabsorbing dye, Fluorescein. While ERLIF is possible
with a single self-reabsorbing fluorescent dye such as Fluorescein, it is not optimal. In a
solution with just Fluorescein the amount of reabsorbtion is coupled to the amount of
fluorescence. The question that arose was could a single RGB camera be used to do
something similar to ERLIF. The basic idea behind absorption based methods is

illustrated in figure 2.6.
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Figure 2.6: A representation of an absorption based depth scan setup. Blue excitation light passes
through blue food coloring where it hits an orange or yellow fluorescent surface. When it hits the
fluorescent surface orange or yellow fluorescence is given off. This light passes through a blue low pass

filter into the camera.

The figure above shows the basic setup for an absorption based depth scan. Blue
excitation light passes through blue food coloring where it hits an orange or yellow
fluorescent surface. As the light travels through the medium more and the more of the
excitation light is absorbed. When it hits the fluorescent surface orange or yellow
fluorescence is given off, and the remaining excitation light is reflected. The reflected
blue light can be ignored, because there is a blue low pass filter downstream. The
medium continues to absorb light on the return path where it hits a blue low pass filter,
allowing lower frequency light through. This filtered light goes to an RGB camera where
the red and green components used to make ratio that is related to depth in a
quantifiable way. The red to green ratio decreases with depth as will be developed in

the set of equations to follow.
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The math needed for absorption based techniques is very similar to that for ERLIF. The
Intensity of the excitation light at the fluorescent surface, /s, is given by the Beer-

Lambert Law of Absorption [32]

Iefs = I,e"[—&(Aexcitation) CX]. (6)

This excitation light will cause fluorescence, generating a light profile proportional to
this intensity. The spectrum of light generated needs to be taken into account, because
the red and green camera filters are not are not as narrow as the filters used to isolate
the fluorescent peaks in ERLIF methods. The intensity of light generated at a given

wavelength, /(1), is given by the following relation

lemmittea(A) = cI)rllefso\)- (7)

The emitted light will be subject to absorption as it travels back up through the optical

medium. The light at the filter will have the following intensity

1 filter (ﬂemmitted) = fq)ﬂ (Aemmitted) 1 o€ A [—' {g (lexcitation) + & (Aemmission)}cx . (8)

At this stage the systems fluorescence, absorption, and monitoring efficiency have been
taken into account. The final step is to integrate intensity seen by the red and green
pixels of the camera and take their ratio, R. These red and green intensity integrals will
integrated over the wavelengths of interest Armin- Armax for red and Agmin- Agmax for
green. In order to take into account the camera sensitivity to a given wavelength the

new parameter, a(4), has been introduced into the ratio equation below.

A
R l:rrrrxl:rzzx §Pa(Aemmitted)Aemmitted)loe”[—{€@excitation) +EQemmittea)}CX1dAemmitted (9)

Agmax
f/l 5min §Pa(Aemmitted)N(Aemmitted) o€ [—{e(Aexcitation) +E(Aemmittea)}Cx1dAemmitted
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The ratio of interest should be related to depth and independent of lighting conditions

when simplified by canceling equal constants.

A
f rmax{a (Aemmitted)N(Aemmitted) e [—€(Aemmitted) CX1}dAemmitted

— Armin (10)
Agmax A
f H{aQemmittead)NAemmitted) e[~ €(Aemmitted) CX1}dAemmitted
Agmin

This ratio is the heart of absorption based imaging methods. It is not immediately
obvious how this ratio should vary with depth. The most intuitive way to approach it is
to consider two representative frequencies. These frequencies will have different molar
absorption coefficients, & and so they will decay at different rates. In this simplification
the ratio, R, will decay exponentially. The overall ratio will consist of the sum of a
continuum of exponential decaying functions divided by the sum of another continuum

of functions.

2.3 1-D Absorption Calibration

Given good quality data on the emission spectrum of the dye, the absorption spectrum
of the food coloring, the behavior of the filters, and the camera sensitivity the
dependence of the ratio on film thickness could be modeled analytically. However,
pieces of this data are of insufficient accuracy for an analytical model to be more useful
than an experimental calibration given the purpose of measuring an ear. For simplicity

a 1-D calibration setup was used, and is shown in figure 2.7.
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Figure 2.7: 1-D depth calibration experimental setup.

A micrometer was used to change the distance between the fluorescent surface and the
probe. An AVT Stingray F-033c color CCD camera was used to take the optical data. A
set of powerful blue LEDs was used as the excitation light and was triggered by the
camera. A 500 nm long pass filter was used to prevent the blue excitation light from
entering the camera. Preliminary data was taken with the orange fluorescent paint in
which depth was varied at an unknown concentration of blue food coloring number one

to investigate the basic behavior of the system. This calibration curve is shown in figure

2.8.
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Figure 2.8: Preliminary 1-D depth calibration with flat, orange fluorescent target.

This data was very encouraging as it is reasonably well behaved. There are some kinks
in it that look like noise, but could be small non linearities. As the depth increases the
signal to noise ratio decreases, decreasing the effective resolution. The next step was to
do another 1-D calibration with a known concentration and a fluorescent membrane.
Since orange fluorescent paint could not be used on a balloon Coumarin 153 was put
into a urethane membrane and used to provide the fluorescent surface for this

calibration. This calibration curve is shown in figure 2.9.
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Figure 2.9: 1-D depth calibration with flat, Coumarin 153 impregnated membrane.
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The main differences between the calibration curves with Coumarin and the paint are a
more pronounced kink and the magnitude of the ratio. The data is still well behaved,
but the ratio is reduced by approximately a factor of 4. Using the same setup the

concentration was also varied, the resultant calibration curve is shown in figure 2.10.
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Figure 2.10: 1-D concentration calibration with flat, Coumarin 153 impregnated membrane.

The behavior of the concentration calibration curve is as expected. Increasing
concentration for a given depth is equivalent to increasing the depth. Lighting may be
different, but that should be canceled out by the ratiometric nature of absorption based
imaging. In the ratio equation, (10) it is the product of concentration and depth that
determines the amount of light absorbed. The potential of this imaging system is

discussed in the next section.

2.4 Discussion of Imaging Potential

For absorption methods to improve the physical fit of hearing aids, they will need to
meet certain specifications. Currently effects from compliance and TMJ motion as large
as 2 mm in a 10 mm canal are not captured by current methods. Capturing these effects

alone with the same accuracy as impressions could provide great improvement. On a 10
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mm canal an accuracy of 100 microns would be good, and 50 microns might be near the
bleeding edge of accuracy’s utility. By tailoring the concentration to the film thickness
range of interest these types of accuracies can be attained with ERLIF and absorption
methods. One way to achieve high accdracy is to use different concentration of dye in
different parts of the ear. A concept solid modeled in figure 2.11 has regions with

different concentrations.
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Figure 2.10: Solid model of foam assisted multiple region balloon concept.

Different regions of the ear would be measured with different dye concentrations.
Appropriate pressures could be applied regionally by varying the density of the foam.
The idea behind utilizing foam was make applying pressure to the ear simple and safe

for the audiologist.

Another way to improve accuracy is to compare take multiple sets of data stitched
together. In this manner the model can be assured to be of good quality, and the noise
can be canceled out. A brief 3-D stitching simulation was done with ear data to assure

the feasibility of this approach.
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2.5 3-D Stitching Simulation

One problem that arises in machine vision and 3-D techniques is the problem of
stitching. In this paper stitching will be treated briefly in this section to demonstrate
that the stitching needs of this project are easily within the capabilities of existing
techniques. If the requirements were near the maximum potential of stitching
techniques a lot of engineering work would be required to get that last bit of
performance out of current standards. The specifications that an algorithm would need
to meet: stitch together three to ten 3-D shapes in the presence of a low level of noise

and aberrations.

An ICP (iterative closest point) algorithm based on a paper by [34] Paul J. Bed was tested
in simulation and found to be suitable for the needs of absorption based imaging of the
ear. The algorithm minimizes the least squares distance between each point from one
section and the closest point in the other section in an iterative manner. The result is a
matrix that translates and rotates the sections so that the overlapping parts are stitched
back together. For the simulation the data from a real 3-D ear impression laser scan
were provided courtesy of 3-Shape Inc. The point cloud was divided into six sections
along one axis, and those sections were modified by translation, rotation, and noise. The

original and the divided up ear are shown in the figure below.
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Figure 2.11: 3-D point cloud of ear (left). Same 3-D point cloud cut up into six sections and then
rotated, translated, and with xyz noise (right). The restitched point cloud is visually indistinguishable

from the original and as such is not shown. The error between the two is shown in the next figure.

In order to put the cut up ear back together with minimal knowledge of its original
shape an ICP algorithm was used. In order to put the ear back together the second
section was stitched to the first, and the third to the first two, and the fourth to the first
three and so on. The only knowledge of the shape that was used was which sections fit
together. In a more rigorous simulation even this would not have been necessary. All of
the combinations could have been tried and the combination that produced the best
results would almost certainly be the correct one. The performance of the algorithm in

the simulation is shown in the figure below.

Figure 2.12: Original 3-D point cloud minus stitched 3-D point cloud. Characteristic length was 40 mm,
Xyz noise was .05 mm. Stitching was as success, as residual differences were concentrated in the same

magnitude as the noise a (.05 mm) sphere.
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The simulation validated the assumption that current techniques were sufficient. The
residual distances were small and on the order of the noise. Given an appropriate

system for imaging the ear, the next problem to be discussed is that of fabricating the

balloon.
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3. Balloon Fabrication

The need for a balloon arose from a desire to measure compliance. In order to measure
compliance, an adjustable uniform pressure needs to be placed on the ear, for which a
balloon is ideally suited. Additionally, for the optical scan the balloon serves two critical
- functions: it allows the device to retain the optical fluid and provides a fluorescent
surface. Both ERLIF and absorption based methods require optical fluids, but absorption
methods have the additional requirement of a fluorescent surface. In this chapter the
main problems associated with making the balloon and the steps taken to get to a
successful prototype will be discussed. In the next section the requirements for the

balloon needed will be discussed.

3.1 Requirements

A balloon suitable for imaging the ear must fulfill certain constraints: it must be
appropriately compliant, conform well to the ear, and have the appropriate ports. In
order to measure bulk compliance the additional constraint that the balloon cannot

expand freely anywhere must also be met.

The balloon’s compliance will need to lie in a certain range. The upper bound comes
from the amount of pressure that is safe and comfortable in the ear. The lower bound
arises from the need to get a good amount of signal to noise in the bulk compliance
measuring experimental setup. After a significant number of satisfactory balloons were
made and tested, this range was determined experimentally as to require the balloon to

be fully inflated at between 1 and 4 psig.
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The conformity of a balloon to the ear canal is also important. A gap between the
balloon and the ear will introduce error into the measurement. The conformity
requirement makes the uniformity of the balloon important. Additionally, unmeasured
variations in the thickness of the balloon will be measured as changes in the profile of
the ear canal, adding noise to the optical data. Thick parts of the balloon will conform
poorly and thin parts limit the strength of the balloon. For all of the above reasons the
balloon will need to have a uniform appropriate thickness. A compliant cylindrical
balloon was unlikely to conform sufficiently, which is why an ear shaped balloon is
desired. It may be that in order to conform to the variety of ear canals to be measured,
a plurality of balloon shapes will eventually be needed. It was thus expected that
eventually the balloon would need to be more ear shaped, and so a variety of hearing

aid shells were acquired to be used as molds.

The experiments that follow have their own set of additional requirements. The bulk
compliance of an ear measurement requires that the portions of the balloon that are
not up against the ear are stiff. These stiff portions will improve the accuracy of a
simple model of the system, springs in parallel, by removing areas where the balloon
can freely expand while not touching the ear. A pressure tap will be the only port
needed for the bulk compliance measurements. The optical measurements will require

a port for the otoscope as well as a pressure tap.

A final requirement for the balloon comes from cost. Despite the technical complexity
of the custom balloons available from the medical balloon industry as shown in figure
3.1 below, for this research’s purposes the balloon will need to be fabricated in the

laboratory.
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Figure 3.1: Sample producible balloon geometries from Advanced Polymers [29].

The cost to purchase existing medical balloons for experimentation would be been in
the hundreds of dollars. For bulk compliance testing an ear-shaped balloon was
needed. No ear-shaped balloons are being made as stock balloons, and moreover for
optical scanning a set of custom ear-shaped, fluorescent inside coating, was needed.
This set would have had a setup cost upwards of ten thousand dollars. As such, the
balloon needs to be made in the laboratory to make costs reasonable. The next section

deals with what material to use, and how to manufacture the balloon.

3.2 Material and Manufacturing Method Selection

The first question to be answered was concerning from what material to make the
balloon. The majority of balloons are traditionally made out of latex. While the material
properties would be acceptable for the balloons needed, its allergenic properties may
eventually pose a serious problem. In a paper, Tilak M. Shaw [36] discusses, the
allergenic issues concerning latex, which affect approximately 7% of the US population,
as well as the medical device industries response of switching to urethanes and

silicones.

A search of the materials used by large medical balloon manufacturing firms, including

Advanced Polymers Incorporated, showed that many of the compliant balloons were
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urethane based. Urethane can be used to make balloons in a low volume laboratory
setting with a two part mix and dip molding. Other possible materials include silicone
and nylon. Nylon based balloons were typically used for non compliant balloons, and
therefore were not suitable. Silicone based balloons would be a reasonable alternative.
They can be harder to seal, but if the urethane manufacturing path had proved

unsuccessful, silicone would have been explored.
Once it had been decided to make use of urethane, the production method needed to

be decided. For mass production, blow molding is currently being used by the medical

balloon industry. The basic steps of blow molding are illustrated in figure 3.2.

'] @ L4

@ A Balloon @ Mold Closes @ Mold Opens

Of Material Is Air Forced In Hollow Part
Injected Between Pushes Material Is Removed
Mold Halves Into Mold Cavities  And Trimmed

Figure 3.2: Steps involved in blow molding. [37]

Blow molding begins with a balloon of material and makes use of pressurized air to push
the material up against the mold. Blow molding offers high accuracies, low cost per
balloon, and complex geometries and the basics of it are shown in figure 3.1. However

blow molding like injection molding has a large setup cost and as such is less suited to
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prototypes than dip molding. Dip molding is also suited for mass production as shown

in the figure below.

Figure 3.3: Sample images of dip molding manufacturing [38] left [39] right.

The manufacturing of balloons and condoms is shown above. Dip molding is a
manufacturing process most commonly used with latex and plastisol. It is used for the
manufacture of various simple geometry everyday objects such as gloves, balloons, and
condoms. A mold is dipped into the liquid form of the final material and is dried.
Viscosity of the mix and dip speed govern thickness, and thickness can be built up by

dipping multiple times after it mixture has been given time to dry.

Two-part urethane mixes are commercially available in small quantities with a variety of
durometers, set times, and viscosities. A number of these mixes were tested, and given
the thickness and compliance of the desired balloons, the urethane that worked best
was Polytek 74-30, mixed viscosity 2000 cP, Durometer 30 shore A . The early attempts

of making a balloon with this urethane are discussed in the next section.
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3.3 Early Attempts

In the beginning, to determine feasibility a very geometrically simple mold was used, a
glass rod. Polished glass is suitable as a mold, because it is more difficult for the
urethane to stick to then other surfaces like metals and plastics. The two-part polytek
30 was combined and mixed, and the glass rod was dipped into it and slowly pulled up.
The rod was then hung up and allowed to drip. An illustrative early balloon is shown in

figure 3.4

Figure 3.4: Early attempt at producing urethane balloons. Air bubbles are circled in black.

This balloon was somewhat encouraging, but it does have obvious defects. Regions of it
were of an appropriate thickness for the desired compliance. It has air bubbles
throughout the balloon some of which are pin holes that destroy the integrity of the
balloon, and there are large gradients in wall thickness. Another type of defect, a nub, is

shown in figure 3.5.
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Figure 3.5: Early attempt at producing urethane balloons. Nub is circled in black.

This defect is the result of the slow dripping of excess urethane downwards from the
vertical drying position.  Approaches for eliminating the mentioned defects are

explained in the following section.

3.4 Balloon Improvement

The balloons manufactured had several issues. Balloons are fragile and could tear
during the removal process. They had air bubbles, which in thin balloons could become
pin holes. The balloons average thickness was too large, and thickness gradients were

present in addition to nubs.

The first problem that was solved concerned urethane binding strongly to its mold. The
removal process was very delicate, as the balloon could easily tear. The use of a release
agent was expedited removal and prevented the balloon from sticking to the mold and

tearing.
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The most critical defect to eliminate was air bubbles. Air bubbles reduce the integrity of
the balloon and can cause pinholes which render the balloon useless. Given the
sensitivity of the balloon quality to pin holes, air bubbles were more of a concern then in
most applications of this urethane mix. This defect was the easiest to decouple from

other defects.

A vacuum oven was used to remove some of the air bubbles. When the urethane is
subject to a vacuum the air bubbles trapped inside expand, causing the mix to foam up.
The mixture slowly expands until 29 inHg are reached during which it rapidly expands to
5-10 times its initial size. The 29 inHg is critical to ensure that the bubbles collapse
instead of simply expanding and worsening the problem [40]. At the height of the rapid
expansion bubbles quickly pop and the mixture settles back down to its original height.
However, all of the bubbles have not yet been eliminated. The number of air bubbles
has been significantly reduced, but all of the remaining bubbles are at the top of

mixture.

These lingering bubbles pose a serious problem as they will definitely be picked up by
dipping. To further reduce these bubbles an additional two cycles of vacuum between
25 and 29 inHg were utilized. These extra cycles are not as effective as the initial cycle,
as there is not enough air trapped in the mixture for another episode of foaming and
collapsing. The additional cycles proved to be more helpful than merely subjecting the
mixture to a constant high vacuum. At this point the number of bubbles is still too great
to achieve a good vyield for dipped cylindrical balloons, and the bubbles are still all on
the top of the mixture where they would be picked up by the mold. The final step taken
to eliminate air bubbles was to scrape the top of the urethane mixture. After all of
these steps were taken a thinly dipped balloon had an approximately 50% chance of
being free of a pinhole defect. A simple cylindrical balloon free of air bubbles is shown

in figure 3.6
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Figure 3.6: Air bubble free urethane balloon.

In order to eliminate the other types of defects, an understanding of the relevant forces
on the urethane was required. The urethane is under gravitational, viscous, and surface
tension forces. Surface tension is very helpful for balloon production purposes; it
pushes the balloon thickness to a constant. Viscous forces are more neutral, they inhibit
the flow of material. The gravitational force hinders balloon production as it causes
nubs and thickness gradients. In order to make high quality ear-shaped balloons, the
disruptive effect of the gravitational force needs to be mitigated. An ear shaped mold

used for making balloons is shown in figure 3.7.
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Figure 3.7: Hard plastic hearing aid shell to be used for mold as balloon.
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For the purpose of balloon making the expense of achieving zero-g or reduced-g is not
feasible. The first solution attempted was repeated flipping of the balloons during the
drying phase. Through this manual mechanism the balloon thickness was made more
even, and the nubs were reduced in size. The idea of using rotation to counteract
gravity was attempted, and was found to be reasonable for cylindrical shaped balloons.
However for ear-shaped balloons, the eventual goal, rotation caused additional surface

gradients.

After the flipping steps was implemented the surface gradients were still unacceptably
high, and the balloons were too thick. The traditional ways to decrease thickness in dip
molding are to increase dipping speed and decrease viscosity. A good way to get an
intuitive feel for this is to imagine dipping something in honey and water. The honey is
very viscous, and a lot of honey can be gathered on a rod, especially when dipped
slowly. The viscosity of the urethane mix being used can be reduced up to some limit by
changing the ratio of the two part mix, but the manual dipping process cannot be sped

up without losing repeatability.

A non traditional method that proved to be very helpful was to pull extra material off of
the nub by spinning a glass cylinder. Before this technique was utilized the excess
urethane would slowly drip off in an uncontrolled manner. Controlled removal of excess
material it afforded much better regulation over the average thickness and further
reduced nubs. A nub-free balloon produced utilizing this technique is shown in figure

3.8.
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Figure 3.8: A nub free balloon is shown in the picture above.

In addition to improving control over and reducing average thickness, it illustrated that a
more uniform thickness could be achieved with thinner balloons. The reduction in the
mass of urethane decreased the force of gravity, while not affecting the strength of
surface tension forces. This improved the ratio of helpful forces to disruptive forces,
reducing thickness gradients and nubs. This knowledge also led to subsequent

improvements by switching from dipped balloons to brushed-on balloons.

At first the brush was used simply as a tool to even out the balloon as it dried.
Eventually it replaced dipping entirely, as it provided more control. Brushed on balloons
could be made to be thinner than was needed. A very thin brushed on ear shaped

balloon in which nubs were not mitigated is shown in figure 3.9.
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Figure 3.9: Thin brushed on balloon.

This balloon is very uniform aside from the edge effects at the top of the balloon and
the nub at the bottom. Additionally there was very good uniformity, that would be
sacrificed if a thicker coat was painted on. At this thickness a single reasonable sized
bubble would cause a pinhole, so to increase the reliability while retaining the uniform
thickness; it was decided to attempt to build up a balloon in 2-4 layers of very thin
urethane. These balloons had very good properties and could be accurately make
uniform balloons on complex ear shaped molds as show below. These balloons were
also resilient to air bubbles, as a pinhole in a single layer would be covered up by the

additional layers. A defect-free brushed-on balloon is shown in figure
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Figure 3.10: Successful, multiple brushed on layer, uniform ear shaped balloon.

This balloon is brushed-on, defect-free, ear-shaped balloon with a urethane base and an
inflation port. In the next section it will be discussed how to finish the balloons that

come off of the ear mold by adding ports, seals, and plastic backings.

3.5 Adding Seals, Ports, and Rigid Plastic Backings

Dipping and painting balloons onto molds leaves an opening, which requires additional
work in order to produce a usable balloon for imaging or compliance testing. A variety
of methods were used to try and create robust ports with seals. Early attempts using O-
rings and cyanoacrylate are shown in figure 3.11 . The caps of the first balloons
produced were not satisfactory, so they were cut off. The remaining cylindrical balloon
was placed between the O-rings and the ports and glued in place. Extra O-rings were

added in an attempt to create better seals.
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Figure 3.11: Balloons sealed with O-rings and super glue.

In the top image of figure 3.11 a balloon was constructed for use in a model ear. This
balloon made use of the fact that a better seal could be made when only one port was
needed per side. The seals were more robust because they had smaller gaps to fill.
Even the more viscous gel forms of cyanoacrylate contract upon dying, filling gaps

poorly. The balloon in the middle of the figure 3.11 was made with two ports on one
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side, and had a somewhat satisfactory cap. The O-rings were small enough to fit in an
ear canal, and they were also safe and soft as they prevented the balloon from going
past a certain distance in the canal. They were still unappealing when compared to a
balloon with a urethane cap that could eventually be made with brush on methods and
an improved mold, such as the one at the bottom of figure 3.11. This balloon was only
suitable for compliance testing, as it had no pressure tap. Another problem with these

O-ring and glue ports is that they cannot be extended to non cylindrical balloons.

The first attempt at adding a port and base to an ear shaped balloon involved gluing a
fitted piece of urethane cut out from a thin sheet. A sample sheet and base cutout are

shown in figure 3.12.

Figure 3.12 Sheet of orange urethane for making balloon bases (left), and sample cutout base (right).

Silicone and cyanoacrylate glues were both tested. The base needs to be attached to
the existing balloon. An image of an assembled balloon in which silicone sealant was

used is shown in figure 3.13.
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Figure 3.13: Base attached with silicone and removed

The seal made with silicone was for the most part a failure. The seal is not elegant, and
it does not stick to the urethane well. The base could be easily removed from the

balloon as show on the right image of figure 3.13

Cyanoacrylate based seals worked considerably better. They were worse at gap filling
but, adhered well to the urethane. A cutaway of a seal between a clear base and an

orange balloon is shown in figure 3.14.

Figure 3.14: Cyanoacrylate based method of adding base. Full balloon is shown on left,

balloon is cutaway to show seal on right.
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The cyanoacrylate seals were functional. The main issue with the cyanoacrylate was
that once it dried it became totally inflexible. A large improvement in functionality and
appearance of the added bases wash achieved through the use of completely urethane-
based approach was used. To make a urethane base, an entire coat of urethane needed
to be painted on the existing balloon and it was allowed to dry sitting on top of a wet
layer of urethane on a glass dish. This solution was seamless and robust. Ports could be
added by cutting small holes in the urethane base to insert the tubes and seals could be
made with cyanoacrylate based glue. The balloon shown in figure 3.15 was made in this

manner.

Figure 3.15: Balloon base attached entirely with urethane

The last modification that was made to this method to broduce a balloon suited for
compliance testing was to glue a rigid plastic base to the bottom before adding the final

coat of urethane. A balloon with a rigid plastic base is shown in figure 3.16.
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Figure 3.16: Balloon base with rigid plastic base.

The rigid base prevents free-expansion of the base of the balloon, so that the
compliance of the balloon can be more accurately measured. At this stage all of the
physical aspects of the balloon have been finalized and all that is left is to add

fluorescence.
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3.6 Adding Fluorescence

The process of adding fluorescence to a balloon to meet our imaging needs was more
difficult then it first appeared to be. For calibration and other experiments a fluorescent
paint was used to provide the fluorescent surface needed for absorption based imaging.
Simply painting the outside of the balloon was not an option, because the paint would

crack subject to strain, as shown below.

Figure 3.17: Paint flaking off of a painted balloon

When it became obvious that the balloon could not be painted an attempt was made at
adding paint to the urethane mix, but it caused severe amounts of bubble nucleation.
Air bubbles were still unacceptable, so another method of adding fluorescence was

needed.

One potential solution to the problem of paint drying was be to capture paint between
two layers of urethane and have the paint never dry. By adding linseed oil balloons
could be created that had a shelf life of about two weeks, before they dried out and
became less suitable for use. What had been accomplished was delaying the onset of

the drying out. Such a balloon is shown in figure 3.18.
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Figure 3.18: Balloon made with layer of fluorescent paint trapped between two layers of urethane

This was a great improvement, but was still not a robust solution. A closer inspection of

the balloon under load reveals a zebra stripe pattern.

Figure 3.19: Zebra striped pattern on stretched balloon made up of two layers of urethane with layer of

fluorescent paint in between.
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The final attempt to make use of this orange fluorescent paint involved grinding up
dried paint. A mortar and pestle was used to produce orange fluorescent powder,

which was put into the urethane mix. The results are shown in figure 3.20.

Figure 3.20: Balloon mad with ground up fluorescent paint. Photographed with flash (left), and
without flash (right)

These results were quite promising. The ground paint had little effect on the production
of the balloons. These results lead to further inquiry into industrial balloon
manufacturing techniques, during which it was found that balloons were often colored
with pigments rather than dyes. A search for a supplier of fluorescent pigment powder
quickly lead to acquiring a selection of finely ground uniform powders. Such powders
were available cheaply and could be easily integrated into the existing balloon
production framework. A balloon made with orange fluorescent powder is shown

below.
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Figure 3.21: Balloon made with fluorescent orange powder.

At first it seemed like this was the final solution to adding fluorescence to the balloon.
However, when balloons like this were used for imaging they produced a lot of
unexpected noise, because they were self-reabsorbing. Their fluorescent emissions
were reabsorbed by neighboring regions leading to cross-talk and noise. The self
reabsorbtion made uniformity of balloon thickness very critical from an optical
standpoint. The tolerances necessary for surface conformity were much easier to attain
in the laboratory. To solve this final problem, a more expensive well behaved
fluorescent powder was used, Coumarin 153. With the techniques described earlier and

this powder, the problem of adding fluorescence to the balloon was solved.

3.7 Step by Step Procedures

A system by which acceptable quality balloons could be manufactured in the laboratory
was developed. In order that others may be able to do the same a list of the procedure

used to manufacture the balloons is given below.
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Supplies and Equipment needed:

1.

. .

© ® NP W oA wN

Polytek 74-30 Urethane Rubber two part mixture
Mold Release

Vacuum Oven or Vacuum Degasser

Small flat paint brush

Plastic or glass mixing receptacle

Balloon Mold

Work area where balloons can be hung to dry
Flat glass sheet, slide, or dish

Gloves

Figure 3.22: Equipment needed.
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Steps for making multi layer balloon with plastic base:

Painting the First Coat

Prepare all molds by cleaning and spraying with mold release.

Mix equal parts 74-30 Polytek Urethane Rubber in plastic or glass receptacle.
Do not fill above 20% the height of the container to allow for expansion
during the vacuum oven. Add fluorescent pigment if desired.

Use vacuum oven or degasser to subject mixture to 29 in Hg

Cycle between 25 and 29 in Hg two additional times, and remove mixture
from vacuum oven after 15 total minutes.

Use spoon to scoop off top of mix where remaining air bubbles are.

Paint mixture on evenly with paint brush.

Continue to handle mold, moving around making additional brush strokes as
necessary for the next 15 minutes until right before mixture becomes tacky
and stroke do more harm than good. Can test tackiness of mixture still in
receptacle.

Hang up to dry. If possible to flip vertically after 15 minutes.

Adding a base layer of urethane

10.

11.
12.
13.
14.

Add an additional layer repeat steps 2-8.

After two layers have been made, remove balloon carefully from mold. Cut
to desired shape.

Repeat steps 2-5 to prepare another batch of urethane.

Spray glass sheet, slide, or dish with urethane.

Paint urethane layer on glass.

Paint thin urethane layer on balloon

77



15.
16.
17.

Stick balloon into urethane layer on glass
Allow to dry

Remove balloon from glass slide and clean off mold release

Adding a rigid plastic base and ports

18.

19.
20.
21.
22.
23.

Prepare rigid plastic base by tracing balloon base on it, cutting, and punching
holes for ports.

Use cyanoacrylate based glue to attach rigid plastic base to balloon base
Poke holes in urethane and put in tubing where desired.

Slide tubing in and make seal with glue.

Allow to dry

Repeat steps 2-8 to finish balloon.
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4. Compliance

Compliance is a critical factor in hearing aid fit that is the entirely left out of the current
impression methodology. In order for a hearing aid to fit comfortably the amount of
pressure it is exuding needs to be appropriate in all the areas in which it makes contact
with the ear. A simple over sizing of the hearing aid will only satisfy some subset of

people’s who by chance have ears suited to the current method.

The compliance of the ear as a mechanical system is pretty complex. It is made up of
bones, cartilage, and skin, assembled into a compound system. Each ear is unique in its
shape and the properties of its components. The 3-D compliance of the ear, which is
the eventual goal of this work, can be forwarded by a simpler measurement, the bulk
compliance. In order to inform the data from bulk compliance measurements, a simple
model for the compliance of an ear is needed, to give some basis of comparison to

existing data. This model is developed in the next section.

4.1 Infinite Cylinder of Skin Model of the Ear

A mechanical model of the ear as a compound system made up of bones, cartilage, and
skin is too complex to be fitted to data from bulk compliance measurements. It might
be reasonable to make such a model with 3-D compliance measurements, or bulk
compliance measurements aided by X-rays or MRI’s. A company using 3-D compliance
measurements to manufacture hearing aids would certainly need a model that takes
into account the three different tissues. For the purpose of comparing bulk compliance
measurements to existing measurements there will be no knowledge of the boundaries

or relative composition of the different tissues. These characteristics are unique for
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each ear. Therefore the ear will be modeled as one tissue, the one that is the most
compliant and therefore is responsible for much of the ear’s compliance, skin. The
skin’s mechanical behavior has been measured in vivo 